Properties

Label 126.5.n.b.73.2
Level $126$
Weight $5$
Character 126.73
Analytic conductor $13.025$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,5,Mod(19,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.19");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0246153486\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 73.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 126.73
Dual form 126.5.n.b.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41421 + 2.44949i) q^{2} +(-4.00000 + 6.92820i) q^{4} +(12.2574 - 7.07679i) q^{5} +(12.1985 + 47.4573i) q^{7} -22.6274 q^{8} +(34.6690 + 20.0162i) q^{10} +(32.0147 - 55.4511i) q^{11} +228.919i q^{13} +(-98.9949 + 96.9948i) q^{14} +(-32.0000 - 55.4256i) q^{16} +(195.250 + 112.728i) q^{17} +(-255.250 + 147.369i) q^{19} +113.229i q^{20} +181.103 q^{22} +(354.749 + 614.444i) q^{23} +(-212.338 + 367.780i) q^{25} +(-560.735 + 323.741i) q^{26} +(-377.588 - 105.316i) q^{28} -740.397 q^{29} +(-577.390 - 333.356i) q^{31} +(90.5097 - 156.767i) q^{32} +637.683i q^{34} +(485.367 + 495.375i) q^{35} +(416.882 + 722.061i) q^{37} +(-721.955 - 416.821i) q^{38} +(-277.352 + 160.129i) q^{40} -2817.60i q^{41} +3066.41 q^{43} +(256.118 + 443.609i) q^{44} +(-1003.38 + 1737.91i) q^{46} +(531.502 - 306.863i) q^{47} +(-2103.39 + 1157.81i) q^{49} -1201.17 q^{50} +(-1586.00 - 915.677i) q^{52} +(-576.300 + 998.181i) q^{53} -906.246i q^{55} +(-276.020 - 1073.84i) q^{56} +(-1047.08 - 1813.59i) q^{58} +(3024.67 + 1746.30i) q^{59} +(1967.79 - 1136.11i) q^{61} -1885.75i q^{62} +512.000 q^{64} +(1620.01 + 2805.94i) q^{65} +(4337.31 - 7512.44i) q^{67} +(-1562.00 + 901.820i) q^{68} +(-527.005 + 1889.47i) q^{70} +353.591 q^{71} +(3524.68 + 2034.97i) q^{73} +(-1179.12 + 2042.30i) q^{74} -2357.90i q^{76} +(3022.09 + 842.913i) q^{77} +(-3236.41 - 5605.63i) q^{79} +(-784.471 - 452.915i) q^{80} +(6901.69 - 3984.69i) q^{82} -8225.83i q^{83} +3191.00 q^{85} +(4336.55 + 7511.13i) q^{86} +(-724.410 + 1254.72i) q^{88} +(13456.5 - 7769.13i) q^{89} +(-10863.9 + 2792.47i) q^{91} -5675.99 q^{92} +(1503.32 + 867.939i) q^{94} +(-2085.79 + 3612.70i) q^{95} -1558.61i q^{97} +(-5810.70 - 3514.84i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 66 q^{5} - 70 q^{7} - 48 q^{10} + 162 q^{11} - 128 q^{16} + 204 q^{17} - 444 q^{19} - 192 q^{22} - 312 q^{23} - 476 q^{25} - 1632 q^{26} - 560 q^{28} - 2724 q^{29} - 3786 q^{31} - 672 q^{35}+ \cdots - 23520 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421 + 2.44949i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −4.00000 + 6.92820i −0.250000 + 0.433013i
\(5\) 12.2574 7.07679i 0.490294 0.283072i −0.234402 0.972140i \(-0.575313\pi\)
0.724697 + 0.689068i \(0.241980\pi\)
\(6\) 0 0
\(7\) 12.1985 + 47.4573i 0.248949 + 0.968517i
\(8\) −22.6274 −0.353553
\(9\) 0 0
\(10\) 34.6690 + 20.0162i 0.346690 + 0.200162i
\(11\) 32.0147 55.4511i 0.264584 0.458274i −0.702870 0.711318i \(-0.748099\pi\)
0.967455 + 0.253044i \(0.0814319\pi\)
\(12\) 0 0
\(13\) 228.919i 1.35455i 0.735729 + 0.677276i \(0.236839\pi\)
−0.735729 + 0.677276i \(0.763161\pi\)
\(14\) −98.9949 + 96.9948i −0.505076 + 0.494872i
\(15\) 0 0
\(16\) −32.0000 55.4256i −0.125000 0.216506i
\(17\) 195.250 + 112.728i 0.675605 + 0.390061i 0.798197 0.602397i \(-0.205787\pi\)
−0.122592 + 0.992457i \(0.539121\pi\)
\(18\) 0 0
\(19\) −255.250 + 147.369i −0.707063 + 0.408223i −0.809973 0.586468i \(-0.800518\pi\)
0.102910 + 0.994691i \(0.467185\pi\)
\(20\) 113.229i 0.283072i
\(21\) 0 0
\(22\) 181.103 0.374179
\(23\) 354.749 + 614.444i 0.670604 + 1.16152i 0.977733 + 0.209852i \(0.0672982\pi\)
−0.307129 + 0.951668i \(0.599368\pi\)
\(24\) 0 0
\(25\) −212.338 + 367.780i −0.339741 + 0.588449i
\(26\) −560.735 + 323.741i −0.829490 + 0.478906i
\(27\) 0 0
\(28\) −377.588 105.316i −0.481617 0.134331i
\(29\) −740.397 −0.880377 −0.440188 0.897905i \(-0.645088\pi\)
−0.440188 + 0.897905i \(0.645088\pi\)
\(30\) 0 0
\(31\) −577.390 333.356i −0.600822 0.346885i 0.168543 0.985694i \(-0.446094\pi\)
−0.769365 + 0.638809i \(0.779427\pi\)
\(32\) 90.5097 156.767i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 637.683i 0.551629i
\(35\) 485.367 + 495.375i 0.396218 + 0.404388i
\(36\) 0 0
\(37\) 416.882 + 722.061i 0.304516 + 0.527437i 0.977153 0.212535i \(-0.0681720\pi\)
−0.672638 + 0.739972i \(0.734839\pi\)
\(38\) −721.955 416.821i −0.499969 0.288657i
\(39\) 0 0
\(40\) −277.352 + 160.129i −0.173345 + 0.100081i
\(41\) 2817.60i 1.67615i −0.545558 0.838073i \(-0.683682\pi\)
0.545558 0.838073i \(-0.316318\pi\)
\(42\) 0 0
\(43\) 3066.41 1.65841 0.829207 0.558942i \(-0.188793\pi\)
0.829207 + 0.558942i \(0.188793\pi\)
\(44\) 256.118 + 443.609i 0.132292 + 0.229137i
\(45\) 0 0
\(46\) −1003.38 + 1737.91i −0.474188 + 0.821318i
\(47\) 531.502 306.863i 0.240608 0.138915i −0.374848 0.927086i \(-0.622305\pi\)
0.615456 + 0.788171i \(0.288972\pi\)
\(48\) 0 0
\(49\) −2103.39 + 1157.81i −0.876049 + 0.482222i
\(50\) −1201.17 −0.480466
\(51\) 0 0
\(52\) −1586.00 915.677i −0.586538 0.338638i
\(53\) −576.300 + 998.181i −0.205162 + 0.355351i −0.950184 0.311688i \(-0.899105\pi\)
0.745022 + 0.667040i \(0.232439\pi\)
\(54\) 0 0
\(55\) 906.246i 0.299585i
\(56\) −276.020 1073.84i −0.0880166 0.342422i
\(57\) 0 0
\(58\) −1047.08 1813.59i −0.311260 0.539119i
\(59\) 3024.67 + 1746.30i 0.868909 + 0.501665i 0.866986 0.498333i \(-0.166054\pi\)
0.00192348 + 0.999998i \(0.499388\pi\)
\(60\) 0 0
\(61\) 1967.79 1136.11i 0.528834 0.305323i −0.211707 0.977333i \(-0.567902\pi\)
0.740542 + 0.672010i \(0.234569\pi\)
\(62\) 1885.75i 0.490569i
\(63\) 0 0
\(64\) 512.000 0.125000
\(65\) 1620.01 + 2805.94i 0.383435 + 0.664129i
\(66\) 0 0
\(67\) 4337.31 7512.44i 0.966208 1.67352i 0.259874 0.965642i \(-0.416319\pi\)
0.706334 0.707879i \(-0.250348\pi\)
\(68\) −1562.00 + 901.820i −0.337802 + 0.195030i
\(69\) 0 0
\(70\) −527.005 + 1889.47i −0.107552 + 0.385606i
\(71\) 353.591 0.0701431 0.0350715 0.999385i \(-0.488834\pi\)
0.0350715 + 0.999385i \(0.488834\pi\)
\(72\) 0 0
\(73\) 3524.68 + 2034.97i 0.661415 + 0.381868i 0.792816 0.609461i \(-0.208614\pi\)
−0.131401 + 0.991329i \(0.541948\pi\)
\(74\) −1179.12 + 2042.30i −0.215325 + 0.372954i
\(75\) 0 0
\(76\) 2357.90i 0.408223i
\(77\) 3022.09 + 842.913i 0.509714 + 0.142168i
\(78\) 0 0
\(79\) −3236.41 5605.63i −0.518573 0.898194i −0.999767 0.0215805i \(-0.993130\pi\)
0.481194 0.876614i \(-0.340203\pi\)
\(80\) −784.471 452.915i −0.122574 0.0707679i
\(81\) 0 0
\(82\) 6901.69 3984.69i 1.02643 0.592607i
\(83\) 8225.83i 1.19405i −0.802222 0.597026i \(-0.796349\pi\)
0.802222 0.597026i \(-0.203651\pi\)
\(84\) 0 0
\(85\) 3191.00 0.441660
\(86\) 4336.55 + 7511.13i 0.586338 + 1.01557i
\(87\) 0 0
\(88\) −724.410 + 1254.72i −0.0935447 + 0.162024i
\(89\) 13456.5 7769.13i 1.69884 0.980828i 0.751983 0.659183i \(-0.229098\pi\)
0.946860 0.321645i \(-0.104236\pi\)
\(90\) 0 0
\(91\) −10863.9 + 2792.47i −1.31191 + 0.337214i
\(92\) −5675.99 −0.670604
\(93\) 0 0
\(94\) 1503.32 + 867.939i 0.170135 + 0.0982276i
\(95\) −2085.79 + 3612.70i −0.231113 + 0.400299i
\(96\) 0 0
\(97\) 1558.61i 0.165651i −0.996564 0.0828254i \(-0.973606\pi\)
0.996564 0.0828254i \(-0.0263944\pi\)
\(98\) −5810.70 3514.84i −0.605030 0.365977i
\(99\) 0 0
\(100\) −1698.70 2942.24i −0.169870 0.294224i
\(101\) −13627.2 7867.66i −1.33587 0.771264i −0.349676 0.936871i \(-0.613708\pi\)
−0.986192 + 0.165607i \(0.947042\pi\)
\(102\) 0 0
\(103\) 29.2099 16.8644i 0.00275332 0.00158963i −0.498623 0.866819i \(-0.666161\pi\)
0.501376 + 0.865229i \(0.332827\pi\)
\(104\) 5179.85i 0.478906i
\(105\) 0 0
\(106\) −3260.05 −0.290143
\(107\) −2723.23 4716.78i −0.237858 0.411981i 0.722242 0.691641i \(-0.243112\pi\)
−0.960099 + 0.279659i \(0.909778\pi\)
\(108\) 0 0
\(109\) −8348.89 + 14460.7i −0.702709 + 1.21713i 0.264803 + 0.964303i \(0.414693\pi\)
−0.967512 + 0.252825i \(0.918640\pi\)
\(110\) 2219.84 1281.62i 0.183458 0.105919i
\(111\) 0 0
\(112\) 2240.00 2194.74i 0.178571 0.174964i
\(113\) −9455.64 −0.740515 −0.370258 0.928929i \(-0.620731\pi\)
−0.370258 + 0.928929i \(0.620731\pi\)
\(114\) 0 0
\(115\) 8696.58 + 5020.97i 0.657586 + 0.379658i
\(116\) 2961.59 5129.62i 0.220094 0.381214i
\(117\) 0 0
\(118\) 9878.54i 0.709461i
\(119\) −2967.99 + 10641.1i −0.209589 + 0.751440i
\(120\) 0 0
\(121\) 5270.62 + 9128.97i 0.359990 + 0.623521i
\(122\) 5565.76 + 3213.39i 0.373942 + 0.215896i
\(123\) 0 0
\(124\) 4619.12 2666.85i 0.300411 0.173442i
\(125\) 14856.7i 0.950827i
\(126\) 0 0
\(127\) −2380.07 −0.147564 −0.0737822 0.997274i \(-0.523507\pi\)
−0.0737822 + 0.997274i \(0.523507\pi\)
\(128\) 724.077 + 1254.14i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −4582.09 + 7936.41i −0.271129 + 0.469610i
\(131\) 3758.37 2169.90i 0.219006 0.126443i −0.386484 0.922296i \(-0.626310\pi\)
0.605490 + 0.795853i \(0.292977\pi\)
\(132\) 0 0
\(133\) −10107.4 10315.8i −0.571393 0.583176i
\(134\) 24535.5 1.36642
\(135\) 0 0
\(136\) −4418.00 2550.73i −0.238862 0.137907i
\(137\) −15379.6 + 26638.2i −0.819414 + 1.41927i 0.0867001 + 0.996234i \(0.472368\pi\)
−0.906114 + 0.423033i \(0.860966\pi\)
\(138\) 0 0
\(139\) 27186.6i 1.40710i −0.710644 0.703551i \(-0.751596\pi\)
0.710644 0.703551i \(-0.248404\pi\)
\(140\) −5373.53 + 1381.22i −0.274160 + 0.0704703i
\(141\) 0 0
\(142\) 500.054 + 866.118i 0.0247993 + 0.0429537i
\(143\) 12693.8 + 7328.78i 0.620755 + 0.358393i
\(144\) 0 0
\(145\) −9075.31 + 5239.63i −0.431644 + 0.249210i
\(146\) 11511.6i 0.540043i
\(147\) 0 0
\(148\) −6670.12 −0.304516
\(149\) −2913.46 5046.26i −0.131231 0.227299i 0.792920 0.609325i \(-0.208560\pi\)
−0.924151 + 0.382027i \(0.875226\pi\)
\(150\) 0 0
\(151\) −12593.4 + 21812.4i −0.552317 + 0.956642i 0.445789 + 0.895138i \(0.352923\pi\)
−0.998107 + 0.0615039i \(0.980410\pi\)
\(152\) 5775.64 3334.57i 0.249985 0.144329i
\(153\) 0 0
\(154\) 2209.18 + 8594.64i 0.0931513 + 0.362399i
\(155\) −9436.37 −0.392773
\(156\) 0 0
\(157\) 20694.6 + 11948.0i 0.839571 + 0.484726i 0.857118 0.515120i \(-0.172253\pi\)
−0.0175475 + 0.999846i \(0.505586\pi\)
\(158\) 9153.96 15855.1i 0.366686 0.635119i
\(159\) 0 0
\(160\) 2562.07i 0.100081i
\(161\) −24832.5 + 24330.7i −0.958005 + 0.938650i
\(162\) 0 0
\(163\) 21293.0 + 36880.5i 0.801422 + 1.38810i 0.918680 + 0.395001i \(0.129256\pi\)
−0.117259 + 0.993101i \(0.537411\pi\)
\(164\) 19520.9 + 11270.4i 0.725793 + 0.419037i
\(165\) 0 0
\(166\) 20149.1 11633.1i 0.731205 0.422161i
\(167\) 26356.3i 0.945043i −0.881319 0.472521i \(-0.843344\pi\)
0.881319 0.472521i \(-0.156656\pi\)
\(168\) 0 0
\(169\) −23843.0 −0.834809
\(170\) 4512.75 + 7816.31i 0.156150 + 0.270461i
\(171\) 0 0
\(172\) −12265.6 + 21244.7i −0.414603 + 0.718114i
\(173\) −24265.3 + 14009.6i −0.810763 + 0.468094i −0.847221 0.531241i \(-0.821726\pi\)
0.0364578 + 0.999335i \(0.488393\pi\)
\(174\) 0 0
\(175\) −20044.1 5590.63i −0.654500 0.182551i
\(176\) −4097.88 −0.132292
\(177\) 0 0
\(178\) 38060.8 + 21974.4i 1.20126 + 0.693550i
\(179\) 12699.2 21995.7i 0.396343 0.686487i −0.596928 0.802295i \(-0.703612\pi\)
0.993272 + 0.115808i \(0.0369457\pi\)
\(180\) 0 0
\(181\) 44097.2i 1.34603i −0.739630 0.673014i \(-0.764999\pi\)
0.739630 0.673014i \(-0.235001\pi\)
\(182\) −22204.0 22661.8i −0.670329 0.684152i
\(183\) 0 0
\(184\) −8027.06 13903.3i −0.237094 0.410659i
\(185\) 10219.8 + 5900.38i 0.298605 + 0.172400i
\(186\) 0 0
\(187\) 12501.7 7217.88i 0.357509 0.206408i
\(188\) 4909.81i 0.138915i
\(189\) 0 0
\(190\) −11799.0 −0.326843
\(191\) −32279.6 55909.8i −0.884832 1.53257i −0.845906 0.533332i \(-0.820940\pi\)
−0.0389256 0.999242i \(-0.512394\pi\)
\(192\) 0 0
\(193\) −18337.3 + 31761.1i −0.492290 + 0.852670i −0.999961 0.00888055i \(-0.997173\pi\)
0.507671 + 0.861551i \(0.330507\pi\)
\(194\) 3817.80 2204.20i 0.101440 0.0585664i
\(195\) 0 0
\(196\) 392.000 19204.0i 0.0102041 0.499896i
\(197\) 73147.0 1.88480 0.942398 0.334494i \(-0.108566\pi\)
0.942398 + 0.334494i \(0.108566\pi\)
\(198\) 0 0
\(199\) −1213.33 700.514i −0.0306387 0.0176893i 0.484602 0.874735i \(-0.338964\pi\)
−0.515241 + 0.857045i \(0.672298\pi\)
\(200\) 4804.66 8321.92i 0.120117 0.208048i
\(201\) 0 0
\(202\) 44506.2i 1.09073i
\(203\) −9031.72 35137.3i −0.219169 0.852660i
\(204\) 0 0
\(205\) −19939.6 34536.4i −0.474469 0.821805i
\(206\) 82.6182 + 47.6996i 0.00194689 + 0.00112404i
\(207\) 0 0
\(208\) 12688.0 7325.41i 0.293269 0.169319i
\(209\) 18871.8i 0.432038i
\(210\) 0 0
\(211\) 58231.7 1.30796 0.653980 0.756512i \(-0.273098\pi\)
0.653980 + 0.756512i \(0.273098\pi\)
\(212\) −4610.40 7985.45i −0.102581 0.177676i
\(213\) 0 0
\(214\) 7702.46 13341.1i 0.168191 0.291315i
\(215\) 37586.1 21700.3i 0.813111 0.469450i
\(216\) 0 0
\(217\) 8776.92 31467.8i 0.186390 0.668263i
\(218\) −47228.4 −0.993781
\(219\) 0 0
\(220\) 6278.65 + 3624.98i 0.129724 + 0.0748963i
\(221\) −25805.5 + 44696.4i −0.528357 + 0.915141i
\(222\) 0 0
\(223\) 61050.9i 1.22767i −0.789434 0.613836i \(-0.789626\pi\)
0.789434 0.613836i \(-0.210374\pi\)
\(224\) 8543.84 + 2383.02i 0.170277 + 0.0474933i
\(225\) 0 0
\(226\) −13372.3 23161.5i −0.261812 0.453471i
\(227\) −21645.2 12496.8i −0.420058 0.242520i 0.275044 0.961432i \(-0.411307\pi\)
−0.695102 + 0.718911i \(0.744641\pi\)
\(228\) 0 0
\(229\) −16392.9 + 9464.44i −0.312597 + 0.180478i −0.648088 0.761565i \(-0.724431\pi\)
0.335491 + 0.942043i \(0.391098\pi\)
\(230\) 28402.9i 0.536917i
\(231\) 0 0
\(232\) 16753.3 0.311260
\(233\) 3342.37 + 5789.15i 0.0615662 + 0.106636i 0.895166 0.445734i \(-0.147057\pi\)
−0.833599 + 0.552369i \(0.813724\pi\)
\(234\) 0 0
\(235\) 4343.21 7522.66i 0.0786457 0.136218i
\(236\) −24197.4 + 13970.4i −0.434455 + 0.250832i
\(237\) 0 0
\(238\) −30262.7 + 7778.77i −0.534262 + 0.137327i
\(239\) 96461.0 1.68871 0.844356 0.535782i \(-0.179983\pi\)
0.844356 + 0.535782i \(0.179983\pi\)
\(240\) 0 0
\(241\) 47371.8 + 27350.1i 0.815616 + 0.470896i 0.848902 0.528550i \(-0.177264\pi\)
−0.0332863 + 0.999446i \(0.510597\pi\)
\(242\) −14907.6 + 25820.6i −0.254551 + 0.440896i
\(243\) 0 0
\(244\) 18177.7i 0.305323i
\(245\) −17588.4 + 29077.0i −0.293019 + 0.484415i
\(246\) 0 0
\(247\) −33735.5 58431.6i −0.552959 0.957753i
\(248\) 13064.9 + 7542.99i 0.212423 + 0.122642i
\(249\) 0 0
\(250\) −36391.3 + 21010.5i −0.582260 + 0.336168i
\(251\) 108137.i 1.71643i −0.513286 0.858217i \(-0.671572\pi\)
0.513286 0.858217i \(-0.328428\pi\)
\(252\) 0 0
\(253\) 45428.8 0.709725
\(254\) −3365.92 5829.95i −0.0521719 0.0903643i
\(255\) 0 0
\(256\) −2048.00 + 3547.24i −0.0312500 + 0.0541266i
\(257\) −31078.3 + 17943.0i −0.470533 + 0.271663i −0.716463 0.697625i \(-0.754240\pi\)
0.245930 + 0.969288i \(0.420907\pi\)
\(258\) 0 0
\(259\) −29181.8 + 28592.2i −0.435023 + 0.426233i
\(260\) −25920.2 −0.383435
\(261\) 0 0
\(262\) 10630.3 + 6137.39i 0.154861 + 0.0894090i
\(263\) −32715.8 + 56665.4i −0.472984 + 0.819232i −0.999522 0.0309199i \(-0.990156\pi\)
0.526538 + 0.850151i \(0.323490\pi\)
\(264\) 0 0
\(265\) 16313.4i 0.232302i
\(266\) 10974.5 39346.7i 0.155103 0.556089i
\(267\) 0 0
\(268\) 34698.5 + 60099.5i 0.483104 + 0.836761i
\(269\) 59938.7 + 34605.6i 0.828329 + 0.478236i 0.853280 0.521453i \(-0.174610\pi\)
−0.0249511 + 0.999689i \(0.507943\pi\)
\(270\) 0 0
\(271\) 5672.94 3275.27i 0.0772449 0.0445973i −0.460880 0.887462i \(-0.652466\pi\)
0.538125 + 0.842865i \(0.319133\pi\)
\(272\) 14429.1i 0.195030i
\(273\) 0 0
\(274\) −87000.1 −1.15883
\(275\) 13595.9 + 23548.8i 0.179780 + 0.311389i
\(276\) 0 0
\(277\) −39551.6 + 68505.4i −0.515471 + 0.892823i 0.484367 + 0.874865i \(0.339050\pi\)
−0.999839 + 0.0179578i \(0.994284\pi\)
\(278\) 66593.4 38447.7i 0.861671 0.497486i
\(279\) 0 0
\(280\) −10982.6 11209.1i −0.140084 0.142973i
\(281\) −34363.1 −0.435191 −0.217596 0.976039i \(-0.569821\pi\)
−0.217596 + 0.976039i \(0.569821\pi\)
\(282\) 0 0
\(283\) 79598.4 + 45956.1i 0.993874 + 0.573813i 0.906430 0.422356i \(-0.138797\pi\)
0.0874439 + 0.996169i \(0.472130\pi\)
\(284\) −1414.37 + 2449.75i −0.0175358 + 0.0303729i
\(285\) 0 0
\(286\) 41457.8i 0.506844i
\(287\) 133716. 34370.5i 1.62338 0.417274i
\(288\) 0 0
\(289\) −16345.5 28311.3i −0.195705 0.338972i
\(290\) −25668.9 14819.9i −0.305218 0.176218i
\(291\) 0 0
\(292\) −28197.4 + 16279.8i −0.330707 + 0.190934i
\(293\) 23218.2i 0.270453i 0.990815 + 0.135227i \(0.0431763\pi\)
−0.990815 + 0.135227i \(0.956824\pi\)
\(294\) 0 0
\(295\) 49432.7 0.568028
\(296\) −9432.97 16338.4i −0.107663 0.186477i
\(297\) 0 0
\(298\) 8240.51 14273.0i 0.0927943 0.160724i
\(299\) −140658. + 81208.9i −1.57334 + 0.908367i
\(300\) 0 0
\(301\) 37405.5 + 145523.i 0.412860 + 1.60620i
\(302\) −71239.0 −0.781095
\(303\) 0 0
\(304\) 16336.0 + 9431.59i 0.176766 + 0.102056i
\(305\) 16080.0 27851.3i 0.172856 0.299396i
\(306\) 0 0
\(307\) 66385.9i 0.704367i 0.935931 + 0.352183i \(0.114561\pi\)
−0.935931 + 0.352183i \(0.885439\pi\)
\(308\) −17928.2 + 17566.0i −0.188989 + 0.185171i
\(309\) 0 0
\(310\) −13345.0 23114.3i −0.138866 0.240523i
\(311\) 82879.0 + 47850.2i 0.856888 + 0.494724i 0.862969 0.505257i \(-0.168602\pi\)
−0.00608108 + 0.999982i \(0.501936\pi\)
\(312\) 0 0
\(313\) 41486.1 23952.0i 0.423461 0.244486i −0.273096 0.961987i \(-0.588048\pi\)
0.696557 + 0.717501i \(0.254714\pi\)
\(314\) 67588.2i 0.685507i
\(315\) 0 0
\(316\) 51782.6 0.518573
\(317\) −17064.1 29555.9i −0.169811 0.294121i 0.768543 0.639799i \(-0.220982\pi\)
−0.938353 + 0.345678i \(0.887649\pi\)
\(318\) 0 0
\(319\) −23703.6 + 41055.8i −0.232934 + 0.403454i
\(320\) 6275.77 3623.32i 0.0612868 0.0353839i
\(321\) 0 0
\(322\) −94716.3 26418.0i −0.913509 0.254793i
\(323\) −66450.0 −0.636927
\(324\) 0 0
\(325\) −84192.0 48608.3i −0.797084 0.460196i
\(326\) −60225.6 + 104314.i −0.566691 + 0.981537i
\(327\) 0 0
\(328\) 63755.1i 0.592607i
\(329\) 21046.4 + 21480.4i 0.194440 + 0.198450i
\(330\) 0 0
\(331\) −66642.6 115428.i −0.608270 1.05355i −0.991526 0.129912i \(-0.958531\pi\)
0.383256 0.923642i \(-0.374803\pi\)
\(332\) 56990.2 + 32903.3i 0.517040 + 0.298513i
\(333\) 0 0
\(334\) 64559.5 37273.4i 0.578718 0.334123i
\(335\) 122777.i 1.09402i
\(336\) 0 0
\(337\) −49734.4 −0.437922 −0.218961 0.975734i \(-0.570267\pi\)
−0.218961 + 0.975734i \(0.570267\pi\)
\(338\) −33719.0 58403.1i −0.295149 0.511214i
\(339\) 0 0
\(340\) −12764.0 + 22107.9i −0.110415 + 0.191245i
\(341\) −36970.0 + 21344.6i −0.317936 + 0.183561i
\(342\) 0 0
\(343\) −80605.0 85697.8i −0.685131 0.728420i
\(344\) −69384.9 −0.586338
\(345\) 0 0
\(346\) −68632.7 39625.1i −0.573296 0.330993i
\(347\) 9384.77 16254.9i 0.0779408 0.134997i −0.824421 0.565978i \(-0.808499\pi\)
0.902361 + 0.430980i \(0.141832\pi\)
\(348\) 0 0
\(349\) 4574.17i 0.0375545i 0.999824 + 0.0187772i \(0.00597733\pi\)
−0.999824 + 0.0187772i \(0.994023\pi\)
\(350\) −14652.4 57004.1i −0.119611 0.465340i
\(351\) 0 0
\(352\) −5795.28 10037.7i −0.0467724 0.0810121i
\(353\) −52734.9 30446.5i −0.423203 0.244336i 0.273244 0.961945i \(-0.411903\pi\)
−0.696447 + 0.717608i \(0.745237\pi\)
\(354\) 0 0
\(355\) 4334.10 2502.29i 0.0343908 0.0198555i
\(356\) 124306.i 0.980828i
\(357\) 0 0
\(358\) 71837.7 0.560514
\(359\) 116059. + 201020.i 0.900513 + 1.55973i 0.826830 + 0.562452i \(0.190142\pi\)
0.0736826 + 0.997282i \(0.476525\pi\)
\(360\) 0 0
\(361\) −21725.5 + 37629.7i −0.166708 + 0.288746i
\(362\) 108016. 62362.9i 0.824271 0.475893i
\(363\) 0 0
\(364\) 24108.8 86437.1i 0.181959 0.652375i
\(365\) 57604.4 0.432384
\(366\) 0 0
\(367\) −125329. 72358.9i −0.930509 0.537229i −0.0435362 0.999052i \(-0.513862\pi\)
−0.886972 + 0.461822i \(0.847196\pi\)
\(368\) 22704.0 39324.4i 0.167651 0.290380i
\(369\) 0 0
\(370\) 33377.6i 0.243810i
\(371\) −54401.0 15173.4i −0.395238 0.110239i
\(372\) 0 0
\(373\) 74441.6 + 128937.i 0.535054 + 0.926741i 0.999161 + 0.0409616i \(0.0130421\pi\)
−0.464107 + 0.885779i \(0.653625\pi\)
\(374\) 35360.2 + 20415.2i 0.252797 + 0.145952i
\(375\) 0 0
\(376\) −12026.5 + 6943.52i −0.0850676 + 0.0491138i
\(377\) 169491.i 1.19252i
\(378\) 0 0
\(379\) 140667. 0.979299 0.489649 0.871919i \(-0.337125\pi\)
0.489649 + 0.871919i \(0.337125\pi\)
\(380\) −16686.3 28901.6i −0.115556 0.200149i
\(381\) 0 0
\(382\) 91300.4 158137.i 0.625671 1.08369i
\(383\) −25393.9 + 14661.2i −0.173114 + 0.0999473i −0.584053 0.811715i \(-0.698534\pi\)
0.410939 + 0.911663i \(0.365201\pi\)
\(384\) 0 0
\(385\) 43008.0 11054.8i 0.290153 0.0745814i
\(386\) −103731. −0.696202
\(387\) 0 0
\(388\) 10798.4 + 6234.43i 0.0717289 + 0.0414127i
\(389\) 66209.9 114679.i 0.437546 0.757852i −0.559954 0.828524i \(-0.689181\pi\)
0.997500 + 0.0706723i \(0.0225145\pi\)
\(390\) 0 0
\(391\) 159960.i 1.04630i
\(392\) 47594.4 26198.4i 0.309730 0.170491i
\(393\) 0 0
\(394\) 103446. + 179173.i 0.666376 + 1.15420i
\(395\) −79339.7 45806.8i −0.508507 0.293586i
\(396\) 0 0
\(397\) 29642.0 17113.8i 0.188073 0.108584i −0.403007 0.915197i \(-0.632035\pi\)
0.591080 + 0.806613i \(0.298702\pi\)
\(398\) 3962.70i 0.0250164i
\(399\) 0 0
\(400\) 27179.3 0.169870
\(401\) −89540.6 155089.i −0.556841 0.964477i −0.997758 0.0669288i \(-0.978680\pi\)
0.440917 0.897548i \(-0.354653\pi\)
\(402\) 0 0
\(403\) 76311.7 132176.i 0.469873 0.813845i
\(404\) 109018. 62941.3i 0.667934 0.385632i
\(405\) 0 0
\(406\) 73295.6 71814.7i 0.444657 0.435674i
\(407\) 53385.5 0.322281
\(408\) 0 0
\(409\) 43099.3 + 24883.4i 0.257646 + 0.148752i 0.623260 0.782014i \(-0.285808\pi\)
−0.365614 + 0.930767i \(0.619141\pi\)
\(410\) 56397.6 97683.6i 0.335501 0.581104i
\(411\) 0 0
\(412\) 269.830i 0.00158963i
\(413\) −45978.1 + 164845.i −0.269557 + 0.966442i
\(414\) 0 0
\(415\) −58212.4 100827.i −0.338002 0.585437i
\(416\) 35887.0 + 20719.4i 0.207372 + 0.119727i
\(417\) 0 0
\(418\) −46226.4 + 26688.8i −0.264568 + 0.152748i
\(419\) 43951.2i 0.250347i −0.992135 0.125174i \(-0.960051\pi\)
0.992135 0.125174i \(-0.0399488\pi\)
\(420\) 0 0
\(421\) −218257. −1.23141 −0.615707 0.787975i \(-0.711129\pi\)
−0.615707 + 0.787975i \(0.711129\pi\)
\(422\) 82352.0 + 142638.i 0.462433 + 0.800958i
\(423\) 0 0
\(424\) 13040.2 22586.3i 0.0725357 0.125636i
\(425\) −82917.9 + 47872.7i −0.459061 + 0.265039i
\(426\) 0 0
\(427\) 77920.6 + 79527.4i 0.427363 + 0.436175i
\(428\) 43571.7 0.237858
\(429\) 0 0
\(430\) 106309. + 61377.8i 0.574956 + 0.331951i
\(431\) −38369.8 + 66458.5i −0.206555 + 0.357763i −0.950627 0.310336i \(-0.899558\pi\)
0.744072 + 0.668099i \(0.232892\pi\)
\(432\) 0 0
\(433\) 216713.i 1.15587i −0.816083 0.577935i \(-0.803859\pi\)
0.816083 0.577935i \(-0.196141\pi\)
\(434\) 89492.6 23003.3i 0.475125 0.122127i
\(435\) 0 0
\(436\) −66791.1 115686.i −0.351354 0.608564i
\(437\) −181099. 104558.i −0.948318 0.547512i
\(438\) 0 0
\(439\) 20578.6 11881.0i 0.106779 0.0616489i −0.445659 0.895203i \(-0.647031\pi\)
0.552438 + 0.833554i \(0.313697\pi\)
\(440\) 20506.0i 0.105919i
\(441\) 0 0
\(442\) −145978. −0.747210
\(443\) 87432.4 + 151437.i 0.445517 + 0.771659i 0.998088 0.0618072i \(-0.0196864\pi\)
−0.552571 + 0.833466i \(0.686353\pi\)
\(444\) 0 0
\(445\) 109961. 190458.i 0.555289 0.961788i
\(446\) 149544. 86339.0i 0.751793 0.434048i
\(447\) 0 0
\(448\) 6245.62 + 24298.1i 0.0311186 + 0.121065i
\(449\) 195154. 0.968023 0.484011 0.875062i \(-0.339179\pi\)
0.484011 + 0.875062i \(0.339179\pi\)
\(450\) 0 0
\(451\) −156239. 90204.7i −0.768134 0.443482i
\(452\) 37822.6 65510.6i 0.185129 0.320653i
\(453\) 0 0
\(454\) 70692.8i 0.342976i
\(455\) −113401. + 111110.i −0.547764 + 0.536697i
\(456\) 0 0
\(457\) −29236.1 50638.5i −0.139987 0.242464i 0.787505 0.616309i \(-0.211373\pi\)
−0.927491 + 0.373844i \(0.878039\pi\)
\(458\) −46366.1 26769.5i −0.221039 0.127617i
\(459\) 0 0
\(460\) −69572.6 + 40167.8i −0.328793 + 0.189829i
\(461\) 307243.i 1.44571i 0.691002 + 0.722853i \(0.257169\pi\)
−0.691002 + 0.722853i \(0.742831\pi\)
\(462\) 0 0
\(463\) −17772.2 −0.0829049 −0.0414524 0.999140i \(-0.513199\pi\)
−0.0414524 + 0.999140i \(0.513199\pi\)
\(464\) 23692.7 + 41037.0i 0.110047 + 0.190607i
\(465\) 0 0
\(466\) −9453.65 + 16374.2i −0.0435339 + 0.0754029i
\(467\) −56261.4 + 32482.5i −0.257974 + 0.148942i −0.623410 0.781895i \(-0.714253\pi\)
0.365436 + 0.930837i \(0.380920\pi\)
\(468\) 0 0
\(469\) 409429. + 114197.i 1.86137 + 0.519168i
\(470\) 24568.9 0.111222
\(471\) 0 0
\(472\) −68440.5 39514.2i −0.307206 0.177365i
\(473\) 98170.2 170036.i 0.438790 0.760007i
\(474\) 0 0
\(475\) 125168.i 0.554760i
\(476\) −61852.0 63127.4i −0.272986 0.278615i
\(477\) 0 0
\(478\) 136416. + 236280.i 0.597050 + 1.03412i
\(479\) −182677. 105468.i −0.796181 0.459675i 0.0459530 0.998944i \(-0.485368\pi\)
−0.842134 + 0.539268i \(0.818701\pi\)
\(480\) 0 0
\(481\) −165294. + 95432.3i −0.714440 + 0.412482i
\(482\) 154716.i 0.665948i
\(483\) 0 0
\(484\) −84329.8 −0.359990
\(485\) −11029.9 19104.4i −0.0468910 0.0812177i
\(486\) 0 0
\(487\) 114444. 198223.i 0.482542 0.835787i −0.517257 0.855830i \(-0.673047\pi\)
0.999799 + 0.0200431i \(0.00638033\pi\)
\(488\) −44526.1 + 25707.1i −0.186971 + 0.107948i
\(489\) 0 0
\(490\) −96097.7 1961.59i −0.400240 0.00816987i
\(491\) −140350. −0.582169 −0.291085 0.956697i \(-0.594016\pi\)
−0.291085 + 0.956697i \(0.594016\pi\)
\(492\) 0 0
\(493\) −144562. 83463.1i −0.594787 0.343400i
\(494\) 95418.3 165269.i 0.391001 0.677234i
\(495\) 0 0
\(496\) 42669.6i 0.173442i
\(497\) 4313.28 + 16780.5i 0.0174620 + 0.0679348i
\(498\) 0 0
\(499\) 172663. + 299062.i 0.693424 + 1.20105i 0.970709 + 0.240258i \(0.0772322\pi\)
−0.277285 + 0.960788i \(0.589434\pi\)
\(500\) −102930. 59426.7i −0.411720 0.237707i
\(501\) 0 0
\(502\) 264881. 152929.i 1.05110 0.606851i
\(503\) 58979.0i 0.233110i −0.993184 0.116555i \(-0.962815\pi\)
0.993184 0.116555i \(-0.0371851\pi\)
\(504\) 0 0
\(505\) −222711. −0.873291
\(506\) 64246.0 + 111277.i 0.250926 + 0.434616i
\(507\) 0 0
\(508\) 9520.26 16489.6i 0.0368911 0.0638972i
\(509\) −20653.6 + 11924.3i −0.0797186 + 0.0460255i −0.539329 0.842095i \(-0.681322\pi\)
0.459611 + 0.888120i \(0.347989\pi\)
\(510\) 0 0
\(511\) −53578.7 + 192095.i −0.205187 + 0.735657i
\(512\) −11585.2 −0.0441942
\(513\) 0 0
\(514\) −87902.6 50750.6i −0.332717 0.192094i
\(515\) 238.691 413.425i 0.000899957 0.00155877i
\(516\) 0 0
\(517\) 39296.5i 0.147019i
\(518\) −111305. 31045.0i −0.414817 0.115700i
\(519\) 0 0
\(520\) −36656.7 63491.3i −0.135565 0.234805i
\(521\) −417171. 240854.i −1.53688 0.887315i −0.999019 0.0442788i \(-0.985901\pi\)
−0.537856 0.843037i \(-0.680766\pi\)
\(522\) 0 0
\(523\) −399593. + 230705.i −1.46088 + 0.843438i −0.999052 0.0435320i \(-0.986139\pi\)
−0.461826 + 0.886970i \(0.652806\pi\)
\(524\) 34718.3i 0.126443i
\(525\) 0 0
\(526\) −185068. −0.668900
\(527\) −75156.9 130176.i −0.270612 0.468714i
\(528\) 0 0
\(529\) −111774. + 193598.i −0.399419 + 0.691813i
\(530\) −39959.6 + 23070.7i −0.142255 + 0.0821312i
\(531\) 0 0
\(532\) 111899. 28762.8i 0.395371 0.101627i
\(533\) 645003. 2.27043
\(534\) 0 0
\(535\) −66759.3 38543.5i −0.233240 0.134661i
\(536\) −98142.1 + 169987.i −0.341606 + 0.591679i
\(537\) 0 0
\(538\) 195759.i 0.676328i
\(539\) −3137.44 + 153703.i −0.0107994 + 0.529059i
\(540\) 0 0
\(541\) 254098. + 440111.i 0.868174 + 1.50372i 0.863861 + 0.503731i \(0.168040\pi\)
0.00431302 + 0.999991i \(0.498627\pi\)
\(542\) 16045.5 + 9263.87i 0.0546204 + 0.0315351i
\(543\) 0 0
\(544\) 35344.0 20405.9i 0.119431 0.0689536i
\(545\) 236333.i 0.795668i
\(546\) 0 0
\(547\) 40170.8 0.134257 0.0671283 0.997744i \(-0.478616\pi\)
0.0671283 + 0.997744i \(0.478616\pi\)
\(548\) −123037. 213106.i −0.409707 0.709634i
\(549\) 0 0
\(550\) −38455.0 + 66606.0i −0.127124 + 0.220185i
\(551\) 188986. 109111.i 0.622482 0.359390i
\(552\) 0 0
\(553\) 226549. 221972.i 0.740818 0.725851i
\(554\) −223738. −0.728987
\(555\) 0 0
\(556\) 188355. + 108747.i 0.609293 + 0.351776i
\(557\) −39230.2 + 67948.7i −0.126447 + 0.219013i −0.922298 0.386480i \(-0.873691\pi\)
0.795850 + 0.605493i \(0.207024\pi\)
\(558\) 0 0
\(559\) 701959.i 2.24641i
\(560\) 11924.8 42753.8i 0.0380254 0.136332i
\(561\) 0 0
\(562\) −48596.8 84172.2i −0.153863 0.266499i
\(563\) 355612. + 205312.i 1.12191 + 0.647737i 0.941889 0.335926i \(-0.109049\pi\)
0.180024 + 0.983662i \(0.442382\pi\)
\(564\) 0 0
\(565\) −115901. + 66915.6i −0.363071 + 0.209619i
\(566\) 259967.i 0.811495i
\(567\) 0 0
\(568\) −8000.86 −0.0247993
\(569\) −74404.3 128872.i −0.229812 0.398047i 0.727940 0.685641i \(-0.240478\pi\)
−0.957752 + 0.287594i \(0.907145\pi\)
\(570\) 0 0
\(571\) −36146.3 + 62607.3i −0.110864 + 0.192023i −0.916119 0.400906i \(-0.868695\pi\)
0.805255 + 0.592929i \(0.202029\pi\)
\(572\) −101551. + 58630.3i −0.310378 + 0.179197i
\(573\) 0 0
\(574\) 273293. + 278928.i 0.829477 + 0.846582i
\(575\) −301307. −0.911326
\(576\) 0 0
\(577\) −482666. 278667.i −1.44976 0.837018i −0.451290 0.892377i \(-0.649036\pi\)
−0.998466 + 0.0553596i \(0.982369\pi\)
\(578\) 46232.1 80076.3i 0.138385 0.239689i
\(579\) 0 0
\(580\) 83834.1i 0.249210i
\(581\) 390376. 100343.i 1.15646 0.297258i
\(582\) 0 0
\(583\) 36900.2 + 63913.0i 0.108565 + 0.188041i
\(584\) −79754.4 46046.2i −0.233845 0.135011i
\(585\) 0 0
\(586\) −56872.6 + 32835.4i −0.165618 + 0.0956197i
\(587\) 308119.i 0.894217i −0.894480 0.447109i \(-0.852454\pi\)
0.894480 0.447109i \(-0.147546\pi\)
\(588\) 0 0
\(589\) 196505. 0.566426
\(590\) 69908.3 + 121085.i 0.200828 + 0.347845i
\(591\) 0 0
\(592\) 26680.5 46211.9i 0.0761290 0.131859i
\(593\) 200805. 115935.i 0.571038 0.329689i −0.186526 0.982450i \(-0.559723\pi\)
0.757564 + 0.652761i \(0.226389\pi\)
\(594\) 0 0
\(595\) 38925.3 + 151436.i 0.109951 + 0.427755i
\(596\) 46615.3 0.131231
\(597\) 0 0
\(598\) −397841. 229693.i −1.11252 0.642312i
\(599\) −167042. + 289325.i −0.465555 + 0.806365i −0.999226 0.0393269i \(-0.987479\pi\)
0.533671 + 0.845692i \(0.320812\pi\)
\(600\) 0 0
\(601\) 645072.i 1.78591i −0.450147 0.892955i \(-0.648628\pi\)
0.450147 0.892955i \(-0.351372\pi\)
\(602\) −303559. + 297426.i −0.837625 + 0.820702i
\(603\) 0 0
\(604\) −100747. 174499.i −0.276159 0.478321i
\(605\) 129208. + 74598.1i 0.353002 + 0.203806i
\(606\) 0 0
\(607\) 120643. 69653.0i 0.327433 0.189044i −0.327268 0.944932i \(-0.606128\pi\)
0.654701 + 0.755888i \(0.272795\pi\)
\(608\) 53353.1i 0.144329i
\(609\) 0 0
\(610\) 90962.0 0.244456
\(611\) 70246.8 + 121671.i 0.188167 + 0.325915i
\(612\) 0 0
\(613\) 203665. 352759.i 0.541997 0.938765i −0.456793 0.889573i \(-0.651002\pi\)
0.998789 0.0491924i \(-0.0156647\pi\)
\(614\) −162611. + 93883.8i −0.431335 + 0.249031i
\(615\) 0 0
\(616\) −68382.1 19072.9i −0.180211 0.0502639i
\(617\) −276504. −0.726325 −0.363163 0.931726i \(-0.618303\pi\)
−0.363163 + 0.931726i \(0.618303\pi\)
\(618\) 0 0
\(619\) 193904. + 111950.i 0.506064 + 0.292176i 0.731214 0.682148i \(-0.238954\pi\)
−0.225150 + 0.974324i \(0.572287\pi\)
\(620\) 37745.5 65377.1i 0.0981933 0.170076i
\(621\) 0 0
\(622\) 270682.i 0.699646i
\(623\) 532852. + 543839.i 1.37287 + 1.40118i
\(624\) 0 0
\(625\) −27573.7 47759.1i −0.0705888 0.122263i
\(626\) 117340. + 67746.5i 0.299432 + 0.172877i
\(627\) 0 0
\(628\) −165557. + 95584.2i −0.419785 + 0.242363i
\(629\) 187976.i 0.475119i
\(630\) 0 0
\(631\) 299528. 0.752278 0.376139 0.926563i \(-0.377251\pi\)
0.376139 + 0.926563i \(0.377251\pi\)
\(632\) 73231.7 + 126841.i 0.183343 + 0.317560i
\(633\) 0 0
\(634\) 48264.6 83596.7i 0.120074 0.207975i
\(635\) −29173.3 + 16843.2i −0.0723500 + 0.0417713i
\(636\) 0 0
\(637\) −265046. 481507.i −0.653194 1.18665i
\(638\) −134088. −0.329418
\(639\) 0 0
\(640\) 17750.6 + 10248.3i 0.0433363 + 0.0250202i
\(641\) 288942. 500462.i 0.703226 1.21802i −0.264102 0.964495i \(-0.585076\pi\)
0.967328 0.253528i \(-0.0815911\pi\)
\(642\) 0 0
\(643\) 135320.i 0.327295i 0.986519 + 0.163647i \(0.0523259\pi\)
−0.986519 + 0.163647i \(0.947674\pi\)
\(644\) −69238.5 269367.i −0.166946 0.649491i
\(645\) 0 0
\(646\) −93974.4 162768.i −0.225188 0.390037i
\(647\) −188880. 109050.i −0.451209 0.260506i 0.257132 0.966376i \(-0.417223\pi\)
−0.708341 + 0.705871i \(0.750556\pi\)
\(648\) 0 0
\(649\) 193668. 111814.i 0.459800 0.265465i
\(650\) 274970.i 0.650816i
\(651\) 0 0
\(652\) −340688. −0.801422
\(653\) 72127.2 + 124928.i 0.169150 + 0.292977i 0.938121 0.346307i \(-0.112564\pi\)
−0.768971 + 0.639284i \(0.779231\pi\)
\(654\) 0 0
\(655\) 30711.8 53194.4i 0.0715851 0.123989i
\(656\) −156167. + 90163.3i −0.362896 + 0.209518i
\(657\) 0 0
\(658\) −22851.9 + 81930.8i −0.0527802 + 0.189232i
\(659\) 159392. 0.367024 0.183512 0.983017i \(-0.441253\pi\)
0.183512 + 0.983017i \(0.441253\pi\)
\(660\) 0 0
\(661\) 305674. + 176481.i 0.699609 + 0.403919i 0.807202 0.590276i \(-0.200981\pi\)
−0.107593 + 0.994195i \(0.534314\pi\)
\(662\) 188494. 326481.i 0.430112 0.744975i
\(663\) 0 0
\(664\) 186129.i 0.422161i
\(665\) −196892. 54916.7i −0.445231 0.124183i
\(666\) 0 0
\(667\) −262655. 454932.i −0.590384 1.02258i
\(668\) 182602. + 105425.i 0.409216 + 0.236261i
\(669\) 0 0
\(670\) 300741. 173633.i 0.669950 0.386796i
\(671\) 145488.i 0.323135i
\(672\) 0 0
\(673\) 504858. 1.11465 0.557326 0.830294i \(-0.311827\pi\)
0.557326 + 0.830294i \(0.311827\pi\)
\(674\) −70335.1 121824.i −0.154829 0.268172i
\(675\) 0 0
\(676\) 95371.9 165189.i 0.208702 0.361483i
\(677\) 169486. 97853.0i 0.369792 0.213500i −0.303576 0.952807i \(-0.598180\pi\)
0.673368 + 0.739308i \(0.264847\pi\)
\(678\) 0 0
\(679\) 73967.4 19012.7i 0.160436 0.0412385i
\(680\) −72204.0 −0.156150
\(681\) 0 0
\(682\) −104567. 60371.7i −0.224815 0.129797i
\(683\) −117221. + 203032.i −0.251283 + 0.435235i −0.963879 0.266340i \(-0.914186\pi\)
0.712596 + 0.701574i \(0.247519\pi\)
\(684\) 0 0
\(685\) 435352.i 0.927812i
\(686\) 95923.3 318636.i 0.203834 0.677091i
\(687\) 0 0
\(688\) −98125.0 169958.i −0.207302 0.359057i
\(689\) −228503. 131926.i −0.481341 0.277902i
\(690\) 0 0
\(691\) −77344.0 + 44654.6i −0.161983 + 0.0935212i −0.578800 0.815469i \(-0.696479\pi\)
0.416817 + 0.908990i \(0.363146\pi\)
\(692\) 224153.i 0.468094i
\(693\) 0 0
\(694\) 53088.3 0.110225
\(695\) −192394. 333236.i −0.398311 0.689895i
\(696\) 0 0
\(697\) 317621. 550136.i 0.653799 1.13241i
\(698\) −11204.4 + 6468.85i −0.0229973 + 0.0132775i
\(699\) 0 0
\(700\) 118909. 116507.i 0.242672 0.237769i
\(701\) −122213. −0.248704 −0.124352 0.992238i \(-0.539685\pi\)
−0.124352 + 0.992238i \(0.539685\pi\)
\(702\) 0 0
\(703\) −212818. 122871.i −0.430624 0.248621i
\(704\) 16391.5 28391.0i 0.0330731 0.0572842i
\(705\) 0 0
\(706\) 172231.i 0.345544i
\(707\) 207147. 742683.i 0.414419 1.48582i
\(708\) 0 0
\(709\) −42009.9 72763.3i −0.0835717 0.144750i 0.821210 0.570626i \(-0.193299\pi\)
−0.904782 + 0.425876i \(0.859966\pi\)
\(710\) 12258.7 + 7077.55i 0.0243179 + 0.0140400i
\(711\) 0 0
\(712\) −304487. + 175795.i −0.600632 + 0.346775i
\(713\) 473032.i 0.930489i
\(714\) 0 0
\(715\) 207457. 0.405804
\(716\) 101594. + 175966.i 0.198172 + 0.343243i
\(717\) 0 0
\(718\) −328264. + 568570.i −0.636759 + 1.10290i
\(719\) −657416. + 379560.i −1.27169 + 0.734213i −0.975307 0.220855i \(-0.929115\pi\)
−0.296388 + 0.955068i \(0.595782\pi\)
\(720\) 0 0
\(721\) 1156.65 + 1180.51i 0.00222502 + 0.00227090i
\(722\) −122898. −0.235760
\(723\) 0 0
\(724\) 305515. + 176389.i 0.582847 + 0.336507i
\(725\) 157214. 272303.i 0.299100 0.518057i
\(726\) 0 0
\(727\) 92384.1i 0.174795i −0.996174 0.0873974i \(-0.972145\pi\)
0.996174 0.0873974i \(-0.0278550\pi\)
\(728\) 245822. 63186.3i 0.463829 0.119223i
\(729\) 0 0
\(730\) 81464.9 + 141101.i 0.152871 + 0.264780i
\(731\) 598715. + 345668.i 1.12043 + 0.646882i
\(732\) 0 0
\(733\) 2903.50 1676.34i 0.00540399 0.00312000i −0.497296 0.867581i \(-0.665674\pi\)
0.502700 + 0.864461i \(0.332340\pi\)
\(734\) 409324.i 0.759757i
\(735\) 0 0
\(736\) 128433. 0.237094
\(737\) −277715. 481017.i −0.511287 0.885575i
\(738\) 0 0
\(739\) 13592.8 23543.4i 0.0248897 0.0431103i −0.853312 0.521400i \(-0.825410\pi\)
0.878202 + 0.478290i \(0.158743\pi\)
\(740\) −81758.0 + 47203.0i −0.149302 + 0.0861998i
\(741\) 0 0
\(742\) −39767.6 154713.i −0.0722307 0.281008i
\(743\) −773801. −1.40169 −0.700845 0.713314i \(-0.747193\pi\)
−0.700845 + 0.713314i \(0.747193\pi\)
\(744\) 0 0
\(745\) −71422.6 41235.9i −0.128684 0.0742955i
\(746\) −210553. + 364688.i −0.378340 + 0.655305i
\(747\) 0 0
\(748\) 115486.i 0.206408i
\(749\) 190626. 186775.i 0.339797 0.332931i
\(750\) 0 0
\(751\) −98922.2 171338.i −0.175394 0.303791i 0.764904 0.644145i \(-0.222786\pi\)
−0.940297 + 0.340354i \(0.889453\pi\)
\(752\) −34016.1 19639.2i −0.0601519 0.0347287i
\(753\) 0 0
\(754\) 415167. 239697.i 0.730264 0.421618i
\(755\) 356483.i 0.625381i
\(756\) 0 0
\(757\) −770706. −1.34492 −0.672461 0.740132i \(-0.734763\pi\)
−0.672461 + 0.740132i \(0.734763\pi\)
\(758\) 198934. + 344564.i 0.346234 + 0.599696i
\(759\) 0 0
\(760\) 47196.1 81746.0i 0.0817107 0.141527i
\(761\) 131757. 76069.9i 0.227512 0.131354i −0.381912 0.924199i \(-0.624734\pi\)
0.609424 + 0.792845i \(0.291401\pi\)
\(762\) 0 0
\(763\) −788109. 219817.i −1.35375 0.377583i
\(764\) 516473. 0.884832
\(765\) 0 0
\(766\) −71824.8 41468.0i −0.122410 0.0706734i
\(767\) −399760. + 692405.i −0.679531 + 1.17698i
\(768\) 0 0
\(769\) 961897.i 1.62658i 0.581857 + 0.813291i \(0.302326\pi\)
−0.581857 + 0.813291i \(0.697674\pi\)
\(770\) 87901.2 + 89713.7i 0.148256 + 0.151313i
\(771\) 0 0
\(772\) −146698. 254089.i −0.246145 0.426335i
\(773\) 130829. + 75534.4i 0.218951 + 0.126411i 0.605464 0.795872i \(-0.292987\pi\)
−0.386514 + 0.922284i \(0.626321\pi\)
\(774\) 0 0
\(775\) 245204. 141569.i 0.408248 0.235702i
\(776\) 35267.3i 0.0585664i
\(777\) 0 0
\(778\) 374540. 0.618783
\(779\) 415226. + 719192.i 0.684242 + 1.18514i
\(780\) 0 0
\(781\) 11320.1 19607.0i 0.0185588 0.0321447i
\(782\) −391821. + 226218.i −0.640728 + 0.369924i
\(783\) 0 0
\(784\) 131481. + 79531.9i 0.213910 + 0.129392i
\(785\) 338215. 0.548849
\(786\) 0 0
\(787\) −172244. 99445.4i −0.278097 0.160559i 0.354465 0.935069i \(-0.384663\pi\)
−0.632561 + 0.774510i \(0.717996\pi\)
\(788\) −292588. + 506777.i −0.471199 + 0.816140i
\(789\) 0 0
\(790\) 259123.i 0.415194i
\(791\) −115344. 448739.i −0.184350 0.717202i
\(792\) 0 0
\(793\) 260076. + 450465.i 0.413575 + 0.716333i
\(794\) 83840.2 + 48405.1i 0.132988 + 0.0767804i
\(795\) 0 0
\(796\) 9706.60 5604.11i 0.0153194 0.00884465i
\(797\) 990756.i 1.55973i 0.625947 + 0.779866i \(0.284713\pi\)
−0.625947 + 0.779866i \(0.715287\pi\)
\(798\) 0 0
\(799\) 138368. 0.216741
\(800\) 38437.3 + 66575.4i 0.0600583 + 0.104024i
\(801\) 0 0
\(802\) 253259. 438657.i 0.393746 0.681988i
\(803\) 225683. 130298.i 0.350000 0.202073i
\(804\) 0 0
\(805\) −132197. + 473965.i −0.204000 + 0.731399i
\(806\) 431684. 0.664501
\(807\) 0 0
\(808\) 308348. + 178025.i 0.472301 + 0.272683i
\(809\) −46144.3 + 79924.3i −0.0705052 + 0.122119i −0.899123 0.437696i \(-0.855794\pi\)
0.828618 + 0.559815i \(0.189128\pi\)
\(810\) 0 0
\(811\) 617125.i 0.938277i −0.883125 0.469139i \(-0.844564\pi\)
0.883125 0.469139i \(-0.155436\pi\)
\(812\) 279565. + 77975.4i 0.424005 + 0.118262i
\(813\) 0 0
\(814\) 75498.5 + 130767.i 0.113943 + 0.197356i
\(815\) 521991. + 301372.i 0.785865 + 0.453719i
\(816\) 0 0
\(817\) −782700. + 451892.i −1.17260 + 0.677003i
\(818\) 140762.i 0.210367i
\(819\) 0 0
\(820\) 319033. 0.474469
\(821\) 153533. + 265927.i 0.227780 + 0.394526i 0.957150 0.289593i \(-0.0935201\pi\)
−0.729370 + 0.684119i \(0.760187\pi\)
\(822\) 0 0
\(823\) −423429. + 733401.i −0.625146 + 1.08278i 0.363367 + 0.931646i \(0.381627\pi\)
−0.988513 + 0.151138i \(0.951706\pi\)
\(824\) −660.946 + 381.597i −0.000973445 + 0.000562019i
\(825\) 0 0
\(826\) −468809. + 120503.i −0.687125 + 0.176619i
\(827\) −294059. −0.429956 −0.214978 0.976619i \(-0.568968\pi\)
−0.214978 + 0.976619i \(0.568968\pi\)
\(828\) 0 0
\(829\) 895803. + 517192.i 1.30348 + 0.752563i 0.980999 0.194013i \(-0.0621506\pi\)
0.322479 + 0.946577i \(0.395484\pi\)
\(830\) 164650. 285182.i 0.239004 0.413967i
\(831\) 0 0
\(832\) 117207.i 0.169319i
\(833\) −541205. 11047.3i −0.779959 0.0159208i
\(834\) 0 0
\(835\) −186518. 323059.i −0.267515 0.463349i
\(836\) −130748. 75487.4i −0.187078 0.108009i
\(837\) 0 0
\(838\) 107658. 62156.4i 0.153306 0.0885111i
\(839\) 307258.i 0.436495i −0.975893 0.218248i \(-0.929966\pi\)
0.975893 0.218248i \(-0.0700340\pi\)
\(840\) 0 0
\(841\) −159093. −0.224937
\(842\) −308662. 534618.i −0.435370 0.754084i
\(843\) 0 0
\(844\) −232927. + 403441.i −0.326990 + 0.566363i
\(845\) −292252. + 168732.i −0.409302 + 0.236311i
\(846\) 0 0
\(847\) −368943. + 361489.i −0.514272 + 0.503881i
\(848\) 73766.4 0.102581
\(849\) 0 0
\(850\) −234527. 135404.i −0.324605 0.187411i
\(851\) −295777. + 512302.i −0.408419 + 0.707402i
\(852\) 0 0
\(853\) 70737.4i 0.0972190i 0.998818 + 0.0486095i \(0.0154790\pi\)
−0.998818 + 0.0486095i \(0.984521\pi\)
\(854\) −84605.2 + 303335.i −0.116006 + 0.415916i
\(855\) 0 0
\(856\) 61619.7 + 106728.i 0.0840954 + 0.145657i
\(857\) −285670. 164932.i −0.388958 0.224565i 0.292751 0.956189i \(-0.405429\pi\)
−0.681709 + 0.731624i \(0.738763\pi\)
\(858\) 0 0
\(859\) −60589.3 + 34981.2i −0.0821125 + 0.0474077i −0.540494 0.841348i \(-0.681763\pi\)
0.458382 + 0.888756i \(0.348429\pi\)
\(860\) 347205.i 0.469450i
\(861\) 0 0
\(862\) −217052. −0.292113
\(863\) −386112. 668765.i −0.518431 0.897949i −0.999771 0.0214151i \(-0.993183\pi\)
0.481339 0.876534i \(-0.340150\pi\)
\(864\) 0 0
\(865\) −198286. + 343441.i −0.265008 + 0.459008i
\(866\) 530836. 306478.i 0.707823 0.408662i
\(867\) 0 0
\(868\) 182908. + 186680.i 0.242769 + 0.247775i
\(869\) −414451. −0.548825
\(870\) 0 0
\(871\) 1.71974e6 + 992893.i 2.26687 + 1.30878i
\(872\) 188914. 327208.i 0.248445 0.430320i
\(873\) 0 0
\(874\) 591468.i 0.774299i
\(875\) −705058. + 181229.i −0.920892 + 0.236707i
\(876\) 0 0
\(877\) −121260. 210028.i −0.157659 0.273073i 0.776365 0.630283i \(-0.217061\pi\)
−0.934024 + 0.357211i \(0.883728\pi\)
\(878\) 58204.9 + 33604.6i 0.0755042 + 0.0435923i
\(879\) 0 0
\(880\) −50229.2 + 28999.9i −0.0648621 + 0.0374482i
\(881\) 646528.i 0.832982i −0.909140 0.416491i \(-0.863260\pi\)
0.909140 0.416491i \(-0.136740\pi\)
\(882\) 0 0
\(883\) −461877. −0.592387 −0.296193 0.955128i \(-0.595717\pi\)
−0.296193 + 0.955128i \(0.595717\pi\)
\(884\) −206444. 357571.i −0.264179 0.457571i
\(885\) 0 0
\(886\) −247296. + 428329.i −0.315028 + 0.545645i
\(887\) 186391. 107613.i 0.236907 0.136778i −0.376847 0.926275i \(-0.622992\pi\)
0.613754 + 0.789497i \(0.289658\pi\)
\(888\) 0 0
\(889\) −29033.2 112952.i −0.0367359 0.142919i
\(890\) 622034. 0.785297
\(891\) 0 0
\(892\) 422973. + 244204.i 0.531598 + 0.306918i
\(893\) −90443.9 + 156653.i −0.113417 + 0.196443i
\(894\) 0 0
\(895\) 359479.i 0.448774i
\(896\) −50685.4 + 49661.4i −0.0631345 + 0.0618590i
\(897\) 0 0
\(898\) 275990. + 478029.i 0.342248 + 0.592791i
\(899\) 427498. + 246816.i 0.528950 + 0.305389i
\(900\) 0 0
\(901\) −225045. + 129930.i −0.277217 + 0.160051i
\(902\) 510275.i 0.627179i
\(903\) 0 0
\(904\) 213957. 0.261812
\(905\) −312067. 540516.i −0.381022 0.659950i
\(906\) 0 0
\(907\) −549134. + 951128.i −0.667519 + 1.15618i 0.311076 + 0.950385i \(0.399311\pi\)
−0.978596 + 0.205793i \(0.934023\pi\)
\(908\) 173161. 99974.7i 0.210029 0.121260i
\(909\) 0 0
\(910\) −432535. 120641.i −0.522322 0.145685i
\(911\) 1.32312e6 1.59427 0.797133 0.603803i \(-0.206349\pi\)
0.797133 + 0.603803i \(0.206349\pi\)
\(912\) 0 0
\(913\) −456131. 263348.i −0.547203 0.315928i
\(914\) 82692.2 143227.i 0.0989857 0.171448i
\(915\) 0 0
\(916\) 151431.i 0.180478i
\(917\) 148824. + 151893.i 0.176984 + 0.180633i
\(918\) 0 0
\(919\) −258264. 447326.i −0.305797 0.529656i 0.671642 0.740876i \(-0.265589\pi\)
−0.977438 + 0.211221i \(0.932256\pi\)
\(920\) −196781. 113612.i −0.232492 0.134229i
\(921\) 0 0
\(922\) −752588. + 434507.i −0.885310 + 0.511134i
\(923\) 80943.8i 0.0950124i
\(924\) 0 0
\(925\) −354080. −0.413826
\(926\) −25133.7 43532.9i −0.0293113 0.0507687i
\(927\) 0 0
\(928\) −67013.1 + 116070.i −0.0778151 + 0.134780i
\(929\) −1.07335e6 + 619697.i −1.24368 + 0.718039i −0.969841 0.243737i \(-0.921627\pi\)
−0.273838 + 0.961776i \(0.588293\pi\)
\(930\) 0 0
\(931\) 366265. 605506.i 0.422568 0.698585i
\(932\) −53477.9 −0.0615662
\(933\) 0 0
\(934\) −159131. 91874.5i −0.182415 0.105318i
\(935\) 102159. 176944.i 0.116856 0.202401i
\(936\) 0 0
\(937\) 1.15260e6i 1.31281i −0.754411 0.656403i \(-0.772077\pi\)
0.754411 0.656403i \(-0.227923\pi\)
\(938\) 299296. + 1.16439e6i 0.340170 + 1.32340i
\(939\) 0 0
\(940\) 34745.7 + 60181.3i 0.0393228 + 0.0681092i
\(941\) −93104.2 53753.7i −0.105145 0.0607057i 0.446505 0.894781i \(-0.352668\pi\)
−0.551650 + 0.834075i \(0.686002\pi\)
\(942\) 0 0
\(943\) 1.73126e6 999543.i 1.94688 1.12403i
\(944\) 223526.i 0.250832i
\(945\) 0 0
\(946\) 555334. 0.620543
\(947\) −206307. 357335.i −0.230046 0.398451i 0.727775 0.685815i \(-0.240554\pi\)
−0.957821 + 0.287364i \(0.907221\pi\)
\(948\) 0 0
\(949\) −465845. + 806867.i −0.517260 + 0.895920i
\(950\) 306597. 177014.i 0.339720 0.196137i
\(951\) 0 0
\(952\) 67158.0 240781.i 0.0741010 0.265674i
\(953\) −1.43052e6 −1.57510 −0.787550 0.616251i \(-0.788651\pi\)
−0.787550 + 0.616251i \(0.788651\pi\)
\(954\) 0 0
\(955\) −791324. 456871.i −0.867656 0.500942i
\(956\) −385844. + 668301.i −0.422178 + 0.731234i
\(957\) 0 0
\(958\) 596619.i 0.650079i
\(959\) −1.45179e6 404928.i −1.57858 0.440292i
\(960\) 0 0
\(961\) −239507. 414839.i −0.259342 0.449193i
\(962\) −467521. 269923.i −0.505186 0.291669i
\(963\) 0 0
\(964\) −378974. + 218801.i −0.407808 + 0.235448i
\(965\) 519077.i 0.557413i
\(966\) 0 0
\(967\) −344533. −0.368449 −0.184225 0.982884i \(-0.558977\pi\)
−0.184225 + 0.982884i \(0.558977\pi\)
\(968\) −119260. 206565.i −0.127276 0.220448i
\(969\) 0 0
\(970\) 31197.4 54035.5i 0.0331570 0.0574296i
\(971\) 1.25848e6 726581.i 1.33477 0.770630i 0.348744 0.937218i \(-0.386608\pi\)
0.986027 + 0.166588i \(0.0532751\pi\)
\(972\) 0 0
\(973\) 1.29020e6 331636.i 1.36280 0.350296i
\(974\) 647393. 0.682417
\(975\) 0 0
\(976\) −125939. 72710.8i −0.132209 0.0763307i
\(977\) 772853. 1.33862e6i 0.809669 1.40239i −0.103424 0.994637i \(-0.532980\pi\)
0.913093 0.407751i \(-0.133687\pi\)
\(978\) 0 0
\(979\) 994907.i 1.03805i
\(980\) −131098. 238164.i −0.136503 0.247985i
\(981\) 0 0
\(982\) −198485. 343786.i −0.205828 0.356504i
\(983\) −116280. 67134.0i −0.120336 0.0694761i 0.438624 0.898671i \(-0.355466\pi\)
−0.558960 + 0.829195i \(0.688799\pi\)
\(984\) 0 0
\(985\) 896589. 517646.i 0.924105 0.533532i
\(986\) 472139.i 0.485641i
\(987\) 0 0
\(988\) 539768. 0.552959
\(989\) 1.08781e6 + 1.88414e6i 1.11214 + 1.92628i
\(990\) 0 0
\(991\) 395596. 685192.i 0.402814 0.697694i −0.591251 0.806488i \(-0.701366\pi\)
0.994064 + 0.108794i \(0.0346990\pi\)
\(992\) −104519. + 60344.0i −0.106211 + 0.0613212i
\(993\) 0 0
\(994\) −35003.8 + 34296.5i −0.0354276 + 0.0347118i
\(995\) −19829.5 −0.0200293
\(996\) 0 0
\(997\) 582624. + 336378.i 0.586136 + 0.338406i 0.763568 0.645727i \(-0.223446\pi\)
−0.177432 + 0.984133i \(0.556779\pi\)
\(998\) −488366. + 845874.i −0.490325 + 0.849268i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.5.n.b.73.2 4
3.2 odd 2 42.5.g.a.31.1 yes 4
7.3 odd 6 882.5.c.a.685.1 4
7.4 even 3 882.5.c.a.685.2 4
7.5 odd 6 inner 126.5.n.b.19.2 4
12.11 even 2 336.5.bh.d.241.2 4
21.2 odd 6 294.5.g.c.19.1 4
21.5 even 6 42.5.g.a.19.1 4
21.11 odd 6 294.5.c.a.97.4 4
21.17 even 6 294.5.c.a.97.3 4
21.20 even 2 294.5.g.c.31.1 4
84.47 odd 6 336.5.bh.d.145.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.5.g.a.19.1 4 21.5 even 6
42.5.g.a.31.1 yes 4 3.2 odd 2
126.5.n.b.19.2 4 7.5 odd 6 inner
126.5.n.b.73.2 4 1.1 even 1 trivial
294.5.c.a.97.3 4 21.17 even 6
294.5.c.a.97.4 4 21.11 odd 6
294.5.g.c.19.1 4 21.2 odd 6
294.5.g.c.31.1 4 21.20 even 2
336.5.bh.d.145.2 4 84.47 odd 6
336.5.bh.d.241.2 4 12.11 even 2
882.5.c.a.685.1 4 7.3 odd 6
882.5.c.a.685.2 4 7.4 even 3