Properties

Label 294.5.c.a
Level $294$
Weight $5$
Character orbit 294.c
Analytic conductor $30.391$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,5,Mod(97,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.97");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 294.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.3907691467\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + 8 q^{4} + ( - \beta_{3} - 11 \beta_{2}) q^{5} - 3 \beta_{3} q^{6} + 8 \beta_1 q^{8} - 27 q^{9} + (11 \beta_{3} + 8 \beta_{2}) q^{10} + ( - 6 \beta_1 + 81) q^{11}+ \cdots + (162 \beta_1 - 2187) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 32 q^{4} - 108 q^{9} + 324 q^{11} + 396 q^{15} + 256 q^{16} - 192 q^{22} - 624 q^{23} + 952 q^{25} + 2724 q^{29} - 288 q^{30} - 864 q^{36} - 2792 q^{37} - 1296 q^{39} - 632 q^{43} + 2592 q^{44} + 9792 q^{46}+ \cdots - 8748 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i
−0.707107 1.22474i
−2.82843 5.19615i 8.00000 23.9515i 14.6969i 0 −22.6274 −27.0000 67.7452i
97.2 −2.82843 5.19615i 8.00000 23.9515i 14.6969i 0 −22.6274 −27.0000 67.7452i
97.3 2.82843 5.19615i 8.00000 14.1536i 14.6969i 0 22.6274 −27.0000 40.0324i
97.4 2.82843 5.19615i 8.00000 14.1536i 14.6969i 0 22.6274 −27.0000 40.0324i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 294.5.c.a 4
3.b odd 2 1 882.5.c.a 4
7.b odd 2 1 inner 294.5.c.a 4
7.c even 3 1 42.5.g.a 4
7.c even 3 1 294.5.g.c 4
7.d odd 6 1 42.5.g.a 4
7.d odd 6 1 294.5.g.c 4
21.c even 2 1 882.5.c.a 4
21.g even 6 1 126.5.n.b 4
21.h odd 6 1 126.5.n.b 4
28.f even 6 1 336.5.bh.d 4
28.g odd 6 1 336.5.bh.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.5.g.a 4 7.c even 3 1
42.5.g.a 4 7.d odd 6 1
126.5.n.b 4 21.g even 6 1
126.5.n.b 4 21.h odd 6 1
294.5.c.a 4 1.a even 1 1 trivial
294.5.c.a 4 7.b odd 2 1 inner
294.5.g.c 4 7.c even 3 1
294.5.g.c 4 7.d odd 6 1
336.5.bh.d 4 28.f even 6 1
336.5.bh.d 4 28.g odd 6 1
882.5.c.a 4 3.b odd 2 1
882.5.c.a 4 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 774T_{5}^{2} + 114921 \) acting on \(S_{5}^{\mathrm{new}}(294, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 774 T^{2} + 114921 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 162 T + 6273)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 63264 T^{2} + 569108736 \) Copy content Toggle raw display
$17$ \( T^{4} + 62424 T^{2} + 589324176 \) Copy content Toggle raw display
$19$ \( T^{4} + 88344 T^{2} + 128051856 \) Copy content Toggle raw display
$23$ \( (T^{2} + 312 T - 724752)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 1362 T + 460233)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1025818531929 \) Copy content Toggle raw display
$37$ \( (T^{2} + 1396 T + 468772)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 8311481425296 \) Copy content Toggle raw display
$43$ \( (T^{2} + 316 T - 10371836)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 5862054484224 \) Copy content Toggle raw display
$53$ \( (T^{2} - 1038 T - 2524887)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 105068670590601 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 2285563428864 \) Copy content Toggle raw display
$67$ \( (T^{2} + 14600 T + 51400432)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 4848 T + 1589184)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 13\!\cdots\!44 \) Copy content Toggle raw display
$79$ \( (T^{2} + 3974 T - 67620479)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 109011202550649 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 31\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 9242250571449 \) Copy content Toggle raw display
show more
show less