Properties

Label 126.6.g.a.109.1
Level $126$
Weight $6$
Character 126.109
Analytic conductor $20.208$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,6,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.2083612964\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.6.g.a.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.00000 - 3.46410i) q^{2} +(-8.00000 + 13.8564i) q^{4} +(-6.00000 - 10.3923i) q^{5} +(59.5000 - 115.181i) q^{7} +64.0000 q^{8} +(-24.0000 + 41.5692i) q^{10} +(-144.000 + 249.415i) q^{11} +737.000 q^{13} +(-518.000 + 24.2487i) q^{14} +(-128.000 - 221.703i) q^{16} +(78.0000 - 135.100i) q^{17} +(-308.500 - 534.338i) q^{19} +192.000 q^{20} +1152.00 q^{22} +(-2298.00 - 3980.25i) q^{23} +(1490.50 - 2581.62i) q^{25} +(-1474.00 - 2553.04i) q^{26} +(1120.00 + 1745.91i) q^{28} -5304.00 q^{29} +(-1256.50 + 2176.32i) q^{31} +(-512.000 + 886.810i) q^{32} -624.000 q^{34} +(-1554.00 + 72.7461i) q^{35} +(-1187.50 - 2056.81i) q^{37} +(-1234.00 + 2137.35i) q^{38} +(-384.000 - 665.108i) q^{40} -14280.0 q^{41} -1579.00 q^{43} +(-2304.00 - 3990.65i) q^{44} +(-9192.00 + 15921.0i) q^{46} +(-8634.00 - 14954.5i) q^{47} +(-9726.50 - 13706.6i) q^{49} -11924.0 q^{50} +(-5896.00 + 10212.2i) q^{52} +(9306.00 - 16118.5i) q^{53} +3456.00 q^{55} +(3808.00 - 7371.61i) q^{56} +(10608.0 + 18373.6i) q^{58} +(-14214.0 + 24619.4i) q^{59} +(-7783.00 - 13480.6i) q^{61} +10052.0 q^{62} +4096.00 q^{64} +(-4422.00 - 7659.13i) q^{65} +(4026.50 - 6974.10i) q^{67} +(1248.00 + 2161.60i) q^{68} +(3360.00 + 5237.72i) q^{70} +13020.0 q^{71} +(25131.5 - 43529.0i) q^{73} +(-4750.00 + 8227.24i) q^{74} +9872.00 q^{76} +(20160.0 + 31426.3i) q^{77} +(-15077.5 - 26115.0i) q^{79} +(-1536.00 + 2660.43i) q^{80} +(28560.0 + 49467.4i) q^{82} +99276.0 q^{83} -1872.00 q^{85} +(3158.00 + 5469.82i) q^{86} +(-9216.00 + 15962.6i) q^{88} +(26052.0 + 45123.4i) q^{89} +(43851.5 - 84888.7i) q^{91} +73536.0 q^{92} +(-34536.0 + 59818.1i) q^{94} +(-3702.00 + 6412.05i) q^{95} +116222. q^{97} +(-28028.0 + 61106.8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - 16 q^{4} - 12 q^{5} + 119 q^{7} + 128 q^{8} - 48 q^{10} - 288 q^{11} + 1474 q^{13} - 1036 q^{14} - 256 q^{16} + 156 q^{17} - 617 q^{19} + 384 q^{20} + 2304 q^{22} - 4596 q^{23} + 2981 q^{25}+ \cdots - 56056 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 3.46410i −0.353553 0.612372i
\(3\) 0 0
\(4\) −8.00000 + 13.8564i −0.250000 + 0.433013i
\(5\) −6.00000 10.3923i −0.107331 0.185903i 0.807357 0.590063i \(-0.200897\pi\)
−0.914688 + 0.404160i \(0.867564\pi\)
\(6\) 0 0
\(7\) 59.5000 115.181i 0.458957 0.888459i
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −24.0000 + 41.5692i −0.0758947 + 0.131453i
\(11\) −144.000 + 249.415i −0.358823 + 0.621500i −0.987765 0.155953i \(-0.950155\pi\)
0.628941 + 0.777453i \(0.283489\pi\)
\(12\) 0 0
\(13\) 737.000 1.20951 0.604755 0.796412i \(-0.293271\pi\)
0.604755 + 0.796412i \(0.293271\pi\)
\(14\) −518.000 + 24.2487i −0.706333 + 0.0330650i
\(15\) 0 0
\(16\) −128.000 221.703i −0.125000 0.216506i
\(17\) 78.0000 135.100i 0.0654594 0.113379i −0.831438 0.555617i \(-0.812482\pi\)
0.896898 + 0.442238i \(0.145815\pi\)
\(18\) 0 0
\(19\) −308.500 534.338i −0.196052 0.339572i 0.751193 0.660083i \(-0.229479\pi\)
−0.947245 + 0.320511i \(0.896145\pi\)
\(20\) 192.000 0.107331
\(21\) 0 0
\(22\) 1152.00 0.507453
\(23\) −2298.00 3980.25i −0.905796 1.56888i −0.819845 0.572585i \(-0.805940\pi\)
−0.0859510 0.996299i \(-0.527393\pi\)
\(24\) 0 0
\(25\) 1490.50 2581.62i 0.476960 0.826119i
\(26\) −1474.00 2553.04i −0.427626 0.740670i
\(27\) 0 0
\(28\) 1120.00 + 1745.91i 0.269975 + 0.420849i
\(29\) −5304.00 −1.17114 −0.585570 0.810622i \(-0.699129\pi\)
−0.585570 + 0.810622i \(0.699129\pi\)
\(30\) 0 0
\(31\) −1256.50 + 2176.32i −0.234833 + 0.406742i −0.959224 0.282647i \(-0.908788\pi\)
0.724391 + 0.689389i \(0.242121\pi\)
\(32\) −512.000 + 886.810i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −624.000 −0.0925736
\(35\) −1554.00 + 72.7461i −0.214428 + 0.0100378i
\(36\) 0 0
\(37\) −1187.50 2056.81i −0.142603 0.246996i 0.785873 0.618388i \(-0.212214\pi\)
−0.928476 + 0.371392i \(0.878881\pi\)
\(38\) −1234.00 + 2137.35i −0.138630 + 0.240114i
\(39\) 0 0
\(40\) −384.000 665.108i −0.0379473 0.0657267i
\(41\) −14280.0 −1.32669 −0.663344 0.748315i \(-0.730863\pi\)
−0.663344 + 0.748315i \(0.730863\pi\)
\(42\) 0 0
\(43\) −1579.00 −0.130230 −0.0651150 0.997878i \(-0.520741\pi\)
−0.0651150 + 0.997878i \(0.520741\pi\)
\(44\) −2304.00 3990.65i −0.179412 0.310750i
\(45\) 0 0
\(46\) −9192.00 + 15921.0i −0.640495 + 1.10937i
\(47\) −8634.00 14954.5i −0.570121 0.987479i −0.996553 0.0829595i \(-0.973563\pi\)
0.426431 0.904520i \(-0.359771\pi\)
\(48\) 0 0
\(49\) −9726.50 13706.6i −0.578717 0.815528i
\(50\) −11924.0 −0.674523
\(51\) 0 0
\(52\) −5896.00 + 10212.2i −0.302377 + 0.523733i
\(53\) 9306.00 16118.5i 0.455065 0.788196i −0.543627 0.839327i \(-0.682949\pi\)
0.998692 + 0.0511313i \(0.0162827\pi\)
\(54\) 0 0
\(55\) 3456.00 0.154052
\(56\) 3808.00 7371.61i 0.162266 0.314118i
\(57\) 0 0
\(58\) 10608.0 + 18373.6i 0.414060 + 0.717173i
\(59\) −14214.0 + 24619.4i −0.531602 + 0.920761i 0.467718 + 0.883878i \(0.345076\pi\)
−0.999320 + 0.0368832i \(0.988257\pi\)
\(60\) 0 0
\(61\) −7783.00 13480.6i −0.267807 0.463856i 0.700488 0.713664i \(-0.252966\pi\)
−0.968295 + 0.249808i \(0.919632\pi\)
\(62\) 10052.0 0.332103
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −4422.00 7659.13i −0.129818 0.224852i
\(66\) 0 0
\(67\) 4026.50 6974.10i 0.109582 0.189802i −0.806019 0.591890i \(-0.798382\pi\)
0.915601 + 0.402088i \(0.131715\pi\)
\(68\) 1248.00 + 2161.60i 0.0327297 + 0.0566895i
\(69\) 0 0
\(70\) 3360.00 + 5237.72i 0.0819585 + 0.127761i
\(71\) 13020.0 0.306524 0.153262 0.988186i \(-0.451022\pi\)
0.153262 + 0.988186i \(0.451022\pi\)
\(72\) 0 0
\(73\) 25131.5 43529.0i 0.551965 0.956031i −0.446168 0.894949i \(-0.647212\pi\)
0.998133 0.0610816i \(-0.0194550\pi\)
\(74\) −4750.00 + 8227.24i −0.100836 + 0.174653i
\(75\) 0 0
\(76\) 9872.00 0.196052
\(77\) 20160.0 + 31426.3i 0.387493 + 0.604042i
\(78\) 0 0
\(79\) −15077.5 26115.0i −0.271808 0.470785i 0.697517 0.716568i \(-0.254288\pi\)
−0.969325 + 0.245784i \(0.920955\pi\)
\(80\) −1536.00 + 2660.43i −0.0268328 + 0.0464758i
\(81\) 0 0
\(82\) 28560.0 + 49467.4i 0.469055 + 0.812427i
\(83\) 99276.0 1.58179 0.790895 0.611951i \(-0.209615\pi\)
0.790895 + 0.611951i \(0.209615\pi\)
\(84\) 0 0
\(85\) −1872.00 −0.0281034
\(86\) 3158.00 + 5469.82i 0.0460433 + 0.0797493i
\(87\) 0 0
\(88\) −9216.00 + 15962.6i −0.126863 + 0.219734i
\(89\) 26052.0 + 45123.4i 0.348631 + 0.603847i 0.986007 0.166707i \(-0.0533133\pi\)
−0.637375 + 0.770553i \(0.719980\pi\)
\(90\) 0 0
\(91\) 43851.5 84888.7i 0.555112 1.07460i
\(92\) 73536.0 0.905796
\(93\) 0 0
\(94\) −34536.0 + 59818.1i −0.403137 + 0.698253i
\(95\) −3702.00 + 6412.05i −0.0420850 + 0.0728934i
\(96\) 0 0
\(97\) 116222. 1.25418 0.627089 0.778948i \(-0.284246\pi\)
0.627089 + 0.778948i \(0.284246\pi\)
\(98\) −28028.0 + 61106.8i −0.294800 + 0.642723i
\(99\) 0 0
\(100\) 23848.0 + 41305.9i 0.238480 + 0.413059i
\(101\) −6432.00 + 11140.6i −0.0627397 + 0.108668i −0.895689 0.444681i \(-0.853317\pi\)
0.832949 + 0.553349i \(0.186650\pi\)
\(102\) 0 0
\(103\) −90824.5 157313.i −0.843548 1.46107i −0.886876 0.462008i \(-0.847129\pi\)
0.0433277 0.999061i \(-0.486204\pi\)
\(104\) 47168.0 0.427626
\(105\) 0 0
\(106\) −74448.0 −0.643559
\(107\) 60054.0 + 104017.i 0.507087 + 0.878300i 0.999966 + 0.00820281i \(0.00261107\pi\)
−0.492879 + 0.870098i \(0.664056\pi\)
\(108\) 0 0
\(109\) −68852.5 + 119256.i −0.555077 + 0.961422i 0.442820 + 0.896610i \(0.353978\pi\)
−0.997898 + 0.0648117i \(0.979355\pi\)
\(110\) −6912.00 11971.9i −0.0544656 0.0943371i
\(111\) 0 0
\(112\) −33152.0 + 1551.92i −0.249727 + 0.0116902i
\(113\) 145740. 1.07370 0.536850 0.843678i \(-0.319614\pi\)
0.536850 + 0.843678i \(0.319614\pi\)
\(114\) 0 0
\(115\) −27576.0 + 47763.0i −0.194440 + 0.336781i
\(116\) 42432.0 73494.4i 0.292785 0.507118i
\(117\) 0 0
\(118\) 113712. 0.751798
\(119\) −10920.0 17022.6i −0.0706896 0.110194i
\(120\) 0 0
\(121\) 39053.5 + 67642.6i 0.242492 + 0.420008i
\(122\) −31132.0 + 53922.2i −0.189368 + 0.327996i
\(123\) 0 0
\(124\) −20104.0 34821.1i −0.117416 0.203371i
\(125\) −73272.0 −0.419433
\(126\) 0 0
\(127\) −128731. −0.708229 −0.354115 0.935202i \(-0.615218\pi\)
−0.354115 + 0.935202i \(0.615218\pi\)
\(128\) −8192.00 14189.0i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −17688.0 + 30636.5i −0.0917953 + 0.158994i
\(131\) −162300. 281112.i −0.826305 1.43120i −0.900918 0.433989i \(-0.857106\pi\)
0.0746132 0.997213i \(-0.476228\pi\)
\(132\) 0 0
\(133\) −79901.5 + 3740.36i −0.391675 + 0.0183352i
\(134\) −32212.0 −0.154973
\(135\) 0 0
\(136\) 4992.00 8646.40i 0.0231434 0.0400856i
\(137\) 51528.0 89249.1i 0.234553 0.406259i −0.724589 0.689181i \(-0.757971\pi\)
0.959143 + 0.282922i \(0.0913039\pi\)
\(138\) 0 0
\(139\) −20263.0 −0.0889543 −0.0444771 0.999010i \(-0.514162\pi\)
−0.0444771 + 0.999010i \(0.514162\pi\)
\(140\) 11424.0 22114.8i 0.0492604 0.0953594i
\(141\) 0 0
\(142\) −26040.0 45102.6i −0.108373 0.187707i
\(143\) −106128. + 183819.i −0.434000 + 0.751710i
\(144\) 0 0
\(145\) 31824.0 + 55120.8i 0.125700 + 0.217719i
\(146\) −201052. −0.780596
\(147\) 0 0
\(148\) 38000.0 0.142603
\(149\) 75192.0 + 130236.i 0.277464 + 0.480581i 0.970754 0.240078i \(-0.0771729\pi\)
−0.693290 + 0.720659i \(0.743840\pi\)
\(150\) 0 0
\(151\) −49390.0 + 85546.0i −0.176277 + 0.305321i −0.940603 0.339510i \(-0.889739\pi\)
0.764325 + 0.644831i \(0.223072\pi\)
\(152\) −19744.0 34197.6i −0.0693148 0.120057i
\(153\) 0 0
\(154\) 68544.0 132689.i 0.232899 0.450851i
\(155\) 30156.0 0.100819
\(156\) 0 0
\(157\) 26177.0 45339.9i 0.0847561 0.146802i −0.820531 0.571602i \(-0.806322\pi\)
0.905287 + 0.424800i \(0.139656\pi\)
\(158\) −60310.0 + 104460.i −0.192197 + 0.332895i
\(159\) 0 0
\(160\) 12288.0 0.0379473
\(161\) −595182. + 27861.8i −1.80961 + 0.0847118i
\(162\) 0 0
\(163\) 243620. + 421962.i 0.718198 + 1.24395i 0.961713 + 0.274058i \(0.0883659\pi\)
−0.243516 + 0.969897i \(0.578301\pi\)
\(164\) 114240. 197869.i 0.331672 0.574472i
\(165\) 0 0
\(166\) −198552. 343902.i −0.559247 0.968645i
\(167\) −199812. −0.554409 −0.277205 0.960811i \(-0.589408\pi\)
−0.277205 + 0.960811i \(0.589408\pi\)
\(168\) 0 0
\(169\) 171876. 0.462912
\(170\) 3744.00 + 6484.80i 0.00993604 + 0.0172097i
\(171\) 0 0
\(172\) 12632.0 21879.3i 0.0325575 0.0563912i
\(173\) −368118. 637599.i −0.935130 1.61969i −0.774403 0.632693i \(-0.781949\pi\)
−0.160727 0.986999i \(-0.551384\pi\)
\(174\) 0 0
\(175\) −208670. 325284.i −0.515068 0.802912i
\(176\) 73728.0 0.179412
\(177\) 0 0
\(178\) 104208. 180494.i 0.246519 0.426984i
\(179\) 123114. 213240.i 0.287194 0.497434i −0.685945 0.727653i \(-0.740611\pi\)
0.973139 + 0.230219i \(0.0739443\pi\)
\(180\) 0 0
\(181\) 800225. 1.81558 0.907791 0.419424i \(-0.137768\pi\)
0.907791 + 0.419424i \(0.137768\pi\)
\(182\) −381766. + 17871.3i −0.854316 + 0.0399924i
\(183\) 0 0
\(184\) −147072. 254736.i −0.320247 0.554685i
\(185\) −14250.0 + 24681.7i −0.0306116 + 0.0530208i
\(186\) 0 0
\(187\) 22464.0 + 38908.8i 0.0469768 + 0.0813661i
\(188\) 276288. 0.570121
\(189\) 0 0
\(190\) 29616.0 0.0595172
\(191\) −193014. 334310.i −0.382829 0.663080i 0.608636 0.793450i \(-0.291717\pi\)
−0.991465 + 0.130369i \(0.958384\pi\)
\(192\) 0 0
\(193\) −248532. + 430469.i −0.480273 + 0.831857i −0.999744 0.0226309i \(-0.992796\pi\)
0.519471 + 0.854488i \(0.326129\pi\)
\(194\) −232444. 402605.i −0.443419 0.768024i
\(195\) 0 0
\(196\) 267736. 25121.7i 0.497813 0.0467098i
\(197\) 641028. 1.17682 0.588412 0.808561i \(-0.299753\pi\)
0.588412 + 0.808561i \(0.299753\pi\)
\(198\) 0 0
\(199\) −158194. + 274000.i −0.283177 + 0.490476i −0.972165 0.234296i \(-0.924722\pi\)
0.688989 + 0.724772i \(0.258055\pi\)
\(200\) 95392.0 165224.i 0.168631 0.292077i
\(201\) 0 0
\(202\) 51456.0 0.0887274
\(203\) −315588. + 610922.i −0.537502 + 1.04051i
\(204\) 0 0
\(205\) 85680.0 + 148402.i 0.142395 + 0.246635i
\(206\) −363298. + 629251.i −0.596479 + 1.03313i
\(207\) 0 0
\(208\) −94336.0 163395.i −0.151189 0.261866i
\(209\) 177696. 0.281392
\(210\) 0 0
\(211\) −557776. −0.862489 −0.431245 0.902235i \(-0.641925\pi\)
−0.431245 + 0.902235i \(0.641925\pi\)
\(212\) 148896. + 257895.i 0.227532 + 0.394098i
\(213\) 0 0
\(214\) 240216. 416066.i 0.358565 0.621052i
\(215\) 9474.00 + 16409.4i 0.0139777 + 0.0242102i
\(216\) 0 0
\(217\) 175910. + 274217.i 0.253595 + 0.395316i
\(218\) 550820. 0.784998
\(219\) 0 0
\(220\) −27648.0 + 47887.7i −0.0385130 + 0.0667064i
\(221\) 57486.0 99568.7i 0.0791738 0.137133i
\(222\) 0 0
\(223\) −1.26368e6 −1.70166 −0.850832 0.525439i \(-0.823901\pi\)
−0.850832 + 0.525439i \(0.823901\pi\)
\(224\) 71680.0 + 111738.i 0.0954504 + 0.148793i
\(225\) 0 0
\(226\) −291480. 504858.i −0.379610 0.657504i
\(227\) −274380. + 475240.i −0.353417 + 0.612137i −0.986846 0.161665i \(-0.948314\pi\)
0.633428 + 0.773801i \(0.281647\pi\)
\(228\) 0 0
\(229\) 500968. + 867701.i 0.631278 + 1.09341i 0.987291 + 0.158925i \(0.0508027\pi\)
−0.356012 + 0.934481i \(0.615864\pi\)
\(230\) 220608. 0.274980
\(231\) 0 0
\(232\) −339456. −0.414060
\(233\) 754542. + 1.30691e6i 0.910529 + 1.57708i 0.813319 + 0.581818i \(0.197658\pi\)
0.0972096 + 0.995264i \(0.469008\pi\)
\(234\) 0 0
\(235\) −103608. + 179454.i −0.122384 + 0.211975i
\(236\) −227424. 393910.i −0.265801 0.460380i
\(237\) 0 0
\(238\) −37128.0 + 71873.2i −0.0424873 + 0.0822478i
\(239\) 1.50559e6 1.70495 0.852477 0.522765i \(-0.175100\pi\)
0.852477 + 0.522765i \(0.175100\pi\)
\(240\) 0 0
\(241\) −75679.0 + 131080.i −0.0839330 + 0.145376i −0.904936 0.425548i \(-0.860082\pi\)
0.821003 + 0.570924i \(0.193415\pi\)
\(242\) 156214. 270571.i 0.171467 0.296990i
\(243\) 0 0
\(244\) 249056. 0.267807
\(245\) −84084.0 + 183320.i −0.0894949 + 0.195117i
\(246\) 0 0
\(247\) −227364. 393807.i −0.237127 0.410715i
\(248\) −80416.0 + 139285.i −0.0830258 + 0.143805i
\(249\) 0 0
\(250\) 146544. + 253822.i 0.148292 + 0.256849i
\(251\) 936756. 0.938517 0.469259 0.883061i \(-0.344521\pi\)
0.469259 + 0.883061i \(0.344521\pi\)
\(252\) 0 0
\(253\) 1.32365e6 1.30008
\(254\) 257462. + 445937.i 0.250397 + 0.433700i
\(255\) 0 0
\(256\) −32768.0 + 56755.8i −0.0312500 + 0.0541266i
\(257\) −639018. 1.10681e6i −0.603504 1.04530i −0.992286 0.123970i \(-0.960437\pi\)
0.388782 0.921330i \(-0.372896\pi\)
\(258\) 0 0
\(259\) −307562. + 14397.7i −0.284894 + 0.0133365i
\(260\) 141504. 0.129818
\(261\) 0 0
\(262\) −649200. + 1.12445e6i −0.584286 + 1.01201i
\(263\) 856692. 1.48383e6i 0.763722 1.32281i −0.177198 0.984175i \(-0.556703\pi\)
0.940920 0.338630i \(-0.109964\pi\)
\(264\) 0 0
\(265\) −223344. −0.195371
\(266\) 172760. + 269306.i 0.149706 + 0.233369i
\(267\) 0 0
\(268\) 64424.0 + 111586.i 0.0547912 + 0.0949011i
\(269\) −1.00982e6 + 1.74907e6i −0.850873 + 1.47376i 0.0295476 + 0.999563i \(0.490593\pi\)
−0.880421 + 0.474193i \(0.842740\pi\)
\(270\) 0 0
\(271\) −743698. 1.28812e6i −0.615139 1.06545i −0.990360 0.138517i \(-0.955766\pi\)
0.375221 0.926935i \(-0.377567\pi\)
\(272\) −39936.0 −0.0327297
\(273\) 0 0
\(274\) −412224. −0.331709
\(275\) 429264. + 743507.i 0.342289 + 0.592862i
\(276\) 0 0
\(277\) 320020. 554290.i 0.250598 0.434048i −0.713093 0.701070i \(-0.752706\pi\)
0.963691 + 0.267022i \(0.0860395\pi\)
\(278\) 40526.0 + 70193.1i 0.0314501 + 0.0544731i
\(279\) 0 0
\(280\) −99456.0 + 4655.75i −0.0758116 + 0.00354891i
\(281\) 1.64063e6 1.23949 0.619747 0.784802i \(-0.287235\pi\)
0.619747 + 0.784802i \(0.287235\pi\)
\(282\) 0 0
\(283\) 1.25895e6 2.18056e6i 0.934419 1.61846i 0.158752 0.987319i \(-0.449253\pi\)
0.775667 0.631142i \(-0.217414\pi\)
\(284\) −104160. + 180410.i −0.0766311 + 0.132729i
\(285\) 0 0
\(286\) 849024. 0.613769
\(287\) −849660. + 1.64479e6i −0.608892 + 1.17871i
\(288\) 0 0
\(289\) 697760. + 1.20856e6i 0.491430 + 0.851182i
\(290\) 127296. 220483.i 0.0888832 0.153950i
\(291\) 0 0
\(292\) 402104. + 696465.i 0.275982 + 0.478015i
\(293\) 1.53190e6 1.04246 0.521231 0.853416i \(-0.325473\pi\)
0.521231 + 0.853416i \(0.325473\pi\)
\(294\) 0 0
\(295\) 341136. 0.228230
\(296\) −76000.0 131636.i −0.0504178 0.0873263i
\(297\) 0 0
\(298\) 300768. 520945.i 0.196196 0.339822i
\(299\) −1.69363e6 2.93345e6i −1.09557 1.89758i
\(300\) 0 0
\(301\) −93950.5 + 181871.i −0.0597699 + 0.115704i
\(302\) 395120. 0.249294
\(303\) 0 0
\(304\) −78976.0 + 136790.i −0.0490130 + 0.0848930i
\(305\) −93396.0 + 161767.i −0.0574882 + 0.0995725i
\(306\) 0 0
\(307\) −2.23931e6 −1.35603 −0.678013 0.735050i \(-0.737159\pi\)
−0.678013 + 0.735050i \(0.737159\pi\)
\(308\) −596736. + 27934.5i −0.358431 + 0.0167789i
\(309\) 0 0
\(310\) −60312.0 104463.i −0.0356451 0.0617391i
\(311\) −968676. + 1.67780e6i −0.567907 + 0.983645i 0.428865 + 0.903368i \(0.358914\pi\)
−0.996773 + 0.0802761i \(0.974420\pi\)
\(312\) 0 0
\(313\) 658326. + 1.14025e6i 0.379822 + 0.657872i 0.991036 0.133594i \(-0.0426518\pi\)
−0.611214 + 0.791466i \(0.709318\pi\)
\(314\) −209416. −0.119863
\(315\) 0 0
\(316\) 482480. 0.271808
\(317\) −1.37869e6 2.38796e6i −0.770582 1.33469i −0.937244 0.348674i \(-0.886632\pi\)
0.166662 0.986014i \(-0.446701\pi\)
\(318\) 0 0
\(319\) 763776. 1.32290e6i 0.420232 0.727863i
\(320\) −24576.0 42566.9i −0.0134164 0.0232379i
\(321\) 0 0
\(322\) 1.28688e6 + 2.00605e6i 0.691669 + 1.07821i
\(323\) −96252.0 −0.0513338
\(324\) 0 0
\(325\) 1.09850e6 1.90266e6i 0.576887 0.999198i
\(326\) 974480. 1.68785e6i 0.507842 0.879609i
\(327\) 0 0
\(328\) −913920. −0.469055
\(329\) −2.23621e6 + 104682.i −1.13900 + 0.0533189i
\(330\) 0 0
\(331\) −1.49407e6 2.58781e6i −0.749551 1.29826i −0.948038 0.318157i \(-0.896936\pi\)
0.198487 0.980104i \(-0.436397\pi\)
\(332\) −794208. + 1.37561e6i −0.395448 + 0.684935i
\(333\) 0 0
\(334\) 399624. + 692169.i 0.196013 + 0.339505i
\(335\) −96636.0 −0.0470465
\(336\) 0 0
\(337\) 2.34865e6 1.12653 0.563265 0.826276i \(-0.309545\pi\)
0.563265 + 0.826276i \(0.309545\pi\)
\(338\) −343752. 595396.i −0.163664 0.283475i
\(339\) 0 0
\(340\) 14976.0 25939.2i 0.00702584 0.0121691i
\(341\) −361872. 626781.i −0.168527 0.291897i
\(342\) 0 0
\(343\) −2.15747e6 + 304770.i −0.990169 + 0.139874i
\(344\) −101056. −0.0460433
\(345\) 0 0
\(346\) −1.47247e6 + 2.55040e6i −0.661236 + 1.14530i
\(347\) −255306. + 442203.i −0.113825 + 0.197151i −0.917309 0.398175i \(-0.869644\pi\)
0.803484 + 0.595326i \(0.202977\pi\)
\(348\) 0 0
\(349\) −1.30031e6 −0.571455 −0.285727 0.958311i \(-0.592235\pi\)
−0.285727 + 0.958311i \(0.592235\pi\)
\(350\) −709478. + 1.37342e6i −0.309577 + 0.599286i
\(351\) 0 0
\(352\) −147456. 255401.i −0.0634316 0.109867i
\(353\) 532662. 922598.i 0.227518 0.394072i −0.729554 0.683923i \(-0.760272\pi\)
0.957072 + 0.289851i \(0.0936058\pi\)
\(354\) 0 0
\(355\) −78120.0 135308.i −0.0328997 0.0569839i
\(356\) −833664. −0.348631
\(357\) 0 0
\(358\) −984912. −0.406153
\(359\) 563580. + 976149.i 0.230791 + 0.399742i 0.958041 0.286631i \(-0.0925352\pi\)
−0.727250 + 0.686373i \(0.759202\pi\)
\(360\) 0 0
\(361\) 1.04770e6 1.81468e6i 0.423127 0.732878i
\(362\) −1.60045e6 2.77206e6i −0.641905 1.11181i
\(363\) 0 0
\(364\) 825440. + 1.28673e6i 0.326537 + 0.509020i
\(365\) −603156. −0.236972
\(366\) 0 0
\(367\) −34301.5 + 59411.9i −0.0132938 + 0.0230255i −0.872596 0.488443i \(-0.837565\pi\)
0.859302 + 0.511469i \(0.170898\pi\)
\(368\) −588288. + 1.01894e6i −0.226449 + 0.392221i
\(369\) 0 0
\(370\) 114000. 0.0432913
\(371\) −1.30284e6 2.03093e6i −0.491424 0.766054i
\(372\) 0 0
\(373\) 1.65095e6 + 2.85954e6i 0.614417 + 1.06420i 0.990487 + 0.137610i \(0.0439419\pi\)
−0.376070 + 0.926591i \(0.622725\pi\)
\(374\) 89856.0 155635.i 0.0332176 0.0575345i
\(375\) 0 0
\(376\) −552576. 957090.i −0.201568 0.349127i
\(377\) −3.90905e6 −1.41650
\(378\) 0 0
\(379\) −3.98509e6 −1.42508 −0.712542 0.701630i \(-0.752456\pi\)
−0.712542 + 0.701630i \(0.752456\pi\)
\(380\) −59232.0 102593.i −0.0210425 0.0364467i
\(381\) 0 0
\(382\) −772056. + 1.33724e6i −0.270701 + 0.468868i
\(383\) −1.44003e6 2.49421e6i −0.501620 0.868831i −0.999998 0.00187131i \(-0.999404\pi\)
0.498379 0.866960i \(-0.333929\pi\)
\(384\) 0 0
\(385\) 205632. 398067.i 0.0707032 0.136869i
\(386\) 1.98825e6 0.679209
\(387\) 0 0
\(388\) −929776. + 1.61042e6i −0.313544 + 0.543075i
\(389\) 1.63719e6 2.83570e6i 0.548561 0.950136i −0.449812 0.893123i \(-0.648509\pi\)
0.998373 0.0570127i \(-0.0181576\pi\)
\(390\) 0 0
\(391\) −716976. −0.237172
\(392\) −622496. 877221.i −0.204607 0.288333i
\(393\) 0 0
\(394\) −1.28206e6 2.22059e6i −0.416070 0.720654i
\(395\) −180930. + 313380.i −0.0583469 + 0.101060i
\(396\) 0 0
\(397\) 843018. + 1.46015e6i 0.268448 + 0.464966i 0.968461 0.249164i \(-0.0801558\pi\)
−0.700013 + 0.714130i \(0.746822\pi\)
\(398\) 1.26555e6 0.400472
\(399\) 0 0
\(400\) −763136. −0.238480
\(401\) 1.38584e6 + 2.40034e6i 0.430379 + 0.745439i 0.996906 0.0786045i \(-0.0250464\pi\)
−0.566526 + 0.824044i \(0.691713\pi\)
\(402\) 0 0
\(403\) −926041. + 1.60395e6i −0.284032 + 0.491958i
\(404\) −102912. 178249.i −0.0313699 0.0543342i
\(405\) 0 0
\(406\) 2.74747e6 128615.i 0.827215 0.0387237i
\(407\) 684000. 0.204677
\(408\) 0 0
\(409\) 1.31110e6 2.27089e6i 0.387550 0.671256i −0.604570 0.796552i \(-0.706655\pi\)
0.992119 + 0.125297i \(0.0399882\pi\)
\(410\) 342720. 593608.i 0.100688 0.174398i
\(411\) 0 0
\(412\) 2.90638e6 0.843548
\(413\) 1.98996e6 + 3.10204e6i 0.574076 + 0.894896i
\(414\) 0 0
\(415\) −595656. 1.03171e6i −0.169776 0.294060i
\(416\) −377344. + 653579.i −0.106907 + 0.185167i
\(417\) 0 0
\(418\) −355392. 615557.i −0.0994871 0.172317i
\(419\) 1.50802e6 0.419634 0.209817 0.977741i \(-0.432713\pi\)
0.209817 + 0.977741i \(0.432713\pi\)
\(420\) 0 0
\(421\) 1.93085e6 0.530938 0.265469 0.964119i \(-0.414473\pi\)
0.265469 + 0.964119i \(0.414473\pi\)
\(422\) 1.11555e6 + 1.93219e6i 0.304936 + 0.528165i
\(423\) 0 0
\(424\) 595584. 1.03158e6i 0.160890 0.278669i
\(425\) −232518. 402733.i −0.0624431 0.108155i
\(426\) 0 0
\(427\) −2.01580e6 + 94363.9i −0.535029 + 0.0250459i
\(428\) −1.92173e6 −0.507087
\(429\) 0 0
\(430\) 37896.0 65637.8i 0.00988376 0.0171192i
\(431\) −844098. + 1.46202e6i −0.218877 + 0.379106i −0.954465 0.298323i \(-0.903573\pi\)
0.735588 + 0.677429i \(0.236906\pi\)
\(432\) 0 0
\(433\) −3.70763e6 −0.950335 −0.475167 0.879895i \(-0.657612\pi\)
−0.475167 + 0.879895i \(0.657612\pi\)
\(434\) 598094. 1.15780e6i 0.152421 0.295060i
\(435\) 0 0
\(436\) −1.10164e6 1.90810e6i −0.277539 0.480711i
\(437\) −1.41787e6 + 2.45582e6i −0.355166 + 0.615166i
\(438\) 0 0
\(439\) 1.86534e6 + 3.23087e6i 0.461952 + 0.800125i 0.999058 0.0433899i \(-0.0138158\pi\)
−0.537106 + 0.843515i \(0.680482\pi\)
\(440\) 221184. 0.0544656
\(441\) 0 0
\(442\) −459888. −0.111969
\(443\) 1.36419e6 + 2.36285e6i 0.330267 + 0.572040i 0.982564 0.185924i \(-0.0595278\pi\)
−0.652297 + 0.757964i \(0.726194\pi\)
\(444\) 0 0
\(445\) 312624. 541481.i 0.0748380 0.129623i
\(446\) 2.52735e6 + 4.37750e6i 0.601629 + 1.04205i
\(447\) 0 0
\(448\) 243712. 471783.i 0.0573696 0.111057i
\(449\) 6.67201e6 1.56186 0.780928 0.624621i \(-0.214747\pi\)
0.780928 + 0.624621i \(0.214747\pi\)
\(450\) 0 0
\(451\) 2.05632e6 3.56165e6i 0.476046 0.824537i
\(452\) −1.16592e6 + 2.01943e6i −0.268425 + 0.464925i
\(453\) 0 0
\(454\) 2.19504e6 0.499808
\(455\) −1.14530e6 + 53613.9i −0.259352 + 0.0121408i
\(456\) 0 0
\(457\) 3.37001e6 + 5.83703e6i 0.754816 + 1.30738i 0.945466 + 0.325721i \(0.105607\pi\)
−0.190650 + 0.981658i \(0.561060\pi\)
\(458\) 2.00387e6 3.47080e6i 0.446381 0.773155i
\(459\) 0 0
\(460\) −441216. 764209.i −0.0972202 0.168390i
\(461\) 2.22211e6 0.486983 0.243491 0.969903i \(-0.421707\pi\)
0.243491 + 0.969903i \(0.421707\pi\)
\(462\) 0 0
\(463\) 7.74595e6 1.67928 0.839638 0.543146i \(-0.182767\pi\)
0.839638 + 0.543146i \(0.182767\pi\)
\(464\) 678912. + 1.17591e6i 0.146392 + 0.253559i
\(465\) 0 0
\(466\) 3.01817e6 5.22762e6i 0.643841 1.11517i
\(467\) 3.71761e6 + 6.43908e6i 0.788808 + 1.36626i 0.926698 + 0.375808i \(0.122635\pi\)
−0.137890 + 0.990448i \(0.544032\pi\)
\(468\) 0 0
\(469\) −563710. 878737.i −0.118338 0.184470i
\(470\) 828864. 0.173077
\(471\) 0 0
\(472\) −909696. + 1.57564e6i −0.187950 + 0.325538i
\(473\) 227376. 393827.i 0.0467296 0.0809380i
\(474\) 0 0
\(475\) −1.83928e6 −0.374036
\(476\) 323232. 15131.2i 0.0653878 0.00306095i
\(477\) 0 0
\(478\) −3.01118e6 5.21552e6i −0.602792 1.04407i
\(479\) 4.11652e6 7.13003e6i 0.819769 1.41988i −0.0860828 0.996288i \(-0.527435\pi\)
0.905852 0.423594i \(-0.139232\pi\)
\(480\) 0 0
\(481\) −875187. 1.51587e6i −0.172480 0.298744i
\(482\) 605432. 0.118699
\(483\) 0 0
\(484\) −1.24971e6 −0.242492
\(485\) −697332. 1.20781e6i −0.134612 0.233156i
\(486\) 0 0
\(487\) −3.68638e6 + 6.38499e6i −0.704332 + 1.21994i 0.262601 + 0.964905i \(0.415420\pi\)
−0.966932 + 0.255033i \(0.917914\pi\)
\(488\) −498112. 862755.i −0.0946842 0.163998i
\(489\) 0 0
\(490\) 803208. 75365.0i 0.151126 0.0141801i
\(491\) 960696. 0.179838 0.0899192 0.995949i \(-0.471339\pi\)
0.0899192 + 0.995949i \(0.471339\pi\)
\(492\) 0 0
\(493\) −413712. + 716570.i −0.0766621 + 0.132783i
\(494\) −909458. + 1.57523e6i −0.167674 + 0.290420i
\(495\) 0 0
\(496\) 643328. 0.117416
\(497\) 774690. 1.49966e6i 0.140681 0.272334i
\(498\) 0 0
\(499\) 3.16713e6 + 5.48564e6i 0.569397 + 0.986224i 0.996626 + 0.0820807i \(0.0261565\pi\)
−0.427229 + 0.904143i \(0.640510\pi\)
\(500\) 586176. 1.01529e6i 0.104858 0.181620i
\(501\) 0 0
\(502\) −1.87351e6 3.24502e6i −0.331816 0.574722i
\(503\) −1.04129e6 −0.183506 −0.0917531 0.995782i \(-0.529247\pi\)
−0.0917531 + 0.995782i \(0.529247\pi\)
\(504\) 0 0
\(505\) 154368. 0.0269357
\(506\) −2.64730e6 4.58525e6i −0.459649 0.796135i
\(507\) 0 0
\(508\) 1.02985e6 1.78375e6i 0.177057 0.306672i
\(509\) 2.49525e6 + 4.32190e6i 0.426894 + 0.739401i 0.996595 0.0824503i \(-0.0262746\pi\)
−0.569702 + 0.821852i \(0.692941\pi\)
\(510\) 0 0
\(511\) −3.51841e6 5.48466e6i −0.596066 0.929175i
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −2.55607e6 + 4.42725e6i −0.426742 + 0.739139i
\(515\) −1.08989e6 + 1.88775e6i −0.181078 + 0.313637i
\(516\) 0 0
\(517\) 4.97318e6 0.818292
\(518\) 665000. + 1.03663e6i 0.108892 + 0.169746i
\(519\) 0 0
\(520\) −283008. 490184.i −0.0458976 0.0794970i
\(521\) −487308. + 844042.i −0.0786519 + 0.136229i −0.902669 0.430337i \(-0.858395\pi\)
0.824017 + 0.566566i \(0.191728\pi\)
\(522\) 0 0
\(523\) −1.27483e6 2.20806e6i −0.203796 0.352986i 0.745952 0.666000i \(-0.231995\pi\)
−0.949749 + 0.313014i \(0.898661\pi\)
\(524\) 5.19360e6 0.826305
\(525\) 0 0
\(526\) −6.85354e6 −1.08007
\(527\) 196014. + 339506.i 0.0307440 + 0.0532502i
\(528\) 0 0
\(529\) −7.34344e6 + 1.27192e7i −1.14093 + 1.97615i
\(530\) 446688. + 773686.i 0.0690740 + 0.119640i
\(531\) 0 0
\(532\) 587384. 1.13707e6i 0.0899794 0.174184i
\(533\) −1.05244e7 −1.60464
\(534\) 0 0
\(535\) 720648. 1.24820e6i 0.108853 0.188538i
\(536\) 257696. 446343.i 0.0387432 0.0671052i
\(537\) 0 0
\(538\) 8.07859e6 1.20332
\(539\) 4.81925e6 452190.i 0.714508 0.0670423i
\(540\) 0 0
\(541\) 2.60033e6 + 4.50390e6i 0.381975 + 0.661600i 0.991344 0.131287i \(-0.0419108\pi\)
−0.609370 + 0.792886i \(0.708577\pi\)
\(542\) −2.97479e6 + 5.15249e6i −0.434969 + 0.753389i
\(543\) 0 0
\(544\) 79872.0 + 138342.i 0.0115717 + 0.0200428i
\(545\) 1.65246e6 0.238309
\(546\) 0 0
\(547\) −5.24222e6 −0.749112 −0.374556 0.927204i \(-0.622205\pi\)
−0.374556 + 0.927204i \(0.622205\pi\)
\(548\) 824448. + 1.42799e6i 0.117277 + 0.203129i
\(549\) 0 0
\(550\) 1.71706e6 2.97403e6i 0.242035 0.419216i
\(551\) 1.63628e6 + 2.83413e6i 0.229604 + 0.397686i
\(552\) 0 0
\(553\) −3.90507e6 + 182805.i −0.543021 + 0.0254200i
\(554\) −2.56016e6 −0.354399
\(555\) 0 0
\(556\) 162104. 280772.i 0.0222386 0.0385183i
\(557\) −2.11398e6 + 3.66152e6i −0.288711 + 0.500062i −0.973502 0.228677i \(-0.926560\pi\)
0.684792 + 0.728739i \(0.259893\pi\)
\(558\) 0 0
\(559\) −1.16372e6 −0.157514
\(560\) 215040. + 335214.i 0.0289767 + 0.0451702i
\(561\) 0 0
\(562\) −3.28126e6 5.68330e6i −0.438227 0.759032i
\(563\) 1.78129e6 3.08528e6i 0.236844 0.410226i −0.722963 0.690887i \(-0.757220\pi\)
0.959807 + 0.280661i \(0.0905536\pi\)
\(564\) 0 0
\(565\) −874440. 1.51457e6i −0.115241 0.199604i
\(566\) −1.00716e7 −1.32147
\(567\) 0 0
\(568\) 833280. 0.108373
\(569\) −3.16098e6 5.47498e6i −0.409299 0.708927i 0.585512 0.810664i \(-0.300894\pi\)
−0.994811 + 0.101736i \(0.967560\pi\)
\(570\) 0 0
\(571\) −97328.5 + 168578.i −0.0124925 + 0.0216377i −0.872204 0.489142i \(-0.837310\pi\)
0.859712 + 0.510780i \(0.170643\pi\)
\(572\) −1.69805e6 2.94111e6i −0.217000 0.375855i
\(573\) 0 0
\(574\) 7.39704e6 346272.i 0.937083 0.0438669i
\(575\) −1.37007e7 −1.72811
\(576\) 0 0
\(577\) −2.05437e6 + 3.55827e6i −0.256885 + 0.444938i −0.965406 0.260752i \(-0.916030\pi\)
0.708521 + 0.705690i \(0.249363\pi\)
\(578\) 2.79104e6 4.83423e6i 0.347494 0.601877i
\(579\) 0 0
\(580\) −1.01837e6 −0.125700
\(581\) 5.90692e6 1.14347e7i 0.725974 1.40536i
\(582\) 0 0
\(583\) 2.68013e6 + 4.64212e6i 0.326576 + 0.565646i
\(584\) 1.60842e6 2.78586e6i 0.195149 0.338008i
\(585\) 0 0
\(586\) −3.06379e6 5.30664e6i −0.368566 0.638375i
\(587\) −1.10174e7 −1.31973 −0.659863 0.751386i \(-0.729386\pi\)
−0.659863 + 0.751386i \(0.729386\pi\)
\(588\) 0 0
\(589\) 1.55052e6 0.184158
\(590\) −682272. 1.18173e6i −0.0806914 0.139762i
\(591\) 0 0
\(592\) −304000. + 526543.i −0.0356508 + 0.0617490i
\(593\) −1.02738e6 1.77947e6i −0.119976 0.207805i 0.799782 0.600291i \(-0.204948\pi\)
−0.919758 + 0.392486i \(0.871615\pi\)
\(594\) 0 0
\(595\) −111384. + 215620.i −0.0128982 + 0.0249687i
\(596\) −2.40614e6 −0.277464
\(597\) 0 0
\(598\) −6.77450e6 + 1.17338e7i −0.774684 + 1.34179i
\(599\) −412200. + 713951.i −0.0469398 + 0.0813021i −0.888541 0.458798i \(-0.848280\pi\)
0.841601 + 0.540100i \(0.181614\pi\)
\(600\) 0 0
\(601\) −2.88706e6 −0.326039 −0.163019 0.986623i \(-0.552123\pi\)
−0.163019 + 0.986623i \(0.552123\pi\)
\(602\) 817922. 38288.7i 0.0919858 0.00430605i
\(603\) 0 0
\(604\) −790240. 1.36874e6i −0.0881387 0.152661i
\(605\) 468642. 811712.i 0.0520538 0.0901599i
\(606\) 0 0
\(607\) 2.55448e6 + 4.42448e6i 0.281404 + 0.487406i 0.971731 0.236092i \(-0.0758666\pi\)
−0.690327 + 0.723498i \(0.742533\pi\)
\(608\) 631808. 0.0693148
\(609\) 0 0
\(610\) 747168. 0.0813006
\(611\) −6.36326e6 1.10215e7i −0.689567 1.19437i
\(612\) 0 0
\(613\) 4.92860e6 8.53658e6i 0.529751 0.917556i −0.469646 0.882855i \(-0.655619\pi\)
0.999398 0.0347017i \(-0.0110481\pi\)
\(614\) 4.47862e6 + 7.75719e6i 0.479428 + 0.830393i
\(615\) 0 0
\(616\) 1.29024e6 + 2.01129e6i 0.136999 + 0.213561i
\(617\) −1.26078e7 −1.33329 −0.666646 0.745374i \(-0.732271\pi\)
−0.666646 + 0.745374i \(0.732271\pi\)
\(618\) 0 0
\(619\) 6.14174e6 1.06378e7i 0.644266 1.11590i −0.340205 0.940351i \(-0.610496\pi\)
0.984471 0.175550i \(-0.0561703\pi\)
\(620\) −241248. + 417854.i −0.0252049 + 0.0436561i
\(621\) 0 0
\(622\) 7.74941e6 0.803142
\(623\) 6.74747e6 315864.i 0.696499 0.0326047i
\(624\) 0 0
\(625\) −4.21818e6 7.30610e6i −0.431942 0.748145i
\(626\) 2.63331e6 4.56102e6i 0.268575 0.465185i
\(627\) 0 0
\(628\) 418832. + 725438.i 0.0423780 + 0.0734009i
\(629\) −370500. −0.0373389
\(630\) 0 0
\(631\) 8.53195e6 0.853051 0.426525 0.904476i \(-0.359738\pi\)
0.426525 + 0.904476i \(0.359738\pi\)
\(632\) −964960. 1.67136e6i −0.0960985 0.166447i
\(633\) 0 0
\(634\) −5.51477e6 + 9.55186e6i −0.544884 + 0.943767i
\(635\) 772386. + 1.33781e6i 0.0760151 + 0.131662i
\(636\) 0 0
\(637\) −7.16843e6 1.01018e7i −0.699964 0.986389i
\(638\) −6.11021e6 −0.594298
\(639\) 0 0
\(640\) −98304.0 + 170268.i −0.00948683 + 0.0164317i
\(641\) −5.41501e6 + 9.37907e6i −0.520540 + 0.901601i 0.479175 + 0.877719i \(0.340936\pi\)
−0.999715 + 0.0238819i \(0.992397\pi\)
\(642\) 0 0
\(643\) 9.84431e6 0.938984 0.469492 0.882937i \(-0.344437\pi\)
0.469492 + 0.882937i \(0.344437\pi\)
\(644\) 4.37539e6 8.46998e6i 0.415721 0.804762i
\(645\) 0 0
\(646\) 192504. + 333427.i 0.0181492 + 0.0314354i
\(647\) 270744. 468942.i 0.0254272 0.0440412i −0.853032 0.521859i \(-0.825239\pi\)
0.878459 + 0.477818i \(0.158572\pi\)
\(648\) 0 0
\(649\) −4.09363e6 7.09038e6i −0.381502 0.660781i
\(650\) −8.78799e6 −0.815842
\(651\) 0 0
\(652\) −7.79584e6 −0.718198
\(653\) −2.76137e6 4.78283e6i −0.253420 0.438937i 0.711045 0.703147i \(-0.248222\pi\)
−0.964465 + 0.264210i \(0.914889\pi\)
\(654\) 0 0
\(655\) −1.94760e6 + 3.37334e6i −0.177377 + 0.307225i
\(656\) 1.82784e6 + 3.16591e6i 0.165836 + 0.287236i
\(657\) 0 0
\(658\) 4.83504e6 + 7.53708e6i 0.435347 + 0.678638i
\(659\) −1.63820e6 −0.146945 −0.0734724 0.997297i \(-0.523408\pi\)
−0.0734724 + 0.997297i \(0.523408\pi\)
\(660\) 0 0
\(661\) 1.09590e7 1.89816e7i 0.975591 1.68977i 0.297620 0.954684i \(-0.403807\pi\)
0.677971 0.735089i \(-0.262860\pi\)
\(662\) −5.97629e6 + 1.03512e7i −0.530013 + 0.918009i
\(663\) 0 0
\(664\) 6.35366e6 0.559247
\(665\) 518280. + 807919.i 0.0454475 + 0.0708457i
\(666\) 0 0
\(667\) 1.21886e7 + 2.11113e7i 1.06081 + 1.83738i
\(668\) 1.59850e6 2.76868e6i 0.138602 0.240066i
\(669\) 0 0
\(670\) 193272. + 334757.i 0.0166334 + 0.0288100i
\(671\) 4.48301e6 0.384382
\(672\) 0 0
\(673\) −1.56750e7 −1.33404 −0.667022 0.745038i \(-0.732431\pi\)
−0.667022 + 0.745038i \(0.732431\pi\)
\(674\) −4.69729e6 8.13594e6i −0.398288 0.689856i
\(675\) 0 0
\(676\) −1.37501e6 + 2.38158e6i −0.115728 + 0.200447i
\(677\) 9.87490e6 + 1.71038e7i 0.828058 + 1.43424i 0.899559 + 0.436798i \(0.143888\pi\)
−0.0715013 + 0.997441i \(0.522779\pi\)
\(678\) 0 0
\(679\) 6.91521e6 1.33866e7i 0.575613 1.11428i
\(680\) −119808. −0.00993604
\(681\) 0 0
\(682\) −1.44749e6 + 2.50712e6i −0.119166 + 0.206402i
\(683\) 4.90322e6 8.49262e6i 0.402188 0.696611i −0.591801 0.806084i \(-0.701583\pi\)
0.993990 + 0.109473i \(0.0349164\pi\)
\(684\) 0 0
\(685\) −1.23667e6 −0.100700
\(686\) 5.37069e6 + 6.86416e6i 0.435733 + 0.556899i
\(687\) 0 0
\(688\) 202112. + 350068.i 0.0162787 + 0.0281956i
\(689\) 6.85852e6 1.18793e7i 0.550405 0.953330i
\(690\) 0 0
\(691\) 2.60038e6 + 4.50398e6i 0.207177 + 0.358841i 0.950824 0.309731i \(-0.100239\pi\)
−0.743647 + 0.668572i \(0.766906\pi\)
\(692\) 1.17798e7 0.935130
\(693\) 0 0
\(694\) 2.04245e6 0.160973
\(695\) 121578. + 210579.i 0.00954757 + 0.0165369i
\(696\) 0 0
\(697\) −1.11384e6 + 1.92923e6i −0.0868442 + 0.150419i
\(698\) 2.60061e6 + 4.50439e6i 0.202040 + 0.349943i
\(699\) 0 0
\(700\) 6.17663e6 289142.i 0.476438 0.0223031i
\(701\) −1.62944e6 −0.125240 −0.0626202 0.998037i \(-0.519946\pi\)
−0.0626202 + 0.998037i \(0.519946\pi\)
\(702\) 0 0
\(703\) −732688. + 1.26905e6i −0.0559153 + 0.0968481i
\(704\) −589824. + 1.02161e6i −0.0448529 + 0.0776875i
\(705\) 0 0
\(706\) −4.26130e6 −0.321758
\(707\) 900480. + 1.40371e6i 0.0677525 + 0.105616i
\(708\) 0 0
\(709\) −5.05324e6 8.75246e6i −0.377532 0.653905i 0.613170 0.789951i \(-0.289894\pi\)
−0.990703 + 0.136046i \(0.956561\pi\)
\(710\) −312480. + 541231.i −0.0232636 + 0.0402937i
\(711\) 0 0
\(712\) 1.66733e6 + 2.88790e6i 0.123260 + 0.213492i
\(713\) 1.15497e7 0.850842
\(714\) 0 0
\(715\) 2.54707e6 0.186327
\(716\) 1.96982e6 + 3.41184e6i 0.143597 + 0.248717i
\(717\) 0 0
\(718\) 2.25432e6 3.90460e6i 0.163194 0.282660i
\(719\) 1.00360e7 + 1.73828e7i 0.723999 + 1.25400i 0.959385 + 0.282100i \(0.0910312\pi\)
−0.235386 + 0.971902i \(0.575636\pi\)
\(720\) 0 0
\(721\) −2.35235e7 + 1.10119e6i −1.68525 + 0.0788903i
\(722\) −8.38164e6 −0.598392
\(723\) 0 0
\(724\) −6.40180e6 + 1.10882e7i −0.453895 + 0.786170i
\(725\) −7.90561e6 + 1.36929e7i −0.558587 + 0.967500i
\(726\) 0 0
\(727\) −1.52689e7 −1.07145 −0.535726 0.844392i \(-0.679962\pi\)
−0.535726 + 0.844392i \(0.679962\pi\)
\(728\) 2.80650e6 5.43288e6i 0.196262 0.379928i
\(729\) 0 0
\(730\) 1.20631e6 + 2.08939e6i 0.0837823 + 0.145115i
\(731\) −123162. + 213323.i −0.00852478 + 0.0147654i
\(732\) 0 0
\(733\) −6.87423e6 1.19065e7i −0.472568 0.818512i 0.526939 0.849903i \(-0.323340\pi\)
−0.999507 + 0.0313912i \(0.990006\pi\)
\(734\) 274412. 0.0188002
\(735\) 0 0
\(736\) 4.70630e6 0.320247
\(737\) 1.15963e6 + 2.00854e6i 0.0786414 + 0.136211i
\(738\) 0 0
\(739\) 2.78035e6 4.81571e6i 0.187279 0.324376i −0.757063 0.653341i \(-0.773367\pi\)
0.944342 + 0.328965i \(0.106700\pi\)
\(740\) −228000. 394908.i −0.0153058 0.0265104i
\(741\) 0 0
\(742\) −4.42966e6 + 8.57502e6i −0.295366 + 0.571776i
\(743\) 4.87442e6 0.323930 0.161965 0.986796i \(-0.448217\pi\)
0.161965 + 0.986796i \(0.448217\pi\)
\(744\) 0 0
\(745\) 902304. 1.56284e6i 0.0595610 0.103163i
\(746\) 6.60382e6 1.14381e7i 0.434458 0.752504i
\(747\) 0 0
\(748\) −718848. −0.0469768
\(749\) 1.55540e7 728116.i 1.01306 0.0474238i
\(750\) 0 0
\(751\) −1.40118e6 2.42691e6i −0.0906553 0.157020i 0.817132 0.576451i \(-0.195563\pi\)
−0.907787 + 0.419431i \(0.862229\pi\)
\(752\) −2.21030e6 + 3.82836e6i −0.142530 + 0.246870i
\(753\) 0 0
\(754\) 7.81810e6 + 1.35413e7i 0.500810 + 0.867428i
\(755\) 1.18536e6 0.0756803
\(756\) 0 0
\(757\) 2.13836e7 1.35626 0.678128 0.734943i \(-0.262791\pi\)
0.678128 + 0.734943i \(0.262791\pi\)
\(758\) 7.97019e6 + 1.38048e7i 0.503843 + 0.872682i
\(759\) 0 0
\(760\) −236928. + 410371.i −0.0148793 + 0.0257717i
\(761\) 8.62037e6 + 1.49309e7i 0.539591 + 0.934599i 0.998926 + 0.0463355i \(0.0147543\pi\)
−0.459335 + 0.888263i \(0.651912\pi\)
\(762\) 0 0
\(763\) 9.63935e6 + 1.50263e7i 0.599427 + 0.934414i
\(764\) 6.17645e6 0.382829
\(765\) 0 0
\(766\) −5.76012e6 + 9.97682e6i −0.354699 + 0.614356i
\(767\) −1.04757e7 + 1.81445e7i −0.642977 + 1.11367i
\(768\) 0 0
\(769\) −2.10762e7 −1.28522 −0.642609 0.766194i \(-0.722148\pi\)
−0.642609 + 0.766194i \(0.722148\pi\)
\(770\) −1.79021e6 + 83803.5i −0.108812 + 0.00509373i
\(771\) 0 0
\(772\) −3.97650e6 6.88751e6i −0.240136 0.415929i
\(773\) 1.58549e7 2.74614e7i 0.954364 1.65301i 0.218546 0.975827i \(-0.429869\pi\)
0.735818 0.677180i \(-0.236798\pi\)
\(774\) 0 0
\(775\) 3.74563e6 + 6.48762e6i 0.224011 + 0.387999i
\(776\) 7.43821e6 0.443419
\(777\) 0 0
\(778\) −1.30975e7 −0.775783
\(779\) 4.40538e6 + 7.63034e6i 0.260100 + 0.450506i
\(780\) 0 0
\(781\) −1.87488e6 + 3.24739e6i −0.109988 + 0.190505i
\(782\) 1.43395e6 + 2.48368e6i 0.0838528 + 0.145237i
\(783\) 0 0
\(784\) −1.79379e6 + 3.91083e6i −0.104227 + 0.227237i
\(785\) −628248. −0.0363879
\(786\) 0 0
\(787\) 3.34123e6 5.78718e6i 0.192296 0.333066i −0.753715 0.657201i \(-0.771740\pi\)
0.946011 + 0.324136i \(0.105073\pi\)
\(788\) −5.12822e6 + 8.88234e6i −0.294206 + 0.509580i
\(789\) 0 0
\(790\) 1.44744e6 0.0825150
\(791\) 8.67153e6 1.67865e7i 0.492782 0.953937i
\(792\) 0 0
\(793\) −5.73607e6 9.93517e6i −0.323915 0.561038i
\(794\) 3.37207e6 5.84060e6i 0.189822 0.328781i
\(795\) 0 0
\(796\) −2.53110e6 4.38400e6i −0.141588 0.245238i
\(797\) −3.26739e7 −1.82203 −0.911013 0.412378i \(-0.864698\pi\)
−0.911013 + 0.412378i \(0.864698\pi\)
\(798\) 0 0
\(799\) −2.69381e6 −0.149279
\(800\) 1.52627e6 + 2.64358e6i 0.0843154 + 0.146039i
\(801\) 0 0
\(802\) 5.54335e6 9.60137e6i 0.304324 0.527105i
\(803\) 7.23787e6 + 1.25364e7i 0.396116 + 0.686092i
\(804\) 0 0
\(805\) 3.86064e6 + 6.01814e6i 0.209976 + 0.327320i
\(806\) 7.40832e6 0.401682
\(807\) 0 0
\(808\) −411648. + 712995.i −0.0221818 + 0.0384201i
\(809\) 1.77627e7 3.07659e7i 0.954196 1.65272i 0.217998 0.975949i \(-0.430047\pi\)
0.736198 0.676767i \(-0.236619\pi\)
\(810\) 0 0
\(811\) 1.09878e7 0.586624 0.293312 0.956017i \(-0.405243\pi\)
0.293312 + 0.956017i \(0.405243\pi\)
\(812\) −5.94048e6 9.26029e6i −0.316178 0.492873i
\(813\) 0 0
\(814\) −1.36800e6 2.36945e6i −0.0723644 0.125339i
\(815\) 2.92344e6 5.06355e6i 0.154170 0.267030i
\(816\) 0 0
\(817\) 487122. + 843719.i 0.0255318 + 0.0442224i
\(818\) −1.04888e7 −0.548078
\(819\) 0 0
\(820\) −2.74176e6 −0.142395
\(821\) 6.97791e6 + 1.20861e7i 0.361300 + 0.625789i 0.988175 0.153330i \(-0.0489998\pi\)
−0.626875 + 0.779120i \(0.715667\pi\)
\(822\) 0 0
\(823\) 8.28862e6 1.43563e7i 0.426562 0.738828i −0.570003 0.821643i \(-0.693058\pi\)
0.996565 + 0.0828152i \(0.0263911\pi\)
\(824\) −5.81277e6 1.00680e7i −0.298239 0.516566i
\(825\) 0 0
\(826\) 6.76586e6 1.30975e7i 0.345043 0.667942i
\(827\) −2.09083e7 −1.06305 −0.531526 0.847042i \(-0.678381\pi\)
−0.531526 + 0.847042i \(0.678381\pi\)
\(828\) 0 0
\(829\) −975728. + 1.69001e6i −0.0493109 + 0.0854089i −0.889627 0.456687i \(-0.849036\pi\)
0.840316 + 0.542096i \(0.182369\pi\)
\(830\) −2.38262e6 + 4.12683e6i −0.120049 + 0.207932i
\(831\) 0 0
\(832\) 3.01875e6 0.151189
\(833\) −2.61043e6 + 244936.i −0.130346 + 0.0122304i
\(834\) 0 0
\(835\) 1.19887e6 + 2.07651e6i 0.0595054 + 0.103066i
\(836\) −1.42157e6 + 2.46223e6i −0.0703480 + 0.121846i
\(837\) 0 0
\(838\) −3.01603e6 5.22392e6i −0.148363 0.256972i
\(839\) 1.18540e7 0.581379 0.290690 0.956817i \(-0.406115\pi\)
0.290690 + 0.956817i \(0.406115\pi\)
\(840\) 0 0
\(841\) 7.62127e6 0.371567
\(842\) −3.86171e6 6.68867e6i −0.187715 0.325132i
\(843\) 0 0
\(844\) 4.46221e6 7.72877e6i 0.215622 0.373469i
\(845\) −1.03126e6 1.78619e6i −0.0496849 0.0860568i
\(846\) 0 0
\(847\) 1.01149e7 473499.i 0.484452 0.0226783i
\(848\) −4.76467e6 −0.227532
\(849\) 0 0
\(850\) −930072. + 1.61093e6i −0.0441539 + 0.0764768i
\(851\) −5.45775e6 + 9.45310e6i −0.258339 + 0.447456i
\(852\) 0 0
\(853\) −1.20052e7 −0.564934 −0.282467 0.959277i \(-0.591153\pi\)
−0.282467 + 0.959277i \(0.591153\pi\)
\(854\) 4.35848e6 + 6.79420e6i 0.204499 + 0.318782i
\(855\) 0 0
\(856\) 3.84346e6 + 6.65706e6i 0.179282 + 0.310526i
\(857\) −2.04907e7 + 3.54909e7i −0.953026 + 1.65069i −0.214203 + 0.976789i \(0.568715\pi\)
−0.738823 + 0.673900i \(0.764618\pi\)
\(858\) 0 0
\(859\) 8.32687e6 + 1.44226e7i 0.385034 + 0.666898i 0.991774 0.128002i \(-0.0408565\pi\)
−0.606740 + 0.794900i \(0.707523\pi\)
\(860\) −303168. −0.0139777
\(861\) 0 0
\(862\) 6.75278e6 0.309539
\(863\) −1.09410e7 1.89503e7i −0.500069 0.866144i −1.00000 7.91703e-5i \(-0.999975\pi\)
0.499931 0.866065i \(-0.333359\pi\)
\(864\) 0 0
\(865\) −4.41742e6 + 7.65119e6i −0.200737 + 0.347687i
\(866\) 7.41526e6 + 1.28436e7i 0.335994 + 0.581959i
\(867\) 0 0
\(868\) −5.20694e6 + 243748.i −0.234576 + 0.0109810i
\(869\) 8.68464e6 0.390124
\(870\) 0 0
\(871\) 2.96753e6 5.13991e6i 0.132541 0.229568i
\(872\) −4.40656e6 + 7.63239e6i −0.196249 + 0.339914i
\(873\) 0 0
\(874\) 1.13429e7 0.502281
\(875\) −4.35968e6 + 8.43957e6i −0.192502 + 0.372649i
\(876\) 0 0
\(877\) 1.22354e6 + 2.11923e6i 0.0537178 + 0.0930419i 0.891634 0.452757i \(-0.149560\pi\)
−0.837916 + 0.545799i \(0.816226\pi\)
\(878\) 7.46137e6 1.29235e7i 0.326650 0.565774i
\(879\) 0 0
\(880\) −442368. 766204.i −0.0192565 0.0333532i
\(881\) −1.53097e7 −0.664550 −0.332275 0.943183i \(-0.607816\pi\)
−0.332275 + 0.943183i \(0.607816\pi\)
\(882\) 0 0
\(883\) 1.82787e7 0.788941 0.394470 0.918909i \(-0.370928\pi\)
0.394470 + 0.918909i \(0.370928\pi\)
\(884\) 919776. + 1.59310e6i 0.0395869 + 0.0685665i
\(885\) 0 0
\(886\) 5.45676e6 9.45139e6i 0.233534 0.404493i
\(887\) −1.79877e7 3.11557e7i −0.767658 1.32962i −0.938830 0.344381i \(-0.888089\pi\)
0.171172 0.985241i \(-0.445245\pi\)
\(888\) 0 0
\(889\) −7.65949e6 + 1.48274e7i −0.325047 + 0.629232i
\(890\) −2.50099e6 −0.105837
\(891\) 0 0
\(892\) 1.01094e7 1.75100e7i 0.425416 0.736842i
\(893\) −5.32718e6 + 9.22694e6i −0.223547 + 0.387195i
\(894\) 0 0
\(895\) −2.95474e6 −0.123299
\(896\) −2.12173e6 + 99322.7i −0.0882917 + 0.00413313i
\(897\) 0 0
\(898\) −1.33440e7 2.31125e7i −0.552199 0.956438i
\(899\) 6.66448e6 1.15432e7i 0.275022 0.476351i
\(900\) 0 0
\(901\) −1.45174e6 2.51448e6i −0.0595766 0.103190i
\(902\) −1.64506e7 −0.673231
\(903\) 0 0
\(904\) 9.32736e6 0.379610
\(905\) −4.80135e6 8.31618e6i −0.194869 0.337522i
\(906\) 0 0
\(907\) −782598. + 1.35550e6i −0.0315879 + 0.0547118i −0.881387 0.472395i \(-0.843390\pi\)
0.849799 + 0.527106i \(0.176723\pi\)
\(908\) −4.39008e6 7.60384e6i −0.176709 0.306068i
\(909\) 0 0
\(910\) 2.47632e6 + 3.86020e6i 0.0991296 + 0.154528i
\(911\) −5.87538e6 −0.234552 −0.117276 0.993099i \(-0.537416\pi\)
−0.117276 + 0.993099i \(0.537416\pi\)
\(912\) 0 0
\(913\) −1.42957e7 + 2.47610e7i −0.567584 + 0.983084i
\(914\) 1.34800e7 2.33481e7i 0.533735 0.924457i
\(915\) 0 0
\(916\) −1.60310e7 −0.631278
\(917\) −4.20357e7 + 1.96778e6i −1.65080 + 0.0772776i
\(918\) 0 0
\(919\) −3.12620e6 5.41474e6i −0.122104 0.211490i 0.798493 0.602003i \(-0.205631\pi\)
−0.920597 + 0.390514i \(0.872297\pi\)
\(920\) −1.76486e6 + 3.05683e6i −0.0687451 + 0.119070i
\(921\) 0 0
\(922\) −4.44422e6 7.69762e6i −0.172174 0.298215i
\(923\) 9.59574e6 0.370744
\(924\) 0 0
\(925\) −7.07988e6 −0.272064
\(926\) −1.54919e7 2.68328e7i −0.593714 1.02834i
\(927\) 0 0
\(928\) 2.71565e6 4.70364e6i 0.103515 0.179293i
\(929\) −1.89249e7 3.27790e7i −0.719441 1.24611i −0.961221 0.275778i \(-0.911065\pi\)
0.241780 0.970331i \(-0.422269\pi\)
\(930\) 0 0
\(931\) −4.32332e6 + 9.42572e6i −0.163472 + 0.356402i
\(932\) −2.41453e7 −0.910529
\(933\) 0 0
\(934\) 1.48704e7 2.57563e7i 0.557771 0.966088i
\(935\) 269568. 466905.i 0.0100842 0.0174663i
\(936\) 0 0
\(937\) −3.03736e7 −1.13018 −0.565090 0.825030i \(-0.691158\pi\)
−0.565090 + 0.825030i \(0.691158\pi\)
\(938\) −1.91661e6 + 3.71022e6i −0.0711259 + 0.137687i
\(939\) 0 0
\(940\) −1.65773e6 2.87127e6i −0.0611919 0.105987i
\(941\) 1.90979e7 3.30786e7i 0.703091 1.21779i −0.264285 0.964445i \(-0.585136\pi\)
0.967376 0.253345i \(-0.0815309\pi\)
\(942\) 0 0
\(943\) 3.28154e7 + 5.68380e7i 1.20171 + 2.08142i
\(944\) 7.27757e6 0.265801
\(945\) 0 0
\(946\) −1.81901e6 −0.0660856
\(947\) −1.56200e6 2.70547e6i −0.0565988 0.0980320i 0.836338 0.548214i \(-0.184692\pi\)
−0.892937 + 0.450183i \(0.851359\pi\)
\(948\) 0 0
\(949\) 1.85219e7 3.20809e7i 0.667606 1.15633i
\(950\) 3.67855e6 + 6.37144e6i 0.132242 + 0.229049i
\(951\) 0 0
\(952\) −698880. 1.08945e6i −0.0249925 0.0389595i
\(953\) 1.52870e7 0.545241 0.272621 0.962122i \(-0.412110\pi\)
0.272621 + 0.962122i \(0.412110\pi\)
\(954\) 0 0
\(955\) −2.31617e6 + 4.01172e6i −0.0821791 + 0.142338i
\(956\) −1.20447e7 + 2.08621e7i −0.426238 + 0.738267i
\(957\) 0 0
\(958\) −3.29322e7 −1.15933
\(959\) −7.21392e6 1.12454e7i −0.253294 0.394846i
\(960\) 0 0
\(961\) 1.11570e7 + 1.93245e7i 0.389707 + 0.674993i
\(962\) −3.50075e6 + 6.06348e6i −0.121962 + 0.211244i
\(963\) 0 0
\(964\) −1.21086e6 2.09728e6i −0.0419665 0.0726881i
\(965\) 5.96476e6 0.206193
\(966\) 0 0
\(967\) −4.87050e6 −0.167497 −0.0837486 0.996487i \(-0.526689\pi\)
−0.0837486 + 0.996487i \(0.526689\pi\)
\(968\) 2.49942e6 + 4.32913e6i 0.0857337 + 0.148495i
\(969\) 0 0
\(970\) −2.78933e6 + 4.83126e6i −0.0951854 + 0.164866i
\(971\) −9.37238e6 1.62334e7i −0.319008 0.552538i 0.661273 0.750145i \(-0.270016\pi\)
−0.980281 + 0.197607i \(0.936683\pi\)
\(972\) 0 0
\(973\) −1.20565e6 + 2.33392e6i −0.0408262 + 0.0790322i
\(974\) 2.94910e7 0.996075
\(975\) 0 0
\(976\) −1.99245e6 + 3.45102e6i −0.0669518 + 0.115964i
\(977\) −4.00150e6 + 6.93079e6i −0.134118 + 0.232299i −0.925260 0.379333i \(-0.876153\pi\)
0.791142 + 0.611632i \(0.209487\pi\)
\(978\) 0 0
\(979\) −1.50060e7 −0.500388
\(980\) −1.86749e6 2.63166e6i −0.0621144 0.0875317i
\(981\) 0 0
\(982\) −1.92139e6 3.32795e6i −0.0635825 0.110128i
\(983\) −2.70634e7 + 4.68752e7i −0.893304 + 1.54725i −0.0574138 + 0.998350i \(0.518285\pi\)
−0.835890 + 0.548897i \(0.815048\pi\)
\(984\) 0 0
\(985\) −3.84617e6 6.66176e6i −0.126310 0.218775i
\(986\) 3.30970e6 0.108417
\(987\) 0 0
\(988\) 7.27566e6 0.237127
\(989\) 3.62854e6 + 6.28482e6i 0.117962 + 0.204316i
\(990\) 0 0
\(991\) −2.03145e7 + 3.51857e7i −0.657084 + 1.13810i 0.324282 + 0.945960i \(0.394877\pi\)
−0.981367 + 0.192143i \(0.938456\pi\)
\(992\) −1.28666e6 2.22855e6i −0.0415129 0.0719025i
\(993\) 0 0
\(994\) −6.74436e6 + 315718.i −0.216508 + 0.0101352i
\(995\) 3.79666e6 0.121575
\(996\) 0 0
\(997\) 4.54883e6 7.87880e6i 0.144931 0.251028i −0.784416 0.620235i \(-0.787037\pi\)
0.929347 + 0.369207i \(0.120371\pi\)
\(998\) 1.26685e7 2.19425e7i 0.402624 0.697366i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.6.g.a.109.1 yes 2
3.2 odd 2 126.6.g.d.109.1 yes 2
7.2 even 3 inner 126.6.g.a.37.1 2
7.3 odd 6 882.6.a.q.1.1 1
7.4 even 3 882.6.a.r.1.1 1
21.2 odd 6 126.6.g.d.37.1 yes 2
21.11 odd 6 882.6.a.d.1.1 1
21.17 even 6 882.6.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.6.g.a.37.1 2 7.2 even 3 inner
126.6.g.a.109.1 yes 2 1.1 even 1 trivial
126.6.g.d.37.1 yes 2 21.2 odd 6
126.6.g.d.109.1 yes 2 3.2 odd 2
882.6.a.d.1.1 1 21.11 odd 6
882.6.a.h.1.1 1 21.17 even 6
882.6.a.q.1.1 1 7.3 odd 6
882.6.a.r.1.1 1 7.4 even 3