Properties

Label 294.8.a.e.1.1
Level 294294
Weight 88
Character 294.1
Self dual yes
Analytic conductor 91.84191.841
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 294=2372 294 = 2 \cdot 3 \cdot 7^{2}
Weight: k k == 8 8
Character orbit: [χ][\chi] == 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 91.841197492391.8411974923
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 42)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Character χ\chi == 294.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8.00000q227.0000q3+64.0000q4+290.000q5+216.000q6512.000q8+729.000q92320.00q10+1130.00q111728.00q12+7563.00q137830.00q15+4096.00q1614504.0q175832.00q1825043.0q19+18560.0q209040.00q226664.00q23+13824.0q24+5975.00q2560504.0q2619683.0q27+6820.00q29+62640.0q30176079.q3132768.0q3230510.0q33+116032.q34+46656.0q36132985.q37+200344.q38204201.q39148480.q40661206.q41+147095.q43+72320.0q44+211410.q45+53312.0q46+899634.q47110592.q4847800.0q50+391608.q51+484032.q521.30513e6q53+157464.q54+327700.q55+676161.q5754560.0q58+2.38156e6q59501120.q60+2.62510e6q61+1.40863e6q62+262144.q64+2.19327e6q65+244080.q66+3.97339e6q67928256.q68+179928.q694.29176e6q71373248.q725.93029e6q73+1.06388e6q74161325.q751.60275e6q76+1.63361e6q78+6.28369e6q79+1.18784e6q80+531441.q81+5.28965e6q824.25225e6q834.20616e6q851.17676e6q86184140.q87578560.q88+1.48080e6q891.69128e6q90426496.q92+4.75413e6q937.19707e6q947.26247e6q95+884736.q969.40743e6q97+823770.q99+O(q100)q-8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} +290.000 q^{5} +216.000 q^{6} -512.000 q^{8} +729.000 q^{9} -2320.00 q^{10} +1130.00 q^{11} -1728.00 q^{12} +7563.00 q^{13} -7830.00 q^{15} +4096.00 q^{16} -14504.0 q^{17} -5832.00 q^{18} -25043.0 q^{19} +18560.0 q^{20} -9040.00 q^{22} -6664.00 q^{23} +13824.0 q^{24} +5975.00 q^{25} -60504.0 q^{26} -19683.0 q^{27} +6820.00 q^{29} +62640.0 q^{30} -176079. q^{31} -32768.0 q^{32} -30510.0 q^{33} +116032. q^{34} +46656.0 q^{36} -132985. q^{37} +200344. q^{38} -204201. q^{39} -148480. q^{40} -661206. q^{41} +147095. q^{43} +72320.0 q^{44} +211410. q^{45} +53312.0 q^{46} +899634. q^{47} -110592. q^{48} -47800.0 q^{50} +391608. q^{51} +484032. q^{52} -1.30513e6 q^{53} +157464. q^{54} +327700. q^{55} +676161. q^{57} -54560.0 q^{58} +2.38156e6 q^{59} -501120. q^{60} +2.62510e6 q^{61} +1.40863e6 q^{62} +262144. q^{64} +2.19327e6 q^{65} +244080. q^{66} +3.97339e6 q^{67} -928256. q^{68} +179928. q^{69} -4.29176e6 q^{71} -373248. q^{72} -5.93029e6 q^{73} +1.06388e6 q^{74} -161325. q^{75} -1.60275e6 q^{76} +1.63361e6 q^{78} +6.28369e6 q^{79} +1.18784e6 q^{80} +531441. q^{81} +5.28965e6 q^{82} -4.25225e6 q^{83} -4.20616e6 q^{85} -1.17676e6 q^{86} -184140. q^{87} -578560. q^{88} +1.48080e6 q^{89} -1.69128e6 q^{90} -426496. q^{92} +4.75413e6 q^{93} -7.19707e6 q^{94} -7.26247e6 q^{95} +884736. q^{96} -9.40743e6 q^{97} +823770. q^{99} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −8.00000 −0.707107
33 −27.0000 −0.577350
44 64.0000 0.500000
55 290.000 1.03754 0.518768 0.854915i 0.326391π-0.326391\pi
0.518768 + 0.854915i 0.326391π0.326391\pi
66 216.000 0.408248
77 0 0
88 −512.000 −0.353553
99 729.000 0.333333
1010 −2320.00 −0.733648
1111 1130.00 0.255979 0.127989 0.991776i 0.459148π-0.459148\pi
0.127989 + 0.991776i 0.459148π0.459148\pi
1212 −1728.00 −0.288675
1313 7563.00 0.954756 0.477378 0.878698i 0.341587π-0.341587\pi
0.477378 + 0.878698i 0.341587π0.341587\pi
1414 0 0
1515 −7830.00 −0.599021
1616 4096.00 0.250000
1717 −14504.0 −0.716006 −0.358003 0.933720i 0.616542π-0.616542\pi
−0.358003 + 0.933720i 0.616542π0.616542\pi
1818 −5832.00 −0.235702
1919 −25043.0 −0.837623 −0.418812 0.908073i 0.637553π-0.637553\pi
−0.418812 + 0.908073i 0.637553π0.637553\pi
2020 18560.0 0.518768
2121 0 0
2222 −9040.00 −0.181004
2323 −6664.00 −0.114206 −0.0571028 0.998368i 0.518186π-0.518186\pi
−0.0571028 + 0.998368i 0.518186π0.518186\pi
2424 13824.0 0.204124
2525 5975.00 0.0764800
2626 −60504.0 −0.675114
2727 −19683.0 −0.192450
2828 0 0
2929 6820.00 0.0519268 0.0259634 0.999663i 0.491735π-0.491735\pi
0.0259634 + 0.999663i 0.491735π0.491735\pi
3030 62640.0 0.423572
3131 −176079. −1.06155 −0.530776 0.847512i 0.678100π-0.678100\pi
−0.530776 + 0.847512i 0.678100π0.678100\pi
3232 −32768.0 −0.176777
3333 −30510.0 −0.147789
3434 116032. 0.506293
3535 0 0
3636 46656.0 0.166667
3737 −132985. −0.431615 −0.215808 0.976436i 0.569238π-0.569238\pi
−0.215808 + 0.976436i 0.569238π0.569238\pi
3838 200344. 0.592289
3939 −204201. −0.551229
4040 −148480. −0.366824
4141 −661206. −1.49828 −0.749141 0.662411i 0.769533π-0.769533\pi
−0.749141 + 0.662411i 0.769533π0.769533\pi
4242 0 0
4343 147095. 0.282136 0.141068 0.990000i 0.454946π-0.454946\pi
0.141068 + 0.990000i 0.454946π0.454946\pi
4444 72320.0 0.127989
4545 211410. 0.345845
4646 53312.0 0.0807556
4747 899634. 1.26393 0.631965 0.774997i 0.282248π-0.282248\pi
0.631965 + 0.774997i 0.282248π0.282248\pi
4848 −110592. −0.144338
4949 0 0
5050 −47800.0 −0.0540795
5151 391608. 0.413386
5252 484032. 0.477378
5353 −1.30513e6 −1.20417 −0.602087 0.798431i 0.705664π-0.705664\pi
−0.602087 + 0.798431i 0.705664π0.705664\pi
5454 157464. 0.136083
5555 327700. 0.265587
5656 0 0
5757 676161. 0.483602
5858 −54560.0 −0.0367178
5959 2.38156e6 1.50966 0.754832 0.655918i 0.227718π-0.227718\pi
0.754832 + 0.655918i 0.227718π0.227718\pi
6060 −501120. −0.299511
6161 2.62510e6 1.48078 0.740392 0.672175i 0.234640π-0.234640\pi
0.740392 + 0.672175i 0.234640π0.234640\pi
6262 1.40863e6 0.750631
6363 0 0
6464 262144. 0.125000
6565 2.19327e6 0.990593
6666 244080. 0.104503
6767 3.97339e6 1.61399 0.806993 0.590561i 0.201094π-0.201094\pi
0.806993 + 0.590561i 0.201094π0.201094\pi
6868 −928256. −0.358003
6969 179928. 0.0659367
7070 0 0
7171 −4.29176e6 −1.42309 −0.711543 0.702642i 0.752004π-0.752004\pi
−0.711543 + 0.702642i 0.752004π0.752004\pi
7272 −373248. −0.117851
7373 −5.93029e6 −1.78421 −0.892105 0.451827i 0.850772π-0.850772\pi
−0.892105 + 0.451827i 0.850772π0.850772\pi
7474 1.06388e6 0.305198
7575 −161325. −0.0441557
7676 −1.60275e6 −0.418812
7777 0 0
7878 1.63361e6 0.389777
7979 6.28369e6 1.43390 0.716952 0.697123i 0.245537π-0.245537\pi
0.716952 + 0.697123i 0.245537π0.245537\pi
8080 1.18784e6 0.259384
8181 531441. 0.111111
8282 5.28965e6 1.05944
8383 −4.25225e6 −0.816292 −0.408146 0.912917i 0.633825π-0.633825\pi
−0.408146 + 0.912917i 0.633825π0.633825\pi
8484 0 0
8585 −4.20616e6 −0.742882
8686 −1.17676e6 −0.199500
8787 −184140. −0.0299799
8888 −578560. −0.0905022
8989 1.48080e6 0.222654 0.111327 0.993784i 0.464490π-0.464490\pi
0.111327 + 0.993784i 0.464490π0.464490\pi
9090 −1.69128e6 −0.244549
9191 0 0
9292 −426496. −0.0571028
9393 4.75413e6 0.612888
9494 −7.19707e6 −0.893734
9595 −7.26247e6 −0.869064
9696 884736. 0.102062
9797 −9.40743e6 −1.04657 −0.523287 0.852156i 0.675295π-0.675295\pi
−0.523287 + 0.852156i 0.675295π0.675295\pi
9898 0 0
9999 823770. 0.0853263
100100 382400. 0.0382400
101101 1.08475e7 1.04762 0.523809 0.851835i 0.324510π-0.324510\pi
0.523809 + 0.851835i 0.324510π0.324510\pi
102102 −3.13286e6 −0.292308
103103 202105. 0.0182241 0.00911206 0.999958i 0.497099π-0.497099\pi
0.00911206 + 0.999958i 0.497099π0.497099\pi
104104 −3.87226e6 −0.337557
105105 0 0
106106 1.04411e7 0.851479
107107 −1.28697e7 −1.01560 −0.507802 0.861474i 0.669542π-0.669542\pi
−0.507802 + 0.861474i 0.669542π0.669542\pi
108108 −1.25971e6 −0.0962250
109109 −2.18508e7 −1.61612 −0.808061 0.589098i 0.799483π-0.799483\pi
−0.808061 + 0.589098i 0.799483π0.799483\pi
110110 −2.62160e6 −0.187798
111111 3.59060e6 0.249193
112112 0 0
113113 4.61360e6 0.300792 0.150396 0.988626i 0.451945π-0.451945\pi
0.150396 + 0.988626i 0.451945π0.451945\pi
114114 −5.40929e6 −0.341958
115115 −1.93256e6 −0.118492
116116 436480. 0.0259634
117117 5.51343e6 0.318252
118118 −1.90525e7 −1.06749
119119 0 0
120120 4.00896e6 0.211786
121121 −1.82103e7 −0.934475
122122 −2.10008e7 −1.04707
123123 1.78526e7 0.865033
124124 −1.12691e7 −0.530776
125125 −2.09235e7 −0.958185
126126 0 0
127127 −3.70924e7 −1.60684 −0.803419 0.595415i 0.796988π-0.796988\pi
−0.803419 + 0.595415i 0.796988π0.796988\pi
128128 −2.09715e6 −0.0883883
129129 −3.97156e6 −0.162891
130130 −1.75462e7 −0.700455
131131 3.98348e7 1.54815 0.774076 0.633093i 0.218215π-0.218215\pi
0.774076 + 0.633093i 0.218215π0.218215\pi
132132 −1.95264e6 −0.0738947
133133 0 0
134134 −3.17871e7 −1.14126
135135 −5.70807e6 −0.199674
136136 7.42605e6 0.253146
137137 −2.57447e7 −0.855392 −0.427696 0.903923i 0.640675π-0.640675\pi
−0.427696 + 0.903923i 0.640675π0.640675\pi
138138 −1.43942e6 −0.0466243
139139 1.29485e7 0.408948 0.204474 0.978872i 0.434452π-0.434452\pi
0.204474 + 0.978872i 0.434452π0.434452\pi
140140 0 0
141141 −2.42901e7 −0.729731
142142 3.43341e7 1.00627
143143 8.54619e6 0.244397
144144 2.98598e6 0.0833333
145145 1.97780e6 0.0538759
146146 4.74423e7 1.26163
147147 0 0
148148 −8.51104e6 −0.215808
149149 −3.13156e7 −0.775549 −0.387775 0.921754i 0.626756π-0.626756\pi
−0.387775 + 0.921754i 0.626756π0.626756\pi
150150 1.29060e6 0.0312228
151151 −4.12328e7 −0.974592 −0.487296 0.873237i 0.662017π-0.662017\pi
−0.487296 + 0.873237i 0.662017π0.662017\pi
152152 1.28220e7 0.296145
153153 −1.05734e7 −0.238669
154154 0 0
155155 −5.10629e7 −1.10140
156156 −1.30689e7 −0.275614
157157 −5.53231e6 −0.114093 −0.0570464 0.998372i 0.518168π-0.518168\pi
−0.0570464 + 0.998372i 0.518168π0.518168\pi
158158 −5.02695e7 −1.01392
159159 3.52386e7 0.695230
160160 −9.50272e6 −0.183412
161161 0 0
162162 −4.25153e6 −0.0785674
163163 −3.35309e7 −0.606441 −0.303220 0.952920i 0.598062π-0.598062\pi
−0.303220 + 0.952920i 0.598062π0.598062\pi
164164 −4.23172e7 −0.749141
165165 −8.84790e6 −0.153337
166166 3.40180e7 0.577206
167167 5.23132e7 0.869167 0.434584 0.900632i 0.356896π-0.356896\pi
0.434584 + 0.900632i 0.356896π0.356896\pi
168168 0 0
169169 −5.54955e6 −0.0884411
170170 3.36493e7 0.525297
171171 −1.82563e7 −0.279208
172172 9.41408e6 0.141068
173173 8.20425e7 1.20470 0.602348 0.798234i 0.294232π-0.294232\pi
0.602348 + 0.798234i 0.294232π0.294232\pi
174174 1.47312e6 0.0211990
175175 0 0
176176 4.62848e6 0.0639947
177177 −6.43022e7 −0.871605
178178 −1.18464e7 −0.157440
179179 −1.14630e8 −1.49387 −0.746934 0.664898i 0.768475π-0.768475\pi
−0.746934 + 0.664898i 0.768475π0.768475\pi
180180 1.35302e7 0.172923
181181 −5.29000e7 −0.663102 −0.331551 0.943437i 0.607572π-0.607572\pi
−0.331551 + 0.943437i 0.607572π0.607572\pi
182182 0 0
183183 −7.08778e7 −0.854931
184184 3.41197e6 0.0403778
185185 −3.85656e7 −0.447816
186186 −3.80331e7 −0.433377
187187 −1.63895e7 −0.183282
188188 5.75766e7 0.631965
189189 0 0
190190 5.80998e7 0.614521
191191 1.02847e8 1.06801 0.534006 0.845480i 0.320686π-0.320686\pi
0.534006 + 0.845480i 0.320686π0.320686\pi
192192 −7.07789e6 −0.0721688
193193 −1.75242e8 −1.75464 −0.877318 0.479910i 0.840669π-0.840669\pi
−0.877318 + 0.479910i 0.840669π0.840669\pi
194194 7.52595e7 0.740040
195195 −5.92183e7 −0.571919
196196 0 0
197197 1.57220e8 1.46513 0.732563 0.680700i 0.238324π-0.238324\pi
0.732563 + 0.680700i 0.238324π0.238324\pi
198198 −6.59016e6 −0.0603348
199199 −1.10748e8 −0.996212 −0.498106 0.867116i 0.665971π-0.665971\pi
−0.498106 + 0.867116i 0.665971π0.665971\pi
200200 −3.05920e6 −0.0270398
201201 −1.07282e8 −0.931835
202202 −8.67797e7 −0.740778
203203 0 0
204204 2.50629e7 0.206693
205205 −1.91750e8 −1.55452
206206 −1.61684e6 −0.0128864
207207 −4.85806e6 −0.0380685
208208 3.09780e7 0.238689
209209 −2.82986e7 −0.214414
210210 0 0
211211 −1.46673e8 −1.07488 −0.537440 0.843302i 0.680609π-0.680609\pi
−0.537440 + 0.843302i 0.680609π0.680609\pi
212212 −8.35284e7 −0.602087
213213 1.15878e8 0.821620
214214 1.02957e8 0.718140
215215 4.26576e7 0.292726
216216 1.00777e7 0.0680414
217217 0 0
218218 1.74806e8 1.14277
219219 1.60118e8 1.03011
220220 2.09728e7 0.132794
221221 −1.09694e8 −0.683611
222222 −2.87248e7 −0.176206
223223 5.90964e7 0.356857 0.178428 0.983953i 0.442899π-0.442899\pi
0.178428 + 0.983953i 0.442899π0.442899\pi
224224 0 0
225225 4.35578e6 0.0254933
226226 −3.69088e7 −0.212692
227227 4.29052e7 0.243455 0.121728 0.992564i 0.461157π-0.461157\pi
0.121728 + 0.992564i 0.461157π0.461157\pi
228228 4.32743e7 0.241801
229229 −2.76252e8 −1.52013 −0.760066 0.649845i 0.774834π-0.774834\pi
−0.760066 + 0.649845i 0.774834π0.774834\pi
230230 1.54605e7 0.0837868
231231 0 0
232232 −3.49184e6 −0.0183589
233233 1.53341e8 0.794169 0.397085 0.917782i 0.370022π-0.370022\pi
0.397085 + 0.917782i 0.370022π0.370022\pi
234234 −4.41074e7 −0.225038
235235 2.60894e8 1.31137
236236 1.52420e8 0.754832
237237 −1.69660e8 −0.827864
238238 0 0
239239 −3.45622e8 −1.63760 −0.818801 0.574078i 0.805361π-0.805361\pi
−0.818801 + 0.574078i 0.805361π0.805361\pi
240240 −3.20717e7 −0.149755
241241 −5.40667e7 −0.248812 −0.124406 0.992231i 0.539702π-0.539702\pi
−0.124406 + 0.992231i 0.539702π0.539702\pi
242242 1.45682e8 0.660773
243243 −1.43489e7 −0.0641500
244244 1.68007e8 0.740392
245245 0 0
246246 −1.42820e8 −0.611671
247247 −1.89400e8 −0.799726
248248 9.01524e7 0.375316
249249 1.14811e8 0.471286
250250 1.67388e8 0.677539
251251 9.40011e7 0.375210 0.187605 0.982245i 0.439927π-0.439927\pi
0.187605 + 0.982245i 0.439927π0.439927\pi
252252 0 0
253253 −7.53032e6 −0.0292342
254254 2.96739e8 1.13621
255255 1.13566e8 0.428903
256256 1.67772e7 0.0625000
257257 −6.98001e7 −0.256502 −0.128251 0.991742i 0.540936π-0.540936\pi
−0.128251 + 0.991742i 0.540936π0.540936\pi
258258 3.17725e7 0.115181
259259 0 0
260260 1.40369e8 0.495297
261261 4.97178e6 0.0173089
262262 −3.18679e8 −1.09471
263263 7.13209e7 0.241753 0.120876 0.992668i 0.461430π-0.461430\pi
0.120876 + 0.992668i 0.461430π0.461430\pi
264264 1.56211e7 0.0522515
265265 −3.78488e8 −1.24937
266266 0 0
267267 −3.99816e7 −0.128550
268268 2.54297e8 0.806993
269269 2.17505e8 0.681297 0.340648 0.940191i 0.389353π-0.389353\pi
0.340648 + 0.940191i 0.389353π0.389353\pi
270270 4.56646e7 0.141191
271271 −1.51037e7 −0.0460990 −0.0230495 0.999734i 0.507338π-0.507338\pi
−0.0230495 + 0.999734i 0.507338π0.507338\pi
272272 −5.94084e7 −0.179001
273273 0 0
274274 2.05957e8 0.604853
275275 6.75175e6 0.0195773
276276 1.15154e7 0.0329683
277277 1.63805e8 0.463072 0.231536 0.972826i 0.425625π-0.425625\pi
0.231536 + 0.972826i 0.425625π0.425625\pi
278278 −1.03588e8 −0.289170
279279 −1.28362e8 −0.353851
280280 0 0
281281 −4.21200e8 −1.13244 −0.566221 0.824253i 0.691595π-0.691595\pi
−0.566221 + 0.824253i 0.691595π0.691595\pi
282282 1.94321e8 0.515998
283283 6.72003e8 1.76246 0.881229 0.472689i 0.156717π-0.156717\pi
0.881229 + 0.472689i 0.156717π0.156717\pi
284284 −2.74673e8 −0.711543
285285 1.96087e8 0.501754
286286 −6.83695e7 −0.172815
287287 0 0
288288 −2.38879e7 −0.0589256
289289 −1.99973e8 −0.487336
290290 −1.58224e7 −0.0380960
291291 2.54001e8 0.604240
292292 −3.79539e8 −0.892105
293293 −771192. −0.00179112 −0.000895562 1.00000i 0.500285π-0.500285\pi
−0.000895562 1.00000i 0.500285π0.500285\pi
294294 0 0
295295 6.90654e8 1.56633
296296 6.80883e7 0.152599
297297 −2.22418e7 −0.0492631
298298 2.50525e8 0.548396
299299 −5.03998e7 −0.109039
300300 −1.03248e7 −0.0220779
301301 0 0
302302 3.29862e8 0.689141
303303 −2.92881e8 −0.604843
304304 −1.02576e8 −0.209406
305305 7.61280e8 1.53637
306306 8.45873e7 0.168764
307307 −2.79387e8 −0.551089 −0.275544 0.961288i 0.588858π-0.588858\pi
−0.275544 + 0.961288i 0.588858π0.588858\pi
308308 0 0
309309 −5.45684e6 −0.0105217
310310 4.08503e8 0.778807
311311 7.21550e8 1.36021 0.680103 0.733116i 0.261935π-0.261935\pi
0.680103 + 0.733116i 0.261935π0.261935\pi
312312 1.04551e8 0.194889
313313 −9.91405e8 −1.82745 −0.913726 0.406330i 0.866808π-0.866808\pi
−0.913726 + 0.406330i 0.866808π0.866808\pi
314314 4.42585e7 0.0806758
315315 0 0
316316 4.02156e8 0.716952
317317 −1.20414e8 −0.212310 −0.106155 0.994350i 0.533854π-0.533854\pi
−0.106155 + 0.994350i 0.533854π0.533854\pi
318318 −2.81909e8 −0.491602
319319 7.70660e6 0.0132922
320320 7.60218e7 0.129692
321321 3.47481e8 0.586359
322322 0 0
323323 3.63224e8 0.599743
324324 3.40122e7 0.0555556
325325 4.51889e7 0.0730197
326326 2.68247e8 0.428818
327327 5.89971e8 0.933069
328328 3.38537e8 0.529722
329329 0 0
330330 7.07832e7 0.108425
331331 1.89531e8 0.287265 0.143632 0.989631i 0.454122π-0.454122\pi
0.143632 + 0.989631i 0.454122π0.454122\pi
332332 −2.72144e8 −0.408146
333333 −9.69461e7 −0.143872
334334 −4.18505e8 −0.614594
335335 1.15228e9 1.67457
336336 0 0
337337 9.06750e8 1.29057 0.645287 0.763940i 0.276738π-0.276738\pi
0.645287 + 0.763940i 0.276738π0.276738\pi
338338 4.43964e7 0.0625373
339339 −1.24567e8 −0.173662
340340 −2.69194e8 −0.371441
341341 −1.98969e8 −0.271735
342342 1.46051e8 0.197430
343343 0 0
344344 −7.53126e7 −0.0997501
345345 5.21791e7 0.0684116
346346 −6.56340e8 −0.851849
347347 −3.45121e8 −0.443423 −0.221712 0.975112i 0.571164π-0.571164\pi
−0.221712 + 0.975112i 0.571164π0.571164\pi
348348 −1.17850e7 −0.0149900
349349 6.01221e8 0.757086 0.378543 0.925584i 0.376425π-0.376425\pi
0.378543 + 0.925584i 0.376425π0.376425\pi
350350 0 0
351351 −1.48863e8 −0.183743
352352 −3.70278e7 −0.0452511
353353 −2.91547e8 −0.352774 −0.176387 0.984321i 0.556441π-0.556441\pi
−0.176387 + 0.984321i 0.556441π0.556441\pi
354354 5.14418e8 0.616318
355355 −1.24461e9 −1.47650
356356 9.47712e7 0.111327
357357 0 0
358358 9.17039e8 1.05632
359359 −4.75589e8 −0.542502 −0.271251 0.962509i 0.587437π-0.587437\pi
−0.271251 + 0.962509i 0.587437π0.587437\pi
360360 −1.08242e8 −0.122275
361361 −2.66720e8 −0.298387
362362 4.23200e8 0.468884
363363 4.91677e8 0.539519
364364 0 0
365365 −1.71978e9 −1.85118
366366 5.67022e8 0.604528
367367 −1.65079e8 −0.174326 −0.0871629 0.996194i 0.527780π-0.527780\pi
−0.0871629 + 0.996194i 0.527780π0.527780\pi
368368 −2.72957e7 −0.0285514
369369 −4.82019e8 −0.499427
370370 3.08525e8 0.316654
371371 0 0
372372 3.04265e8 0.306444
373373 4.66848e8 0.465795 0.232897 0.972501i 0.425179π-0.425179\pi
0.232897 + 0.972501i 0.425179π0.425179\pi
374374 1.31116e8 0.129600
375375 5.64934e8 0.553208
376376 −4.60613e8 −0.446867
377377 5.15797e7 0.0495774
378378 0 0
379379 −2.77160e8 −0.261513 −0.130756 0.991415i 0.541741π-0.541741\pi
−0.130756 + 0.991415i 0.541741π0.541741\pi
380380 −4.64798e8 −0.434532
381381 1.00149e9 0.927708
382382 −8.22779e8 −0.755199
383383 7.97883e6 0.00725677 0.00362839 0.999993i 0.498845π-0.498845\pi
0.00362839 + 0.999993i 0.498845π0.498845\pi
384384 5.66231e7 0.0510310
385385 0 0
386386 1.40193e9 1.24071
387387 1.07232e8 0.0940453
388388 −6.02076e8 −0.523287
389389 1.72774e9 1.48817 0.744087 0.668082i 0.232885π-0.232885\pi
0.744087 + 0.668082i 0.232885π0.232885\pi
390390 4.73746e8 0.404408
391391 9.66547e7 0.0817719
392392 0 0
393393 −1.07554e9 −0.893826
394394 −1.25776e9 −1.03600
395395 1.82227e9 1.48773
396396 5.27213e7 0.0426631
397397 −7.92498e8 −0.635669 −0.317835 0.948146i 0.602956π-0.602956\pi
−0.317835 + 0.948146i 0.602956π0.602956\pi
398398 8.85988e8 0.704429
399399 0 0
400400 2.44736e7 0.0191200
401401 −6.95185e8 −0.538387 −0.269194 0.963086i 0.586757π-0.586757\pi
−0.269194 + 0.963086i 0.586757π0.586757\pi
402402 8.58253e8 0.658907
403403 −1.33169e9 −1.01352
404404 6.94238e8 0.523809
405405 1.54118e8 0.115282
406406 0 0
407407 −1.50273e8 −0.110484
408408 −2.00503e8 −0.146154
409409 −1.96607e9 −1.42091 −0.710456 0.703741i 0.751511π-0.751511\pi
−0.710456 + 0.703741i 0.751511π0.751511\pi
410410 1.53400e9 1.09921
411411 6.95106e8 0.493861
412412 1.29347e7 0.00911206
413413 0 0
414414 3.88644e7 0.0269185
415415 −1.23315e9 −0.846932
416416 −2.47824e8 −0.168779
417417 −3.49609e8 −0.236106
418418 2.26389e8 0.151613
419419 −2.20900e9 −1.46706 −0.733529 0.679658i 0.762128π-0.762128\pi
−0.733529 + 0.679658i 0.762128π0.762128\pi
420420 0 0
421421 −4.59955e8 −0.300419 −0.150210 0.988654i 0.547995π-0.547995\pi
−0.150210 + 0.988654i 0.547995π0.547995\pi
422422 1.17338e9 0.760056
423423 6.55833e8 0.421310
424424 6.68228e8 0.425739
425425 −8.66614e7 −0.0547601
426426 −9.27021e8 −0.580973
427427 0 0
428428 −8.23658e8 −0.507802
429429 −2.30747e8 −0.141103
430430 −3.41260e8 −0.206989
431431 −2.15517e9 −1.29662 −0.648308 0.761378i 0.724523π-0.724523\pi
−0.648308 + 0.761378i 0.724523π0.724523\pi
432432 −8.06216e7 −0.0481125
433433 −1.78833e9 −1.05862 −0.529311 0.848428i 0.677550π-0.677550\pi
−0.529311 + 0.848428i 0.677550π0.677550\pi
434434 0 0
435435 −5.34006e7 −0.0311053
436436 −1.39845e9 −0.808061
437437 1.66887e8 0.0956613
438438 −1.28094e9 −0.728401
439439 −1.52100e8 −0.0858035 −0.0429017 0.999079i 0.513660π-0.513660\pi
−0.0429017 + 0.999079i 0.513660π0.513660\pi
440440 −1.67782e8 −0.0938992
441441 0 0
442442 8.77550e8 0.483386
443443 2.69618e9 1.47345 0.736727 0.676190i 0.236370π-0.236370\pi
0.736727 + 0.676190i 0.236370π0.236370\pi
444444 2.29798e8 0.124597
445445 4.29432e8 0.231012
446446 −4.72771e8 −0.252336
447447 8.45522e8 0.447764
448448 0 0
449449 −5.37859e8 −0.280418 −0.140209 0.990122i 0.544777π-0.544777\pi
−0.140209 + 0.990122i 0.544777π0.544777\pi
450450 −3.48462e7 −0.0180265
451451 −7.47163e8 −0.383528
452452 2.95271e8 0.150396
453453 1.11328e9 0.562681
454454 −3.43241e8 −0.172149
455455 0 0
456456 −3.46194e8 −0.170979
457457 −5.38793e8 −0.264068 −0.132034 0.991245i 0.542151π-0.542151\pi
−0.132034 + 0.991245i 0.542151π0.542151\pi
458458 2.21002e9 1.07490
459459 2.85482e8 0.137795
460460 −1.23684e8 −0.0592462
461461 −5.24391e6 −0.00249288 −0.00124644 0.999999i 0.500397π-0.500397\pi
−0.00124644 + 0.999999i 0.500397π0.500397\pi
462462 0 0
463463 2.18426e8 0.102275 0.0511376 0.998692i 0.483715π-0.483715\pi
0.0511376 + 0.998692i 0.483715π0.483715\pi
464464 2.79347e7 0.0129817
465465 1.37870e9 0.635893
466466 −1.22673e9 −0.561562
467467 3.49442e8 0.158769 0.0793845 0.996844i 0.474705π-0.474705\pi
0.0793845 + 0.996844i 0.474705π0.474705\pi
468468 3.52859e8 0.159126
469469 0 0
470470 −2.08715e9 −0.927281
471471 1.49372e8 0.0658715
472472 −1.21936e9 −0.533747
473473 1.66217e8 0.0722208
474474 1.35728e9 0.585389
475475 −1.49632e8 −0.0640614
476476 0 0
477477 −9.51441e8 −0.401391
478478 2.76497e9 1.15796
479479 −4.05022e9 −1.68385 −0.841927 0.539591i 0.818579π-0.818579\pi
−0.841927 + 0.539591i 0.818579π0.818579\pi
480480 2.56573e8 0.105893
481481 −1.00577e9 −0.412087
482482 4.32534e8 0.175936
483483 0 0
484484 −1.16546e9 −0.467237
485485 −2.72816e9 −1.08586
486486 1.14791e8 0.0453609
487487 9.26634e8 0.363544 0.181772 0.983341i 0.441817π-0.441817\pi
0.181772 + 0.983341i 0.441817π0.441817\pi
488488 −1.34405e9 −0.523536
489489 9.05334e8 0.350129
490490 0 0
491491 2.65906e9 1.01378 0.506889 0.862011i 0.330795π-0.330795\pi
0.506889 + 0.862011i 0.330795π0.330795\pi
492492 1.14256e9 0.432516
493493 −9.89173e7 −0.0371799
494494 1.51520e9 0.565492
495495 2.38893e8 0.0885290
496496 −7.21220e8 −0.265388
497497 0 0
498498 −9.18486e8 −0.333250
499499 −3.16496e9 −1.14029 −0.570147 0.821543i 0.693114π-0.693114\pi
−0.570147 + 0.821543i 0.693114π0.693114\pi
500500 −1.33910e9 −0.479092
501501 −1.41246e9 −0.501814
502502 −7.52009e8 −0.265314
503503 −4.12431e9 −1.44499 −0.722493 0.691379i 0.757004π-0.757004\pi
−0.722493 + 0.691379i 0.757004π0.757004\pi
504504 0 0
505505 3.14576e9 1.08694
506506 6.02426e7 0.0206717
507507 1.49838e8 0.0510615
508508 −2.37391e9 −0.803419
509509 5.55132e9 1.86588 0.932940 0.360031i 0.117234π-0.117234\pi
0.932940 + 0.360031i 0.117234π0.117234\pi
510510 −9.08531e8 −0.303280
511511 0 0
512512 −1.34218e8 −0.0441942
513513 4.92921e8 0.161201
514514 5.58401e8 0.181374
515515 5.86104e7 0.0189082
516516 −2.54180e8 −0.0814456
517517 1.01659e9 0.323540
518518 0 0
519519 −2.21515e9 −0.695532
520520 −1.12295e9 −0.350228
521521 −2.14145e9 −0.663400 −0.331700 0.943385i 0.607622π-0.607622\pi
−0.331700 + 0.943385i 0.607622π0.607622\pi
522522 −3.97742e7 −0.0122393
523523 −1.96040e9 −0.599224 −0.299612 0.954061i 0.596857π-0.596857\pi
−0.299612 + 0.954061i 0.596857π0.596857\pi
524524 2.54943e9 0.774076
525525 0 0
526526 −5.70567e8 −0.170945
527527 2.55385e9 0.760078
528528 −1.24969e8 −0.0369474
529529 −3.36042e9 −0.986957
530530 3.02791e9 0.883440
531531 1.73616e9 0.503221
532532 0 0
533533 −5.00070e9 −1.43049
534534 3.19853e8 0.0908983
535535 −3.73220e9 −1.05372
536536 −2.03438e9 −0.570630
537537 3.09501e9 0.862485
538538 −1.74004e9 −0.481749
539539 0 0
540540 −3.65316e8 −0.0998369
541541 4.03245e9 1.09491 0.547455 0.836835i 0.315597π-0.315597\pi
0.547455 + 0.836835i 0.315597π0.315597\pi
542542 1.20830e8 0.0325969
543543 1.42830e9 0.382842
544544 4.75267e8 0.126573
545545 −6.33673e9 −1.67678
546546 0 0
547547 4.81827e9 1.25874 0.629369 0.777107i 0.283313π-0.283313\pi
0.629369 + 0.777107i 0.283313π0.283313\pi
548548 −1.64766e9 −0.427696
549549 1.91370e9 0.493595
550550 −5.40140e7 −0.0138432
551551 −1.70793e8 −0.0434951
552552 −9.21231e7 −0.0233121
553553 0 0
554554 −1.31044e9 −0.327442
555555 1.04127e9 0.258547
556556 8.28704e8 0.204474
557557 −2.47986e9 −0.608043 −0.304022 0.952665i 0.598330π-0.598330\pi
−0.304022 + 0.952665i 0.598330π0.598330\pi
558558 1.02689e9 0.250210
559559 1.11248e9 0.269371
560560 0 0
561561 4.42517e8 0.105818
562562 3.36960e9 0.800758
563563 4.70161e9 1.11037 0.555184 0.831728i 0.312648π-0.312648\pi
0.555184 + 0.831728i 0.312648π0.312648\pi
564564 −1.55457e9 −0.364865
565565 1.33794e9 0.312082
566566 −5.37603e9 −1.24625
567567 0 0
568568 2.19738e9 0.503137
569569 1.41800e9 0.322688 0.161344 0.986898i 0.448417π-0.448417\pi
0.161344 + 0.986898i 0.448417π0.448417\pi
570570 −1.56869e9 −0.354794
571571 −8.49814e9 −1.91028 −0.955141 0.296152i 0.904297π-0.904297\pi
−0.955141 + 0.296152i 0.904297π0.904297\pi
572572 5.46956e8 0.122199
573573 −2.77688e9 −0.616617
574574 0 0
575575 −3.98174e7 −0.00873445
576576 1.91103e8 0.0416667
577577 5.31460e9 1.15174 0.575871 0.817541i 0.304663π-0.304663\pi
0.575871 + 0.817541i 0.304663π0.304663\pi
578578 1.59978e9 0.344598
579579 4.73153e9 1.01304
580580 1.26579e8 0.0269379
581581 0 0
582582 −2.03201e9 −0.427262
583583 −1.47480e9 −0.308243
584584 3.03631e9 0.630814
585585 1.59889e9 0.330198
586586 6.16954e6 0.00126652
587587 6.24032e9 1.27343 0.636713 0.771101i 0.280294π-0.280294\pi
0.636713 + 0.771101i 0.280294π0.280294\pi
588588 0 0
589589 4.40955e9 0.889181
590590 −5.52523e9 −1.10756
591591 −4.24493e9 −0.845890
592592 −5.44707e8 −0.107904
593593 6.71126e9 1.32164 0.660820 0.750545i 0.270209π-0.270209\pi
0.660820 + 0.750545i 0.270209π0.270209\pi
594594 1.77934e8 0.0348343
595595 0 0
596596 −2.00420e9 −0.387775
597597 2.99021e9 0.575163
598598 4.03199e8 0.0771019
599599 5.85019e9 1.11218 0.556091 0.831121i 0.312300π-0.312300\pi
0.556091 + 0.831121i 0.312300π0.312300\pi
600600 8.25984e7 0.0156114
601601 1.23472e9 0.232010 0.116005 0.993249i 0.462991π-0.462991\pi
0.116005 + 0.993249i 0.462991π0.462991\pi
602602 0 0
603603 2.89660e9 0.537995
604604 −2.63890e9 −0.487296
605605 −5.28098e9 −0.969551
606606 2.34305e9 0.427689
607607 −7.48797e8 −0.135895 −0.0679475 0.997689i 0.521645π-0.521645\pi
−0.0679475 + 0.997689i 0.521645π0.521645\pi
608608 8.20609e8 0.148072
609609 0 0
610610 −6.09024e9 −1.08637
611611 6.80393e9 1.20675
612612 −6.76699e8 −0.119334
613613 −9.73268e9 −1.70656 −0.853279 0.521455i 0.825389π-0.825389\pi
−0.853279 + 0.521455i 0.825389π0.825389\pi
614614 2.23509e9 0.389678
615615 5.17724e9 0.897502
616616 0 0
617617 −9.09192e9 −1.55832 −0.779161 0.626823i 0.784355π-0.784355\pi
−0.779161 + 0.626823i 0.784355π0.784355\pi
618618 4.36547e7 0.00743997
619619 −2.54761e9 −0.431733 −0.215866 0.976423i 0.569258π-0.569258\pi
−0.215866 + 0.976423i 0.569258π0.569258\pi
620620 −3.26803e9 −0.550699
621621 1.31168e8 0.0219789
622622 −5.77240e9 −0.961811
623623 0 0
624624 −8.36407e8 −0.137807
625625 −6.53461e9 −1.07063
626626 7.93124e9 1.29220
627627 7.64062e8 0.123792
628628 −3.54068e8 −0.0570464
629629 1.92881e9 0.309039
630630 0 0
631631 −3.43067e9 −0.543595 −0.271798 0.962354i 0.587618π-0.587618\pi
−0.271798 + 0.962354i 0.587618π0.587618\pi
632632 −3.21725e9 −0.506961
633633 3.96016e9 0.620583
634634 9.63314e8 0.150126
635635 −1.07568e10 −1.66715
636636 2.25527e9 0.347615
637637 0 0
638638 −6.16528e7 −0.00939897
639639 −3.12869e9 −0.474362
640640 −6.08174e8 −0.0917061
641641 4.41127e9 0.661546 0.330773 0.943710i 0.392691π-0.392691\pi
0.330773 + 0.943710i 0.392691π0.392691\pi
642642 −2.77985e9 −0.414618
643643 5.39024e9 0.799595 0.399797 0.916604i 0.369081π-0.369081\pi
0.399797 + 0.916604i 0.369081π0.369081\pi
644644 0 0
645645 −1.15175e9 −0.169005
646646 −2.90579e9 −0.424082
647647 −2.52488e9 −0.366501 −0.183251 0.983066i 0.558662π-0.558662\pi
−0.183251 + 0.983066i 0.558662π0.558662\pi
648648 −2.72098e8 −0.0392837
649649 2.69117e9 0.386442
650650 −3.61511e8 −0.0516327
651651 0 0
652652 −2.14598e9 −0.303220
653653 −5.91356e8 −0.0831099 −0.0415550 0.999136i 0.513231π-0.513231\pi
−0.0415550 + 0.999136i 0.513231π0.513231\pi
654654 −4.71977e9 −0.659779
655655 1.15521e10 1.60626
656656 −2.70830e9 −0.374570
657657 −4.32318e9 −0.594737
658658 0 0
659659 −7.80244e9 −1.06202 −0.531009 0.847366i 0.678187π-0.678187\pi
−0.531009 + 0.847366i 0.678187π0.678187\pi
660660 −5.66266e8 −0.0766684
661661 −1.12132e10 −1.51017 −0.755086 0.655626i 0.772405π-0.772405\pi
−0.755086 + 0.655626i 0.772405π0.772405\pi
662662 −1.51625e9 −0.203127
663663 2.96173e9 0.394683
664664 2.17715e9 0.288603
665665 0 0
666666 7.75569e8 0.101733
667667 −4.54485e7 −0.00593033
668668 3.34804e9 0.434584
669669 −1.59560e9 −0.206031
670670 −9.21827e9 −1.18410
671671 2.96637e9 0.379049
672672 0 0
673673 1.09343e10 1.38273 0.691365 0.722506i 0.257010π-0.257010\pi
0.691365 + 0.722506i 0.257010π0.257010\pi
674674 −7.25400e9 −0.912573
675675 −1.17606e8 −0.0147186
676676 −3.55171e8 −0.0442206
677677 −6.17913e9 −0.765362 −0.382681 0.923881i 0.624999π-0.624999\pi
−0.382681 + 0.923881i 0.624999π0.624999\pi
678678 9.96538e8 0.122798
679679 0 0
680680 2.15355e9 0.262648
681681 −1.15844e9 −0.140559
682682 1.59175e9 0.192146
683683 −1.11149e10 −1.33486 −0.667428 0.744674i 0.732605π-0.732605\pi
−0.667428 + 0.744674i 0.732605π0.732605\pi
684684 −1.16841e9 −0.139604
685685 −7.46595e9 −0.887499
686686 0 0
687687 7.45881e9 0.877649
688688 6.02501e8 0.0705340
689689 −9.87071e9 −1.14969
690690 −4.17433e8 −0.0483743
691691 −1.09613e10 −1.26383 −0.631916 0.775037i 0.717731π-0.717731\pi
−0.631916 + 0.775037i 0.717731π0.717731\pi
692692 5.25072e9 0.602348
693693 0 0
694694 2.76097e9 0.313548
695695 3.75506e9 0.424298
696696 9.42797e7 0.0105995
697697 9.59013e9 1.07278
698698 −4.80977e9 −0.535341
699699 −4.14021e9 −0.458514
700700 0 0
701701 1.27383e10 1.39669 0.698344 0.715762i 0.253920π-0.253920\pi
0.698344 + 0.715762i 0.253920π0.253920\pi
702702 1.19090e9 0.129926
703703 3.33034e9 0.361531
704704 2.96223e8 0.0319974
705705 −7.04413e9 −0.757122
706706 2.33238e9 0.249449
707707 0 0
708708 −4.11534e9 −0.435802
709709 9.08191e8 0.0957007 0.0478504 0.998855i 0.484763π-0.484763\pi
0.0478504 + 0.998855i 0.484763π0.484763\pi
710710 9.95689e9 1.04405
711711 4.58081e9 0.477968
712712 −7.58170e8 −0.0787202
713713 1.17339e9 0.121235
714714 0 0
715715 2.47840e9 0.253571
716716 −7.33631e9 −0.746934
717717 9.33178e9 0.945469
718718 3.80471e9 0.383607
719719 1.18602e10 1.18999 0.594994 0.803730i 0.297155π-0.297155\pi
0.594994 + 0.803730i 0.297155π0.297155\pi
720720 8.65935e8 0.0864613
721721 0 0
722722 2.13376e9 0.210992
723723 1.45980e9 0.143651
724724 −3.38560e9 −0.331551
725725 4.07495e7 0.00397136
726726 −3.93342e9 −0.381498
727727 8.01213e9 0.773352 0.386676 0.922216i 0.373623π-0.373623\pi
0.386676 + 0.922216i 0.373623π0.373623\pi
728728 0 0
729729 3.87420e8 0.0370370
730730 1.37583e10 1.30898
731731 −2.13347e9 −0.202011
732732 −4.53618e9 −0.427466
733733 9.80967e9 0.920005 0.460003 0.887918i 0.347848π-0.347848\pi
0.460003 + 0.887918i 0.347848π0.347848\pi
734734 1.32064e9 0.123267
735735 0 0
736736 2.18366e8 0.0201889
737737 4.48993e9 0.413146
738738 3.85615e9 0.353148
739739 1.59250e10 1.45152 0.725762 0.687945i 0.241487π-0.241487\pi
0.725762 + 0.687945i 0.241487π0.241487\pi
740740 −2.46820e9 −0.223908
741741 5.11381e9 0.461722
742742 0 0
743743 1.85101e10 1.65558 0.827788 0.561042i 0.189599π-0.189599\pi
0.827788 + 0.561042i 0.189599π0.189599\pi
744744 −2.43412e9 −0.216689
745745 −9.08154e9 −0.804660
746746 −3.73479e9 −0.329367
747747 −3.09989e9 −0.272097
748748 −1.04893e9 −0.0916412
749749 0 0
750750 −4.51948e9 −0.391177
751751 −1.53951e10 −1.32631 −0.663154 0.748483i 0.730782π-0.730782\pi
−0.663154 + 0.748483i 0.730782π0.730782\pi
752752 3.68490e9 0.315983
753753 −2.53803e9 −0.216628
754754 −4.12637e8 −0.0350565
755755 −1.19575e10 −1.01117
756756 0 0
757757 5.14693e9 0.431233 0.215617 0.976478i 0.430824π-0.430824\pi
0.215617 + 0.976478i 0.430824π0.430824\pi
758758 2.21728e9 0.184917
759759 2.03319e8 0.0168784
760760 3.71838e9 0.307261
761761 2.00227e9 0.164694 0.0823469 0.996604i 0.473758π-0.473758\pi
0.0823469 + 0.996604i 0.473758π0.473758\pi
762762 −8.01196e9 −0.655988
763763 0 0
764764 6.58223e9 0.534006
765765 −3.06629e9 −0.247627
766766 −6.38306e7 −0.00513131
767767 1.80118e10 1.44136
768768 −4.52985e8 −0.0360844
769769 9.62216e9 0.763010 0.381505 0.924367i 0.375406π-0.375406\pi
0.381505 + 0.924367i 0.375406π0.375406\pi
770770 0 0
771771 1.88460e9 0.148091
772772 −1.12155e10 −0.877318
773773 9.13035e8 0.0710983 0.0355491 0.999368i 0.488682π-0.488682\pi
0.0355491 + 0.999368i 0.488682π0.488682\pi
774774 −8.57858e8 −0.0665001
775775 −1.05207e9 −0.0811876
776776 4.81661e9 0.370020
777777 0 0
778778 −1.38219e10 −1.05230
779779 1.65586e10 1.25500
780780 −3.78997e9 −0.285960
781781 −4.84969e9 −0.364280
782782 −7.73237e8 −0.0578215
783783 −1.34238e8 −0.00999331
784784 0 0
785785 −1.60437e9 −0.118375
786786 8.60433e9 0.632030
787787 1.62505e10 1.18838 0.594189 0.804325i 0.297473π-0.297473\pi
0.594189 + 0.804325i 0.297473π0.297473\pi
788788 1.00621e10 0.732563
789789 −1.92566e9 −0.139576
790790 −1.45782e10 −1.05198
791791 0 0
792792 −4.21770e8 −0.0301674
793793 1.98536e10 1.41379
794794 6.33998e9 0.449486
795795 1.02192e10 0.721325
796796 −7.08790e9 −0.498106
797797 2.00600e10 1.40355 0.701774 0.712400i 0.252392π-0.252392\pi
0.701774 + 0.712400i 0.252392π0.252392\pi
798798 0 0
799799 −1.30483e10 −0.904982
800800 −1.95789e8 −0.0135199
801801 1.07950e9 0.0742182
802802 5.56148e9 0.380697
803803 −6.70123e9 −0.456720
804804 −6.86602e9 −0.465918
805805 0 0
806806 1.06535e10 0.716670
807807 −5.87263e9 −0.393347
808808 −5.55390e9 −0.370389
809809 −1.78197e10 −1.18326 −0.591630 0.806209i 0.701515π-0.701515\pi
−0.591630 + 0.806209i 0.701515π0.701515\pi
810810 −1.23294e9 −0.0815165
811811 −4.72659e9 −0.311154 −0.155577 0.987824i 0.549724π-0.549724\pi
−0.155577 + 0.987824i 0.549724π0.549724\pi
812812 0 0
813813 4.07801e8 0.0266153
814814 1.20218e9 0.0781242
815815 −9.72396e9 −0.629204
816816 1.60403e9 0.103347
817817 −3.68370e9 −0.236324
818818 1.57286e10 1.00474
819819 0 0
820820 −1.22720e10 −0.777260
821821 2.00031e10 1.26153 0.630764 0.775975i 0.282742π-0.282742\pi
0.630764 + 0.775975i 0.282742π0.282742\pi
822822 −5.56084e9 −0.349212
823823 1.53836e10 0.961962 0.480981 0.876731i 0.340281π-0.340281\pi
0.480981 + 0.876731i 0.340281π0.340281\pi
824824 −1.03478e8 −0.00644320
825825 −1.82297e8 −0.0113029
826826 0 0
827827 1.42246e10 0.874520 0.437260 0.899335i 0.355949π-0.355949\pi
0.437260 + 0.899335i 0.355949π0.355949\pi
828828 −3.10916e8 −0.0190343
829829 2.17248e10 1.32439 0.662194 0.749332i 0.269625π-0.269625\pi
0.662194 + 0.749332i 0.269625π0.269625\pi
830830 9.86522e9 0.598871
831831 −4.42274e9 −0.267355
832832 1.98260e9 0.119344
833833 0 0
834834 2.79688e9 0.166952
835835 1.51708e10 0.901792
836836 −1.81111e9 −0.107207
837837 3.46576e9 0.204296
838838 1.76720e10 1.03737
839839 1.54623e10 0.903871 0.451935 0.892051i 0.350734π-0.350734\pi
0.451935 + 0.892051i 0.350734π0.350734\pi
840840 0 0
841841 −1.72034e10 −0.997304
842842 3.67964e9 0.212429
843843 1.13724e10 0.653816
844844 −9.38705e9 −0.537440
845845 −1.60937e9 −0.0917608
846846 −5.24667e9 −0.297911
847847 0 0
848848 −5.34582e9 −0.301043
849849 −1.81441e10 −1.01756
850850 6.93291e8 0.0387213
851851 8.86212e8 0.0492929
852852 7.41616e9 0.410810
853853 1.80110e10 0.993608 0.496804 0.867863i 0.334507π-0.334507\pi
0.496804 + 0.867863i 0.334507π0.334507\pi
854854 0 0
855855 −5.29434e9 −0.289688
856856 6.58927e9 0.359070
857857 1.71715e8 0.00931916 0.00465958 0.999989i 0.498517π-0.498517\pi
0.00465958 + 0.999989i 0.498517π0.498517\pi
858858 1.84598e9 0.0997748
859859 −1.37786e9 −0.0741700 −0.0370850 0.999312i 0.511807π-0.511807\pi
−0.0370850 + 0.999312i 0.511807π0.511807\pi
860860 2.73008e9 0.146363
861861 0 0
862862 1.72414e10 0.916847
863863 9.44605e7 0.00500279 0.00250140 0.999997i 0.499204π-0.499204\pi
0.00250140 + 0.999997i 0.499204π0.499204\pi
864864 6.44973e8 0.0340207
865865 2.37923e10 1.24992
866866 1.43067e10 0.748559
867867 5.39926e9 0.281363
868868 0 0
869869 7.10057e9 0.367049
870870 4.27205e8 0.0219947
871871 3.00508e10 1.54096
872872 1.11876e10 0.571386
873873 −6.85802e9 −0.348858
874874 −1.33509e9 −0.0676428
875875 0 0
876876 1.02475e10 0.515057
877877 −1.37376e10 −0.687722 −0.343861 0.939021i 0.611735π-0.611735\pi
−0.343861 + 0.939021i 0.611735π0.611735\pi
878878 1.21680e9 0.0606722
879879 2.08222e7 0.00103411
880880 1.34226e9 0.0663968
881881 −1.09605e10 −0.540026 −0.270013 0.962857i 0.587028π-0.587028\pi
−0.270013 + 0.962857i 0.587028π0.587028\pi
882882 0 0
883883 7.24742e9 0.354259 0.177129 0.984188i 0.443319π-0.443319\pi
0.177129 + 0.984188i 0.443319π0.443319\pi
884884 −7.02040e9 −0.341805
885885 −1.86476e10 −0.904321
886886 −2.15695e10 −1.04189
887887 −1.12154e10 −0.539613 −0.269807 0.962915i 0.586960π-0.586960\pi
−0.269807 + 0.962915i 0.586960π0.586960\pi
888888 −1.83838e9 −0.0881031
889889 0 0
890890 −3.43546e9 −0.163350
891891 6.00528e8 0.0284421
892892 3.78217e9 0.178428
893893 −2.25295e10 −1.05870
894894 −6.76418e9 −0.316617
895895 −3.32427e10 −1.54994
896896 0 0
897897 1.36080e9 0.0629534
898898 4.30287e9 0.198285
899899 −1.20086e9 −0.0551230
900900 2.78770e8 0.0127467
901901 1.89296e10 0.862195
902902 5.97730e9 0.271195
903903 0 0
904904 −2.36216e9 −0.106346
905905 −1.53410e10 −0.687992
906906 −8.90627e9 −0.397876
907907 −6.12250e9 −0.272460 −0.136230 0.990677i 0.543499π-0.543499\pi
−0.136230 + 0.990677i 0.543499π0.543499\pi
908908 2.74593e9 0.121728
909909 7.90780e9 0.349206
910910 0 0
911911 1.72053e10 0.753960 0.376980 0.926221i 0.376963π-0.376963\pi
0.376980 + 0.926221i 0.376963π0.376963\pi
912912 2.76956e9 0.120901
913913 −4.80504e9 −0.208953
914914 4.31035e9 0.186724
915915 −2.05545e10 −0.887021
916916 −1.76801e10 −0.760066
917917 0 0
918918 −2.28386e9 −0.0974361
919919 2.48590e10 1.05652 0.528261 0.849082i 0.322844π-0.322844\pi
0.528261 + 0.849082i 0.322844π0.322844\pi
920920 9.89471e8 0.0418934
921921 7.54344e9 0.318171
922922 4.19513e7 0.00176273
923923 −3.24586e10 −1.35870
924924 0 0
925925 −7.94585e8 −0.0330099
926926 −1.74741e9 −0.0723195
927927 1.47335e8 0.00607471
928928 −2.23478e8 −0.00917944
929929 −1.75978e10 −0.720115 −0.360058 0.932930i 0.617243π-0.617243\pi
−0.360058 + 0.932930i 0.617243π0.617243\pi
930930 −1.10296e10 −0.449644
931931 0 0
932932 9.81383e9 0.397085
933933 −1.94818e10 −0.785316
934934 −2.79553e9 −0.112267
935935 −4.75296e9 −0.190162
936936 −2.82287e9 −0.112519
937937 −1.80228e10 −0.715703 −0.357852 0.933778i 0.616491π-0.616491\pi
−0.357852 + 0.933778i 0.616491π0.616491\pi
938938 0 0
939939 2.67679e10 1.05508
940940 1.66972e10 0.655687
941941 −2.96116e10 −1.15850 −0.579252 0.815149i 0.696655π-0.696655\pi
−0.579252 + 0.815149i 0.696655π0.696655\pi
942942 −1.19498e9 −0.0465782
943943 4.40628e9 0.171112
944944 9.75489e9 0.377416
945945 0 0
946946 −1.32974e9 −0.0510678
947947 −2.44524e10 −0.935612 −0.467806 0.883831i 0.654955π-0.654955\pi
−0.467806 + 0.883831i 0.654955π0.654955\pi
948948 −1.08582e10 −0.413932
949949 −4.48508e10 −1.70349
950950 1.19706e9 0.0452983
951951 3.25119e9 0.122577
952952 0 0
953953 −3.27114e10 −1.22426 −0.612130 0.790757i 0.709687π-0.709687\pi
−0.612130 + 0.790757i 0.709687π0.709687\pi
954954 7.61153e9 0.283826
955955 2.98257e10 1.10810
956956 −2.21198e10 −0.818801
957957 −2.08078e8 −0.00767423
958958 3.24018e10 1.19066
959959 0 0
960960 −2.05259e9 −0.0748777
961961 3.49120e9 0.126895
962962 8.04612e9 0.291390
963963 −9.38199e9 −0.338534
964964 −3.46027e9 −0.124406
965965 −5.08201e10 −1.82050
966966 0 0
967967 −5.41923e9 −0.192728 −0.0963640 0.995346i 0.530721π-0.530721\pi
−0.0963640 + 0.995346i 0.530721π0.530721\pi
968968 9.32366e9 0.330387
969969 −9.80704e9 −0.346262
970970 2.18252e10 0.767818
971971 −8.82543e9 −0.309363 −0.154681 0.987964i 0.549435π-0.549435\pi
−0.154681 + 0.987964i 0.549435π0.549435\pi
972972 −9.18330e8 −0.0320750
973973 0 0
974974 −7.41307e9 −0.257064
975975 −1.22010e9 −0.0421580
976976 1.07524e10 0.370196
977977 −3.26822e10 −1.12119 −0.560597 0.828089i 0.689428π-0.689428\pi
−0.560597 + 0.828089i 0.689428π0.689428\pi
978978 −7.24267e9 −0.247578
979979 1.67330e9 0.0569948
980980 0 0
981981 −1.59292e10 −0.538708
982982 −2.12725e10 −0.716849
983983 −3.56345e10 −1.19656 −0.598279 0.801288i 0.704148π-0.704148\pi
−0.598279 + 0.801288i 0.704148π0.704148\pi
984984 −9.14051e9 −0.305835
985985 4.55937e10 1.52012
986986 7.91338e8 0.0262901
987987 0 0
988988 −1.21216e10 −0.399863
989989 −9.80241e8 −0.0322215
990990 −1.91115e9 −0.0625995
991991 5.12314e10 1.67216 0.836080 0.548607i 0.184842π-0.184842\pi
0.836080 + 0.548607i 0.184842π0.184842\pi
992992 5.76976e9 0.187658
993993 −5.11734e9 −0.165852
994994 0 0
995995 −3.21171e10 −1.03361
996996 7.34789e9 0.235643
997997 −2.04673e10 −0.654076 −0.327038 0.945011i 0.606051π-0.606051\pi
−0.327038 + 0.945011i 0.606051π0.606051\pi
998998 2.53197e10 0.806309
999999 2.61754e9 0.0830644
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.8.a.e.1.1 1
7.2 even 3 294.8.e.l.67.1 2
7.3 odd 6 42.8.e.b.37.1 yes 2
7.4 even 3 294.8.e.l.79.1 2
7.5 odd 6 42.8.e.b.25.1 2
7.6 odd 2 294.8.a.f.1.1 1
21.5 even 6 126.8.g.a.109.1 2
21.17 even 6 126.8.g.a.37.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.b.25.1 2 7.5 odd 6
42.8.e.b.37.1 yes 2 7.3 odd 6
126.8.g.a.37.1 2 21.17 even 6
126.8.g.a.109.1 2 21.5 even 6
294.8.a.e.1.1 1 1.1 even 1 trivial
294.8.a.f.1.1 1 7.6 odd 2
294.8.e.l.67.1 2 7.2 even 3
294.8.e.l.79.1 2 7.4 even 3