Properties

Label 294.5.c.a
Level 294294
Weight 55
Character orbit 294.c
Analytic conductor 30.39130.391
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,5,Mod(97,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.97");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 294.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.390769146730.3907691467
Analytic rank: 00
Dimension: 44
Coefficient field: Q(2,3)\Q(\sqrt{2}, \sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+2x2+4 x^{4} + 2x^{2} + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 24 2^{4}
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+3β2q3+8q4+(β311β2)q53β3q6+8β1q827q9+(11β3+8β2)q10+(6β1+81)q11++(162β12187)q99+O(q100) q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + 8 q^{4} + ( - \beta_{3} - 11 \beta_{2}) q^{5} - 3 \beta_{3} q^{6} + 8 \beta_1 q^{8} - 27 q^{9} + (11 \beta_{3} + 8 \beta_{2}) q^{10} + ( - 6 \beta_1 + 81) q^{11}+ \cdots + (162 \beta_1 - 2187) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+32q4108q9+324q11+396q15+256q16192q22624q23+952q25+2724q29288q30864q362792q371296q39632q43+2592q44+9792q46+8748q99+O(q100) 4 q + 32 q^{4} - 108 q^{9} + 324 q^{11} + 396 q^{15} + 256 q^{16} - 192 q^{22} - 624 q^{23} + 952 q^{25} + 2724 q^{29} - 288 q^{30} - 864 q^{36} - 2792 q^{37} - 1296 q^{39} - 632 q^{43} + 2592 q^{44} + 9792 q^{46}+ \cdots - 8748 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+2x2+4 x^{4} + 2x^{2} + 4 : Copy content Toggle raw display

β1\beta_{1}== ν3 \nu^{3} Copy content Toggle raw display
β2\beta_{2}== ν2+1 \nu^{2} + 1 Copy content Toggle raw display
β3\beta_{3}== ν3+4ν \nu^{3} + 4\nu Copy content Toggle raw display
ν\nu== (β3β1)/4 ( \beta_{3} - \beta_1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== β21 \beta_{2} - 1 Copy content Toggle raw display
ν3\nu^{3}== β1 \beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/294Z)×\left(\mathbb{Z}/294\mathbb{Z}\right)^\times.

nn 197197 199199
χ(n)\chi(n) 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
97.1
0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
−0.707107 1.22474i
−2.82843 5.19615i 8.00000 23.9515i 14.6969i 0 −22.6274 −27.0000 67.7452i
97.2 −2.82843 5.19615i 8.00000 23.9515i 14.6969i 0 −22.6274 −27.0000 67.7452i
97.3 2.82843 5.19615i 8.00000 14.1536i 14.6969i 0 22.6274 −27.0000 40.0324i
97.4 2.82843 5.19615i 8.00000 14.1536i 14.6969i 0 22.6274 −27.0000 40.0324i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.5.c.a 4
3.b odd 2 1 882.5.c.a 4
7.b odd 2 1 inner 294.5.c.a 4
7.c even 3 1 42.5.g.a 4
7.c even 3 1 294.5.g.c 4
7.d odd 6 1 42.5.g.a 4
7.d odd 6 1 294.5.g.c 4
21.c even 2 1 882.5.c.a 4
21.g even 6 1 126.5.n.b 4
21.h odd 6 1 126.5.n.b 4
28.f even 6 1 336.5.bh.d 4
28.g odd 6 1 336.5.bh.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.g.a 4 7.c even 3 1
42.5.g.a 4 7.d odd 6 1
126.5.n.b 4 21.g even 6 1
126.5.n.b 4 21.h odd 6 1
294.5.c.a 4 1.a even 1 1 trivial
294.5.c.a 4 7.b odd 2 1 inner
294.5.g.c 4 7.c even 3 1
294.5.g.c 4 7.d odd 6 1
336.5.bh.d 4 28.f even 6 1
336.5.bh.d 4 28.g odd 6 1
882.5.c.a 4 3.b odd 2 1
882.5.c.a 4 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T54+774T52+114921 T_{5}^{4} + 774T_{5}^{2} + 114921 acting on S5new(294,[χ])S_{5}^{\mathrm{new}}(294, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T28)2 (T^{2} - 8)^{2} Copy content Toggle raw display
33 (T2+27)2 (T^{2} + 27)^{2} Copy content Toggle raw display
55 T4+774T2+114921 T^{4} + 774 T^{2} + 114921 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2162T+6273)2 (T^{2} - 162 T + 6273)^{2} Copy content Toggle raw display
1313 T4+63264T2+569108736 T^{4} + 63264 T^{2} + 569108736 Copy content Toggle raw display
1717 T4+62424T2+589324176 T^{4} + 62424 T^{2} + 589324176 Copy content Toggle raw display
1919 T4+88344T2+128051856 T^{4} + 88344 T^{2} + 128051856 Copy content Toggle raw display
2323 (T2+312T724752)2 (T^{2} + 312 T - 724752)^{2} Copy content Toggle raw display
2929 (T21362T+460233)2 (T^{2} - 1362 T + 460233)^{2} Copy content Toggle raw display
3131 T4++1025818531929 T^{4} + \cdots + 1025818531929 Copy content Toggle raw display
3737 (T2+1396T+468772)2 (T^{2} + 1396 T + 468772)^{2} Copy content Toggle raw display
4141 T4++8311481425296 T^{4} + \cdots + 8311481425296 Copy content Toggle raw display
4343 (T2+316T10371836)2 (T^{2} + 316 T - 10371836)^{2} Copy content Toggle raw display
4747 T4++5862054484224 T^{4} + \cdots + 5862054484224 Copy content Toggle raw display
5353 (T21038T2524887)2 (T^{2} - 1038 T - 2524887)^{2} Copy content Toggle raw display
5959 T4++105068670590601 T^{4} + \cdots + 105068670590601 Copy content Toggle raw display
6161 T4++2285563428864 T^{4} + \cdots + 2285563428864 Copy content Toggle raw display
6767 (T2+14600T+51400432)2 (T^{2} + 14600 T + 51400432)^{2} Copy content Toggle raw display
7171 (T2+4848T+1589184)2 (T^{2} + 4848 T + 1589184)^{2} Copy content Toggle raw display
7373 T4++13 ⁣ ⁣44 T^{4} + \cdots + 13\!\cdots\!44 Copy content Toggle raw display
7979 (T2+3974T67620479)2 (T^{2} + 3974 T - 67620479)^{2} Copy content Toggle raw display
8383 T4++109011202550649 T^{4} + \cdots + 109011202550649 Copy content Toggle raw display
8989 T4++31 ⁣ ⁣04 T^{4} + \cdots + 31\!\cdots\!04 Copy content Toggle raw display
9797 T4++9242250571449 T^{4} + \cdots + 9242250571449 Copy content Toggle raw display
show more
show less