Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [294,5,Mod(97,294)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(294, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("294.97");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 294.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 42) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 |
|
−2.82843 | − | 5.19615i | 8.00000 | 23.9515i | 14.6969i | 0 | −22.6274 | −27.0000 | − | 67.7452i | ||||||||||||||||||||||||||||
97.2 | −2.82843 | 5.19615i | 8.00000 | − | 23.9515i | − | 14.6969i | 0 | −22.6274 | −27.0000 | 67.7452i | |||||||||||||||||||||||||||||
97.3 | 2.82843 | − | 5.19615i | 8.00000 | 14.1536i | − | 14.6969i | 0 | 22.6274 | −27.0000 | 40.0324i | |||||||||||||||||||||||||||||
97.4 | 2.82843 | 5.19615i | 8.00000 | − | 14.1536i | 14.6969i | 0 | 22.6274 | −27.0000 | − | 40.0324i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 294.5.c.a | 4 | |
3.b | odd | 2 | 1 | 882.5.c.a | 4 | ||
7.b | odd | 2 | 1 | inner | 294.5.c.a | 4 | |
7.c | even | 3 | 1 | 42.5.g.a | ✓ | 4 | |
7.c | even | 3 | 1 | 294.5.g.c | 4 | ||
7.d | odd | 6 | 1 | 42.5.g.a | ✓ | 4 | |
7.d | odd | 6 | 1 | 294.5.g.c | 4 | ||
21.c | even | 2 | 1 | 882.5.c.a | 4 | ||
21.g | even | 6 | 1 | 126.5.n.b | 4 | ||
21.h | odd | 6 | 1 | 126.5.n.b | 4 | ||
28.f | even | 6 | 1 | 336.5.bh.d | 4 | ||
28.g | odd | 6 | 1 | 336.5.bh.d | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.5.g.a | ✓ | 4 | 7.c | even | 3 | 1 | |
42.5.g.a | ✓ | 4 | 7.d | odd | 6 | 1 | |
126.5.n.b | 4 | 21.g | even | 6 | 1 | ||
126.5.n.b | 4 | 21.h | odd | 6 | 1 | ||
294.5.c.a | 4 | 1.a | even | 1 | 1 | trivial | |
294.5.c.a | 4 | 7.b | odd | 2 | 1 | inner | |
294.5.g.c | 4 | 7.c | even | 3 | 1 | ||
294.5.g.c | 4 | 7.d | odd | 6 | 1 | ||
336.5.bh.d | 4 | 28.f | even | 6 | 1 | ||
336.5.bh.d | 4 | 28.g | odd | 6 | 1 | ||
882.5.c.a | 4 | 3.b | odd | 2 | 1 | ||
882.5.c.a | 4 | 21.c | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .