Properties

Label 294.8.a.e.1.1
Level $294$
Weight $8$
Character 294.1
Self dual yes
Analytic conductor $91.841$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,8,Mod(1,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 294.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(91.8411974923\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 294.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.00000 q^{2} -27.0000 q^{3} +64.0000 q^{4} +290.000 q^{5} +216.000 q^{6} -512.000 q^{8} +729.000 q^{9} -2320.00 q^{10} +1130.00 q^{11} -1728.00 q^{12} +7563.00 q^{13} -7830.00 q^{15} +4096.00 q^{16} -14504.0 q^{17} -5832.00 q^{18} -25043.0 q^{19} +18560.0 q^{20} -9040.00 q^{22} -6664.00 q^{23} +13824.0 q^{24} +5975.00 q^{25} -60504.0 q^{26} -19683.0 q^{27} +6820.00 q^{29} +62640.0 q^{30} -176079. q^{31} -32768.0 q^{32} -30510.0 q^{33} +116032. q^{34} +46656.0 q^{36} -132985. q^{37} +200344. q^{38} -204201. q^{39} -148480. q^{40} -661206. q^{41} +147095. q^{43} +72320.0 q^{44} +211410. q^{45} +53312.0 q^{46} +899634. q^{47} -110592. q^{48} -47800.0 q^{50} +391608. q^{51} +484032. q^{52} -1.30513e6 q^{53} +157464. q^{54} +327700. q^{55} +676161. q^{57} -54560.0 q^{58} +2.38156e6 q^{59} -501120. q^{60} +2.62510e6 q^{61} +1.40863e6 q^{62} +262144. q^{64} +2.19327e6 q^{65} +244080. q^{66} +3.97339e6 q^{67} -928256. q^{68} +179928. q^{69} -4.29176e6 q^{71} -373248. q^{72} -5.93029e6 q^{73} +1.06388e6 q^{74} -161325. q^{75} -1.60275e6 q^{76} +1.63361e6 q^{78} +6.28369e6 q^{79} +1.18784e6 q^{80} +531441. q^{81} +5.28965e6 q^{82} -4.25225e6 q^{83} -4.20616e6 q^{85} -1.17676e6 q^{86} -184140. q^{87} -578560. q^{88} +1.48080e6 q^{89} -1.69128e6 q^{90} -426496. q^{92} +4.75413e6 q^{93} -7.19707e6 q^{94} -7.26247e6 q^{95} +884736. q^{96} -9.40743e6 q^{97} +823770. q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 −0.707107
\(3\) −27.0000 −0.577350
\(4\) 64.0000 0.500000
\(5\) 290.000 1.03754 0.518768 0.854915i \(-0.326391\pi\)
0.518768 + 0.854915i \(0.326391\pi\)
\(6\) 216.000 0.408248
\(7\) 0 0
\(8\) −512.000 −0.353553
\(9\) 729.000 0.333333
\(10\) −2320.00 −0.733648
\(11\) 1130.00 0.255979 0.127989 0.991776i \(-0.459148\pi\)
0.127989 + 0.991776i \(0.459148\pi\)
\(12\) −1728.00 −0.288675
\(13\) 7563.00 0.954756 0.477378 0.878698i \(-0.341587\pi\)
0.477378 + 0.878698i \(0.341587\pi\)
\(14\) 0 0
\(15\) −7830.00 −0.599021
\(16\) 4096.00 0.250000
\(17\) −14504.0 −0.716006 −0.358003 0.933720i \(-0.616542\pi\)
−0.358003 + 0.933720i \(0.616542\pi\)
\(18\) −5832.00 −0.235702
\(19\) −25043.0 −0.837623 −0.418812 0.908073i \(-0.637553\pi\)
−0.418812 + 0.908073i \(0.637553\pi\)
\(20\) 18560.0 0.518768
\(21\) 0 0
\(22\) −9040.00 −0.181004
\(23\) −6664.00 −0.114206 −0.0571028 0.998368i \(-0.518186\pi\)
−0.0571028 + 0.998368i \(0.518186\pi\)
\(24\) 13824.0 0.204124
\(25\) 5975.00 0.0764800
\(26\) −60504.0 −0.675114
\(27\) −19683.0 −0.192450
\(28\) 0 0
\(29\) 6820.00 0.0519268 0.0259634 0.999663i \(-0.491735\pi\)
0.0259634 + 0.999663i \(0.491735\pi\)
\(30\) 62640.0 0.423572
\(31\) −176079. −1.06155 −0.530776 0.847512i \(-0.678100\pi\)
−0.530776 + 0.847512i \(0.678100\pi\)
\(32\) −32768.0 −0.176777
\(33\) −30510.0 −0.147789
\(34\) 116032. 0.506293
\(35\) 0 0
\(36\) 46656.0 0.166667
\(37\) −132985. −0.431615 −0.215808 0.976436i \(-0.569238\pi\)
−0.215808 + 0.976436i \(0.569238\pi\)
\(38\) 200344. 0.592289
\(39\) −204201. −0.551229
\(40\) −148480. −0.366824
\(41\) −661206. −1.49828 −0.749141 0.662411i \(-0.769533\pi\)
−0.749141 + 0.662411i \(0.769533\pi\)
\(42\) 0 0
\(43\) 147095. 0.282136 0.141068 0.990000i \(-0.454946\pi\)
0.141068 + 0.990000i \(0.454946\pi\)
\(44\) 72320.0 0.127989
\(45\) 211410. 0.345845
\(46\) 53312.0 0.0807556
\(47\) 899634. 1.26393 0.631965 0.774997i \(-0.282248\pi\)
0.631965 + 0.774997i \(0.282248\pi\)
\(48\) −110592. −0.144338
\(49\) 0 0
\(50\) −47800.0 −0.0540795
\(51\) 391608. 0.413386
\(52\) 484032. 0.477378
\(53\) −1.30513e6 −1.20417 −0.602087 0.798431i \(-0.705664\pi\)
−0.602087 + 0.798431i \(0.705664\pi\)
\(54\) 157464. 0.136083
\(55\) 327700. 0.265587
\(56\) 0 0
\(57\) 676161. 0.483602
\(58\) −54560.0 −0.0367178
\(59\) 2.38156e6 1.50966 0.754832 0.655918i \(-0.227718\pi\)
0.754832 + 0.655918i \(0.227718\pi\)
\(60\) −501120. −0.299511
\(61\) 2.62510e6 1.48078 0.740392 0.672175i \(-0.234640\pi\)
0.740392 + 0.672175i \(0.234640\pi\)
\(62\) 1.40863e6 0.750631
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 2.19327e6 0.990593
\(66\) 244080. 0.104503
\(67\) 3.97339e6 1.61399 0.806993 0.590561i \(-0.201094\pi\)
0.806993 + 0.590561i \(0.201094\pi\)
\(68\) −928256. −0.358003
\(69\) 179928. 0.0659367
\(70\) 0 0
\(71\) −4.29176e6 −1.42309 −0.711543 0.702642i \(-0.752004\pi\)
−0.711543 + 0.702642i \(0.752004\pi\)
\(72\) −373248. −0.117851
\(73\) −5.93029e6 −1.78421 −0.892105 0.451827i \(-0.850772\pi\)
−0.892105 + 0.451827i \(0.850772\pi\)
\(74\) 1.06388e6 0.305198
\(75\) −161325. −0.0441557
\(76\) −1.60275e6 −0.418812
\(77\) 0 0
\(78\) 1.63361e6 0.389777
\(79\) 6.28369e6 1.43390 0.716952 0.697123i \(-0.245537\pi\)
0.716952 + 0.697123i \(0.245537\pi\)
\(80\) 1.18784e6 0.259384
\(81\) 531441. 0.111111
\(82\) 5.28965e6 1.05944
\(83\) −4.25225e6 −0.816292 −0.408146 0.912917i \(-0.633825\pi\)
−0.408146 + 0.912917i \(0.633825\pi\)
\(84\) 0 0
\(85\) −4.20616e6 −0.742882
\(86\) −1.17676e6 −0.199500
\(87\) −184140. −0.0299799
\(88\) −578560. −0.0905022
\(89\) 1.48080e6 0.222654 0.111327 0.993784i \(-0.464490\pi\)
0.111327 + 0.993784i \(0.464490\pi\)
\(90\) −1.69128e6 −0.244549
\(91\) 0 0
\(92\) −426496. −0.0571028
\(93\) 4.75413e6 0.612888
\(94\) −7.19707e6 −0.893734
\(95\) −7.26247e6 −0.869064
\(96\) 884736. 0.102062
\(97\) −9.40743e6 −1.04657 −0.523287 0.852156i \(-0.675295\pi\)
−0.523287 + 0.852156i \(0.675295\pi\)
\(98\) 0 0
\(99\) 823770. 0.0853263
\(100\) 382400. 0.0382400
\(101\) 1.08475e7 1.04762 0.523809 0.851835i \(-0.324510\pi\)
0.523809 + 0.851835i \(0.324510\pi\)
\(102\) −3.13286e6 −0.292308
\(103\) 202105. 0.0182241 0.00911206 0.999958i \(-0.497099\pi\)
0.00911206 + 0.999958i \(0.497099\pi\)
\(104\) −3.87226e6 −0.337557
\(105\) 0 0
\(106\) 1.04411e7 0.851479
\(107\) −1.28697e7 −1.01560 −0.507802 0.861474i \(-0.669542\pi\)
−0.507802 + 0.861474i \(0.669542\pi\)
\(108\) −1.25971e6 −0.0962250
\(109\) −2.18508e7 −1.61612 −0.808061 0.589098i \(-0.799483\pi\)
−0.808061 + 0.589098i \(0.799483\pi\)
\(110\) −2.62160e6 −0.187798
\(111\) 3.59060e6 0.249193
\(112\) 0 0
\(113\) 4.61360e6 0.300792 0.150396 0.988626i \(-0.451945\pi\)
0.150396 + 0.988626i \(0.451945\pi\)
\(114\) −5.40929e6 −0.341958
\(115\) −1.93256e6 −0.118492
\(116\) 436480. 0.0259634
\(117\) 5.51343e6 0.318252
\(118\) −1.90525e7 −1.06749
\(119\) 0 0
\(120\) 4.00896e6 0.211786
\(121\) −1.82103e7 −0.934475
\(122\) −2.10008e7 −1.04707
\(123\) 1.78526e7 0.865033
\(124\) −1.12691e7 −0.530776
\(125\) −2.09235e7 −0.958185
\(126\) 0 0
\(127\) −3.70924e7 −1.60684 −0.803419 0.595415i \(-0.796988\pi\)
−0.803419 + 0.595415i \(0.796988\pi\)
\(128\) −2.09715e6 −0.0883883
\(129\) −3.97156e6 −0.162891
\(130\) −1.75462e7 −0.700455
\(131\) 3.98348e7 1.54815 0.774076 0.633093i \(-0.218215\pi\)
0.774076 + 0.633093i \(0.218215\pi\)
\(132\) −1.95264e6 −0.0738947
\(133\) 0 0
\(134\) −3.17871e7 −1.14126
\(135\) −5.70807e6 −0.199674
\(136\) 7.42605e6 0.253146
\(137\) −2.57447e7 −0.855392 −0.427696 0.903923i \(-0.640675\pi\)
−0.427696 + 0.903923i \(0.640675\pi\)
\(138\) −1.43942e6 −0.0466243
\(139\) 1.29485e7 0.408948 0.204474 0.978872i \(-0.434452\pi\)
0.204474 + 0.978872i \(0.434452\pi\)
\(140\) 0 0
\(141\) −2.42901e7 −0.729731
\(142\) 3.43341e7 1.00627
\(143\) 8.54619e6 0.244397
\(144\) 2.98598e6 0.0833333
\(145\) 1.97780e6 0.0538759
\(146\) 4.74423e7 1.26163
\(147\) 0 0
\(148\) −8.51104e6 −0.215808
\(149\) −3.13156e7 −0.775549 −0.387775 0.921754i \(-0.626756\pi\)
−0.387775 + 0.921754i \(0.626756\pi\)
\(150\) 1.29060e6 0.0312228
\(151\) −4.12328e7 −0.974592 −0.487296 0.873237i \(-0.662017\pi\)
−0.487296 + 0.873237i \(0.662017\pi\)
\(152\) 1.28220e7 0.296145
\(153\) −1.05734e7 −0.238669
\(154\) 0 0
\(155\) −5.10629e7 −1.10140
\(156\) −1.30689e7 −0.275614
\(157\) −5.53231e6 −0.114093 −0.0570464 0.998372i \(-0.518168\pi\)
−0.0570464 + 0.998372i \(0.518168\pi\)
\(158\) −5.02695e7 −1.01392
\(159\) 3.52386e7 0.695230
\(160\) −9.50272e6 −0.183412
\(161\) 0 0
\(162\) −4.25153e6 −0.0785674
\(163\) −3.35309e7 −0.606441 −0.303220 0.952920i \(-0.598062\pi\)
−0.303220 + 0.952920i \(0.598062\pi\)
\(164\) −4.23172e7 −0.749141
\(165\) −8.84790e6 −0.153337
\(166\) 3.40180e7 0.577206
\(167\) 5.23132e7 0.869167 0.434584 0.900632i \(-0.356896\pi\)
0.434584 + 0.900632i \(0.356896\pi\)
\(168\) 0 0
\(169\) −5.54955e6 −0.0884411
\(170\) 3.36493e7 0.525297
\(171\) −1.82563e7 −0.279208
\(172\) 9.41408e6 0.141068
\(173\) 8.20425e7 1.20470 0.602348 0.798234i \(-0.294232\pi\)
0.602348 + 0.798234i \(0.294232\pi\)
\(174\) 1.47312e6 0.0211990
\(175\) 0 0
\(176\) 4.62848e6 0.0639947
\(177\) −6.43022e7 −0.871605
\(178\) −1.18464e7 −0.157440
\(179\) −1.14630e8 −1.49387 −0.746934 0.664898i \(-0.768475\pi\)
−0.746934 + 0.664898i \(0.768475\pi\)
\(180\) 1.35302e7 0.172923
\(181\) −5.29000e7 −0.663102 −0.331551 0.943437i \(-0.607572\pi\)
−0.331551 + 0.943437i \(0.607572\pi\)
\(182\) 0 0
\(183\) −7.08778e7 −0.854931
\(184\) 3.41197e6 0.0403778
\(185\) −3.85656e7 −0.447816
\(186\) −3.80331e7 −0.433377
\(187\) −1.63895e7 −0.183282
\(188\) 5.75766e7 0.631965
\(189\) 0 0
\(190\) 5.80998e7 0.614521
\(191\) 1.02847e8 1.06801 0.534006 0.845480i \(-0.320686\pi\)
0.534006 + 0.845480i \(0.320686\pi\)
\(192\) −7.07789e6 −0.0721688
\(193\) −1.75242e8 −1.75464 −0.877318 0.479910i \(-0.840669\pi\)
−0.877318 + 0.479910i \(0.840669\pi\)
\(194\) 7.52595e7 0.740040
\(195\) −5.92183e7 −0.571919
\(196\) 0 0
\(197\) 1.57220e8 1.46513 0.732563 0.680700i \(-0.238324\pi\)
0.732563 + 0.680700i \(0.238324\pi\)
\(198\) −6.59016e6 −0.0603348
\(199\) −1.10748e8 −0.996212 −0.498106 0.867116i \(-0.665971\pi\)
−0.498106 + 0.867116i \(0.665971\pi\)
\(200\) −3.05920e6 −0.0270398
\(201\) −1.07282e8 −0.931835
\(202\) −8.67797e7 −0.740778
\(203\) 0 0
\(204\) 2.50629e7 0.206693
\(205\) −1.91750e8 −1.55452
\(206\) −1.61684e6 −0.0128864
\(207\) −4.85806e6 −0.0380685
\(208\) 3.09780e7 0.238689
\(209\) −2.82986e7 −0.214414
\(210\) 0 0
\(211\) −1.46673e8 −1.07488 −0.537440 0.843302i \(-0.680609\pi\)
−0.537440 + 0.843302i \(0.680609\pi\)
\(212\) −8.35284e7 −0.602087
\(213\) 1.15878e8 0.821620
\(214\) 1.02957e8 0.718140
\(215\) 4.26576e7 0.292726
\(216\) 1.00777e7 0.0680414
\(217\) 0 0
\(218\) 1.74806e8 1.14277
\(219\) 1.60118e8 1.03011
\(220\) 2.09728e7 0.132794
\(221\) −1.09694e8 −0.683611
\(222\) −2.87248e7 −0.176206
\(223\) 5.90964e7 0.356857 0.178428 0.983953i \(-0.442899\pi\)
0.178428 + 0.983953i \(0.442899\pi\)
\(224\) 0 0
\(225\) 4.35578e6 0.0254933
\(226\) −3.69088e7 −0.212692
\(227\) 4.29052e7 0.243455 0.121728 0.992564i \(-0.461157\pi\)
0.121728 + 0.992564i \(0.461157\pi\)
\(228\) 4.32743e7 0.241801
\(229\) −2.76252e8 −1.52013 −0.760066 0.649845i \(-0.774834\pi\)
−0.760066 + 0.649845i \(0.774834\pi\)
\(230\) 1.54605e7 0.0837868
\(231\) 0 0
\(232\) −3.49184e6 −0.0183589
\(233\) 1.53341e8 0.794169 0.397085 0.917782i \(-0.370022\pi\)
0.397085 + 0.917782i \(0.370022\pi\)
\(234\) −4.41074e7 −0.225038
\(235\) 2.60894e8 1.31137
\(236\) 1.52420e8 0.754832
\(237\) −1.69660e8 −0.827864
\(238\) 0 0
\(239\) −3.45622e8 −1.63760 −0.818801 0.574078i \(-0.805361\pi\)
−0.818801 + 0.574078i \(0.805361\pi\)
\(240\) −3.20717e7 −0.149755
\(241\) −5.40667e7 −0.248812 −0.124406 0.992231i \(-0.539702\pi\)
−0.124406 + 0.992231i \(0.539702\pi\)
\(242\) 1.45682e8 0.660773
\(243\) −1.43489e7 −0.0641500
\(244\) 1.68007e8 0.740392
\(245\) 0 0
\(246\) −1.42820e8 −0.611671
\(247\) −1.89400e8 −0.799726
\(248\) 9.01524e7 0.375316
\(249\) 1.14811e8 0.471286
\(250\) 1.67388e8 0.677539
\(251\) 9.40011e7 0.375210 0.187605 0.982245i \(-0.439927\pi\)
0.187605 + 0.982245i \(0.439927\pi\)
\(252\) 0 0
\(253\) −7.53032e6 −0.0292342
\(254\) 2.96739e8 1.13621
\(255\) 1.13566e8 0.428903
\(256\) 1.67772e7 0.0625000
\(257\) −6.98001e7 −0.256502 −0.128251 0.991742i \(-0.540936\pi\)
−0.128251 + 0.991742i \(0.540936\pi\)
\(258\) 3.17725e7 0.115181
\(259\) 0 0
\(260\) 1.40369e8 0.495297
\(261\) 4.97178e6 0.0173089
\(262\) −3.18679e8 −1.09471
\(263\) 7.13209e7 0.241753 0.120876 0.992668i \(-0.461430\pi\)
0.120876 + 0.992668i \(0.461430\pi\)
\(264\) 1.56211e7 0.0522515
\(265\) −3.78488e8 −1.24937
\(266\) 0 0
\(267\) −3.99816e7 −0.128550
\(268\) 2.54297e8 0.806993
\(269\) 2.17505e8 0.681297 0.340648 0.940191i \(-0.389353\pi\)
0.340648 + 0.940191i \(0.389353\pi\)
\(270\) 4.56646e7 0.141191
\(271\) −1.51037e7 −0.0460990 −0.0230495 0.999734i \(-0.507338\pi\)
−0.0230495 + 0.999734i \(0.507338\pi\)
\(272\) −5.94084e7 −0.179001
\(273\) 0 0
\(274\) 2.05957e8 0.604853
\(275\) 6.75175e6 0.0195773
\(276\) 1.15154e7 0.0329683
\(277\) 1.63805e8 0.463072 0.231536 0.972826i \(-0.425625\pi\)
0.231536 + 0.972826i \(0.425625\pi\)
\(278\) −1.03588e8 −0.289170
\(279\) −1.28362e8 −0.353851
\(280\) 0 0
\(281\) −4.21200e8 −1.13244 −0.566221 0.824253i \(-0.691595\pi\)
−0.566221 + 0.824253i \(0.691595\pi\)
\(282\) 1.94321e8 0.515998
\(283\) 6.72003e8 1.76246 0.881229 0.472689i \(-0.156717\pi\)
0.881229 + 0.472689i \(0.156717\pi\)
\(284\) −2.74673e8 −0.711543
\(285\) 1.96087e8 0.501754
\(286\) −6.83695e7 −0.172815
\(287\) 0 0
\(288\) −2.38879e7 −0.0589256
\(289\) −1.99973e8 −0.487336
\(290\) −1.58224e7 −0.0380960
\(291\) 2.54001e8 0.604240
\(292\) −3.79539e8 −0.892105
\(293\) −771192. −0.00179112 −0.000895562 1.00000i \(-0.500285\pi\)
−0.000895562 1.00000i \(0.500285\pi\)
\(294\) 0 0
\(295\) 6.90654e8 1.56633
\(296\) 6.80883e7 0.152599
\(297\) −2.22418e7 −0.0492631
\(298\) 2.50525e8 0.548396
\(299\) −5.03998e7 −0.109039
\(300\) −1.03248e7 −0.0220779
\(301\) 0 0
\(302\) 3.29862e8 0.689141
\(303\) −2.92881e8 −0.604843
\(304\) −1.02576e8 −0.209406
\(305\) 7.61280e8 1.53637
\(306\) 8.45873e7 0.168764
\(307\) −2.79387e8 −0.551089 −0.275544 0.961288i \(-0.588858\pi\)
−0.275544 + 0.961288i \(0.588858\pi\)
\(308\) 0 0
\(309\) −5.45684e6 −0.0105217
\(310\) 4.08503e8 0.778807
\(311\) 7.21550e8 1.36021 0.680103 0.733116i \(-0.261935\pi\)
0.680103 + 0.733116i \(0.261935\pi\)
\(312\) 1.04551e8 0.194889
\(313\) −9.91405e8 −1.82745 −0.913726 0.406330i \(-0.866808\pi\)
−0.913726 + 0.406330i \(0.866808\pi\)
\(314\) 4.42585e7 0.0806758
\(315\) 0 0
\(316\) 4.02156e8 0.716952
\(317\) −1.20414e8 −0.212310 −0.106155 0.994350i \(-0.533854\pi\)
−0.106155 + 0.994350i \(0.533854\pi\)
\(318\) −2.81909e8 −0.491602
\(319\) 7.70660e6 0.0132922
\(320\) 7.60218e7 0.129692
\(321\) 3.47481e8 0.586359
\(322\) 0 0
\(323\) 3.63224e8 0.599743
\(324\) 3.40122e7 0.0555556
\(325\) 4.51889e7 0.0730197
\(326\) 2.68247e8 0.428818
\(327\) 5.89971e8 0.933069
\(328\) 3.38537e8 0.529722
\(329\) 0 0
\(330\) 7.07832e7 0.108425
\(331\) 1.89531e8 0.287265 0.143632 0.989631i \(-0.454122\pi\)
0.143632 + 0.989631i \(0.454122\pi\)
\(332\) −2.72144e8 −0.408146
\(333\) −9.69461e7 −0.143872
\(334\) −4.18505e8 −0.614594
\(335\) 1.15228e9 1.67457
\(336\) 0 0
\(337\) 9.06750e8 1.29057 0.645287 0.763940i \(-0.276738\pi\)
0.645287 + 0.763940i \(0.276738\pi\)
\(338\) 4.43964e7 0.0625373
\(339\) −1.24567e8 −0.173662
\(340\) −2.69194e8 −0.371441
\(341\) −1.98969e8 −0.271735
\(342\) 1.46051e8 0.197430
\(343\) 0 0
\(344\) −7.53126e7 −0.0997501
\(345\) 5.21791e7 0.0684116
\(346\) −6.56340e8 −0.851849
\(347\) −3.45121e8 −0.443423 −0.221712 0.975112i \(-0.571164\pi\)
−0.221712 + 0.975112i \(0.571164\pi\)
\(348\) −1.17850e7 −0.0149900
\(349\) 6.01221e8 0.757086 0.378543 0.925584i \(-0.376425\pi\)
0.378543 + 0.925584i \(0.376425\pi\)
\(350\) 0 0
\(351\) −1.48863e8 −0.183743
\(352\) −3.70278e7 −0.0452511
\(353\) −2.91547e8 −0.352774 −0.176387 0.984321i \(-0.556441\pi\)
−0.176387 + 0.984321i \(0.556441\pi\)
\(354\) 5.14418e8 0.616318
\(355\) −1.24461e9 −1.47650
\(356\) 9.47712e7 0.111327
\(357\) 0 0
\(358\) 9.17039e8 1.05632
\(359\) −4.75589e8 −0.542502 −0.271251 0.962509i \(-0.587437\pi\)
−0.271251 + 0.962509i \(0.587437\pi\)
\(360\) −1.08242e8 −0.122275
\(361\) −2.66720e8 −0.298387
\(362\) 4.23200e8 0.468884
\(363\) 4.91677e8 0.539519
\(364\) 0 0
\(365\) −1.71978e9 −1.85118
\(366\) 5.67022e8 0.604528
\(367\) −1.65079e8 −0.174326 −0.0871629 0.996194i \(-0.527780\pi\)
−0.0871629 + 0.996194i \(0.527780\pi\)
\(368\) −2.72957e7 −0.0285514
\(369\) −4.82019e8 −0.499427
\(370\) 3.08525e8 0.316654
\(371\) 0 0
\(372\) 3.04265e8 0.306444
\(373\) 4.66848e8 0.465795 0.232897 0.972501i \(-0.425179\pi\)
0.232897 + 0.972501i \(0.425179\pi\)
\(374\) 1.31116e8 0.129600
\(375\) 5.64934e8 0.553208
\(376\) −4.60613e8 −0.446867
\(377\) 5.15797e7 0.0495774
\(378\) 0 0
\(379\) −2.77160e8 −0.261513 −0.130756 0.991415i \(-0.541741\pi\)
−0.130756 + 0.991415i \(0.541741\pi\)
\(380\) −4.64798e8 −0.434532
\(381\) 1.00149e9 0.927708
\(382\) −8.22779e8 −0.755199
\(383\) 7.97883e6 0.00725677 0.00362839 0.999993i \(-0.498845\pi\)
0.00362839 + 0.999993i \(0.498845\pi\)
\(384\) 5.66231e7 0.0510310
\(385\) 0 0
\(386\) 1.40193e9 1.24071
\(387\) 1.07232e8 0.0940453
\(388\) −6.02076e8 −0.523287
\(389\) 1.72774e9 1.48817 0.744087 0.668082i \(-0.232885\pi\)
0.744087 + 0.668082i \(0.232885\pi\)
\(390\) 4.73746e8 0.404408
\(391\) 9.66547e7 0.0817719
\(392\) 0 0
\(393\) −1.07554e9 −0.893826
\(394\) −1.25776e9 −1.03600
\(395\) 1.82227e9 1.48773
\(396\) 5.27213e7 0.0426631
\(397\) −7.92498e8 −0.635669 −0.317835 0.948146i \(-0.602956\pi\)
−0.317835 + 0.948146i \(0.602956\pi\)
\(398\) 8.85988e8 0.704429
\(399\) 0 0
\(400\) 2.44736e7 0.0191200
\(401\) −6.95185e8 −0.538387 −0.269194 0.963086i \(-0.586757\pi\)
−0.269194 + 0.963086i \(0.586757\pi\)
\(402\) 8.58253e8 0.658907
\(403\) −1.33169e9 −1.01352
\(404\) 6.94238e8 0.523809
\(405\) 1.54118e8 0.115282
\(406\) 0 0
\(407\) −1.50273e8 −0.110484
\(408\) −2.00503e8 −0.146154
\(409\) −1.96607e9 −1.42091 −0.710456 0.703741i \(-0.751511\pi\)
−0.710456 + 0.703741i \(0.751511\pi\)
\(410\) 1.53400e9 1.09921
\(411\) 6.95106e8 0.493861
\(412\) 1.29347e7 0.00911206
\(413\) 0 0
\(414\) 3.88644e7 0.0269185
\(415\) −1.23315e9 −0.846932
\(416\) −2.47824e8 −0.168779
\(417\) −3.49609e8 −0.236106
\(418\) 2.26389e8 0.151613
\(419\) −2.20900e9 −1.46706 −0.733529 0.679658i \(-0.762128\pi\)
−0.733529 + 0.679658i \(0.762128\pi\)
\(420\) 0 0
\(421\) −4.59955e8 −0.300419 −0.150210 0.988654i \(-0.547995\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(422\) 1.17338e9 0.760056
\(423\) 6.55833e8 0.421310
\(424\) 6.68228e8 0.425739
\(425\) −8.66614e7 −0.0547601
\(426\) −9.27021e8 −0.580973
\(427\) 0 0
\(428\) −8.23658e8 −0.507802
\(429\) −2.30747e8 −0.141103
\(430\) −3.41260e8 −0.206989
\(431\) −2.15517e9 −1.29662 −0.648308 0.761378i \(-0.724523\pi\)
−0.648308 + 0.761378i \(0.724523\pi\)
\(432\) −8.06216e7 −0.0481125
\(433\) −1.78833e9 −1.05862 −0.529311 0.848428i \(-0.677550\pi\)
−0.529311 + 0.848428i \(0.677550\pi\)
\(434\) 0 0
\(435\) −5.34006e7 −0.0311053
\(436\) −1.39845e9 −0.808061
\(437\) 1.66887e8 0.0956613
\(438\) −1.28094e9 −0.728401
\(439\) −1.52100e8 −0.0858035 −0.0429017 0.999079i \(-0.513660\pi\)
−0.0429017 + 0.999079i \(0.513660\pi\)
\(440\) −1.67782e8 −0.0938992
\(441\) 0 0
\(442\) 8.77550e8 0.483386
\(443\) 2.69618e9 1.47345 0.736727 0.676190i \(-0.236370\pi\)
0.736727 + 0.676190i \(0.236370\pi\)
\(444\) 2.29798e8 0.124597
\(445\) 4.29432e8 0.231012
\(446\) −4.72771e8 −0.252336
\(447\) 8.45522e8 0.447764
\(448\) 0 0
\(449\) −5.37859e8 −0.280418 −0.140209 0.990122i \(-0.544777\pi\)
−0.140209 + 0.990122i \(0.544777\pi\)
\(450\) −3.48462e7 −0.0180265
\(451\) −7.47163e8 −0.383528
\(452\) 2.95271e8 0.150396
\(453\) 1.11328e9 0.562681
\(454\) −3.43241e8 −0.172149
\(455\) 0 0
\(456\) −3.46194e8 −0.170979
\(457\) −5.38793e8 −0.264068 −0.132034 0.991245i \(-0.542151\pi\)
−0.132034 + 0.991245i \(0.542151\pi\)
\(458\) 2.21002e9 1.07490
\(459\) 2.85482e8 0.137795
\(460\) −1.23684e8 −0.0592462
\(461\) −5.24391e6 −0.00249288 −0.00124644 0.999999i \(-0.500397\pi\)
−0.00124644 + 0.999999i \(0.500397\pi\)
\(462\) 0 0
\(463\) 2.18426e8 0.102275 0.0511376 0.998692i \(-0.483715\pi\)
0.0511376 + 0.998692i \(0.483715\pi\)
\(464\) 2.79347e7 0.0129817
\(465\) 1.37870e9 0.635893
\(466\) −1.22673e9 −0.561562
\(467\) 3.49442e8 0.158769 0.0793845 0.996844i \(-0.474705\pi\)
0.0793845 + 0.996844i \(0.474705\pi\)
\(468\) 3.52859e8 0.159126
\(469\) 0 0
\(470\) −2.08715e9 −0.927281
\(471\) 1.49372e8 0.0658715
\(472\) −1.21936e9 −0.533747
\(473\) 1.66217e8 0.0722208
\(474\) 1.35728e9 0.585389
\(475\) −1.49632e8 −0.0640614
\(476\) 0 0
\(477\) −9.51441e8 −0.401391
\(478\) 2.76497e9 1.15796
\(479\) −4.05022e9 −1.68385 −0.841927 0.539591i \(-0.818579\pi\)
−0.841927 + 0.539591i \(0.818579\pi\)
\(480\) 2.56573e8 0.105893
\(481\) −1.00577e9 −0.412087
\(482\) 4.32534e8 0.175936
\(483\) 0 0
\(484\) −1.16546e9 −0.467237
\(485\) −2.72816e9 −1.08586
\(486\) 1.14791e8 0.0453609
\(487\) 9.26634e8 0.363544 0.181772 0.983341i \(-0.441817\pi\)
0.181772 + 0.983341i \(0.441817\pi\)
\(488\) −1.34405e9 −0.523536
\(489\) 9.05334e8 0.350129
\(490\) 0 0
\(491\) 2.65906e9 1.01378 0.506889 0.862011i \(-0.330795\pi\)
0.506889 + 0.862011i \(0.330795\pi\)
\(492\) 1.14256e9 0.432516
\(493\) −9.89173e7 −0.0371799
\(494\) 1.51520e9 0.565492
\(495\) 2.38893e8 0.0885290
\(496\) −7.21220e8 −0.265388
\(497\) 0 0
\(498\) −9.18486e8 −0.333250
\(499\) −3.16496e9 −1.14029 −0.570147 0.821543i \(-0.693114\pi\)
−0.570147 + 0.821543i \(0.693114\pi\)
\(500\) −1.33910e9 −0.479092
\(501\) −1.41246e9 −0.501814
\(502\) −7.52009e8 −0.265314
\(503\) −4.12431e9 −1.44499 −0.722493 0.691379i \(-0.757004\pi\)
−0.722493 + 0.691379i \(0.757004\pi\)
\(504\) 0 0
\(505\) 3.14576e9 1.08694
\(506\) 6.02426e7 0.0206717
\(507\) 1.49838e8 0.0510615
\(508\) −2.37391e9 −0.803419
\(509\) 5.55132e9 1.86588 0.932940 0.360031i \(-0.117234\pi\)
0.932940 + 0.360031i \(0.117234\pi\)
\(510\) −9.08531e8 −0.303280
\(511\) 0 0
\(512\) −1.34218e8 −0.0441942
\(513\) 4.92921e8 0.161201
\(514\) 5.58401e8 0.181374
\(515\) 5.86104e7 0.0189082
\(516\) −2.54180e8 −0.0814456
\(517\) 1.01659e9 0.323540
\(518\) 0 0
\(519\) −2.21515e9 −0.695532
\(520\) −1.12295e9 −0.350228
\(521\) −2.14145e9 −0.663400 −0.331700 0.943385i \(-0.607622\pi\)
−0.331700 + 0.943385i \(0.607622\pi\)
\(522\) −3.97742e7 −0.0122393
\(523\) −1.96040e9 −0.599224 −0.299612 0.954061i \(-0.596857\pi\)
−0.299612 + 0.954061i \(0.596857\pi\)
\(524\) 2.54943e9 0.774076
\(525\) 0 0
\(526\) −5.70567e8 −0.170945
\(527\) 2.55385e9 0.760078
\(528\) −1.24969e8 −0.0369474
\(529\) −3.36042e9 −0.986957
\(530\) 3.02791e9 0.883440
\(531\) 1.73616e9 0.503221
\(532\) 0 0
\(533\) −5.00070e9 −1.43049
\(534\) 3.19853e8 0.0908983
\(535\) −3.73220e9 −1.05372
\(536\) −2.03438e9 −0.570630
\(537\) 3.09501e9 0.862485
\(538\) −1.74004e9 −0.481749
\(539\) 0 0
\(540\) −3.65316e8 −0.0998369
\(541\) 4.03245e9 1.09491 0.547455 0.836835i \(-0.315597\pi\)
0.547455 + 0.836835i \(0.315597\pi\)
\(542\) 1.20830e8 0.0325969
\(543\) 1.42830e9 0.382842
\(544\) 4.75267e8 0.126573
\(545\) −6.33673e9 −1.67678
\(546\) 0 0
\(547\) 4.81827e9 1.25874 0.629369 0.777107i \(-0.283313\pi\)
0.629369 + 0.777107i \(0.283313\pi\)
\(548\) −1.64766e9 −0.427696
\(549\) 1.91370e9 0.493595
\(550\) −5.40140e7 −0.0138432
\(551\) −1.70793e8 −0.0434951
\(552\) −9.21231e7 −0.0233121
\(553\) 0 0
\(554\) −1.31044e9 −0.327442
\(555\) 1.04127e9 0.258547
\(556\) 8.28704e8 0.204474
\(557\) −2.47986e9 −0.608043 −0.304022 0.952665i \(-0.598330\pi\)
−0.304022 + 0.952665i \(0.598330\pi\)
\(558\) 1.02689e9 0.250210
\(559\) 1.11248e9 0.269371
\(560\) 0 0
\(561\) 4.42517e8 0.105818
\(562\) 3.36960e9 0.800758
\(563\) 4.70161e9 1.11037 0.555184 0.831728i \(-0.312648\pi\)
0.555184 + 0.831728i \(0.312648\pi\)
\(564\) −1.55457e9 −0.364865
\(565\) 1.33794e9 0.312082
\(566\) −5.37603e9 −1.24625
\(567\) 0 0
\(568\) 2.19738e9 0.503137
\(569\) 1.41800e9 0.322688 0.161344 0.986898i \(-0.448417\pi\)
0.161344 + 0.986898i \(0.448417\pi\)
\(570\) −1.56869e9 −0.354794
\(571\) −8.49814e9 −1.91028 −0.955141 0.296152i \(-0.904297\pi\)
−0.955141 + 0.296152i \(0.904297\pi\)
\(572\) 5.46956e8 0.122199
\(573\) −2.77688e9 −0.616617
\(574\) 0 0
\(575\) −3.98174e7 −0.00873445
\(576\) 1.91103e8 0.0416667
\(577\) 5.31460e9 1.15174 0.575871 0.817541i \(-0.304663\pi\)
0.575871 + 0.817541i \(0.304663\pi\)
\(578\) 1.59978e9 0.344598
\(579\) 4.73153e9 1.01304
\(580\) 1.26579e8 0.0269379
\(581\) 0 0
\(582\) −2.03201e9 −0.427262
\(583\) −1.47480e9 −0.308243
\(584\) 3.03631e9 0.630814
\(585\) 1.59889e9 0.330198
\(586\) 6.16954e6 0.00126652
\(587\) 6.24032e9 1.27343 0.636713 0.771101i \(-0.280294\pi\)
0.636713 + 0.771101i \(0.280294\pi\)
\(588\) 0 0
\(589\) 4.40955e9 0.889181
\(590\) −5.52523e9 −1.10756
\(591\) −4.24493e9 −0.845890
\(592\) −5.44707e8 −0.107904
\(593\) 6.71126e9 1.32164 0.660820 0.750545i \(-0.270209\pi\)
0.660820 + 0.750545i \(0.270209\pi\)
\(594\) 1.77934e8 0.0348343
\(595\) 0 0
\(596\) −2.00420e9 −0.387775
\(597\) 2.99021e9 0.575163
\(598\) 4.03199e8 0.0771019
\(599\) 5.85019e9 1.11218 0.556091 0.831121i \(-0.312300\pi\)
0.556091 + 0.831121i \(0.312300\pi\)
\(600\) 8.25984e7 0.0156114
\(601\) 1.23472e9 0.232010 0.116005 0.993249i \(-0.462991\pi\)
0.116005 + 0.993249i \(0.462991\pi\)
\(602\) 0 0
\(603\) 2.89660e9 0.537995
\(604\) −2.63890e9 −0.487296
\(605\) −5.28098e9 −0.969551
\(606\) 2.34305e9 0.427689
\(607\) −7.48797e8 −0.135895 −0.0679475 0.997689i \(-0.521645\pi\)
−0.0679475 + 0.997689i \(0.521645\pi\)
\(608\) 8.20609e8 0.148072
\(609\) 0 0
\(610\) −6.09024e9 −1.08637
\(611\) 6.80393e9 1.20675
\(612\) −6.76699e8 −0.119334
\(613\) −9.73268e9 −1.70656 −0.853279 0.521455i \(-0.825389\pi\)
−0.853279 + 0.521455i \(0.825389\pi\)
\(614\) 2.23509e9 0.389678
\(615\) 5.17724e9 0.897502
\(616\) 0 0
\(617\) −9.09192e9 −1.55832 −0.779161 0.626823i \(-0.784355\pi\)
−0.779161 + 0.626823i \(0.784355\pi\)
\(618\) 4.36547e7 0.00743997
\(619\) −2.54761e9 −0.431733 −0.215866 0.976423i \(-0.569258\pi\)
−0.215866 + 0.976423i \(0.569258\pi\)
\(620\) −3.26803e9 −0.550699
\(621\) 1.31168e8 0.0219789
\(622\) −5.77240e9 −0.961811
\(623\) 0 0
\(624\) −8.36407e8 −0.137807
\(625\) −6.53461e9 −1.07063
\(626\) 7.93124e9 1.29220
\(627\) 7.64062e8 0.123792
\(628\) −3.54068e8 −0.0570464
\(629\) 1.92881e9 0.309039
\(630\) 0 0
\(631\) −3.43067e9 −0.543595 −0.271798 0.962354i \(-0.587618\pi\)
−0.271798 + 0.962354i \(0.587618\pi\)
\(632\) −3.21725e9 −0.506961
\(633\) 3.96016e9 0.620583
\(634\) 9.63314e8 0.150126
\(635\) −1.07568e10 −1.66715
\(636\) 2.25527e9 0.347615
\(637\) 0 0
\(638\) −6.16528e7 −0.00939897
\(639\) −3.12869e9 −0.474362
\(640\) −6.08174e8 −0.0917061
\(641\) 4.41127e9 0.661546 0.330773 0.943710i \(-0.392691\pi\)
0.330773 + 0.943710i \(0.392691\pi\)
\(642\) −2.77985e9 −0.414618
\(643\) 5.39024e9 0.799595 0.399797 0.916604i \(-0.369081\pi\)
0.399797 + 0.916604i \(0.369081\pi\)
\(644\) 0 0
\(645\) −1.15175e9 −0.169005
\(646\) −2.90579e9 −0.424082
\(647\) −2.52488e9 −0.366501 −0.183251 0.983066i \(-0.558662\pi\)
−0.183251 + 0.983066i \(0.558662\pi\)
\(648\) −2.72098e8 −0.0392837
\(649\) 2.69117e9 0.386442
\(650\) −3.61511e8 −0.0516327
\(651\) 0 0
\(652\) −2.14598e9 −0.303220
\(653\) −5.91356e8 −0.0831099 −0.0415550 0.999136i \(-0.513231\pi\)
−0.0415550 + 0.999136i \(0.513231\pi\)
\(654\) −4.71977e9 −0.659779
\(655\) 1.15521e10 1.60626
\(656\) −2.70830e9 −0.374570
\(657\) −4.32318e9 −0.594737
\(658\) 0 0
\(659\) −7.80244e9 −1.06202 −0.531009 0.847366i \(-0.678187\pi\)
−0.531009 + 0.847366i \(0.678187\pi\)
\(660\) −5.66266e8 −0.0766684
\(661\) −1.12132e10 −1.51017 −0.755086 0.655626i \(-0.772405\pi\)
−0.755086 + 0.655626i \(0.772405\pi\)
\(662\) −1.51625e9 −0.203127
\(663\) 2.96173e9 0.394683
\(664\) 2.17715e9 0.288603
\(665\) 0 0
\(666\) 7.75569e8 0.101733
\(667\) −4.54485e7 −0.00593033
\(668\) 3.34804e9 0.434584
\(669\) −1.59560e9 −0.206031
\(670\) −9.21827e9 −1.18410
\(671\) 2.96637e9 0.379049
\(672\) 0 0
\(673\) 1.09343e10 1.38273 0.691365 0.722506i \(-0.257010\pi\)
0.691365 + 0.722506i \(0.257010\pi\)
\(674\) −7.25400e9 −0.912573
\(675\) −1.17606e8 −0.0147186
\(676\) −3.55171e8 −0.0442206
\(677\) −6.17913e9 −0.765362 −0.382681 0.923881i \(-0.624999\pi\)
−0.382681 + 0.923881i \(0.624999\pi\)
\(678\) 9.96538e8 0.122798
\(679\) 0 0
\(680\) 2.15355e9 0.262648
\(681\) −1.15844e9 −0.140559
\(682\) 1.59175e9 0.192146
\(683\) −1.11149e10 −1.33486 −0.667428 0.744674i \(-0.732605\pi\)
−0.667428 + 0.744674i \(0.732605\pi\)
\(684\) −1.16841e9 −0.139604
\(685\) −7.46595e9 −0.887499
\(686\) 0 0
\(687\) 7.45881e9 0.877649
\(688\) 6.02501e8 0.0705340
\(689\) −9.87071e9 −1.14969
\(690\) −4.17433e8 −0.0483743
\(691\) −1.09613e10 −1.26383 −0.631916 0.775037i \(-0.717731\pi\)
−0.631916 + 0.775037i \(0.717731\pi\)
\(692\) 5.25072e9 0.602348
\(693\) 0 0
\(694\) 2.76097e9 0.313548
\(695\) 3.75506e9 0.424298
\(696\) 9.42797e7 0.0105995
\(697\) 9.59013e9 1.07278
\(698\) −4.80977e9 −0.535341
\(699\) −4.14021e9 −0.458514
\(700\) 0 0
\(701\) 1.27383e10 1.39669 0.698344 0.715762i \(-0.253920\pi\)
0.698344 + 0.715762i \(0.253920\pi\)
\(702\) 1.19090e9 0.129926
\(703\) 3.33034e9 0.361531
\(704\) 2.96223e8 0.0319974
\(705\) −7.04413e9 −0.757122
\(706\) 2.33238e9 0.249449
\(707\) 0 0
\(708\) −4.11534e9 −0.435802
\(709\) 9.08191e8 0.0957007 0.0478504 0.998855i \(-0.484763\pi\)
0.0478504 + 0.998855i \(0.484763\pi\)
\(710\) 9.95689e9 1.04405
\(711\) 4.58081e9 0.477968
\(712\) −7.58170e8 −0.0787202
\(713\) 1.17339e9 0.121235
\(714\) 0 0
\(715\) 2.47840e9 0.253571
\(716\) −7.33631e9 −0.746934
\(717\) 9.33178e9 0.945469
\(718\) 3.80471e9 0.383607
\(719\) 1.18602e10 1.18999 0.594994 0.803730i \(-0.297155\pi\)
0.594994 + 0.803730i \(0.297155\pi\)
\(720\) 8.65935e8 0.0864613
\(721\) 0 0
\(722\) 2.13376e9 0.210992
\(723\) 1.45980e9 0.143651
\(724\) −3.38560e9 −0.331551
\(725\) 4.07495e7 0.00397136
\(726\) −3.93342e9 −0.381498
\(727\) 8.01213e9 0.773352 0.386676 0.922216i \(-0.373623\pi\)
0.386676 + 0.922216i \(0.373623\pi\)
\(728\) 0 0
\(729\) 3.87420e8 0.0370370
\(730\) 1.37583e10 1.30898
\(731\) −2.13347e9 −0.202011
\(732\) −4.53618e9 −0.427466
\(733\) 9.80967e9 0.920005 0.460003 0.887918i \(-0.347848\pi\)
0.460003 + 0.887918i \(0.347848\pi\)
\(734\) 1.32064e9 0.123267
\(735\) 0 0
\(736\) 2.18366e8 0.0201889
\(737\) 4.48993e9 0.413146
\(738\) 3.85615e9 0.353148
\(739\) 1.59250e10 1.45152 0.725762 0.687945i \(-0.241487\pi\)
0.725762 + 0.687945i \(0.241487\pi\)
\(740\) −2.46820e9 −0.223908
\(741\) 5.11381e9 0.461722
\(742\) 0 0
\(743\) 1.85101e10 1.65558 0.827788 0.561042i \(-0.189599\pi\)
0.827788 + 0.561042i \(0.189599\pi\)
\(744\) −2.43412e9 −0.216689
\(745\) −9.08154e9 −0.804660
\(746\) −3.73479e9 −0.329367
\(747\) −3.09989e9 −0.272097
\(748\) −1.04893e9 −0.0916412
\(749\) 0 0
\(750\) −4.51948e9 −0.391177
\(751\) −1.53951e10 −1.32631 −0.663154 0.748483i \(-0.730782\pi\)
−0.663154 + 0.748483i \(0.730782\pi\)
\(752\) 3.68490e9 0.315983
\(753\) −2.53803e9 −0.216628
\(754\) −4.12637e8 −0.0350565
\(755\) −1.19575e10 −1.01117
\(756\) 0 0
\(757\) 5.14693e9 0.431233 0.215617 0.976478i \(-0.430824\pi\)
0.215617 + 0.976478i \(0.430824\pi\)
\(758\) 2.21728e9 0.184917
\(759\) 2.03319e8 0.0168784
\(760\) 3.71838e9 0.307261
\(761\) 2.00227e9 0.164694 0.0823469 0.996604i \(-0.473758\pi\)
0.0823469 + 0.996604i \(0.473758\pi\)
\(762\) −8.01196e9 −0.655988
\(763\) 0 0
\(764\) 6.58223e9 0.534006
\(765\) −3.06629e9 −0.247627
\(766\) −6.38306e7 −0.00513131
\(767\) 1.80118e10 1.44136
\(768\) −4.52985e8 −0.0360844
\(769\) 9.62216e9 0.763010 0.381505 0.924367i \(-0.375406\pi\)
0.381505 + 0.924367i \(0.375406\pi\)
\(770\) 0 0
\(771\) 1.88460e9 0.148091
\(772\) −1.12155e10 −0.877318
\(773\) 9.13035e8 0.0710983 0.0355491 0.999368i \(-0.488682\pi\)
0.0355491 + 0.999368i \(0.488682\pi\)
\(774\) −8.57858e8 −0.0665001
\(775\) −1.05207e9 −0.0811876
\(776\) 4.81661e9 0.370020
\(777\) 0 0
\(778\) −1.38219e10 −1.05230
\(779\) 1.65586e10 1.25500
\(780\) −3.78997e9 −0.285960
\(781\) −4.84969e9 −0.364280
\(782\) −7.73237e8 −0.0578215
\(783\) −1.34238e8 −0.00999331
\(784\) 0 0
\(785\) −1.60437e9 −0.118375
\(786\) 8.60433e9 0.632030
\(787\) 1.62505e10 1.18838 0.594189 0.804325i \(-0.297473\pi\)
0.594189 + 0.804325i \(0.297473\pi\)
\(788\) 1.00621e10 0.732563
\(789\) −1.92566e9 −0.139576
\(790\) −1.45782e10 −1.05198
\(791\) 0 0
\(792\) −4.21770e8 −0.0301674
\(793\) 1.98536e10 1.41379
\(794\) 6.33998e9 0.449486
\(795\) 1.02192e10 0.721325
\(796\) −7.08790e9 −0.498106
\(797\) 2.00600e10 1.40355 0.701774 0.712400i \(-0.252392\pi\)
0.701774 + 0.712400i \(0.252392\pi\)
\(798\) 0 0
\(799\) −1.30483e10 −0.904982
\(800\) −1.95789e8 −0.0135199
\(801\) 1.07950e9 0.0742182
\(802\) 5.56148e9 0.380697
\(803\) −6.70123e9 −0.456720
\(804\) −6.86602e9 −0.465918
\(805\) 0 0
\(806\) 1.06535e10 0.716670
\(807\) −5.87263e9 −0.393347
\(808\) −5.55390e9 −0.370389
\(809\) −1.78197e10 −1.18326 −0.591630 0.806209i \(-0.701515\pi\)
−0.591630 + 0.806209i \(0.701515\pi\)
\(810\) −1.23294e9 −0.0815165
\(811\) −4.72659e9 −0.311154 −0.155577 0.987824i \(-0.549724\pi\)
−0.155577 + 0.987824i \(0.549724\pi\)
\(812\) 0 0
\(813\) 4.07801e8 0.0266153
\(814\) 1.20218e9 0.0781242
\(815\) −9.72396e9 −0.629204
\(816\) 1.60403e9 0.103347
\(817\) −3.68370e9 −0.236324
\(818\) 1.57286e10 1.00474
\(819\) 0 0
\(820\) −1.22720e10 −0.777260
\(821\) 2.00031e10 1.26153 0.630764 0.775975i \(-0.282742\pi\)
0.630764 + 0.775975i \(0.282742\pi\)
\(822\) −5.56084e9 −0.349212
\(823\) 1.53836e10 0.961962 0.480981 0.876731i \(-0.340281\pi\)
0.480981 + 0.876731i \(0.340281\pi\)
\(824\) −1.03478e8 −0.00644320
\(825\) −1.82297e8 −0.0113029
\(826\) 0 0
\(827\) 1.42246e10 0.874520 0.437260 0.899335i \(-0.355949\pi\)
0.437260 + 0.899335i \(0.355949\pi\)
\(828\) −3.10916e8 −0.0190343
\(829\) 2.17248e10 1.32439 0.662194 0.749332i \(-0.269625\pi\)
0.662194 + 0.749332i \(0.269625\pi\)
\(830\) 9.86522e9 0.598871
\(831\) −4.42274e9 −0.267355
\(832\) 1.98260e9 0.119344
\(833\) 0 0
\(834\) 2.79688e9 0.166952
\(835\) 1.51708e10 0.901792
\(836\) −1.81111e9 −0.107207
\(837\) 3.46576e9 0.204296
\(838\) 1.76720e10 1.03737
\(839\) 1.54623e10 0.903871 0.451935 0.892051i \(-0.350734\pi\)
0.451935 + 0.892051i \(0.350734\pi\)
\(840\) 0 0
\(841\) −1.72034e10 −0.997304
\(842\) 3.67964e9 0.212429
\(843\) 1.13724e10 0.653816
\(844\) −9.38705e9 −0.537440
\(845\) −1.60937e9 −0.0917608
\(846\) −5.24667e9 −0.297911
\(847\) 0 0
\(848\) −5.34582e9 −0.301043
\(849\) −1.81441e10 −1.01756
\(850\) 6.93291e8 0.0387213
\(851\) 8.86212e8 0.0492929
\(852\) 7.41616e9 0.410810
\(853\) 1.80110e10 0.993608 0.496804 0.867863i \(-0.334507\pi\)
0.496804 + 0.867863i \(0.334507\pi\)
\(854\) 0 0
\(855\) −5.29434e9 −0.289688
\(856\) 6.58927e9 0.359070
\(857\) 1.71715e8 0.00931916 0.00465958 0.999989i \(-0.498517\pi\)
0.00465958 + 0.999989i \(0.498517\pi\)
\(858\) 1.84598e9 0.0997748
\(859\) −1.37786e9 −0.0741700 −0.0370850 0.999312i \(-0.511807\pi\)
−0.0370850 + 0.999312i \(0.511807\pi\)
\(860\) 2.73008e9 0.146363
\(861\) 0 0
\(862\) 1.72414e10 0.916847
\(863\) 9.44605e7 0.00500279 0.00250140 0.999997i \(-0.499204\pi\)
0.00250140 + 0.999997i \(0.499204\pi\)
\(864\) 6.44973e8 0.0340207
\(865\) 2.37923e10 1.24992
\(866\) 1.43067e10 0.748559
\(867\) 5.39926e9 0.281363
\(868\) 0 0
\(869\) 7.10057e9 0.367049
\(870\) 4.27205e8 0.0219947
\(871\) 3.00508e10 1.54096
\(872\) 1.11876e10 0.571386
\(873\) −6.85802e9 −0.348858
\(874\) −1.33509e9 −0.0676428
\(875\) 0 0
\(876\) 1.02475e10 0.515057
\(877\) −1.37376e10 −0.687722 −0.343861 0.939021i \(-0.611735\pi\)
−0.343861 + 0.939021i \(0.611735\pi\)
\(878\) 1.21680e9 0.0606722
\(879\) 2.08222e7 0.00103411
\(880\) 1.34226e9 0.0663968
\(881\) −1.09605e10 −0.540026 −0.270013 0.962857i \(-0.587028\pi\)
−0.270013 + 0.962857i \(0.587028\pi\)
\(882\) 0 0
\(883\) 7.24742e9 0.354259 0.177129 0.984188i \(-0.443319\pi\)
0.177129 + 0.984188i \(0.443319\pi\)
\(884\) −7.02040e9 −0.341805
\(885\) −1.86476e10 −0.904321
\(886\) −2.15695e10 −1.04189
\(887\) −1.12154e10 −0.539613 −0.269807 0.962915i \(-0.586960\pi\)
−0.269807 + 0.962915i \(0.586960\pi\)
\(888\) −1.83838e9 −0.0881031
\(889\) 0 0
\(890\) −3.43546e9 −0.163350
\(891\) 6.00528e8 0.0284421
\(892\) 3.78217e9 0.178428
\(893\) −2.25295e10 −1.05870
\(894\) −6.76418e9 −0.316617
\(895\) −3.32427e10 −1.54994
\(896\) 0 0
\(897\) 1.36080e9 0.0629534
\(898\) 4.30287e9 0.198285
\(899\) −1.20086e9 −0.0551230
\(900\) 2.78770e8 0.0127467
\(901\) 1.89296e10 0.862195
\(902\) 5.97730e9 0.271195
\(903\) 0 0
\(904\) −2.36216e9 −0.106346
\(905\) −1.53410e10 −0.687992
\(906\) −8.90627e9 −0.397876
\(907\) −6.12250e9 −0.272460 −0.136230 0.990677i \(-0.543499\pi\)
−0.136230 + 0.990677i \(0.543499\pi\)
\(908\) 2.74593e9 0.121728
\(909\) 7.90780e9 0.349206
\(910\) 0 0
\(911\) 1.72053e10 0.753960 0.376980 0.926221i \(-0.376963\pi\)
0.376980 + 0.926221i \(0.376963\pi\)
\(912\) 2.76956e9 0.120901
\(913\) −4.80504e9 −0.208953
\(914\) 4.31035e9 0.186724
\(915\) −2.05545e10 −0.887021
\(916\) −1.76801e10 −0.760066
\(917\) 0 0
\(918\) −2.28386e9 −0.0974361
\(919\) 2.48590e10 1.05652 0.528261 0.849082i \(-0.322844\pi\)
0.528261 + 0.849082i \(0.322844\pi\)
\(920\) 9.89471e8 0.0418934
\(921\) 7.54344e9 0.318171
\(922\) 4.19513e7 0.00176273
\(923\) −3.24586e10 −1.35870
\(924\) 0 0
\(925\) −7.94585e8 −0.0330099
\(926\) −1.74741e9 −0.0723195
\(927\) 1.47335e8 0.00607471
\(928\) −2.23478e8 −0.00917944
\(929\) −1.75978e10 −0.720115 −0.360058 0.932930i \(-0.617243\pi\)
−0.360058 + 0.932930i \(0.617243\pi\)
\(930\) −1.10296e10 −0.449644
\(931\) 0 0
\(932\) 9.81383e9 0.397085
\(933\) −1.94818e10 −0.785316
\(934\) −2.79553e9 −0.112267
\(935\) −4.75296e9 −0.190162
\(936\) −2.82287e9 −0.112519
\(937\) −1.80228e10 −0.715703 −0.357852 0.933778i \(-0.616491\pi\)
−0.357852 + 0.933778i \(0.616491\pi\)
\(938\) 0 0
\(939\) 2.67679e10 1.05508
\(940\) 1.66972e10 0.655687
\(941\) −2.96116e10 −1.15850 −0.579252 0.815149i \(-0.696655\pi\)
−0.579252 + 0.815149i \(0.696655\pi\)
\(942\) −1.19498e9 −0.0465782
\(943\) 4.40628e9 0.171112
\(944\) 9.75489e9 0.377416
\(945\) 0 0
\(946\) −1.32974e9 −0.0510678
\(947\) −2.44524e10 −0.935612 −0.467806 0.883831i \(-0.654955\pi\)
−0.467806 + 0.883831i \(0.654955\pi\)
\(948\) −1.08582e10 −0.413932
\(949\) −4.48508e10 −1.70349
\(950\) 1.19706e9 0.0452983
\(951\) 3.25119e9 0.122577
\(952\) 0 0
\(953\) −3.27114e10 −1.22426 −0.612130 0.790757i \(-0.709687\pi\)
−0.612130 + 0.790757i \(0.709687\pi\)
\(954\) 7.61153e9 0.283826
\(955\) 2.98257e10 1.10810
\(956\) −2.21198e10 −0.818801
\(957\) −2.08078e8 −0.00767423
\(958\) 3.24018e10 1.19066
\(959\) 0 0
\(960\) −2.05259e9 −0.0748777
\(961\) 3.49120e9 0.126895
\(962\) 8.04612e9 0.291390
\(963\) −9.38199e9 −0.338534
\(964\) −3.46027e9 −0.124406
\(965\) −5.08201e10 −1.82050
\(966\) 0 0
\(967\) −5.41923e9 −0.192728 −0.0963640 0.995346i \(-0.530721\pi\)
−0.0963640 + 0.995346i \(0.530721\pi\)
\(968\) 9.32366e9 0.330387
\(969\) −9.80704e9 −0.346262
\(970\) 2.18252e10 0.767818
\(971\) −8.82543e9 −0.309363 −0.154681 0.987964i \(-0.549435\pi\)
−0.154681 + 0.987964i \(0.549435\pi\)
\(972\) −9.18330e8 −0.0320750
\(973\) 0 0
\(974\) −7.41307e9 −0.257064
\(975\) −1.22010e9 −0.0421580
\(976\) 1.07524e10 0.370196
\(977\) −3.26822e10 −1.12119 −0.560597 0.828089i \(-0.689428\pi\)
−0.560597 + 0.828089i \(0.689428\pi\)
\(978\) −7.24267e9 −0.247578
\(979\) 1.67330e9 0.0569948
\(980\) 0 0
\(981\) −1.59292e10 −0.538708
\(982\) −2.12725e10 −0.716849
\(983\) −3.56345e10 −1.19656 −0.598279 0.801288i \(-0.704148\pi\)
−0.598279 + 0.801288i \(0.704148\pi\)
\(984\) −9.14051e9 −0.305835
\(985\) 4.55937e10 1.52012
\(986\) 7.91338e8 0.0262901
\(987\) 0 0
\(988\) −1.21216e10 −0.399863
\(989\) −9.80241e8 −0.0322215
\(990\) −1.91115e9 −0.0625995
\(991\) 5.12314e10 1.67216 0.836080 0.548607i \(-0.184842\pi\)
0.836080 + 0.548607i \(0.184842\pi\)
\(992\) 5.76976e9 0.187658
\(993\) −5.11734e9 −0.165852
\(994\) 0 0
\(995\) −3.21171e10 −1.03361
\(996\) 7.34789e9 0.235643
\(997\) −2.04673e10 −0.654076 −0.327038 0.945011i \(-0.606051\pi\)
−0.327038 + 0.945011i \(0.606051\pi\)
\(998\) 2.53197e10 0.806309
\(999\) 2.61754e9 0.0830644
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.8.a.e.1.1 1
7.2 even 3 294.8.e.l.67.1 2
7.3 odd 6 42.8.e.b.37.1 yes 2
7.4 even 3 294.8.e.l.79.1 2
7.5 odd 6 42.8.e.b.25.1 2
7.6 odd 2 294.8.a.f.1.1 1
21.5 even 6 126.8.g.a.109.1 2
21.17 even 6 126.8.g.a.37.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.8.e.b.25.1 2 7.5 odd 6
42.8.e.b.37.1 yes 2 7.3 odd 6
126.8.g.a.37.1 2 21.17 even 6
126.8.g.a.109.1 2 21.5 even 6
294.8.a.e.1.1 1 1.1 even 1 trivial
294.8.a.f.1.1 1 7.6 odd 2
294.8.e.l.67.1 2 7.2 even 3
294.8.e.l.79.1 2 7.4 even 3