Properties

Label 1260.2.bm.b.109.2
Level $1260$
Weight $2$
Character 1260.109
Analytic conductor $10.061$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(109,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} - 5x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 109.2
Root \(-1.63746 + 1.52274i\) of defining polynomial
Character \(\chi\) \(=\) 1260.109
Dual form 1260.2.bm.b.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 2.17945i) q^{5} +(2.63746 + 0.209313i) q^{7} +(1.13746 - 1.97014i) q^{11} +6.09095i q^{13} +(4.13746 + 2.38876i) q^{17} +(-2.13746 - 3.70219i) q^{19} +(0.774917 - 0.447399i) q^{23} +(-4.50000 + 2.17945i) q^{25} -3.27492 q^{29} +(2.13746 - 3.70219i) q^{31} +(0.862541 + 5.85286i) q^{35} +(-4.86254 + 2.80739i) q^{37} +11.2749 q^{41} +6.50958i q^{43} +(-1.86254 + 1.07534i) q^{47} +(6.91238 + 1.10411i) q^{49} +(-6.41238 - 3.70219i) q^{53} +(4.86254 + 1.49397i) q^{55} +(-2.13746 + 3.70219i) q^{59} +(-0.774917 - 1.34220i) q^{61} +(-13.2749 + 3.04547i) q^{65} +(12.0498 + 6.95698i) q^{67} -10.5498 q^{71} +(1.86254 + 1.07534i) q^{73} +(3.41238 - 4.95807i) q^{77} +(-0.137459 - 0.238085i) q^{79} +5.67232i q^{83} +(-3.13746 + 10.2118i) q^{85} +(3.50000 + 6.06218i) q^{89} +(-1.27492 + 16.0646i) q^{91} +(7.00000 - 6.50958i) q^{95} -6.92820i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} + 3 q^{7} - 3 q^{11} + 9 q^{17} - q^{19} - 12 q^{23} - 18 q^{25} + 2 q^{29} + q^{31} + 11 q^{35} - 27 q^{37} + 30 q^{41} - 15 q^{47} + 5 q^{49} - 3 q^{53} + 27 q^{55} - q^{59} + 12 q^{61}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.500000 + 2.17945i 0.223607 + 0.974679i
\(6\) 0 0
\(7\) 2.63746 + 0.209313i 0.996866 + 0.0791130i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.13746 1.97014i 0.342957 0.594018i −0.642024 0.766685i \(-0.721905\pi\)
0.984980 + 0.172666i \(0.0552383\pi\)
\(12\) 0 0
\(13\) 6.09095i 1.68933i 0.535299 + 0.844663i \(0.320199\pi\)
−0.535299 + 0.844663i \(0.679801\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.13746 + 2.38876i 1.00348 + 0.579360i 0.909276 0.416193i \(-0.136636\pi\)
0.0942047 + 0.995553i \(0.469969\pi\)
\(18\) 0 0
\(19\) −2.13746 3.70219i −0.490367 0.849340i 0.509572 0.860428i \(-0.329804\pi\)
−0.999939 + 0.0110882i \(0.996470\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.774917 0.447399i 0.161581 0.0932891i −0.417029 0.908893i \(-0.636929\pi\)
0.578610 + 0.815604i \(0.303595\pi\)
\(24\) 0 0
\(25\) −4.50000 + 2.17945i −0.900000 + 0.435890i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.27492 −0.608137 −0.304068 0.952650i \(-0.598345\pi\)
−0.304068 + 0.952650i \(0.598345\pi\)
\(30\) 0 0
\(31\) 2.13746 3.70219i 0.383899 0.664932i −0.607717 0.794154i \(-0.707914\pi\)
0.991616 + 0.129221i \(0.0412478\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.862541 + 5.85286i 0.145796 + 0.989315i
\(36\) 0 0
\(37\) −4.86254 + 2.80739i −0.799397 + 0.461532i −0.843260 0.537506i \(-0.819367\pi\)
0.0438633 + 0.999038i \(0.486033\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 11.2749 1.76085 0.880423 0.474189i \(-0.157259\pi\)
0.880423 + 0.474189i \(0.157259\pi\)
\(42\) 0 0
\(43\) 6.50958i 0.992701i 0.868122 + 0.496351i \(0.165327\pi\)
−0.868122 + 0.496351i \(0.834673\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.86254 + 1.07534i −0.271680 + 0.156854i −0.629651 0.776878i \(-0.716802\pi\)
0.357971 + 0.933733i \(0.383469\pi\)
\(48\) 0 0
\(49\) 6.91238 + 1.10411i 0.987482 + 0.157730i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.41238 3.70219i −0.880808 0.508534i −0.00988297 0.999951i \(-0.503146\pi\)
−0.870925 + 0.491417i \(0.836479\pi\)
\(54\) 0 0
\(55\) 4.86254 + 1.49397i 0.655665 + 0.201446i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.13746 + 3.70219i −0.278273 + 0.481984i −0.970956 0.239259i \(-0.923095\pi\)
0.692682 + 0.721243i \(0.256429\pi\)
\(60\) 0 0
\(61\) −0.774917 1.34220i −0.0992180 0.171851i 0.812143 0.583458i \(-0.198301\pi\)
−0.911361 + 0.411608i \(0.864967\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −13.2749 + 3.04547i −1.64655 + 0.377745i
\(66\) 0 0
\(67\) 12.0498 + 6.95698i 1.47212 + 0.849930i 0.999509 0.0313404i \(-0.00997759\pi\)
0.472613 + 0.881270i \(0.343311\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.5498 −1.25204 −0.626018 0.779809i \(-0.715316\pi\)
−0.626018 + 0.779809i \(0.715316\pi\)
\(72\) 0 0
\(73\) 1.86254 + 1.07534i 0.217994 + 0.125859i 0.605021 0.796209i \(-0.293165\pi\)
−0.387027 + 0.922068i \(0.626498\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.41238 4.95807i 0.388876 0.565024i
\(78\) 0 0
\(79\) −0.137459 0.238085i −0.0154653 0.0267867i 0.858189 0.513334i \(-0.171590\pi\)
−0.873654 + 0.486547i \(0.838256\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 5.67232i 0.622618i 0.950309 + 0.311309i \(0.100767\pi\)
−0.950309 + 0.311309i \(0.899233\pi\)
\(84\) 0 0
\(85\) −3.13746 + 10.2118i −0.340305 + 1.10762i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.50000 + 6.06218i 0.370999 + 0.642590i 0.989720 0.143022i \(-0.0456819\pi\)
−0.618720 + 0.785611i \(0.712349\pi\)
\(90\) 0 0
\(91\) −1.27492 + 16.0646i −0.133648 + 1.68403i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.00000 6.50958i 0.718185 0.667868i
\(96\) 0 0
\(97\) 6.92820i 0.703452i −0.936103 0.351726i \(-0.885595\pi\)
0.936103 0.351726i \(-0.114405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0.774917 1.34220i 0.0771071 0.133553i −0.824894 0.565288i \(-0.808765\pi\)
0.902001 + 0.431735i \(0.142098\pi\)
\(102\) 0 0
\(103\) −2.22508 + 1.28465i −0.219244 + 0.126581i −0.605600 0.795769i \(-0.707067\pi\)
0.386356 + 0.922350i \(0.373734\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0498 6.95698i 1.16490 0.672556i 0.212428 0.977177i \(-0.431863\pi\)
0.952474 + 0.304621i \(0.0985297\pi\)
\(108\) 0 0
\(109\) 1.77492 3.07425i 0.170006 0.294459i −0.768416 0.639951i \(-0.778955\pi\)
0.938422 + 0.345492i \(0.112288\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 13.0192i 1.22474i 0.790572 + 0.612369i \(0.209783\pi\)
−0.790572 + 0.612369i \(0.790217\pi\)
\(114\) 0 0
\(115\) 1.36254 + 1.46519i 0.127058 + 0.136630i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4124 + 7.16629i 0.954501 + 0.656933i
\(120\) 0 0
\(121\) 2.91238 + 5.04438i 0.264761 + 0.458580i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.00000 8.71780i −0.626099 0.779744i
\(126\) 0 0
\(127\) 1.78959i 0.158801i 0.996843 + 0.0794004i \(0.0253006\pi\)
−0.996843 + 0.0794004i \(0.974699\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.13746 15.8265i −0.798343 1.38277i −0.920694 0.390285i \(-0.872377\pi\)
0.122351 0.992487i \(-0.460957\pi\)
\(132\) 0 0
\(133\) −4.86254 10.2118i −0.421636 0.885472i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.96221 + 4.59698i 0.680258 + 0.392747i 0.799952 0.600064i \(-0.204858\pi\)
−0.119695 + 0.992811i \(0.538192\pi\)
\(138\) 0 0
\(139\) 17.0997 1.45037 0.725187 0.688551i \(-0.241753\pi\)
0.725187 + 0.688551i \(0.241753\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.0000 + 6.92820i 1.00349 + 0.579365i
\(144\) 0 0
\(145\) −1.63746 7.13752i −0.135984 0.592738i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.77492 6.53835i −0.309253 0.535642i 0.668946 0.743311i \(-0.266746\pi\)
−0.978199 + 0.207669i \(0.933412\pi\)
\(150\) 0 0
\(151\) 10.1375 17.5586i 0.824975 1.42890i −0.0769640 0.997034i \(-0.524523\pi\)
0.901939 0.431864i \(-0.142144\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 9.13746 + 2.80739i 0.733938 + 0.225495i
\(156\) 0 0
\(157\) −9.41238 5.43424i −0.751189 0.433699i 0.0749341 0.997188i \(-0.476125\pi\)
−0.826123 + 0.563489i \(0.809459\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.13746 1.01779i 0.168455 0.0802135i
\(162\) 0 0
\(163\) 6.41238 3.70219i 0.502256 0.289978i −0.227389 0.973804i \(-0.573019\pi\)
0.729645 + 0.683826i \(0.239685\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.6005i 0.975058i −0.873107 0.487529i \(-0.837898\pi\)
0.873107 0.487529i \(-0.162102\pi\)
\(168\) 0 0
\(169\) −24.0997 −1.85382
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.2371 + 9.37451i −1.23449 + 0.712731i −0.967962 0.251097i \(-0.919209\pi\)
−0.266524 + 0.963828i \(0.585875\pi\)
\(174\) 0 0
\(175\) −12.3248 + 4.80630i −0.931664 + 0.363322i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.137459 + 0.238085i −0.0102741 + 0.0177953i −0.871117 0.491076i \(-0.836604\pi\)
0.860843 + 0.508871i \(0.169937\pi\)
\(180\) 0 0
\(181\) −16.7251 −1.24317 −0.621583 0.783348i \(-0.713510\pi\)
−0.621583 + 0.783348i \(0.713510\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.54983 9.19397i −0.628596 0.675954i
\(186\) 0 0
\(187\) 9.41238 5.43424i 0.688301 0.397391i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 11.4124 + 19.7668i 0.825771 + 1.43028i 0.901329 + 0.433135i \(0.142593\pi\)
−0.0755585 + 0.997141i \(0.524074\pi\)
\(192\) 0 0
\(193\) −7.96221 4.59698i −0.573132 0.330898i 0.185267 0.982688i \(-0.440685\pi\)
−0.758399 + 0.651790i \(0.774018\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 26.0383i 1.85515i −0.373634 0.927576i \(-0.621888\pi\)
0.373634 0.927576i \(-0.378112\pi\)
\(198\) 0 0
\(199\) 4.86254 8.42217i 0.344696 0.597032i −0.640602 0.767873i \(-0.721315\pi\)
0.985299 + 0.170841i \(0.0546485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.63746 0.685484i −0.606231 0.0481115i
\(204\) 0 0
\(205\) 5.63746 + 24.5731i 0.393737 + 1.71626i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.72508 −0.672698
\(210\) 0 0
\(211\) −19.6495 −1.35273 −0.676364 0.736568i \(-0.736445\pi\)
−0.676364 + 0.736568i \(0.736445\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −14.1873 + 3.25479i −0.967565 + 0.221975i
\(216\) 0 0
\(217\) 6.41238 9.31697i 0.435300 0.632477i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.5498 + 25.2011i −0.978728 + 1.69521i
\(222\) 0 0
\(223\) 8.71780i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942853\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.58762 3.22602i −0.370864 0.214118i 0.302972 0.952999i \(-0.402021\pi\)
−0.673836 + 0.738881i \(0.735354\pi\)
\(228\) 0 0
\(229\) −2.13746 3.70219i −0.141247 0.244647i 0.786719 0.617311i \(-0.211778\pi\)
−0.927967 + 0.372663i \(0.878445\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1375 9.31697i 1.05720 0.610375i 0.132544 0.991177i \(-0.457686\pi\)
0.924656 + 0.380802i \(0.124352\pi\)
\(234\) 0 0
\(235\) −3.27492 3.52165i −0.213632 0.229727i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.5498 −0.941151 −0.470575 0.882360i \(-0.655954\pi\)
−0.470575 + 0.882360i \(0.655954\pi\)
\(240\) 0 0
\(241\) 6.41238 11.1066i 0.413057 0.715436i −0.582165 0.813071i \(-0.697794\pi\)
0.995222 + 0.0976343i \(0.0311275\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.04983 + 15.6172i 0.0670715 + 0.997748i
\(246\) 0 0
\(247\) 22.5498 13.0192i 1.43481 0.828389i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5.45017 0.344011 0.172006 0.985096i \(-0.444975\pi\)
0.172006 + 0.985096i \(0.444975\pi\)
\(252\) 0 0
\(253\) 2.03559i 0.127976i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 21.4124 12.3624i 1.33567 0.771148i 0.349506 0.936934i \(-0.386350\pi\)
0.986162 + 0.165786i \(0.0530162\pi\)
\(258\) 0 0
\(259\) −13.4124 + 6.38658i −0.833404 + 0.396843i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −23.3248 13.4666i −1.43827 0.830383i −0.440536 0.897735i \(-0.645212\pi\)
−0.997729 + 0.0673516i \(0.978545\pi\)
\(264\) 0 0
\(265\) 4.86254 15.8265i 0.298704 0.972217i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.7749 25.5909i 0.900843 1.56031i 0.0744400 0.997225i \(-0.476283\pi\)
0.826403 0.563080i \(-0.190384\pi\)
\(270\) 0 0
\(271\) 6.41238 + 11.1066i 0.389524 + 0.674676i 0.992386 0.123170i \(-0.0393062\pi\)
−0.602861 + 0.797846i \(0.705973\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.824752 + 11.3446i −0.0497344 + 0.684108i
\(276\) 0 0
\(277\) −16.1375 9.31697i −0.969606 0.559802i −0.0704898 0.997512i \(-0.522456\pi\)
−0.899116 + 0.437710i \(0.855790\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) −16.9622 9.79314i −1.00830 0.582142i −0.0976056 0.995225i \(-0.531118\pi\)
−0.910693 + 0.413084i \(0.864452\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29.7371 + 2.35999i 1.75533 + 0.139306i
\(288\) 0 0
\(289\) 2.91238 + 5.04438i 0.171316 + 0.296728i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.92820i 0.404750i 0.979308 + 0.202375i \(0.0648660\pi\)
−0.979308 + 0.202375i \(0.935134\pi\)
\(294\) 0 0
\(295\) −9.13746 2.80739i −0.532003 0.163453i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.72508 + 4.71998i 0.157596 + 0.272964i
\(300\) 0 0
\(301\) −1.36254 + 17.1687i −0.0785356 + 0.989590i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.53779 2.35999i 0.145313 0.135133i
\(306\) 0 0
\(307\) 3.99782i 0.228167i −0.993471 0.114084i \(-0.963607\pi\)
0.993471 0.114084i \(-0.0363932\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.41238 11.1066i 0.363612 0.629795i −0.624940 0.780673i \(-0.714877\pi\)
0.988552 + 0.150878i \(0.0482099\pi\)
\(312\) 0 0
\(313\) −12.5120 + 7.22383i −0.707223 + 0.408315i −0.810032 0.586386i \(-0.800550\pi\)
0.102809 + 0.994701i \(0.467217\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.31271 + 1.91259i −0.186060 + 0.107422i −0.590137 0.807303i \(-0.700926\pi\)
0.404077 + 0.914725i \(0.367593\pi\)
\(318\) 0 0
\(319\) −3.72508 + 6.45203i −0.208565 + 0.361244i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.4235i 1.13640i
\(324\) 0 0
\(325\) −13.2749 27.4093i −0.736360 1.52039i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.13746 + 2.44631i −0.283237 + 0.134869i
\(330\) 0 0
\(331\) 2.41238 + 4.17836i 0.132596 + 0.229663i 0.924677 0.380753i \(-0.124335\pi\)
−0.792080 + 0.610417i \(0.791002\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −9.13746 + 29.7405i −0.499233 + 1.62490i
\(336\) 0 0
\(337\) 13.0192i 0.709198i −0.935018 0.354599i \(-0.884617\pi\)
0.935018 0.354599i \(-0.115383\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.86254 8.42217i −0.263321 0.456086i
\(342\) 0 0
\(343\) 18.0000 + 4.35890i 0.971909 + 0.235358i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.5000 + 6.06218i 0.563670 + 0.325435i 0.754617 0.656165i \(-0.227823\pi\)
−0.190947 + 0.981600i \(0.561156\pi\)
\(348\) 0 0
\(349\) 11.2749 0.603532 0.301766 0.953382i \(-0.402424\pi\)
0.301766 + 0.953382i \(0.402424\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.4124 10.6304i −0.979992 0.565799i −0.0777242 0.996975i \(-0.524765\pi\)
−0.902268 + 0.431176i \(0.858099\pi\)
\(354\) 0 0
\(355\) −5.27492 22.9928i −0.279964 1.22033i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.687293 + 1.19043i 0.0362739 + 0.0628283i 0.883592 0.468257i \(-0.155118\pi\)
−0.847318 + 0.531085i \(0.821784\pi\)
\(360\) 0 0
\(361\) 0.362541 0.627940i 0.0190811 0.0330495i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.41238 + 4.59698i −0.0739271 + 0.240617i
\(366\) 0 0
\(367\) 12.7749 + 7.37560i 0.666845 + 0.385003i 0.794880 0.606766i \(-0.207534\pi\)
−0.128035 + 0.991770i \(0.540867\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.1375 11.1066i −0.837815 0.576624i
\(372\) 0 0
\(373\) −4.86254 + 2.80739i −0.251773 + 0.145361i −0.620576 0.784146i \(-0.713101\pi\)
0.368803 + 0.929508i \(0.379768\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 19.9474i 1.02734i
\(378\) 0 0
\(379\) −23.6495 −1.21479 −0.607397 0.794399i \(-0.707786\pi\)
−0.607397 + 0.794399i \(0.707786\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 17.3248 10.0025i 0.885253 0.511101i 0.0128665 0.999917i \(-0.495904\pi\)
0.872387 + 0.488816i \(0.162571\pi\)
\(384\) 0 0
\(385\) 12.5120 + 4.95807i 0.637673 + 0.252686i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.68729 4.65453i 0.136251 0.235994i −0.789824 0.613334i \(-0.789828\pi\)
0.926075 + 0.377340i \(0.123161\pi\)
\(390\) 0 0
\(391\) 4.27492 0.216192
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.450166 0.418627i 0.0226503 0.0210634i
\(396\) 0 0
\(397\) 13.1375 7.58492i 0.659350 0.380676i −0.132679 0.991159i \(-0.542358\pi\)
0.792029 + 0.610483i \(0.209025\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i \(-0.142801\pi\)
−0.826139 + 0.563466i \(0.809468\pi\)
\(402\) 0 0
\(403\) 22.5498 + 13.0192i 1.12329 + 0.648530i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.7732i 0.633142i
\(408\) 0 0
\(409\) 5.04983 8.74657i 0.249698 0.432490i −0.713744 0.700407i \(-0.753002\pi\)
0.963442 + 0.267917i \(0.0863352\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.41238 + 9.31697i −0.315532 + 0.458458i
\(414\) 0 0
\(415\) −12.3625 + 2.83616i −0.606853 + 0.139222i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.0997 0.835373 0.417687 0.908591i \(-0.362841\pi\)
0.417687 + 0.908591i \(0.362841\pi\)
\(420\) 0 0
\(421\) 3.27492 0.159610 0.0798048 0.996811i \(-0.474570\pi\)
0.0798048 + 0.996811i \(0.474570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23.8248 1.73205i −1.15567 0.0840168i
\(426\) 0 0
\(427\) −1.76287 3.70219i −0.0853114 0.179161i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9.68729 16.7789i 0.466620 0.808210i −0.532653 0.846334i \(-0.678805\pi\)
0.999273 + 0.0381236i \(0.0121381\pi\)
\(432\) 0 0
\(433\) 26.8756i 1.29156i 0.763525 + 0.645778i \(0.223467\pi\)
−0.763525 + 0.645778i \(0.776533\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.31271 1.91259i −0.158468 0.0914917i
\(438\) 0 0
\(439\) 0.587624 + 1.01779i 0.0280458 + 0.0485767i 0.879708 0.475515i \(-0.157738\pi\)
−0.851662 + 0.524092i \(0.824405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −10.5000 + 6.06218i −0.498870 + 0.288023i −0.728247 0.685315i \(-0.759665\pi\)
0.229377 + 0.973338i \(0.426331\pi\)
\(444\) 0 0
\(445\) −11.4622 + 10.6592i −0.543361 + 0.505293i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −25.8248 −1.21875 −0.609373 0.792884i \(-0.708579\pi\)
−0.609373 + 0.792884i \(0.708579\pi\)
\(450\) 0 0
\(451\) 12.8248 22.2131i 0.603894 1.04598i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −35.6495 + 5.25370i −1.67127 + 0.246297i
\(456\) 0 0
\(457\) 17.6873 10.2118i 0.827377 0.477686i −0.0255769 0.999673i \(-0.508142\pi\)
0.852954 + 0.521987i \(0.174809\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) 6.50958i 0.302526i −0.988494 0.151263i \(-0.951666\pi\)
0.988494 0.151263i \(-0.0483340\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.5997 9.58382i 0.768141 0.443486i −0.0640700 0.997945i \(-0.520408\pi\)
0.832211 + 0.554459i \(0.187075\pi\)
\(468\) 0 0
\(469\) 30.3248 + 20.8709i 1.40027 + 0.963730i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.8248 + 7.40437i 0.589683 + 0.340453i
\(474\) 0 0
\(475\) 17.6873 + 12.0014i 0.811549 + 0.550660i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.41238 11.1066i 0.292989 0.507472i −0.681526 0.731794i \(-0.738683\pi\)
0.974515 + 0.224322i \(0.0720168\pi\)
\(480\) 0 0
\(481\) −17.0997 29.6175i −0.779678 1.35044i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 15.0997 3.46410i 0.685641 0.157297i
\(486\) 0 0
\(487\) −28.9622 16.7213i −1.31240 0.757716i −0.329909 0.944013i \(-0.607018\pi\)
−0.982494 + 0.186296i \(0.940352\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 13.4502 0.606997 0.303499 0.952832i \(-0.401845\pi\)
0.303499 + 0.952832i \(0.401845\pi\)
\(492\) 0 0
\(493\) −13.5498 7.82300i −0.610254 0.352330i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −27.8248 2.20822i −1.24811 0.0990523i
\(498\) 0 0
\(499\) 19.6873 + 34.0994i 0.881324 + 1.52650i 0.849869 + 0.526993i \(0.176681\pi\)
0.0314548 + 0.999505i \(0.489986\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.1797i 0.721418i −0.932678 0.360709i \(-0.882535\pi\)
0.932678 0.360709i \(-0.117465\pi\)
\(504\) 0 0
\(505\) 3.31271 + 1.01779i 0.147414 + 0.0452913i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.7749 + 25.5909i 0.654887 + 1.13430i 0.981922 + 0.189285i \(0.0606170\pi\)
−0.327036 + 0.945012i \(0.606050\pi\)
\(510\) 0 0
\(511\) 4.68729 + 3.22602i 0.207354 + 0.142711i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.91238 4.20713i −0.172400 0.185388i
\(516\) 0 0
\(517\) 4.89261i 0.215177i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.41238 + 11.1066i −0.280931 + 0.486587i −0.971614 0.236570i \(-0.923977\pi\)
0.690683 + 0.723158i \(0.257310\pi\)
\(522\) 0 0
\(523\) −10.1375 + 5.85286i −0.443280 + 0.255928i −0.704988 0.709219i \(-0.749048\pi\)
0.261708 + 0.965147i \(0.415714\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 17.6873 10.2118i 0.770471 0.444831i
\(528\) 0 0
\(529\) −11.0997 + 19.2252i −0.482594 + 0.835878i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 68.6750i 2.97464i
\(534\) 0 0
\(535\) 21.1873 + 22.7835i 0.916007 + 0.985017i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 10.0378 12.3624i 0.432358 0.532488i
\(540\) 0 0
\(541\) 1.22508 + 2.12191i 0.0526704 + 0.0912278i 0.891159 0.453692i \(-0.149893\pi\)
−0.838488 + 0.544920i \(0.816560\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.58762 + 2.33122i 0.325018 + 0.0998585i
\(546\) 0 0
\(547\) 36.1271i 1.54468i 0.635208 + 0.772341i \(0.280914\pi\)
−0.635208 + 0.772341i \(0.719086\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 7.00000 + 12.1244i 0.298210 + 0.516515i
\(552\) 0 0
\(553\) −0.312707 0.656712i −0.0132977 0.0279262i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.86254 + 2.80739i 0.206032 + 0.118953i 0.599466 0.800400i \(-0.295380\pi\)
−0.393434 + 0.919353i \(0.628713\pi\)
\(558\) 0 0
\(559\) −39.6495 −1.67700
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.5997 6.11972i −0.446723 0.257916i 0.259722 0.965683i \(-0.416369\pi\)
−0.706445 + 0.707768i \(0.749702\pi\)
\(564\) 0 0
\(565\) −28.3746 + 6.50958i −1.19373 + 0.273860i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 14.6873 + 25.4391i 0.615723 + 1.06646i 0.990257 + 0.139251i \(0.0444694\pi\)
−0.374534 + 0.927213i \(0.622197\pi\)
\(570\) 0 0
\(571\) 0.137459 0.238085i 0.00575246 0.00996356i −0.863135 0.504974i \(-0.831502\pi\)
0.868887 + 0.495010i \(0.164836\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.51204 + 3.70219i −0.104760 + 0.154392i
\(576\) 0 0
\(577\) 7.13746 + 4.12081i 0.297136 + 0.171552i 0.641156 0.767411i \(-0.278455\pi\)
−0.344019 + 0.938963i \(0.611789\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −1.18729 + 14.9605i −0.0492572 + 0.620667i
\(582\) 0 0
\(583\) −14.5876 + 8.42217i −0.604158 + 0.348811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9715i 0.576665i 0.957530 + 0.288333i \(0.0931009\pi\)
−0.957530 + 0.288333i \(0.906899\pi\)
\(588\) 0 0
\(589\) −18.2749 −0.753005
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.5876 10.1542i 0.722237 0.416984i −0.0933384 0.995634i \(-0.529754\pi\)
0.815576 + 0.578651i \(0.196421\pi\)
\(594\) 0 0
\(595\) −10.4124 + 26.2764i −0.426866 + 1.07723i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.13746 1.97014i 0.0464753 0.0804976i −0.841852 0.539709i \(-0.818534\pi\)
0.888327 + 0.459211i \(0.151868\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.53779 + 8.86957i −0.387766 + 0.360599i
\(606\) 0 0
\(607\) −27.8746 + 16.0934i −1.13139 + 0.653211i −0.944285 0.329128i \(-0.893245\pi\)
−0.187109 + 0.982339i \(0.559912\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.54983 11.3446i −0.264978 0.458955i
\(612\) 0 0
\(613\) 32.0619 + 18.5109i 1.29497 + 0.747650i 0.979530 0.201297i \(-0.0645156\pi\)
0.315437 + 0.948947i \(0.397849\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.57919i 0.144093i −0.997401 0.0720464i \(-0.977047\pi\)
0.997401 0.0720464i \(-0.0229530\pi\)
\(618\) 0 0
\(619\) 21.9622 38.0397i 0.882736 1.52894i 0.0344487 0.999406i \(-0.489032\pi\)
0.848287 0.529537i \(-0.177634\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.96221 + 16.7213i 0.318999 + 0.669926i
\(624\) 0 0
\(625\) 15.5000 19.6150i 0.620000 0.784602i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −26.8248 −1.06957
\(630\) 0 0
\(631\) 2.90033 0.115460 0.0577302 0.998332i \(-0.481614\pi\)
0.0577302 + 0.998332i \(0.481614\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.90033 + 0.894797i −0.154780 + 0.0355089i
\(636\) 0 0
\(637\) −6.72508 + 42.1029i −0.266457 + 1.66818i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0498 24.3350i 0.554935 0.961176i −0.442973 0.896535i \(-0.646076\pi\)
0.997909 0.0646411i \(-0.0205902\pi\)
\(642\) 0 0
\(643\) 38.3353i 1.51180i −0.654689 0.755898i \(-0.727200\pi\)
0.654689 0.755898i \(-0.272800\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.675248 + 0.389855i 0.0265468 + 0.0153268i 0.513215 0.858260i \(-0.328454\pi\)
−0.486668 + 0.873587i \(0.661788\pi\)
\(648\) 0 0
\(649\) 4.86254 + 8.42217i 0.190871 + 0.330599i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −32.0619 + 18.5109i −1.25468 + 0.724389i −0.972035 0.234836i \(-0.924545\pi\)
−0.282643 + 0.959225i \(0.591211\pi\)
\(654\) 0 0
\(655\) 29.9244 27.8279i 1.16924 1.08733i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.4502 −0.991398 −0.495699 0.868494i \(-0.665088\pi\)
−0.495699 + 0.868494i \(0.665088\pi\)
\(660\) 0 0
\(661\) 7.77492 13.4666i 0.302409 0.523788i −0.674272 0.738483i \(-0.735542\pi\)
0.976681 + 0.214695i \(0.0688758\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.8248 15.7035i 0.768771 0.608957i
\(666\) 0 0
\(667\) −2.53779 + 1.46519i −0.0982636 + 0.0567325i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −3.52575 −0.136110
\(672\) 0 0
\(673\) 3.57919i 0.137968i −0.997618 0.0689838i \(-0.978024\pi\)
0.997618 0.0689838i \(-0.0219757\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −21.3127 + 12.3049i −0.819114 + 0.472916i −0.850111 0.526604i \(-0.823465\pi\)
0.0309969 + 0.999519i \(0.490132\pi\)
\(678\) 0 0
\(679\) 1.45017 18.2728i 0.0556522 0.701248i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 13.5997 + 7.85177i 0.520377 + 0.300440i 0.737089 0.675796i \(-0.236200\pi\)
−0.216712 + 0.976236i \(0.569533\pi\)
\(684\) 0 0
\(685\) −6.03779 + 19.6517i −0.230692 + 0.750854i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 22.5498 39.0575i 0.859080 1.48797i
\(690\) 0 0
\(691\) 3.68729 + 6.38658i 0.140271 + 0.242957i 0.927599 0.373578i \(-0.121869\pi\)
−0.787327 + 0.616535i \(0.788536\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.54983 + 37.2679i 0.324314 + 1.41365i
\(696\) 0 0
\(697\) 46.6495 + 26.9331i 1.76698 + 1.02016i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.8248 0.522154 0.261077 0.965318i \(-0.415922\pi\)
0.261077 + 0.965318i \(0.415922\pi\)
\(702\) 0 0
\(703\) 20.7870 + 12.0014i 0.783995 + 0.452640i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.32475 3.37779i 0.0874313 0.127035i
\(708\) 0 0
\(709\) −12.7749 22.1268i −0.479772 0.830990i 0.519959 0.854191i \(-0.325947\pi\)
−0.999731 + 0.0232018i \(0.992614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.82518i 0.143254i
\(714\) 0 0
\(715\) −9.09967 + 29.6175i −0.340308 + 1.10763i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −3.68729 6.38658i −0.137513 0.238179i 0.789042 0.614340i \(-0.210577\pi\)
−0.926555 + 0.376160i \(0.877244\pi\)
\(720\) 0 0
\(721\) −6.13746 + 2.92248i −0.228571 + 0.108839i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 14.7371 7.13752i 0.547323 0.265081i
\(726\) 0 0
\(727\) 18.6915i 0.693228i −0.938008 0.346614i \(-0.887331\pi\)
0.938008 0.346614i \(-0.112669\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.5498 + 26.9331i −0.575131 + 0.996157i
\(732\) 0 0
\(733\) −28.8625 + 16.6638i −1.06606 + 0.615491i −0.927103 0.374807i \(-0.877709\pi\)
−0.138959 + 0.990298i \(0.544376\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 27.4124 15.8265i 1.00975 0.582978i
\(738\) 0 0
\(739\) 15.9622 27.6474i 0.587179 1.01702i −0.407420 0.913241i \(-0.633572\pi\)
0.994600 0.103784i \(-0.0330950\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.5287i 0.716440i −0.933637 0.358220i \(-0.883384\pi\)
0.933637 0.358220i \(-0.116616\pi\)
\(744\) 0 0
\(745\) 12.3625 11.4964i 0.452928 0.421196i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.2371 15.8265i 1.21446 0.578289i
\(750\) 0 0
\(751\) 11.1375 + 19.2906i 0.406412 + 0.703926i 0.994485 0.104882i \(-0.0334466\pi\)
−0.588073 + 0.808808i \(0.700113\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 43.3368 + 13.3148i 1.57719 + 0.484575i
\(756\) 0 0
\(757\) 9.43996i 0.343101i 0.985175 + 0.171551i \(0.0548777\pi\)
−0.985175 + 0.171551i \(0.945122\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14.9622 25.9153i −0.542380 0.939429i −0.998767 0.0496479i \(-0.984190\pi\)
0.456387 0.889781i \(-0.349143\pi\)
\(762\) 0 0
\(763\) 5.32475 7.73668i 0.192769 0.280087i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.5498 13.0192i −0.814227 0.470094i
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.5876 + 13.6183i 0.848388 + 0.489817i 0.860107 0.510114i \(-0.170397\pi\)
−0.0117187 + 0.999931i \(0.503730\pi\)
\(774\) 0 0
\(775\) −1.54983 + 21.3183i −0.0556717 + 0.765777i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −24.0997 41.7419i −0.863460 1.49556i
\(780\) 0 0
\(781\) −12.0000 + 20.7846i −0.429394 + 0.743732i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.13746 23.2309i 0.254747 0.829147i
\(786\) 0 0
\(787\) 1.50000 + 0.866025i 0.0534692 + 0.0308705i 0.526496 0.850177i \(-0.323505\pi\)
−0.473027 + 0.881048i \(0.656839\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.72508 + 34.3375i −0.0968928 + 1.22090i
\(792\) 0 0
\(793\) 8.17525 4.71998i 0.290312 0.167611i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.3873i 1.04095i 0.853876 + 0.520476i \(0.174246\pi\)
−0.853876 + 0.520476i \(0.825754\pi\)
\(798\) 0 0
\(799\) −10.2749 −0.363500
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 4.23713 2.44631i 0.149525 0.0863283i
\(804\) 0 0
\(805\) 3.28696 + 4.14959i 0.115850 + 0.146254i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.5997 + 37.4117i −0.759404 + 1.31533i 0.183751 + 0.982973i \(0.441176\pi\)
−0.943155 + 0.332353i \(0.892157\pi\)
\(810\) 0 0
\(811\) 22.5498 0.791832 0.395916 0.918287i \(-0.370427\pi\)
0.395916 + 0.918287i \(0.370427\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.2749 + 12.1244i 0.394943 + 0.424698i
\(816\) 0 0
\(817\) 24.0997 13.9140i 0.843141 0.486788i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.68729 + 15.0468i 0.303189 + 0.525138i 0.976856 0.213896i \(-0.0686154\pi\)
−0.673668 + 0.739034i \(0.735282\pi\)
\(822\) 0 0
\(823\) −27.9743 16.1509i −0.975121 0.562987i −0.0743276 0.997234i \(-0.523681\pi\)
−0.900794 + 0.434247i \(0.857014\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.5670i 1.58452i 0.610183 + 0.792261i \(0.291096\pi\)
−0.610183 + 0.792261i \(0.708904\pi\)
\(828\) 0 0
\(829\) 0.962210 1.66660i 0.0334189 0.0578833i −0.848832 0.528662i \(-0.822694\pi\)
0.882251 + 0.470779i \(0.156027\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 25.9622 + 21.0802i 0.899537 + 0.730387i
\(834\) 0 0
\(835\) 27.4622 6.30026i 0.950369 0.218030i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.9003 0.376321 0.188161 0.982138i \(-0.439747\pi\)
0.188161 + 0.982138i \(0.439747\pi\)
\(840\) 0 0
\(841\) −18.2749 −0.630170
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0498 52.5240i −0.414527 1.80688i
\(846\) 0 0
\(847\) 6.62541 + 13.9140i 0.227652 + 0.478089i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.51204 + 4.35099i −0.0861118 + 0.149150i
\(852\) 0 0
\(853\) 30.4547i 1.04275i 0.853327 + 0.521375i \(0.174581\pi\)
−0.853327 + 0.521375i \(0.825419\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.8625 + 16.6638i 0.985926 + 0.569224i 0.904054 0.427418i \(-0.140577\pi\)
0.0818717 + 0.996643i \(0.473910\pi\)
\(858\) 0 0
\(859\) 17.6873 + 30.6353i 0.603483 + 1.04526i 0.992289 + 0.123943i \(0.0395541\pi\)
−0.388807 + 0.921319i \(0.627113\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −21.7749 + 12.5718i −0.741227 + 0.427947i −0.822515 0.568743i \(-0.807430\pi\)
0.0812884 + 0.996691i \(0.474097\pi\)
\(864\) 0 0
\(865\) −28.5498 30.7007i −0.970723 1.04386i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.625414 −0.0212157
\(870\) 0 0
\(871\) −42.3746 + 73.3949i −1.43581 + 2.48689i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −16.6375 24.4580i −0.562449 0.826832i
\(876\) 0 0
\(877\) −38.6873 + 22.3361i −1.30638 + 0.754237i −0.981490 0.191516i \(-0.938660\pi\)
−0.324887 + 0.945753i \(0.605326\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −40.0241 −1.34845 −0.674223 0.738528i \(-0.735521\pi\)
−0.674223 + 0.738528i \(0.735521\pi\)
\(882\) 0 0
\(883\) 20.6695i 0.695585i −0.937572 0.347792i \(-0.886931\pi\)
0.937572 0.347792i \(-0.113069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −33.9743 + 19.6150i −1.14074 + 0.658609i −0.946615 0.322367i \(-0.895521\pi\)
−0.194129 + 0.980976i \(0.562188\pi\)
\(888\) 0 0
\(889\) −0.374586 + 4.71998i −0.0125632 + 0.158303i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.96221 + 4.59698i 0.266445 + 0.153832i
\(894\) 0 0
\(895\) −0.587624 0.180541i −0.0196421 0.00603483i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −7.00000 + 12.1244i −0.233463 + 0.404370i
\(900\) 0 0
\(901\) −17.6873 30.6353i −0.589249 1.02061i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.36254 36.4515i −0.277980 1.21169i
\(906\) 0 0
\(907\) −39.2492 22.6605i −1.30325 0.752430i −0.322288 0.946642i \(-0.604452\pi\)
−0.980960 + 0.194212i \(0.937785\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.09967 −0.168960 −0.0844798 0.996425i \(-0.526923\pi\)
−0.0844798 + 0.996425i \(0.526923\pi\)
\(912\) 0 0
\(913\) 11.1752 + 6.45203i 0.369847 + 0.213531i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −20.7870 43.6544i −0.686446 1.44160i
\(918\) 0 0
\(919\) 2.96221 + 5.13070i 0.0977143 + 0.169246i 0.910738 0.412984i \(-0.135514\pi\)
−0.813024 + 0.582230i \(0.802180\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 64.2585i 2.11509i
\(924\) 0 0
\(925\) 15.7629 23.2309i 0.518280 0.763828i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.95017 + 15.5021i 0.293645 + 0.508609i 0.974669 0.223653i \(-0.0717982\pi\)
−0.681023 + 0.732262i \(0.738465\pi\)
\(930\) 0 0
\(931\) −10.6873 27.9509i −0.350262 0.916054i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 16.5498 + 17.7967i 0.541237 + 0.582014i
\(936\) 0 0
\(937\) 10.5074i 0.343262i −0.985161 0.171631i \(-0.945096\pi\)
0.985161 0.171631i \(-0.0549036\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 2.13746 3.70219i 0.0696792 0.120688i −0.829081 0.559129i \(-0.811136\pi\)
0.898760 + 0.438441i \(0.144469\pi\)
\(942\) 0 0
\(943\) 8.73713 5.04438i 0.284520 0.164268i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −36.1495 + 20.8709i −1.17470 + 0.678214i −0.954783 0.297304i \(-0.903912\pi\)
−0.219918 + 0.975518i \(0.570579\pi\)
\(948\) 0 0
\(949\) −6.54983 + 11.3446i −0.212617 + 0.368263i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29.6175i 0.959405i −0.877431 0.479702i \(-0.840745\pi\)
0.877431 0.479702i \(-0.159255\pi\)
\(954\) 0 0
\(955\) −37.3746 + 34.7561i −1.20941 + 1.12468i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 20.0378 + 13.7910i 0.647054 + 0.445333i
\(960\) 0 0
\(961\) 6.36254 + 11.0202i 0.205243 + 0.355492i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.03779 19.6517i 0.194363 0.632611i
\(966\) 0 0
\(967\) 6.50958i 0.209334i −0.994507 0.104667i \(-0.966622\pi\)
0.994507 0.104667i \(-0.0333777\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 7.96221 + 13.7910i 0.255519 + 0.442573i 0.965036 0.262116i \(-0.0844202\pi\)
−0.709517 + 0.704688i \(0.751087\pi\)
\(972\) 0 0
\(973\) 45.0997 + 3.57919i 1.44583 + 0.114744i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.5876 8.42217i −0.466699 0.269449i 0.248158 0.968720i \(-0.420175\pi\)
−0.714857 + 0.699271i \(0.753508\pi\)
\(978\) 0 0
\(979\) 15.9244 0.508947
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −32.2251 18.6052i −1.02782 0.593412i −0.111461 0.993769i \(-0.535553\pi\)
−0.916360 + 0.400356i \(0.868886\pi\)
\(984\) 0 0
\(985\) 56.7492 13.0192i 1.80818 0.414825i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.91238 + 5.04438i 0.0926082 + 0.160402i
\(990\) 0 0
\(991\) 17.2371 29.8556i 0.547555 0.948394i −0.450886 0.892582i \(-0.648892\pi\)
0.998441 0.0558122i \(-0.0177748\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.7870 + 6.38658i 0.658991 + 0.202468i
\(996\) 0 0
\(997\) −4.13746 2.38876i −0.131035 0.0756529i 0.433050 0.901370i \(-0.357437\pi\)
−0.564084 + 0.825717i \(0.690771\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.bm.b.109.2 4
3.2 odd 2 140.2.q.b.109.1 yes 4
5.4 even 2 1260.2.bm.a.109.2 4
7.2 even 3 1260.2.bm.a.289.2 4
12.11 even 2 560.2.bw.a.529.1 4
15.2 even 4 700.2.i.f.501.4 8
15.8 even 4 700.2.i.f.501.1 8
15.14 odd 2 140.2.q.a.109.1 yes 4
21.2 odd 6 140.2.q.a.9.1 4
21.5 even 6 980.2.q.g.569.2 4
21.11 odd 6 980.2.e.f.589.2 4
21.17 even 6 980.2.e.c.589.3 4
21.20 even 2 980.2.q.b.949.2 4
35.9 even 6 inner 1260.2.bm.b.289.1 4
60.59 even 2 560.2.bw.e.529.1 4
84.23 even 6 560.2.bw.e.289.1 4
105.2 even 12 700.2.i.f.401.4 8
105.17 odd 12 4900.2.a.bf.1.4 4
105.23 even 12 700.2.i.f.401.1 8
105.32 even 12 4900.2.a.be.1.2 4
105.38 odd 12 4900.2.a.bf.1.2 4
105.44 odd 6 140.2.q.b.9.2 yes 4
105.53 even 12 4900.2.a.be.1.4 4
105.59 even 6 980.2.e.c.589.1 4
105.74 odd 6 980.2.e.f.589.4 4
105.89 even 6 980.2.q.b.569.1 4
105.104 even 2 980.2.q.g.949.2 4
420.359 even 6 560.2.bw.a.289.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.q.a.9.1 4 21.2 odd 6
140.2.q.a.109.1 yes 4 15.14 odd 2
140.2.q.b.9.2 yes 4 105.44 odd 6
140.2.q.b.109.1 yes 4 3.2 odd 2
560.2.bw.a.289.2 4 420.359 even 6
560.2.bw.a.529.1 4 12.11 even 2
560.2.bw.e.289.1 4 84.23 even 6
560.2.bw.e.529.1 4 60.59 even 2
700.2.i.f.401.1 8 105.23 even 12
700.2.i.f.401.4 8 105.2 even 12
700.2.i.f.501.1 8 15.8 even 4
700.2.i.f.501.4 8 15.2 even 4
980.2.e.c.589.1 4 105.59 even 6
980.2.e.c.589.3 4 21.17 even 6
980.2.e.f.589.2 4 21.11 odd 6
980.2.e.f.589.4 4 105.74 odd 6
980.2.q.b.569.1 4 105.89 even 6
980.2.q.b.949.2 4 21.20 even 2
980.2.q.g.569.2 4 21.5 even 6
980.2.q.g.949.2 4 105.104 even 2
1260.2.bm.a.109.2 4 5.4 even 2
1260.2.bm.a.289.2 4 7.2 even 3
1260.2.bm.b.109.2 4 1.1 even 1 trivial
1260.2.bm.b.289.1 4 35.9 even 6 inner
4900.2.a.be.1.2 4 105.32 even 12
4900.2.a.be.1.4 4 105.53 even 12
4900.2.a.bf.1.2 4 105.38 odd 12
4900.2.a.bf.1.4 4 105.17 odd 12