Properties

Label 126.8.g.a.37.1
Level $126$
Weight $8$
Character 126.37
Analytic conductor $39.361$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,8,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.3605132110\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.8.g.a.109.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 + 6.92820i) q^{2} +(-32.0000 - 55.4256i) q^{4} +(-145.000 + 251.147i) q^{5} +(738.500 - 527.409i) q^{7} +512.000 q^{8} +(-1160.00 - 2009.18i) q^{10} +(565.000 + 978.609i) q^{11} -7563.00 q^{13} +(700.000 + 7226.12i) q^{14} +(-2048.00 + 3547.24i) q^{16} +(7252.00 + 12560.8i) q^{17} +(-12521.5 + 21687.9i) q^{19} +18560.0 q^{20} -9040.00 q^{22} +(-3332.00 + 5771.19i) q^{23} +(-2987.50 - 5174.50i) q^{25} +(30252.0 - 52398.0i) q^{26} +(-52864.0 - 24054.7i) q^{28} -6820.00 q^{29} +(-88039.5 - 152489. i) q^{31} +(-16384.0 - 28377.9i) q^{32} -116032. q^{34} +(25375.0 + 261947. i) q^{35} +(66492.5 - 115168. i) q^{37} +(-100172. - 173503. i) q^{38} +(-74240.0 + 128587. i) q^{40} -661206. q^{41} +147095. q^{43} +(36160.0 - 62631.0i) q^{44} +(-26656.0 - 46169.5i) q^{46} +(-449817. + 779106. i) q^{47} +(267222. - 778984. i) q^{49} +47800.0 q^{50} +(242016. + 419184. i) q^{52} +(-652566. - 1.13028e6i) q^{53} -327700. q^{55} +(378112. - 270034. i) q^{56} +(27280.0 - 47250.3i) q^{58} +(-1.19078e6 - 2.06249e6i) q^{59} +(1.31255e6 - 2.27341e6i) q^{61} +1.40863e6 q^{62} +262144. q^{64} +(1.09664e6 - 1.89943e6i) q^{65} +(-1.98670e6 - 3.44106e6i) q^{67} +(464128. - 803893. i) q^{68} +(-1.91632e6 - 871984. i) q^{70} +4.29176e6 q^{71} +(-2.96515e6 - 5.13578e6i) q^{73} +(531940. + 921347. i) q^{74} +1.60275e6 q^{76} +(933380. + 424716. i) q^{77} +(-3.14184e6 + 5.44183e6i) q^{79} +(-593920. - 1.02870e6i) q^{80} +(2.64482e6 - 4.58097e6i) q^{82} -4.25225e6 q^{83} -4.20616e6 q^{85} +(-588380. + 1.01910e6i) q^{86} +(289280. + 501048. i) q^{88} +(-740400. + 1.28241e6i) q^{89} +(-5.58528e6 + 3.98880e6i) q^{91} +426496. q^{92} +(-3.59854e6 - 6.23285e6i) q^{94} +(-3.63124e6 - 6.28948e6i) q^{95} +9.40743e6 q^{97} +(4.32807e6 + 4.96730e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} - 64 q^{4} - 290 q^{5} + 1477 q^{7} + 1024 q^{8} - 2320 q^{10} + 1130 q^{11} - 15126 q^{13} + 1400 q^{14} - 4096 q^{16} + 14504 q^{17} - 25043 q^{19} + 37120 q^{20} - 18080 q^{22} - 6664 q^{23}+ \cdots + 8656144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 + 6.92820i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −32.0000 55.4256i −0.250000 0.433013i
\(5\) −145.000 + 251.147i −0.518768 + 0.898532i 0.480994 + 0.876724i \(0.340276\pi\)
−0.999762 + 0.0218085i \(0.993058\pi\)
\(6\) 0 0
\(7\) 738.500 527.409i 0.813781 0.581172i
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −1160.00 2009.18i −0.366824 0.635358i
\(11\) 565.000 + 978.609i 0.127989 + 0.221684i 0.922898 0.385046i \(-0.125814\pi\)
−0.794908 + 0.606730i \(0.792481\pi\)
\(12\) 0 0
\(13\) −7563.00 −0.954756 −0.477378 0.878698i \(-0.658413\pi\)
−0.477378 + 0.878698i \(0.658413\pi\)
\(14\) 700.000 + 7226.12i 0.0681789 + 0.703812i
\(15\) 0 0
\(16\) −2048.00 + 3547.24i −0.125000 + 0.216506i
\(17\) 7252.00 + 12560.8i 0.358003 + 0.620079i 0.987627 0.156821i \(-0.0501244\pi\)
−0.629624 + 0.776900i \(0.716791\pi\)
\(18\) 0 0
\(19\) −12521.5 + 21687.9i −0.418812 + 0.725403i −0.995820 0.0913350i \(-0.970887\pi\)
0.577009 + 0.816738i \(0.304220\pi\)
\(20\) 18560.0 0.518768
\(21\) 0 0
\(22\) −9040.00 −0.181004
\(23\) −3332.00 + 5771.19i −0.0571028 + 0.0989050i −0.893164 0.449732i \(-0.851520\pi\)
0.836061 + 0.548637i \(0.184853\pi\)
\(24\) 0 0
\(25\) −2987.50 5174.50i −0.0382400 0.0662336i
\(26\) 30252.0 52398.0i 0.337557 0.584666i
\(27\) 0 0
\(28\) −52864.0 24054.7i −0.455100 0.207084i
\(29\) −6820.00 −0.0519268 −0.0259634 0.999663i \(-0.508265\pi\)
−0.0259634 + 0.999663i \(0.508265\pi\)
\(30\) 0 0
\(31\) −88039.5 152489.i −0.530776 0.919332i −0.999355 0.0359099i \(-0.988567\pi\)
0.468579 0.883422i \(-0.344766\pi\)
\(32\) −16384.0 28377.9i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −116032. −0.506293
\(35\) 25375.0 + 261947.i 0.100039 + 1.03270i
\(36\) 0 0
\(37\) 66492.5 115168.i 0.215808 0.373790i −0.737715 0.675113i \(-0.764095\pi\)
0.953522 + 0.301323i \(0.0974283\pi\)
\(38\) −100172. 173503.i −0.296145 0.512937i
\(39\) 0 0
\(40\) −74240.0 + 128587.i −0.183412 + 0.317679i
\(41\) −661206. −1.49828 −0.749141 0.662411i \(-0.769533\pi\)
−0.749141 + 0.662411i \(0.769533\pi\)
\(42\) 0 0
\(43\) 147095. 0.282136 0.141068 0.990000i \(-0.454946\pi\)
0.141068 + 0.990000i \(0.454946\pi\)
\(44\) 36160.0 62631.0i 0.0639947 0.110842i
\(45\) 0 0
\(46\) −26656.0 46169.5i −0.0403778 0.0699364i
\(47\) −449817. + 779106.i −0.631965 + 1.09460i 0.355184 + 0.934796i \(0.384418\pi\)
−0.987149 + 0.159800i \(0.948915\pi\)
\(48\) 0 0
\(49\) 267222. 778984.i 0.324478 0.945893i
\(50\) 47800.0 0.0540795
\(51\) 0 0
\(52\) 242016. + 419184.i 0.238689 + 0.413421i
\(53\) −652566. 1.13028e6i −0.602087 1.04284i −0.992505 0.122207i \(-0.961003\pi\)
0.390418 0.920638i \(-0.372330\pi\)
\(54\) 0 0
\(55\) −327700. −0.265587
\(56\) 378112. 270034.i 0.287715 0.205475i
\(57\) 0 0
\(58\) 27280.0 47250.3i 0.0183589 0.0317985i
\(59\) −1.19078e6 2.06249e6i −0.754832 1.30741i −0.945458 0.325744i \(-0.894385\pi\)
0.190626 0.981663i \(-0.438948\pi\)
\(60\) 0 0
\(61\) 1.31255e6 2.27341e6i 0.740392 1.28240i −0.211925 0.977286i \(-0.567973\pi\)
0.952317 0.305111i \(-0.0986935\pi\)
\(62\) 1.40863e6 0.750631
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 1.09664e6 1.89943e6i 0.495297 0.857879i
\(66\) 0 0
\(67\) −1.98670e6 3.44106e6i −0.806993 1.39775i −0.914937 0.403596i \(-0.867760\pi\)
0.107944 0.994157i \(-0.465573\pi\)
\(68\) 464128. 803893.i 0.179001 0.310040i
\(69\) 0 0
\(70\) −1.91632e6 871984.i −0.667767 0.303854i
\(71\) 4.29176e6 1.42309 0.711543 0.702642i \(-0.247996\pi\)
0.711543 + 0.702642i \(0.247996\pi\)
\(72\) 0 0
\(73\) −2.96515e6 5.13578e6i −0.892105 1.54517i −0.837347 0.546672i \(-0.815894\pi\)
−0.0547586 0.998500i \(-0.517439\pi\)
\(74\) 531940. + 921347.i 0.152599 + 0.264309i
\(75\) 0 0
\(76\) 1.60275e6 0.418812
\(77\) 933380. + 424716.i 0.232992 + 0.106018i
\(78\) 0 0
\(79\) −3.14184e6 + 5.44183e6i −0.716952 + 1.24180i 0.245250 + 0.969460i \(0.421130\pi\)
−0.962202 + 0.272337i \(0.912203\pi\)
\(80\) −593920. 1.02870e6i −0.129692 0.224633i
\(81\) 0 0
\(82\) 2.64482e6 4.58097e6i 0.529722 0.917506i
\(83\) −4.25225e6 −0.816292 −0.408146 0.912917i \(-0.633825\pi\)
−0.408146 + 0.912917i \(0.633825\pi\)
\(84\) 0 0
\(85\) −4.20616e6 −0.742882
\(86\) −588380. + 1.01910e6i −0.0997501 + 0.172772i
\(87\) 0 0
\(88\) 289280. + 501048.i 0.0452511 + 0.0783772i
\(89\) −740400. + 1.28241e6i −0.111327 + 0.192824i −0.916306 0.400480i \(-0.868843\pi\)
0.804978 + 0.593304i \(0.202177\pi\)
\(90\) 0 0
\(91\) −5.58528e6 + 3.98880e6i −0.776962 + 0.554878i
\(92\) 426496. 0.0571028
\(93\) 0 0
\(94\) −3.59854e6 6.23285e6i −0.446867 0.773996i
\(95\) −3.63124e6 6.28948e6i −0.434532 0.752631i
\(96\) 0 0
\(97\) 9.40743e6 1.04657 0.523287 0.852156i \(-0.324705\pi\)
0.523287 + 0.852156i \(0.324705\pi\)
\(98\) 4.32807e6 + 4.96730e6i 0.464519 + 0.533125i
\(99\) 0 0
\(100\) −191200. + 331168.i −0.0191200 + 0.0331168i
\(101\) −5.42373e6 9.39418e6i −0.523809 0.907265i −0.999616 0.0277146i \(-0.991177\pi\)
0.475806 0.879550i \(-0.342156\pi\)
\(102\) 0 0
\(103\) 101052. 175028.i 0.00911206 0.0157826i −0.861433 0.507871i \(-0.830433\pi\)
0.870545 + 0.492088i \(0.163766\pi\)
\(104\) −3.87226e6 −0.337557
\(105\) 0 0
\(106\) 1.04411e7 0.851479
\(107\) −6.43483e6 + 1.11455e7i −0.507802 + 0.879538i 0.492158 + 0.870506i \(0.336208\pi\)
−0.999959 + 0.00903196i \(0.997125\pi\)
\(108\) 0 0
\(109\) 1.09254e7 + 1.89233e7i 0.808061 + 1.39960i 0.914205 + 0.405253i \(0.132816\pi\)
−0.106143 + 0.994351i \(0.533850\pi\)
\(110\) 1.31080e6 2.27037e6i 0.0938992 0.162638i
\(111\) 0 0
\(112\) 358400. + 3.69977e6i 0.0241049 + 0.248835i
\(113\) −4.61360e6 −0.300792 −0.150396 0.988626i \(-0.548055\pi\)
−0.150396 + 0.988626i \(0.548055\pi\)
\(114\) 0 0
\(115\) −966280. 1.67365e6i −0.0592462 0.102617i
\(116\) 218240. + 378003.i 0.0129817 + 0.0224850i
\(117\) 0 0
\(118\) 1.90525e7 1.06749
\(119\) 1.19803e7 + 5.45140e6i 0.651709 + 0.296547i
\(120\) 0 0
\(121\) 9.10514e6 1.57706e7i 0.467237 0.809279i
\(122\) 1.05004e7 + 1.81872e7i 0.523536 + 0.906791i
\(123\) 0 0
\(124\) −5.63453e6 + 9.75929e6i −0.265388 + 0.459666i
\(125\) −2.09235e7 −0.958185
\(126\) 0 0
\(127\) −3.70924e7 −1.60684 −0.803419 0.595415i \(-0.796988\pi\)
−0.803419 + 0.595415i \(0.796988\pi\)
\(128\) −1.04858e6 + 1.81619e6i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 8.77308e6 + 1.51954e7i 0.350228 + 0.606612i
\(131\) −1.99174e7 + 3.44980e7i −0.774076 + 1.34074i 0.161236 + 0.986916i \(0.448452\pi\)
−0.935312 + 0.353823i \(0.884882\pi\)
\(132\) 0 0
\(133\) 2.19126e6 + 2.26205e7i 0.0807632 + 0.833721i
\(134\) 3.17871e7 1.14126
\(135\) 0 0
\(136\) 3.71302e6 + 6.43115e6i 0.126573 + 0.219231i
\(137\) −1.28723e7 2.22955e7i −0.427696 0.740791i 0.568972 0.822357i \(-0.307341\pi\)
−0.996668 + 0.0815659i \(0.974008\pi\)
\(138\) 0 0
\(139\) −1.29485e7 −0.408948 −0.204474 0.978872i \(-0.565548\pi\)
−0.204474 + 0.978872i \(0.565548\pi\)
\(140\) 1.37066e7 9.78872e6i 0.422163 0.301493i
\(141\) 0 0
\(142\) −1.71670e7 + 2.97342e7i −0.503137 + 0.871459i
\(143\) −4.27310e6 7.40122e6i −0.122199 0.211654i
\(144\) 0 0
\(145\) 988900. 1.71283e6i 0.0269379 0.0466579i
\(146\) 4.74423e7 1.26163
\(147\) 0 0
\(148\) −8.51104e6 −0.215808
\(149\) −1.56578e7 + 2.71201e7i −0.387775 + 0.671645i −0.992150 0.125054i \(-0.960089\pi\)
0.604375 + 0.796700i \(0.293423\pi\)
\(150\) 0 0
\(151\) 2.06164e7 + 3.57086e7i 0.487296 + 0.844022i 0.999893 0.0146075i \(-0.00464988\pi\)
−0.512597 + 0.858629i \(0.671317\pi\)
\(152\) −6.41101e6 + 1.11042e7i −0.148072 + 0.256469i
\(153\) 0 0
\(154\) −6.67604e6 + 4.76778e6i −0.147298 + 0.105195i
\(155\) 5.10629e7 1.10140
\(156\) 0 0
\(157\) −2.76616e6 4.79112e6i −0.0570464 0.0988072i 0.836092 0.548589i \(-0.184835\pi\)
−0.893138 + 0.449782i \(0.851502\pi\)
\(158\) −2.51348e7 4.35347e7i −0.506961 0.878083i
\(159\) 0 0
\(160\) 9.50272e6 0.183412
\(161\) 583100. + 6.01935e6i 0.0110117 + 0.113674i
\(162\) 0 0
\(163\) 1.67654e7 2.90386e7i 0.303220 0.525193i −0.673643 0.739057i \(-0.735272\pi\)
0.976864 + 0.213864i \(0.0686048\pi\)
\(164\) 2.11586e7 + 3.66478e7i 0.374570 + 0.648775i
\(165\) 0 0
\(166\) 1.70090e7 2.94605e7i 0.288603 0.499875i
\(167\) 5.23132e7 0.869167 0.434584 0.900632i \(-0.356896\pi\)
0.434584 + 0.900632i \(0.356896\pi\)
\(168\) 0 0
\(169\) −5.54955e6 −0.0884411
\(170\) 1.68246e7 2.91411e7i 0.262648 0.454920i
\(171\) 0 0
\(172\) −4.70704e6 8.15283e6i −0.0705340 0.122168i
\(173\) −4.10212e7 + 7.10509e7i −0.602348 + 1.04330i 0.390117 + 0.920765i \(0.372435\pi\)
−0.992465 + 0.122532i \(0.960899\pi\)
\(174\) 0 0
\(175\) −4.93535e6 2.24573e6i −0.0696121 0.0316756i
\(176\) −4.62848e6 −0.0639947
\(177\) 0 0
\(178\) −5.92320e6 1.02593e7i −0.0787202 0.136347i
\(179\) −5.73149e7 9.92724e7i −0.746934 1.29373i −0.949286 0.314415i \(-0.898192\pi\)
0.202352 0.979313i \(-0.435142\pi\)
\(180\) 0 0
\(181\) 5.29000e7 0.663102 0.331551 0.943437i \(-0.392428\pi\)
0.331551 + 0.943437i \(0.392428\pi\)
\(182\) −5.29410e6 5.46511e7i −0.0650942 0.671969i
\(183\) 0 0
\(184\) −1.70598e6 + 2.95485e6i −0.0201889 + 0.0349682i
\(185\) 1.92828e7 + 3.33988e7i 0.223908 + 0.387820i
\(186\) 0 0
\(187\) −8.19476e6 + 1.41937e7i −0.0916412 + 0.158727i
\(188\) 5.75766e7 0.631965
\(189\) 0 0
\(190\) 5.80998e7 0.614521
\(191\) 5.14237e7 8.90684e7i 0.534006 0.924926i −0.465204 0.885203i \(-0.654019\pi\)
0.999211 0.0397228i \(-0.0126475\pi\)
\(192\) 0 0
\(193\) 8.76209e7 + 1.51764e8i 0.877318 + 1.51956i 0.854273 + 0.519824i \(0.174003\pi\)
0.0230445 + 0.999734i \(0.492664\pi\)
\(194\) −3.76297e7 + 6.51766e7i −0.370020 + 0.640893i
\(195\) 0 0
\(196\) −5.17268e7 + 1.01166e7i −0.490703 + 0.0959703i
\(197\) −1.57220e8 −1.46513 −0.732563 0.680700i \(-0.761676\pi\)
−0.732563 + 0.680700i \(0.761676\pi\)
\(198\) 0 0
\(199\) −5.53742e7 9.59110e7i −0.498106 0.862745i 0.501891 0.864931i \(-0.332638\pi\)
−0.999998 + 0.00218539i \(0.999304\pi\)
\(200\) −1.52960e6 2.64934e6i −0.0135199 0.0234171i
\(201\) 0 0
\(202\) 8.67797e7 0.740778
\(203\) −5.03657e6 + 3.59693e6i −0.0422570 + 0.0301784i
\(204\) 0 0
\(205\) 9.58749e7 1.66060e8i 0.777260 1.34625i
\(206\) 808420. + 1.40022e6i 0.00644320 + 0.0111600i
\(207\) 0 0
\(208\) 1.54890e7 2.68278e7i 0.119344 0.206711i
\(209\) −2.82986e7 −0.214414
\(210\) 0 0
\(211\) −1.46673e8 −1.07488 −0.537440 0.843302i \(-0.680609\pi\)
−0.537440 + 0.843302i \(0.680609\pi\)
\(212\) −4.17642e7 + 7.23378e7i −0.301043 + 0.521422i
\(213\) 0 0
\(214\) −5.14787e7 8.91636e7i −0.359070 0.621927i
\(215\) −2.13288e7 + 3.69425e7i −0.146363 + 0.253508i
\(216\) 0 0
\(217\) −1.45441e8 6.61802e7i −0.966226 0.439662i
\(218\) −1.74806e8 −1.14277
\(219\) 0 0
\(220\) 1.04864e7 + 1.81630e7i 0.0663968 + 0.115003i
\(221\) −5.48469e7 9.49976e7i −0.341805 0.592024i
\(222\) 0 0
\(223\) −5.90964e7 −0.356857 −0.178428 0.983953i \(-0.557101\pi\)
−0.178428 + 0.983953i \(0.557101\pi\)
\(224\) −2.70664e7 1.23160e7i −0.160902 0.0732154i
\(225\) 0 0
\(226\) 1.84544e7 3.19640e7i 0.106346 0.184196i
\(227\) −2.14526e7 3.71570e7i −0.121728 0.210838i 0.798721 0.601701i \(-0.205510\pi\)
−0.920449 + 0.390863i \(0.872177\pi\)
\(228\) 0 0
\(229\) −1.38126e8 + 2.39241e8i −0.760066 + 1.31647i 0.182749 + 0.983160i \(0.441500\pi\)
−0.942816 + 0.333314i \(0.891833\pi\)
\(230\) 1.54605e7 0.0837868
\(231\) 0 0
\(232\) −3.49184e6 −0.0183589
\(233\) 7.66706e7 1.32797e8i 0.397085 0.687771i −0.596280 0.802776i \(-0.703355\pi\)
0.993365 + 0.115006i \(0.0366886\pi\)
\(234\) 0 0
\(235\) −1.30447e8 2.25941e8i −0.655687 1.13568i
\(236\) −7.62100e7 + 1.32000e8i −0.377416 + 0.653704i
\(237\) 0 0
\(238\) −8.56896e7 + 6.11964e7i −0.412011 + 0.294243i
\(239\) 3.45622e8 1.63760 0.818801 0.574078i \(-0.194639\pi\)
0.818801 + 0.574078i \(0.194639\pi\)
\(240\) 0 0
\(241\) −2.70334e7 4.68232e7i −0.124406 0.215477i 0.797095 0.603854i \(-0.206369\pi\)
−0.921501 + 0.388377i \(0.873036\pi\)
\(242\) 7.28411e7 + 1.26164e8i 0.330387 + 0.572247i
\(243\) 0 0
\(244\) −1.68007e8 −0.740392
\(245\) 1.56893e8 + 1.80065e8i 0.681587 + 0.782253i
\(246\) 0 0
\(247\) 9.47001e7 1.64025e8i 0.399863 0.692583i
\(248\) −4.50762e7 7.80743e7i −0.187658 0.325033i
\(249\) 0 0
\(250\) 8.36940e7 1.44962e8i 0.338769 0.586766i
\(251\) 9.40011e7 0.375210 0.187605 0.982245i \(-0.439927\pi\)
0.187605 + 0.982245i \(0.439927\pi\)
\(252\) 0 0
\(253\) −7.53032e6 −0.0292342
\(254\) 1.48370e8 2.56984e8i 0.568103 0.983983i
\(255\) 0 0
\(256\) −8.38861e6 1.45295e7i −0.0312500 0.0541266i
\(257\) 3.49001e7 6.04487e7i 0.128251 0.222137i −0.794748 0.606939i \(-0.792397\pi\)
0.922999 + 0.384802i \(0.125730\pi\)
\(258\) 0 0
\(259\) −1.16362e7 1.20121e8i −0.0416161 0.429604i
\(260\) −1.40369e8 −0.495297
\(261\) 0 0
\(262\) −1.59339e8 2.75984e8i −0.547354 0.948046i
\(263\) 3.56605e7 + 6.17657e7i 0.120876 + 0.209364i 0.920114 0.391652i \(-0.128096\pi\)
−0.799237 + 0.601016i \(0.794763\pi\)
\(264\) 0 0
\(265\) 3.78488e8 1.24937
\(266\) −1.65484e8 7.53003e7i −0.539102 0.245308i
\(267\) 0 0
\(268\) −1.27149e8 + 2.20228e8i −0.403496 + 0.698876i
\(269\) −1.08752e8 1.88365e8i −0.340648 0.590020i 0.643905 0.765105i \(-0.277313\pi\)
−0.984553 + 0.175085i \(0.943980\pi\)
\(270\) 0 0
\(271\) −7.55186e6 + 1.30802e7i −0.0230495 + 0.0399229i −0.877320 0.479906i \(-0.840671\pi\)
0.854271 + 0.519829i \(0.174004\pi\)
\(272\) −5.94084e7 −0.179001
\(273\) 0 0
\(274\) 2.05957e8 0.604853
\(275\) 3.37587e6 5.84719e6i 0.00978863 0.0169544i
\(276\) 0 0
\(277\) −8.19027e7 1.41860e8i −0.231536 0.401032i 0.726724 0.686929i \(-0.241042\pi\)
−0.958260 + 0.285897i \(0.907708\pi\)
\(278\) 5.17940e7 8.97098e7i 0.144585 0.250428i
\(279\) 0 0
\(280\) 1.29920e7 + 1.34117e8i 0.0353690 + 0.365115i
\(281\) 4.21200e8 1.13244 0.566221 0.824253i \(-0.308405\pi\)
0.566221 + 0.824253i \(0.308405\pi\)
\(282\) 0 0
\(283\) 3.36002e8 + 5.81972e8i 0.881229 + 1.52633i 0.849975 + 0.526822i \(0.176617\pi\)
0.0312539 + 0.999511i \(0.490050\pi\)
\(284\) −1.37336e8 2.37874e8i −0.355772 0.616215i
\(285\) 0 0
\(286\) 6.83695e7 0.172815
\(287\) −4.88301e8 + 3.48726e8i −1.21927 + 0.870759i
\(288\) 0 0
\(289\) 9.99863e7 1.73181e8i 0.243668 0.422045i
\(290\) 7.91120e6 + 1.37026e7i 0.0190480 + 0.0329921i
\(291\) 0 0
\(292\) −1.89769e8 + 3.28690e8i −0.446053 + 0.772586i
\(293\) −771192. −0.00179112 −0.000895562 1.00000i \(-0.500285\pi\)
−0.000895562 1.00000i \(0.500285\pi\)
\(294\) 0 0
\(295\) 6.90654e8 1.56633
\(296\) 3.40442e7 5.89662e7i 0.0762995 0.132155i
\(297\) 0 0
\(298\) −1.25263e8 2.16961e8i −0.274198 0.474925i
\(299\) 2.51999e7 4.36475e7i 0.0545193 0.0944301i
\(300\) 0 0
\(301\) 1.08630e8 7.75793e7i 0.229597 0.163970i
\(302\) −3.29862e8 −0.689141
\(303\) 0 0
\(304\) −5.12881e7 8.88335e7i −0.104703 0.181351i
\(305\) 3.80640e8 + 6.59287e8i 0.768183 + 1.33053i
\(306\) 0 0
\(307\) 2.79387e8 0.551089 0.275544 0.961288i \(-0.411142\pi\)
0.275544 + 0.961288i \(0.411142\pi\)
\(308\) −6.32800e6 6.53241e7i −0.0123407 0.127393i
\(309\) 0 0
\(310\) −2.04252e8 + 3.53774e8i −0.389403 + 0.674466i
\(311\) −3.60775e8 6.24880e8i −0.680103 1.17797i −0.974949 0.222429i \(-0.928602\pi\)
0.294846 0.955545i \(-0.404732\pi\)
\(312\) 0 0
\(313\) −4.95703e8 + 8.58582e8i −0.913726 + 1.58262i −0.104971 + 0.994475i \(0.533475\pi\)
−0.808755 + 0.588145i \(0.799858\pi\)
\(314\) 4.42585e7 0.0806758
\(315\) 0 0
\(316\) 4.02156e8 0.716952
\(317\) −6.02071e7 + 1.04282e8i −0.106155 + 0.183866i −0.914210 0.405242i \(-0.867187\pi\)
0.808054 + 0.589108i \(0.200521\pi\)
\(318\) 0 0
\(319\) −3.85330e6 6.67411e6i −0.00664608 0.0115113i
\(320\) −3.80109e7 + 6.58368e7i −0.0648460 + 0.112317i
\(321\) 0 0
\(322\) −4.40357e7 2.00376e7i −0.0735037 0.0334464i
\(323\) −3.63224e8 −0.599743
\(324\) 0 0
\(325\) 2.25945e7 + 3.91348e7i 0.0365099 + 0.0632369i
\(326\) 1.34124e8 + 2.32309e8i 0.214409 + 0.371368i
\(327\) 0 0
\(328\) −3.38537e8 −0.529722
\(329\) 7.87180e7 + 8.12607e8i 0.121868 + 1.25804i
\(330\) 0 0
\(331\) −9.47655e7 + 1.64139e8i −0.143632 + 0.248779i −0.928862 0.370426i \(-0.879212\pi\)
0.785230 + 0.619205i \(0.212545\pi\)
\(332\) 1.36072e8 + 2.35684e8i 0.204073 + 0.353465i
\(333\) 0 0
\(334\) −2.09253e8 + 3.62436e8i −0.307297 + 0.532254i
\(335\) 1.15228e9 1.67457
\(336\) 0 0
\(337\) 9.06750e8 1.29057 0.645287 0.763940i \(-0.276738\pi\)
0.645287 + 0.763940i \(0.276738\pi\)
\(338\) 2.21982e7 3.84484e7i 0.0312687 0.0541589i
\(339\) 0 0
\(340\) 1.34597e8 + 2.33129e8i 0.185720 + 0.321677i
\(341\) 9.94846e7 1.72312e8i 0.135868 0.235329i
\(342\) 0 0
\(343\) −2.13500e8 7.16215e8i −0.285673 0.958327i
\(344\) 7.53126e7 0.0997501
\(345\) 0 0
\(346\) −3.28170e8 5.68407e8i −0.425924 0.737723i
\(347\) −1.72561e8 2.98884e8i −0.221712 0.384016i 0.733616 0.679564i \(-0.237831\pi\)
−0.955328 + 0.295548i \(0.904498\pi\)
\(348\) 0 0
\(349\) −6.01221e8 −0.757086 −0.378543 0.925584i \(-0.623575\pi\)
−0.378543 + 0.925584i \(0.623575\pi\)
\(350\) 3.53003e7 2.52102e7i 0.0440089 0.0314295i
\(351\) 0 0
\(352\) 1.85139e7 3.20671e7i 0.0226255 0.0391886i
\(353\) 1.45774e8 + 2.52487e8i 0.176387 + 0.305512i 0.940640 0.339405i \(-0.110226\pi\)
−0.764253 + 0.644916i \(0.776892\pi\)
\(354\) 0 0
\(355\) −6.22305e8 + 1.07786e9i −0.738252 + 1.27869i
\(356\) 9.47712e7 0.111327
\(357\) 0 0
\(358\) 9.17039e8 1.05632
\(359\) −2.37795e8 + 4.11872e8i −0.271251 + 0.469821i −0.969182 0.246344i \(-0.920771\pi\)
0.697931 + 0.716165i \(0.254104\pi\)
\(360\) 0 0
\(361\) 1.33360e8 + 2.30986e8i 0.149194 + 0.258411i
\(362\) −2.11600e8 + 3.66502e8i −0.234442 + 0.406066i
\(363\) 0 0
\(364\) 3.99810e8 + 1.81926e8i 0.434510 + 0.197715i
\(365\) 1.71978e9 1.85118
\(366\) 0 0
\(367\) −8.25397e7 1.42963e8i −0.0871629 0.150971i 0.819148 0.573582i \(-0.194447\pi\)
−0.906311 + 0.422612i \(0.861113\pi\)
\(368\) −1.36479e7 2.36388e7i −0.0142757 0.0247262i
\(369\) 0 0
\(370\) −3.08525e8 −0.316654
\(371\) −1.07804e9 4.90540e8i −1.09604 0.498731i
\(372\) 0 0
\(373\) −2.33424e8 + 4.04302e8i −0.232897 + 0.403390i −0.958660 0.284556i \(-0.908154\pi\)
0.725762 + 0.687946i \(0.241487\pi\)
\(374\) −6.55581e7 1.13550e8i −0.0648001 0.112237i
\(375\) 0 0
\(376\) −2.30306e8 + 3.98902e8i −0.223434 + 0.386998i
\(377\) 5.15797e7 0.0495774
\(378\) 0 0
\(379\) −2.77160e8 −0.261513 −0.130756 0.991415i \(-0.541741\pi\)
−0.130756 + 0.991415i \(0.541741\pi\)
\(380\) −2.32399e8 + 4.02527e8i −0.217266 + 0.376316i
\(381\) 0 0
\(382\) 4.11389e8 + 7.12548e8i 0.377600 + 0.654022i
\(383\) −3.98941e6 + 6.90987e6i −0.00362839 + 0.00628455i −0.867834 0.496854i \(-0.834488\pi\)
0.864206 + 0.503139i \(0.167822\pi\)
\(384\) 0 0
\(385\) −2.42006e8 + 1.72832e8i −0.216130 + 0.154352i
\(386\) −1.40193e9 −1.24071
\(387\) 0 0
\(388\) −3.01038e8 5.21413e8i −0.261644 0.453180i
\(389\) 8.63868e8 + 1.49626e9i 0.744087 + 1.28880i 0.950620 + 0.310357i \(0.100449\pi\)
−0.206533 + 0.978440i \(0.566218\pi\)
\(390\) 0 0
\(391\) −9.66547e7 −0.0817719
\(392\) 1.36817e8 3.98840e8i 0.114720 0.334424i
\(393\) 0 0
\(394\) 6.28878e8 1.08925e9i 0.518000 0.897202i
\(395\) −9.11135e8 1.57813e9i −0.743863 1.28841i
\(396\) 0 0
\(397\) −3.96249e8 + 6.86323e8i −0.317835 + 0.550506i −0.980036 0.198820i \(-0.936289\pi\)
0.662201 + 0.749326i \(0.269622\pi\)
\(398\) 8.85988e8 0.704429
\(399\) 0 0
\(400\) 2.44736e7 0.0191200
\(401\) −3.47592e8 + 6.02048e8i −0.269194 + 0.466257i −0.968654 0.248414i \(-0.920091\pi\)
0.699460 + 0.714672i \(0.253424\pi\)
\(402\) 0 0
\(403\) 6.65843e8 + 1.15327e9i 0.506762 + 0.877737i
\(404\) −3.47119e8 + 6.01227e8i −0.261905 + 0.453632i
\(405\) 0 0
\(406\) −4.77400e6 4.92821e7i −0.00354031 0.0365467i
\(407\) 1.50273e8 0.110484
\(408\) 0 0
\(409\) −9.83035e8 1.70267e9i −0.710456 1.23055i −0.964686 0.263403i \(-0.915155\pi\)
0.254229 0.967144i \(-0.418178\pi\)
\(410\) 7.66999e8 + 1.32848e9i 0.549606 + 0.951945i
\(411\) 0 0
\(412\) −1.29347e7 −0.00911206
\(413\) −1.96717e9 8.95123e8i −1.37410 0.625255i
\(414\) 0 0
\(415\) 6.16576e8 1.06794e9i 0.423466 0.733464i
\(416\) 1.23912e8 + 2.14622e8i 0.0843893 + 0.146167i
\(417\) 0 0
\(418\) 1.13194e8 1.96058e8i 0.0758067 0.131301i
\(419\) −2.20900e9 −1.46706 −0.733529 0.679658i \(-0.762128\pi\)
−0.733529 + 0.679658i \(0.762128\pi\)
\(420\) 0 0
\(421\) −4.59955e8 −0.300419 −0.150210 0.988654i \(-0.547995\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(422\) 5.86690e8 1.01618e9i 0.380028 0.658227i
\(423\) 0 0
\(424\) −3.34114e8 5.78702e8i −0.212870 0.368701i
\(425\) 4.33307e7 7.50510e7i 0.0273801 0.0474237i
\(426\) 0 0
\(427\) −2.29696e8 2.37116e9i −0.142776 1.47388i
\(428\) 8.23658e8 0.507802
\(429\) 0 0
\(430\) −1.70630e8 2.95540e8i −0.103494 0.179257i
\(431\) −1.07759e9 1.86643e9i −0.648308 1.12290i −0.983527 0.180763i \(-0.942143\pi\)
0.335218 0.942140i \(-0.391190\pi\)
\(432\) 0 0
\(433\) 1.78833e9 1.05862 0.529311 0.848428i \(-0.322450\pi\)
0.529311 + 0.848428i \(0.322450\pi\)
\(434\) 1.04027e9 7.42926e8i 0.610849 0.436246i
\(435\) 0 0
\(436\) 6.99225e8 1.21109e9i 0.404031 0.699802i
\(437\) −8.34433e7 1.44528e8i −0.0478307 0.0828451i
\(438\) 0 0
\(439\) −7.60502e7 + 1.31723e8i −0.0429017 + 0.0743080i −0.886679 0.462386i \(-0.846994\pi\)
0.843777 + 0.536694i \(0.180327\pi\)
\(440\) −1.67782e8 −0.0938992
\(441\) 0 0
\(442\) 8.77550e8 0.483386
\(443\) 1.34809e9 2.33496e9i 0.736727 1.27605i −0.217234 0.976119i \(-0.569704\pi\)
0.953961 0.299929i \(-0.0969631\pi\)
\(444\) 0 0
\(445\) −2.14716e8 3.71899e8i −0.115506 0.200062i
\(446\) 2.36385e8 4.09432e8i 0.126168 0.218529i
\(447\) 0 0
\(448\) 1.93593e8 1.38257e8i 0.101723 0.0726465i
\(449\) 5.37859e8 0.280418 0.140209 0.990122i \(-0.455223\pi\)
0.140209 + 0.990122i \(0.455223\pi\)
\(450\) 0 0
\(451\) −3.73581e8 6.47062e8i −0.191764 0.332145i
\(452\) 1.47635e8 + 2.55712e8i 0.0751979 + 0.130247i
\(453\) 0 0
\(454\) 3.43241e8 0.172149
\(455\) −1.91911e8 1.98110e9i −0.0955125 0.985978i
\(456\) 0 0
\(457\) 2.69397e8 4.66609e8i 0.132034 0.228690i −0.792427 0.609967i \(-0.791183\pi\)
0.924460 + 0.381278i \(0.124516\pi\)
\(458\) −1.10501e9 1.91393e9i −0.537448 0.930887i
\(459\) 0 0
\(460\) −6.18419e7 + 1.07113e8i −0.0296231 + 0.0513087i
\(461\) −5.24391e6 −0.00249288 −0.00124644 0.999999i \(-0.500397\pi\)
−0.00124644 + 0.999999i \(0.500397\pi\)
\(462\) 0 0
\(463\) 2.18426e8 0.102275 0.0511376 0.998692i \(-0.483715\pi\)
0.0511376 + 0.998692i \(0.483715\pi\)
\(464\) 1.39674e7 2.41922e7i 0.00649085 0.0112425i
\(465\) 0 0
\(466\) 6.13365e8 + 1.06238e9i 0.280781 + 0.486327i
\(467\) −1.74721e8 + 3.02625e8i −0.0793845 + 0.137498i −0.902985 0.429673i \(-0.858629\pi\)
0.823600 + 0.567171i \(0.191962\pi\)
\(468\) 0 0
\(469\) −3.28202e9 1.49342e9i −1.46905 0.668462i
\(470\) 2.08715e9 0.927281
\(471\) 0 0
\(472\) −6.09680e8 1.05600e9i −0.266873 0.462238i
\(473\) 8.31087e7 + 1.43948e8i 0.0361104 + 0.0625451i
\(474\) 0 0
\(475\) 1.49632e8 0.0640614
\(476\) −8.12224e7 8.38461e8i −0.0345185 0.356335i
\(477\) 0 0
\(478\) −1.38249e9 + 2.39454e9i −0.578979 + 1.00282i
\(479\) 2.02511e9 + 3.50759e9i 0.841927 + 1.45826i 0.888263 + 0.459335i \(0.151912\pi\)
−0.0463361 + 0.998926i \(0.514755\pi\)
\(480\) 0 0
\(481\) −5.02883e8 + 8.71019e8i −0.206044 + 0.356878i
\(482\) 4.32534e8 0.175936
\(483\) 0 0
\(484\) −1.16546e9 −0.467237
\(485\) −1.36408e9 + 2.36265e9i −0.542929 + 0.940381i
\(486\) 0 0
\(487\) −4.63317e8 8.02488e8i −0.181772 0.314838i 0.760712 0.649089i \(-0.224850\pi\)
−0.942484 + 0.334251i \(0.891517\pi\)
\(488\) 6.72026e8 1.16398e9i 0.261768 0.453396i
\(489\) 0 0
\(490\) −1.87509e9 + 3.66725e8i −0.720007 + 0.140817i
\(491\) −2.65906e9 −1.01378 −0.506889 0.862011i \(-0.669205\pi\)
−0.506889 + 0.862011i \(0.669205\pi\)
\(492\) 0 0
\(493\) −4.94586e7 8.56649e7i −0.0185899 0.0321987i
\(494\) 7.57601e8 + 1.31220e9i 0.282746 + 0.489730i
\(495\) 0 0
\(496\) 7.21220e8 0.265388
\(497\) 3.16947e9 2.26352e9i 1.15808 0.827058i
\(498\) 0 0
\(499\) 1.58248e9 2.74094e9i 0.570147 0.987523i −0.426404 0.904533i \(-0.640220\pi\)
0.996550 0.0829901i \(-0.0264470\pi\)
\(500\) 6.69552e8 + 1.15970e9i 0.239546 + 0.414906i
\(501\) 0 0
\(502\) −3.76004e8 + 6.51259e8i −0.132657 + 0.229768i
\(503\) −4.12431e9 −1.44499 −0.722493 0.691379i \(-0.757004\pi\)
−0.722493 + 0.691379i \(0.757004\pi\)
\(504\) 0 0
\(505\) 3.14576e9 1.08694
\(506\) 3.01213e7 5.21716e7i 0.0103359 0.0179022i
\(507\) 0 0
\(508\) 1.18696e9 + 2.05587e9i 0.401709 + 0.695781i
\(509\) −2.77566e9 + 4.80758e9i −0.932940 + 1.61590i −0.154674 + 0.987966i \(0.549433\pi\)
−0.778266 + 0.627935i \(0.783901\pi\)
\(510\) 0 0
\(511\) −4.89842e9 2.22893e9i −1.62399 0.738964i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) 2.79201e8 + 4.83589e8i 0.0906871 + 0.157075i
\(515\) 2.93052e7 + 5.07581e7i 0.00945409 + 0.0163750i
\(516\) 0 0
\(517\) −1.01659e9 −0.323540
\(518\) 8.78765e8 + 3.99865e8i 0.277791 + 0.126403i
\(519\) 0 0
\(520\) 5.61477e8 9.72507e8i 0.175114 0.303306i
\(521\) 1.07072e9 + 1.85455e9i 0.331700 + 0.574522i 0.982845 0.184432i \(-0.0590444\pi\)
−0.651145 + 0.758953i \(0.725711\pi\)
\(522\) 0 0
\(523\) −9.80200e8 + 1.69776e9i −0.299612 + 0.518943i −0.976047 0.217559i \(-0.930191\pi\)
0.676435 + 0.736502i \(0.263524\pi\)
\(524\) 2.54943e9 0.774076
\(525\) 0 0
\(526\) −5.70567e8 −0.170945
\(527\) 1.27692e9 2.21170e9i 0.380039 0.658247i
\(528\) 0 0
\(529\) 1.68021e9 + 2.91021e9i 0.493479 + 0.854730i
\(530\) −1.51395e9 + 2.62224e9i −0.441720 + 0.765081i
\(531\) 0 0
\(532\) 1.18363e9 8.45307e8i 0.340821 0.243402i
\(533\) 5.00070e9 1.43049
\(534\) 0 0
\(535\) −1.86610e9 3.23218e9i −0.526862 0.912552i
\(536\) −1.01719e9 1.76182e9i −0.285315 0.494180i
\(537\) 0 0
\(538\) 1.74004e9 0.481749
\(539\) 9.13300e8 1.78621e8i 0.251219 0.0491327i
\(540\) 0 0
\(541\) −2.01622e9 + 3.49220e9i −0.547455 + 0.948219i 0.450993 + 0.892527i \(0.351070\pi\)
−0.998448 + 0.0556919i \(0.982264\pi\)
\(542\) −6.04149e7 1.04642e8i −0.0162985 0.0282298i
\(543\) 0 0
\(544\) 2.37634e8 4.11593e8i 0.0632866 0.109616i
\(545\) −6.33673e9 −1.67678
\(546\) 0 0
\(547\) 4.81827e9 1.25874 0.629369 0.777107i \(-0.283313\pi\)
0.629369 + 0.777107i \(0.283313\pi\)
\(548\) −8.23829e8 + 1.42691e9i −0.213848 + 0.370395i
\(549\) 0 0
\(550\) 2.70070e7 + 4.67775e7i 0.00692161 + 0.0119886i
\(551\) 8.53966e7 1.47911e8i 0.0217475 0.0376678i
\(552\) 0 0
\(553\) 5.49823e8 + 5.67583e9i 0.138256 + 1.42722i
\(554\) 1.31044e9 0.327442
\(555\) 0 0
\(556\) 4.14352e8 + 7.17679e8i 0.102237 + 0.177079i
\(557\) −1.23993e9 2.14762e9i −0.304022 0.526581i 0.673021 0.739623i \(-0.264996\pi\)
−0.977043 + 0.213042i \(0.931663\pi\)
\(558\) 0 0
\(559\) −1.11248e9 −0.269371
\(560\) −9.81156e8 4.46456e8i −0.236091 0.107429i
\(561\) 0 0
\(562\) −1.68480e9 + 2.91816e9i −0.400379 + 0.693476i
\(563\) −2.35080e9 4.07171e9i −0.555184 0.961607i −0.997889 0.0649396i \(-0.979315\pi\)
0.442705 0.896667i \(-0.354019\pi\)
\(564\) 0 0
\(565\) 6.68972e8 1.15869e9i 0.156041 0.270271i
\(566\) −5.37603e9 −1.24625
\(567\) 0 0
\(568\) 2.19738e9 0.503137
\(569\) 7.08999e8 1.22802e9i 0.161344 0.279456i −0.774007 0.633177i \(-0.781750\pi\)
0.935351 + 0.353721i \(0.115084\pi\)
\(570\) 0 0
\(571\) 4.24907e9 + 7.35960e9i 0.955141 + 1.65435i 0.734046 + 0.679100i \(0.237630\pi\)
0.221095 + 0.975252i \(0.429037\pi\)
\(572\) −2.73478e8 + 4.73678e8i −0.0610993 + 0.105827i
\(573\) 0 0
\(574\) −4.62844e8 4.77795e9i −0.102151 1.05451i
\(575\) 3.98174e7 0.00873445
\(576\) 0 0
\(577\) 2.65730e9 + 4.60258e9i 0.575871 + 0.997438i 0.995946 + 0.0899487i \(0.0286703\pi\)
−0.420075 + 0.907489i \(0.637996\pi\)
\(578\) 7.99891e8 + 1.38545e9i 0.172299 + 0.298431i
\(579\) 0 0
\(580\) −1.26579e8 −0.0269379
\(581\) −3.14029e9 + 2.24268e9i −0.664283 + 0.474406i
\(582\) 0 0
\(583\) 7.37400e8 1.27721e9i 0.154121 0.266946i
\(584\) −1.51816e9 2.62952e9i −0.315407 0.546301i
\(585\) 0 0
\(586\) 3.08477e6 5.34297e6i 0.000633258 0.00109684i
\(587\) 6.24032e9 1.27343 0.636713 0.771101i \(-0.280294\pi\)
0.636713 + 0.771101i \(0.280294\pi\)
\(588\) 0 0
\(589\) 4.40955e9 0.889181
\(590\) −2.76261e9 + 4.78499e9i −0.553781 + 0.959177i
\(591\) 0 0
\(592\) 2.72353e8 + 4.71730e8i 0.0539519 + 0.0934474i
\(593\) −3.35563e9 + 5.81212e9i −0.660820 + 1.14457i 0.319581 + 0.947559i \(0.396458\pi\)
−0.980401 + 0.197014i \(0.936876\pi\)
\(594\) 0 0
\(595\) −3.10625e9 + 2.21837e9i −0.604543 + 0.431742i
\(596\) 2.00420e9 0.387775
\(597\) 0 0
\(598\) 2.01599e8 + 3.49180e8i 0.0385509 + 0.0667722i
\(599\) 2.92510e9 + 5.06641e9i 0.556091 + 0.963179i 0.997818 + 0.0660287i \(0.0210329\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(600\) 0 0
\(601\) −1.23472e9 −0.232010 −0.116005 0.993249i \(-0.537009\pi\)
−0.116005 + 0.993249i \(0.537009\pi\)
\(602\) 1.02966e8 + 1.06293e9i 0.0192357 + 0.198571i
\(603\) 0 0
\(604\) 1.31945e9 2.28535e9i 0.243648 0.422011i
\(605\) 2.64049e9 + 4.57346e9i 0.484775 + 0.839656i
\(606\) 0 0
\(607\) −3.74398e8 + 6.48477e8i −0.0679475 + 0.117689i −0.897998 0.440000i \(-0.854978\pi\)
0.830050 + 0.557689i \(0.188312\pi\)
\(608\) 8.20609e8 0.148072
\(609\) 0 0
\(610\) −6.09024e9 −1.08637
\(611\) 3.40197e9 5.89238e9i 0.603373 1.04507i
\(612\) 0 0
\(613\) 4.86634e9 + 8.42875e9i 0.853279 + 1.47792i 0.878233 + 0.478234i \(0.158723\pi\)
−0.0249539 + 0.999689i \(0.507944\pi\)
\(614\) −1.11755e9 + 1.93565e9i −0.194839 + 0.337471i
\(615\) 0 0
\(616\) 4.77891e8 + 2.17455e8i 0.0823751 + 0.0374832i
\(617\) 9.09192e9 1.55832 0.779161 0.626823i \(-0.215645\pi\)
0.779161 + 0.626823i \(0.215645\pi\)
\(618\) 0 0
\(619\) −1.27380e9 2.20629e9i −0.215866 0.373892i 0.737674 0.675157i \(-0.235924\pi\)
−0.953540 + 0.301266i \(0.902591\pi\)
\(620\) −1.63401e9 2.83019e9i −0.275350 0.476920i
\(621\) 0 0
\(622\) 5.77240e9 0.961811
\(623\) 1.29570e8 + 1.33755e9i 0.0214682 + 0.221617i
\(624\) 0 0
\(625\) 3.26731e9 5.65914e9i 0.535315 0.927193i
\(626\) −3.96562e9 6.86866e9i −0.646102 1.11908i
\(627\) 0 0
\(628\) −1.77034e8 + 3.06632e8i −0.0285232 + 0.0494036i
\(629\) 1.92881e9 0.309039
\(630\) 0 0
\(631\) −3.43067e9 −0.543595 −0.271798 0.962354i \(-0.587618\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(632\) −1.60862e9 + 2.78622e9i −0.253481 + 0.439041i
\(633\) 0 0
\(634\) −4.81657e8 8.34254e8i −0.0750629 0.130013i
\(635\) 5.37840e9 9.31566e9i 0.833575 1.44379i
\(636\) 0 0
\(637\) −2.02100e9 + 5.89145e9i −0.309797 + 0.903097i
\(638\) 6.16528e7 0.00939897
\(639\) 0 0
\(640\) −3.04087e8 5.26694e8i −0.0458530 0.0794198i
\(641\) 2.20563e9 + 3.82027e9i 0.330773 + 0.572916i 0.982664 0.185397i \(-0.0593572\pi\)
−0.651891 + 0.758313i \(0.726024\pi\)
\(642\) 0 0
\(643\) −5.39024e9 −0.799595 −0.399797 0.916604i \(-0.630919\pi\)
−0.399797 + 0.916604i \(0.630919\pi\)
\(644\) 3.14967e8 2.24938e8i 0.0464692 0.0331866i
\(645\) 0 0
\(646\) 1.45289e9 2.51649e9i 0.212041 0.367266i
\(647\) 1.26244e9 + 2.18661e9i 0.183251 + 0.317399i 0.942986 0.332833i \(-0.108005\pi\)
−0.759735 + 0.650233i \(0.774671\pi\)
\(648\) 0 0
\(649\) 1.34558e9 2.33062e9i 0.193221 0.334669i
\(650\) −3.61511e8 −0.0516327
\(651\) 0 0
\(652\) −2.14598e9 −0.303220
\(653\) −2.95678e8 + 5.12129e8i −0.0415550 + 0.0719753i −0.886055 0.463580i \(-0.846564\pi\)
0.844500 + 0.535556i \(0.179898\pi\)
\(654\) 0 0
\(655\) −5.77605e9 1.00044e10i −0.803131 1.39106i
\(656\) 1.35415e9 2.34546e9i 0.187285 0.324387i
\(657\) 0 0
\(658\) −5.94478e9 2.70506e9i −0.813477 0.370157i
\(659\) 7.80244e9 1.06202 0.531009 0.847366i \(-0.321813\pi\)
0.531009 + 0.847366i \(0.321813\pi\)
\(660\) 0 0
\(661\) −5.60662e9 9.71095e9i −0.755086 1.30785i −0.945332 0.326110i \(-0.894262\pi\)
0.190246 0.981736i \(-0.439071\pi\)
\(662\) −7.58124e8 1.31311e9i −0.101563 0.175913i
\(663\) 0 0
\(664\) −2.17715e9 −0.288603
\(665\) −5.99880e9 2.72964e9i −0.791022 0.359939i
\(666\) 0 0
\(667\) 2.27242e7 3.93595e7i 0.00296517 0.00513582i
\(668\) −1.67402e9 2.89949e9i −0.217292 0.376360i
\(669\) 0 0
\(670\) −4.60914e9 + 7.98326e9i −0.592049 + 1.02546i
\(671\) 2.96637e9 0.379049
\(672\) 0 0
\(673\) 1.09343e10 1.38273 0.691365 0.722506i \(-0.257010\pi\)
0.691365 + 0.722506i \(0.257010\pi\)
\(674\) −3.62700e9 + 6.28215e9i −0.456287 + 0.790312i
\(675\) 0 0
\(676\) 1.77586e8 + 3.07587e8i 0.0221103 + 0.0382961i
\(677\) 3.08956e9 5.35128e9i 0.382681 0.662823i −0.608764 0.793352i \(-0.708334\pi\)
0.991444 + 0.130529i \(0.0416676\pi\)
\(678\) 0 0
\(679\) 6.94739e9 4.96157e9i 0.851682 0.608240i
\(680\) −2.15355e9 −0.262648
\(681\) 0 0
\(682\) 7.95877e8 + 1.37850e9i 0.0960729 + 0.166403i
\(683\) −5.55747e9 9.62582e9i −0.667428 1.15602i −0.978621 0.205673i \(-0.934062\pi\)
0.311192 0.950347i \(-0.399272\pi\)
\(684\) 0 0
\(685\) 7.46595e9 0.887499
\(686\) 5.81608e9 + 1.38568e9i 0.687854 + 0.163882i
\(687\) 0 0
\(688\) −3.01251e8 + 5.21781e8i −0.0352670 + 0.0610842i
\(689\) 4.93536e9 + 8.54829e9i 0.574846 + 0.995662i
\(690\) 0 0
\(691\) −5.48065e9 + 9.49277e9i −0.631916 + 1.09451i 0.355244 + 0.934774i \(0.384398\pi\)
−0.987160 + 0.159737i \(0.948935\pi\)
\(692\) 5.25072e9 0.602348
\(693\) 0 0
\(694\) 2.76097e9 0.313548
\(695\) 1.87753e9 3.25198e9i 0.212149 0.367452i
\(696\) 0 0
\(697\) −4.79507e9 8.30530e9i −0.536389 0.929053i
\(698\) 2.40488e9 4.16538e9i 0.267670 0.463619i
\(699\) 0 0
\(700\) 3.34600e7 + 3.45408e8i 0.00368708 + 0.0380618i
\(701\) −1.27383e10 −1.39669 −0.698344 0.715762i \(-0.746080\pi\)
−0.698344 + 0.715762i \(0.746080\pi\)
\(702\) 0 0
\(703\) 1.66517e9 + 2.88416e9i 0.180765 + 0.313095i
\(704\) 1.48111e8 + 2.56536e8i 0.0159987 + 0.0277105i
\(705\) 0 0
\(706\) −2.33238e9 −0.249449
\(707\) −8.96000e9 4.07707e9i −0.953543 0.433891i
\(708\) 0 0
\(709\) −4.54095e8 + 7.86516e8i −0.0478504 + 0.0828793i −0.888959 0.457988i \(-0.848570\pi\)
0.841108 + 0.540867i \(0.181904\pi\)
\(710\) −4.97844e9 8.62292e9i −0.522023 0.904170i
\(711\) 0 0
\(712\) −3.79085e8 + 6.56594e8i −0.0393601 + 0.0681737i
\(713\) 1.17339e9 0.121235
\(714\) 0 0
\(715\) 2.47840e9 0.253571
\(716\) −3.66816e9 + 6.35343e9i −0.373467 + 0.646864i
\(717\) 0 0
\(718\) −1.90236e9 3.29498e9i −0.191803 0.332213i
\(719\) −5.93012e9 + 1.02713e10i −0.594994 + 1.03056i 0.398554 + 0.917145i \(0.369512\pi\)
−0.993548 + 0.113414i \(0.963821\pi\)
\(720\) 0 0
\(721\) −1.76842e7 1.82554e8i −0.00175716 0.0181392i
\(722\) −2.13376e9 −0.210992
\(723\) 0 0
\(724\) −1.69280e9 2.93202e9i −0.165776 0.287132i
\(725\) 2.03748e7 + 3.52901e7i 0.00198568 + 0.00343930i
\(726\) 0 0
\(727\) −8.01213e9 −0.773352 −0.386676 0.922216i \(-0.626377\pi\)
−0.386676 + 0.922216i \(0.626377\pi\)
\(728\) −2.85966e9 + 2.04226e9i −0.274698 + 0.196179i
\(729\) 0 0
\(730\) −6.87914e9 + 1.19150e10i −0.654492 + 1.13361i
\(731\) 1.06673e9 + 1.84764e9i 0.101005 + 0.174947i
\(732\) 0 0
\(733\) 4.90483e9 8.49542e9i 0.460003 0.796748i −0.538958 0.842333i \(-0.681182\pi\)
0.998960 + 0.0455848i \(0.0145151\pi\)
\(734\) 1.32064e9 0.123267
\(735\) 0 0
\(736\) 2.18366e8 0.0201889
\(737\) 2.24497e9 3.88840e9i 0.206573 0.357795i
\(738\) 0 0
\(739\) −7.96251e9 1.37915e10i −0.725762 1.25706i −0.958659 0.284556i \(-0.908154\pi\)
0.232897 0.972501i \(-0.425179\pi\)
\(740\) 1.23410e9 2.13753e9i 0.111954 0.193910i
\(741\) 0 0
\(742\) 7.71072e9 5.50671e9i 0.692917 0.494856i
\(743\) −1.85101e10 −1.65558 −0.827788 0.561042i \(-0.810401\pi\)
−0.827788 + 0.561042i \(0.810401\pi\)
\(744\) 0 0
\(745\) −4.54077e9 7.86484e9i −0.402330 0.696856i
\(746\) −1.86739e9 3.23442e9i −0.164683 0.285240i
\(747\) 0 0
\(748\) 1.04893e9 0.0916412
\(749\) 1.12610e9 + 1.16247e10i 0.0979239 + 1.01087i
\(750\) 0 0
\(751\) 7.69757e9 1.33326e10i 0.663154 1.14862i −0.316629 0.948549i \(-0.602551\pi\)
0.979782 0.200066i \(-0.0641157\pi\)
\(752\) −1.84245e9 3.19122e9i −0.157991 0.273649i
\(753\) 0 0
\(754\) −2.06319e8 + 3.57354e8i −0.0175283 + 0.0303598i
\(755\) −1.19575e10 −1.01117
\(756\) 0 0
\(757\) 5.14693e9 0.431233 0.215617 0.976478i \(-0.430824\pi\)
0.215617 + 0.976478i \(0.430824\pi\)
\(758\) 1.10864e9 1.92022e9i 0.0924587 0.160143i
\(759\) 0 0
\(760\) −1.85919e9 3.22022e9i −0.153630 0.266095i
\(761\) −1.00114e9 + 1.73402e9i −0.0823469 + 0.142629i −0.904258 0.426987i \(-0.859575\pi\)
0.821911 + 0.569616i \(0.192908\pi\)
\(762\) 0 0
\(763\) 1.80488e10 + 8.21273e9i 1.47100 + 0.669347i
\(764\) −6.58223e9 −0.534006
\(765\) 0 0
\(766\) −3.19153e7 5.52789e7i −0.00256566 0.00444385i
\(767\) 9.00588e9 + 1.55986e10i 0.720680 + 1.24825i
\(768\) 0 0
\(769\) −9.62216e9 −0.763010 −0.381505 0.924367i \(-0.624594\pi\)
−0.381505 + 0.924367i \(0.624594\pi\)
\(770\) −2.29390e8 2.36800e9i −0.0181074 0.186923i
\(771\) 0 0
\(772\) 5.60773e9 9.71288e9i 0.438659 0.759779i
\(773\) −4.56517e8 7.90711e8i −0.0355491 0.0615729i 0.847703 0.530470i \(-0.177985\pi\)
−0.883253 + 0.468898i \(0.844651\pi\)
\(774\) 0 0
\(775\) −5.26036e8 + 9.11121e8i −0.0405938 + 0.0703105i
\(776\) 4.81661e9 0.370020
\(777\) 0 0
\(778\) −1.38219e10 −1.05230
\(779\) 8.27929e9 1.43402e10i 0.627498 1.08686i
\(780\) 0 0
\(781\) 2.42485e9 + 4.19996e9i 0.182140 + 0.315476i
\(782\) 3.86619e8 6.69643e8i 0.0289107 0.0500749i
\(783\) 0 0
\(784\) 2.21597e9 + 2.54326e9i 0.164232 + 0.188488i
\(785\) 1.60437e9 0.118375
\(786\) 0 0
\(787\) 8.12525e9 + 1.40733e10i 0.594189 + 1.02917i 0.993661 + 0.112421i \(0.0358604\pi\)
−0.399471 + 0.916746i \(0.630806\pi\)
\(788\) 5.03103e9 + 8.71399e9i 0.366281 + 0.634418i
\(789\) 0 0
\(790\) 1.45782e10 1.05198
\(791\) −3.40715e9 + 2.43326e9i −0.244778 + 0.174812i
\(792\) 0 0
\(793\) −9.92682e9 + 1.71938e10i −0.706894 + 1.22438i
\(794\) −3.16999e9 5.49058e9i −0.224743 0.389266i
\(795\) 0 0
\(796\) −3.54395e9 + 6.13830e9i −0.249053 + 0.431373i
\(797\) 2.00600e10 1.40355 0.701774 0.712400i \(-0.252392\pi\)
0.701774 + 0.712400i \(0.252392\pi\)
\(798\) 0 0
\(799\) −1.30483e10 −0.904982
\(800\) −9.78944e7 + 1.69558e8i −0.00675994 + 0.0117086i
\(801\) 0 0
\(802\) −2.78074e9 4.81638e9i −0.190349 0.329694i
\(803\) 3.35062e9 5.80344e9i 0.228360 0.395531i
\(804\) 0 0
\(805\) −1.59629e9 7.26362e8i −0.107852 0.0490758i
\(806\) −1.06535e10 −0.716670
\(807\) 0 0
\(808\) −2.77695e9 4.80982e9i −0.185195 0.320766i
\(809\) −8.90985e9 1.54323e10i −0.591630 1.02473i −0.994013 0.109262i \(-0.965151\pi\)
0.402383 0.915472i \(-0.368182\pi\)
\(810\) 0 0
\(811\) 4.72659e9 0.311154 0.155577 0.987824i \(-0.450276\pi\)
0.155577 + 0.987824i \(0.450276\pi\)
\(812\) 3.60532e8 + 1.64053e8i 0.0236319 + 0.0107532i
\(813\) 0 0
\(814\) −6.01092e8 + 1.04112e9i −0.0390621 + 0.0676576i
\(815\) 4.86198e9 + 8.42119e9i 0.314602 + 0.544907i
\(816\) 0 0
\(817\) −1.84185e9 + 3.19018e9i −0.118162 + 0.204662i
\(818\) 1.57286e10 1.00474
\(819\) 0 0
\(820\) −1.22720e10 −0.777260
\(821\) 1.00016e10 1.73232e10i 0.630764 1.09251i −0.356632 0.934245i \(-0.616075\pi\)
0.987396 0.158270i \(-0.0505915\pi\)
\(822\) 0 0
\(823\) −7.69179e9 1.33226e10i −0.480981 0.833084i 0.518781 0.854907i \(-0.326386\pi\)
−0.999762 + 0.0218237i \(0.993053\pi\)
\(824\) 5.17389e7 8.96144e7i 0.00322160 0.00557998i
\(825\) 0 0
\(826\) 1.40703e10 1.00485e10i 0.868706 0.620397i
\(827\) −1.42246e10 −0.874520 −0.437260 0.899335i \(-0.644051\pi\)
−0.437260 + 0.899335i \(0.644051\pi\)
\(828\) 0 0
\(829\) 1.08624e10 + 1.88143e10i 0.662194 + 1.14695i 0.980038 + 0.198811i \(0.0637080\pi\)
−0.317843 + 0.948143i \(0.602959\pi\)
\(830\) 4.93261e9 + 8.54353e9i 0.299436 + 0.518638i
\(831\) 0 0
\(832\) −1.98260e9 −0.119344
\(833\) 1.17226e10 2.29267e9i 0.702693 0.137431i
\(834\) 0 0
\(835\) −7.58541e9 + 1.31383e10i −0.450896 + 0.780975i
\(836\) 9.05555e8 + 1.56847e9i 0.0536035 + 0.0928439i
\(837\) 0 0
\(838\) 8.83601e9 1.53044e10i 0.518683 0.898386i
\(839\) 1.54623e10 0.903871 0.451935 0.892051i \(-0.350734\pi\)
0.451935 + 0.892051i \(0.350734\pi\)
\(840\) 0 0
\(841\) −1.72034e10 −0.997304
\(842\) 1.83982e9 3.18666e9i 0.106214 0.183969i
\(843\) 0 0
\(844\) 4.69352e9 + 8.12942e9i 0.268720 + 0.465437i
\(845\) 8.04684e8 1.39375e9i 0.0458804 0.0794672i
\(846\) 0 0
\(847\) −1.59340e9 1.64487e10i −0.0901016 0.930121i
\(848\) 5.34582e9 0.301043
\(849\) 0 0
\(850\) 3.46646e8 + 6.00408e8i 0.0193606 + 0.0335336i
\(851\) 4.43106e8 + 7.67482e8i 0.0246464 + 0.0426889i
\(852\) 0 0
\(853\) −1.80110e10 −0.993608 −0.496804 0.867863i \(-0.665493\pi\)
−0.496804 + 0.867863i \(0.665493\pi\)
\(854\) 1.73467e10 + 7.89326e9i 0.953046 + 0.433665i
\(855\) 0 0
\(856\) −3.29463e9 + 5.70647e9i −0.179535 + 0.310964i
\(857\) −8.58577e7 1.48710e8i −0.00465958 0.00807063i 0.863686 0.504030i \(-0.168150\pi\)
−0.868346 + 0.495959i \(0.834817\pi\)
\(858\) 0 0
\(859\) −6.88929e8 + 1.19326e9i −0.0370850 + 0.0642331i −0.883972 0.467540i \(-0.845141\pi\)
0.846887 + 0.531773i \(0.178474\pi\)
\(860\) 2.73008e9 0.146363
\(861\) 0 0
\(862\) 1.72414e10 0.916847
\(863\) 4.72302e7 8.18052e7i 0.00250140 0.00433254i −0.864772 0.502165i \(-0.832537\pi\)
0.867273 + 0.497832i \(0.165870\pi\)
\(864\) 0 0
\(865\) −1.18962e10 2.06048e10i −0.624958 1.08246i
\(866\) −7.15334e9 + 1.23899e10i −0.374280 + 0.648271i
\(867\) 0 0
\(868\) 9.86042e8 + 1.01789e10i 0.0511772 + 0.528303i
\(869\) −7.10057e9 −0.367049
\(870\) 0 0
\(871\) 1.50254e10 + 2.60247e10i 0.770481 + 1.33451i
\(872\) 5.59380e9 + 9.68875e9i 0.285693 + 0.494835i
\(873\) 0 0
\(874\) 1.33509e9 0.0676428
\(875\) −1.54520e10 + 1.10353e10i −0.779752 + 0.556870i
\(876\) 0 0
\(877\) 6.86881e9 1.18971e10i 0.343861 0.595585i −0.641285 0.767303i \(-0.721598\pi\)
0.985146 + 0.171718i \(0.0549317\pi\)
\(878\) −6.08402e8 1.05378e9i −0.0303361 0.0525437i
\(879\) 0 0
\(880\) 6.71130e8 1.16243e9i 0.0331984 0.0575013i
\(881\) −1.09605e10 −0.540026 −0.270013 0.962857i \(-0.587028\pi\)
−0.270013 + 0.962857i \(0.587028\pi\)
\(882\) 0 0
\(883\) 7.24742e9 0.354259 0.177129 0.984188i \(-0.443319\pi\)
0.177129 + 0.984188i \(0.443319\pi\)
\(884\) −3.51020e9 + 6.07984e9i −0.170903 + 0.296012i
\(885\) 0 0
\(886\) 1.07847e10 + 1.86797e10i 0.520945 + 0.902303i
\(887\) 5.60771e9 9.71283e9i 0.269807 0.467319i −0.699005 0.715117i \(-0.746374\pi\)
0.968812 + 0.247798i \(0.0797069\pi\)
\(888\) 0 0
\(889\) −2.73927e10 + 1.95629e10i −1.30761 + 0.933849i
\(890\) 3.43546e9 0.163350
\(891\) 0 0
\(892\) 1.89108e9 + 3.27545e9i 0.0892142 + 0.154523i
\(893\) −1.12648e10 1.95111e10i −0.529349 0.916859i
\(894\) 0 0
\(895\) 3.32427e10 1.54994
\(896\) 1.83501e8 + 1.89428e9i 0.00852236 + 0.0879765i
\(897\) 0 0
\(898\) −2.15143e9 + 3.72639e9i −0.0991427 + 0.171720i
\(899\) 6.00429e8 + 1.03997e9i 0.0275615 + 0.0477379i
\(900\) 0 0
\(901\) 9.46482e9 1.63935e10i 0.431097 0.746683i
\(902\) 5.97730e9 0.271195
\(903\) 0 0
\(904\) −2.36216e9 −0.106346
\(905\) −7.67050e9 + 1.32857e10i −0.343996 + 0.595819i
\(906\) 0 0
\(907\) 3.06125e9 + 5.30224e9i 0.136230 + 0.235957i 0.926067 0.377360i \(-0.123168\pi\)
−0.789837 + 0.613317i \(0.789835\pi\)
\(908\) −1.37297e9 + 2.37805e9i −0.0608638 + 0.105419i
\(909\) 0 0
\(910\) 1.44931e10 + 6.59481e9i 0.637554 + 0.290107i
\(911\) −1.72053e10 −0.753960 −0.376980 0.926221i \(-0.623037\pi\)
−0.376980 + 0.926221i \(0.623037\pi\)
\(912\) 0 0
\(913\) −2.40252e9 4.16129e9i −0.104477 0.180959i
\(914\) 2.15517e9 + 3.73287e9i 0.0933621 + 0.161708i
\(915\) 0 0
\(916\) 1.76801e10 0.760066
\(917\) 3.48555e9 + 3.59814e10i 0.149272 + 1.54094i
\(918\) 0 0
\(919\) −1.24295e10 + 2.15285e10i −0.528261 + 0.914976i 0.471196 + 0.882029i \(0.343823\pi\)
−0.999457 + 0.0329469i \(0.989511\pi\)
\(920\) −4.94735e8 8.56907e8i −0.0209467 0.0362807i
\(921\) 0 0
\(922\) 2.09756e7 3.63309e7i 0.000881367 0.00152657i
\(923\) −3.24586e10 −1.35870
\(924\) 0 0
\(925\) −7.94585e8 −0.0330099
\(926\) −8.73703e8 + 1.51330e9i −0.0361597 + 0.0626305i
\(927\) 0 0
\(928\) 1.11739e8 + 1.93537e8i 0.00458972 + 0.00794963i
\(929\) 8.79888e9 1.52401e10i 0.360058 0.623638i −0.627912 0.778284i \(-0.716090\pi\)
0.987970 + 0.154646i \(0.0494237\pi\)
\(930\) 0 0
\(931\) 1.35485e10 + 1.55495e10i 0.550259 + 0.631528i
\(932\) −9.81383e9 −0.397085
\(933\) 0 0
\(934\) −1.39777e9 2.42100e9i −0.0561333 0.0972258i
\(935\) −2.37648e9 4.11618e9i −0.0950810 0.164685i
\(936\) 0 0
\(937\) 1.80228e10 0.715703 0.357852 0.933778i \(-0.383509\pi\)
0.357852 + 0.933778i \(0.383509\pi\)
\(938\) 2.34748e10 1.67648e10i 0.928736 0.663269i
\(939\) 0 0
\(940\) −8.34860e9 + 1.44602e10i −0.327843 + 0.567841i
\(941\) 1.48058e10 + 2.56444e10i 0.579252 + 1.00329i 0.995565 + 0.0940726i \(0.0299886\pi\)
−0.416313 + 0.909221i \(0.636678\pi\)
\(942\) 0 0
\(943\) 2.20314e9 3.81595e9i 0.0855561 0.148187i
\(944\) 9.75489e9 0.377416
\(945\) 0 0
\(946\) −1.32974e9 −0.0510678
\(947\) −1.22262e10 + 2.11764e10i −0.467806 + 0.810264i −0.999323 0.0367838i \(-0.988289\pi\)
0.531517 + 0.847047i \(0.321622\pi\)
\(948\) 0 0
\(949\) 2.24254e10 + 3.88419e10i 0.851743 + 1.47526i
\(950\) −5.98528e8 + 1.03668e9i −0.0226491 + 0.0392295i
\(951\) 0 0
\(952\) 6.13392e9 + 2.79112e9i 0.230414 + 0.104845i
\(953\) 3.27114e10 1.22426 0.612130 0.790757i \(-0.290313\pi\)
0.612130 + 0.790757i \(0.290313\pi\)
\(954\) 0 0
\(955\) 1.49129e10 + 2.58298e10i 0.554051 + 0.959644i
\(956\) −1.10599e10 1.91563e10i −0.409400 0.709102i
\(957\) 0 0
\(958\) −3.24018e10 −1.19066
\(959\) −2.12651e10 9.67626e9i −0.778578 0.354276i
\(960\) 0 0
\(961\) −1.74560e9 + 3.02347e9i −0.0634473 + 0.109894i
\(962\) −4.02306e9 6.96815e9i −0.145695 0.252351i
\(963\) 0 0
\(964\) −1.73014e9 + 2.99668e9i −0.0622029 + 0.107739i
\(965\) −5.08201e10 −1.82050
\(966\) 0 0
\(967\) −5.41923e9 −0.192728 −0.0963640 0.995346i \(-0.530721\pi\)
−0.0963640 + 0.995346i \(0.530721\pi\)
\(968\) 4.66183e9 8.07453e9i 0.165193 0.286123i
\(969\) 0 0
\(970\) −1.09126e10 1.89012e10i −0.383909 0.664950i
\(971\) 4.41271e9 7.64304e9i 0.154681 0.267916i −0.778262 0.627940i \(-0.783898\pi\)
0.932943 + 0.360024i \(0.117232\pi\)
\(972\) 0 0
\(973\) −9.56247e9 + 6.82916e9i −0.332794 + 0.237669i
\(974\) 7.41307e9 0.257064
\(975\) 0 0
\(976\) 5.37621e9 + 9.31187e9i 0.185098 + 0.320599i
\(977\) −1.63411e10 2.83037e10i −0.560597 0.970983i −0.997444 0.0714471i \(-0.977238\pi\)
0.436847 0.899536i \(-0.356095\pi\)
\(978\) 0 0
\(979\) −1.67330e9 −0.0569948
\(980\) 4.95963e9 1.44579e10i 0.168329 0.490699i
\(981\) 0 0
\(982\) 1.06362e10 1.84225e10i 0.358425 0.620810i
\(983\) 1.78173e10 + 3.08604e10i 0.598279 + 1.03625i 0.993075 + 0.117481i \(0.0374818\pi\)
−0.394796 + 0.918769i \(0.629185\pi\)
\(984\) 0 0
\(985\) 2.27968e10 3.94853e10i 0.760060 1.31646i
\(986\) 7.91338e8 0.0262901
\(987\) 0 0
\(988\) −1.21216e10 −0.399863
\(989\) −4.90121e8 + 8.48914e8i −0.0161108 + 0.0279046i
\(990\) 0 0
\(991\) −2.56157e10 4.43677e10i −0.836080 1.44813i −0.893148 0.449763i \(-0.851508\pi\)
0.0570673 0.998370i \(-0.481825\pi\)
\(992\) −2.88488e9 + 4.99676e9i −0.0938289 + 0.162516i
\(993\) 0 0
\(994\) 3.00423e9 + 3.10128e10i 0.0970245 + 1.00159i
\(995\) 3.21171e10 1.03361
\(996\) 0 0
\(997\) −1.02337e10 1.77252e10i −0.327038 0.566447i 0.654885 0.755729i \(-0.272717\pi\)
−0.981923 + 0.189282i \(0.939384\pi\)
\(998\) 1.26598e10 + 2.19275e10i 0.403155 + 0.698284i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.8.g.a.37.1 2
3.2 odd 2 42.8.e.b.37.1 yes 2
7.4 even 3 inner 126.8.g.a.109.1 2
21.2 odd 6 294.8.a.f.1.1 1
21.5 even 6 294.8.a.e.1.1 1
21.11 odd 6 42.8.e.b.25.1 2
21.17 even 6 294.8.e.l.67.1 2
21.20 even 2 294.8.e.l.79.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.b.25.1 2 21.11 odd 6
42.8.e.b.37.1 yes 2 3.2 odd 2
126.8.g.a.37.1 2 1.1 even 1 trivial
126.8.g.a.109.1 2 7.4 even 3 inner
294.8.a.e.1.1 1 21.5 even 6
294.8.a.f.1.1 1 21.2 odd 6
294.8.e.l.67.1 2 21.17 even 6
294.8.e.l.79.1 2 21.20 even 2