Properties

Label 700.2.i.f.401.4
Level $700$
Weight $2$
Character 700.401
Analytic conductor $5.590$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [700,2,Mod(401,700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("700.401");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 700 = 2^{2} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 700.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.58952814149\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 140)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 401.4
Root \(0.656712 - 2.13746i\) of defining polynomial
Character \(\chi\) \(=\) 700.401
Dual form 700.2.i.f.501.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{3} +(-0.209313 - 2.63746i) q^{7} +(-1.13746 - 1.97014i) q^{11} +6.09095 q^{13} +(2.38876 + 4.13746i) q^{17} +(2.13746 - 3.70219i) q^{19} +(3.77492 - 2.59808i) q^{21} +(0.447399 - 0.774917i) q^{23} +5.19615 q^{27} -3.27492 q^{29} +(2.13746 + 3.70219i) q^{31} +(1.97014 - 3.41238i) q^{33} +(-2.80739 + 4.86254i) q^{37} +(5.27492 + 9.13642i) q^{39} -11.2749 q^{41} +6.50958 q^{43} +(1.07534 - 1.86254i) q^{47} +(-6.91238 + 1.10411i) q^{49} +(-4.13746 + 7.16629i) q^{51} +(3.70219 + 6.41238i) q^{53} +7.40437 q^{57} +(-2.13746 - 3.70219i) q^{59} +(-0.774917 + 1.34220i) q^{61} +(-6.95698 - 12.0498i) q^{67} +1.54983 q^{69} +10.5498 q^{71} +(1.07534 + 1.86254i) q^{73} +(-4.95807 + 3.41238i) q^{77} +(0.137459 - 0.238085i) q^{79} +(4.50000 + 7.79423i) q^{81} -5.67232 q^{83} +(-2.83616 - 4.91238i) q^{87} +(3.50000 - 6.06218i) q^{89} +(-1.27492 - 16.0646i) q^{91} +(-3.70219 + 6.41238i) q^{93} +6.92820 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{11} + 2 q^{19} + 4 q^{29} + 2 q^{31} + 12 q^{39} - 60 q^{41} - 10 q^{49} - 18 q^{51} - 2 q^{59} + 24 q^{61} - 48 q^{69} + 24 q^{71} - 14 q^{79} + 36 q^{81} + 28 q^{89} + 20 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/700\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(351\) \(477\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 1.50000i 0.500000 + 0.866025i 1.00000 \(0\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.209313 2.63746i −0.0791130 0.996866i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.13746 1.97014i −0.342957 0.594018i 0.642024 0.766685i \(-0.278095\pi\)
−0.984980 + 0.172666i \(0.944762\pi\)
\(12\) 0 0
\(13\) 6.09095 1.68933 0.844663 0.535299i \(-0.179801\pi\)
0.844663 + 0.535299i \(0.179801\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.38876 + 4.13746i 0.579360 + 1.00348i 0.995553 + 0.0942047i \(0.0300308\pi\)
−0.416193 + 0.909276i \(0.636636\pi\)
\(18\) 0 0
\(19\) 2.13746 3.70219i 0.490367 0.849340i −0.509572 0.860428i \(-0.670196\pi\)
0.999939 + 0.0110882i \(0.00352954\pi\)
\(20\) 0 0
\(21\) 3.77492 2.59808i 0.823754 0.566947i
\(22\) 0 0
\(23\) 0.447399 0.774917i 0.0932891 0.161581i −0.815604 0.578610i \(-0.803595\pi\)
0.908893 + 0.417029i \(0.136929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) −3.27492 −0.608137 −0.304068 0.952650i \(-0.598345\pi\)
−0.304068 + 0.952650i \(0.598345\pi\)
\(30\) 0 0
\(31\) 2.13746 + 3.70219i 0.383899 + 0.664932i 0.991616 0.129221i \(-0.0412478\pi\)
−0.607717 + 0.794154i \(0.707914\pi\)
\(32\) 0 0
\(33\) 1.97014 3.41238i 0.342957 0.594018i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.80739 + 4.86254i −0.461532 + 0.799397i −0.999038 0.0438633i \(-0.986033\pi\)
0.537506 + 0.843260i \(0.319367\pi\)
\(38\) 0 0
\(39\) 5.27492 + 9.13642i 0.844663 + 1.46300i
\(40\) 0 0
\(41\) −11.2749 −1.76085 −0.880423 0.474189i \(-0.842741\pi\)
−0.880423 + 0.474189i \(0.842741\pi\)
\(42\) 0 0
\(43\) 6.50958 0.992701 0.496351 0.868122i \(-0.334673\pi\)
0.496351 + 0.868122i \(0.334673\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.07534 1.86254i 0.156854 0.271680i −0.776878 0.629651i \(-0.783198\pi\)
0.933733 + 0.357971i \(0.116531\pi\)
\(48\) 0 0
\(49\) −6.91238 + 1.10411i −0.987482 + 0.157730i
\(50\) 0 0
\(51\) −4.13746 + 7.16629i −0.579360 + 1.00348i
\(52\) 0 0
\(53\) 3.70219 + 6.41238i 0.508534 + 0.880808i 0.999951 + 0.00988297i \(0.00314590\pi\)
−0.491417 + 0.870925i \(0.663521\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 7.40437 0.980733
\(58\) 0 0
\(59\) −2.13746 3.70219i −0.278273 0.481984i 0.692682 0.721243i \(-0.256429\pi\)
−0.970956 + 0.239259i \(0.923095\pi\)
\(60\) 0 0
\(61\) −0.774917 + 1.34220i −0.0992180 + 0.171851i −0.911361 0.411608i \(-0.864967\pi\)
0.812143 + 0.583458i \(0.198301\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.95698 12.0498i −0.849930 1.47212i −0.881270 0.472613i \(-0.843311\pi\)
0.0313404 0.999509i \(-0.490022\pi\)
\(68\) 0 0
\(69\) 1.54983 0.186578
\(70\) 0 0
\(71\) 10.5498 1.25204 0.626018 0.779809i \(-0.284684\pi\)
0.626018 + 0.779809i \(0.284684\pi\)
\(72\) 0 0
\(73\) 1.07534 + 1.86254i 0.125859 + 0.217994i 0.922068 0.387027i \(-0.126498\pi\)
−0.796209 + 0.605021i \(0.793165\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.95807 + 3.41238i −0.565024 + 0.388876i
\(78\) 0 0
\(79\) 0.137459 0.238085i 0.0154653 0.0267867i −0.858189 0.513334i \(-0.828410\pi\)
0.873654 + 0.486547i \(0.161744\pi\)
\(80\) 0 0
\(81\) 4.50000 + 7.79423i 0.500000 + 0.866025i
\(82\) 0 0
\(83\) −5.67232 −0.622618 −0.311309 0.950309i \(-0.600767\pi\)
−0.311309 + 0.950309i \(0.600767\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.83616 4.91238i −0.304068 0.526662i
\(88\) 0 0
\(89\) 3.50000 6.06218i 0.370999 0.642590i −0.618720 0.785611i \(-0.712349\pi\)
0.989720 + 0.143022i \(0.0456819\pi\)
\(90\) 0 0
\(91\) −1.27492 16.0646i −0.133648 1.68403i
\(92\) 0 0
\(93\) −3.70219 + 6.41238i −0.383899 + 0.664932i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.92820 0.703452 0.351726 0.936103i \(-0.385595\pi\)
0.351726 + 0.936103i \(0.385595\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −0.774917 1.34220i −0.0771071 0.133553i 0.824894 0.565288i \(-0.191235\pi\)
−0.902001 + 0.431735i \(0.857902\pi\)
\(102\) 0 0
\(103\) 1.28465 2.22508i 0.126581 0.219244i −0.795769 0.605600i \(-0.792933\pi\)
0.922350 + 0.386356i \(0.126266\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.95698 + 12.0498i −0.672556 + 1.16490i 0.304621 + 0.952474i \(0.401470\pi\)
−0.977177 + 0.212428i \(0.931863\pi\)
\(108\) 0 0
\(109\) −1.77492 3.07425i −0.170006 0.294459i 0.768416 0.639951i \(-0.221045\pi\)
−0.938422 + 0.345492i \(0.887712\pi\)
\(110\) 0 0
\(111\) −9.72508 −0.923064
\(112\) 0 0
\(113\) −13.0192 −1.22474 −0.612369 0.790572i \(-0.709783\pi\)
−0.612369 + 0.790572i \(0.709783\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 10.4124 7.16629i 0.954501 0.656933i
\(120\) 0 0
\(121\) 2.91238 5.04438i 0.264761 0.458580i
\(122\) 0 0
\(123\) −9.76436 16.9124i −0.880423 1.52494i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1.78959 −0.158801 −0.0794004 0.996843i \(-0.525301\pi\)
−0.0794004 + 0.996843i \(0.525301\pi\)
\(128\) 0 0
\(129\) 5.63746 + 9.76436i 0.496351 + 0.859704i
\(130\) 0 0
\(131\) 9.13746 15.8265i 0.798343 1.38277i −0.122351 0.992487i \(-0.539043\pi\)
0.920694 0.390285i \(-0.127623\pi\)
\(132\) 0 0
\(133\) −10.2118 4.86254i −0.885472 0.421636i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.59698 + 7.96221i 0.392747 + 0.680258i 0.992811 0.119695i \(-0.0381915\pi\)
−0.600064 + 0.799952i \(0.704858\pi\)
\(138\) 0 0
\(139\) −17.0997 −1.45037 −0.725187 0.688551i \(-0.758247\pi\)
−0.725187 + 0.688551i \(0.758247\pi\)
\(140\) 0 0
\(141\) 3.72508 0.313709
\(142\) 0 0
\(143\) −6.92820 12.0000i −0.579365 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −7.64246 9.41238i −0.630339 0.776320i
\(148\) 0 0
\(149\) −3.77492 + 6.53835i −0.309253 + 0.535642i −0.978199 0.207669i \(-0.933412\pi\)
0.668946 + 0.743311i \(0.266746\pi\)
\(150\) 0 0
\(151\) 10.1375 + 17.5586i 0.824975 + 1.42890i 0.901939 + 0.431864i \(0.142144\pi\)
−0.0769640 + 0.997034i \(0.524523\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 5.43424 + 9.41238i 0.433699 + 0.751189i 0.997188 0.0749341i \(-0.0238747\pi\)
−0.563489 + 0.826123i \(0.690541\pi\)
\(158\) 0 0
\(159\) −6.41238 + 11.1066i −0.508534 + 0.880808i
\(160\) 0 0
\(161\) −2.13746 1.01779i −0.168455 0.0802135i
\(162\) 0 0
\(163\) −3.70219 + 6.41238i −0.289978 + 0.502256i −0.973804 0.227389i \(-0.926981\pi\)
0.683826 + 0.729645i \(0.260315\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.6005 −0.975058 −0.487529 0.873107i \(-0.662102\pi\)
−0.487529 + 0.873107i \(0.662102\pi\)
\(168\) 0 0
\(169\) 24.0997 1.85382
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.37451 + 16.2371i −0.712731 + 1.23449i 0.251097 + 0.967962i \(0.419209\pi\)
−0.963828 + 0.266524i \(0.914125\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 3.70219 6.41238i 0.278273 0.481984i
\(178\) 0 0
\(179\) −0.137459 0.238085i −0.0102741 0.0177953i 0.860843 0.508871i \(-0.169937\pi\)
−0.871117 + 0.491076i \(0.836604\pi\)
\(180\) 0 0
\(181\) −16.7251 −1.24317 −0.621583 0.783348i \(-0.713510\pi\)
−0.621583 + 0.783348i \(0.713510\pi\)
\(182\) 0 0
\(183\) −2.68439 −0.198436
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 5.43424 9.41238i 0.397391 0.688301i
\(188\) 0 0
\(189\) −1.08762 13.7046i −0.0791130 0.996866i
\(190\) 0 0
\(191\) −11.4124 + 19.7668i −0.825771 + 1.43028i 0.0755585 + 0.997141i \(0.475926\pi\)
−0.901329 + 0.433135i \(0.857407\pi\)
\(192\) 0 0
\(193\) −4.59698 7.96221i −0.330898 0.573132i 0.651790 0.758399i \(-0.274018\pi\)
−0.982688 + 0.185267i \(0.940685\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −26.0383 −1.85515 −0.927576 0.373634i \(-0.878112\pi\)
−0.927576 + 0.373634i \(0.878112\pi\)
\(198\) 0 0
\(199\) −4.86254 8.42217i −0.344696 0.597032i 0.640602 0.767873i \(-0.278685\pi\)
−0.985299 + 0.170841i \(0.945351\pi\)
\(200\) 0 0
\(201\) 12.0498 20.8709i 0.849930 1.47212i
\(202\) 0 0
\(203\) 0.685484 + 8.63746i 0.0481115 + 0.606231i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.72508 −0.672698
\(210\) 0 0
\(211\) −19.6495 −1.35273 −0.676364 0.736568i \(-0.736445\pi\)
−0.676364 + 0.736568i \(0.736445\pi\)
\(212\) 0 0
\(213\) 9.13642 + 15.8248i 0.626018 + 1.08429i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.31697 6.41238i 0.632477 0.435300i
\(218\) 0 0
\(219\) −1.86254 + 3.22602i −0.125859 + 0.217994i
\(220\) 0 0
\(221\) 14.5498 + 25.2011i 0.978728 + 1.69521i
\(222\) 0 0
\(223\) −8.71780 −0.583787 −0.291893 0.956451i \(-0.594285\pi\)
−0.291893 + 0.956451i \(0.594285\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.22602 5.58762i −0.214118 0.370864i 0.738881 0.673836i \(-0.235354\pi\)
−0.952999 + 0.302972i \(0.902021\pi\)
\(228\) 0 0
\(229\) 2.13746 3.70219i 0.141247 0.244647i −0.786719 0.617311i \(-0.788222\pi\)
0.927967 + 0.372663i \(0.121555\pi\)
\(230\) 0 0
\(231\) −9.41238 4.48190i −0.619289 0.294887i
\(232\) 0 0
\(233\) 9.31697 16.1375i 0.610375 1.05720i −0.380802 0.924656i \(-0.624352\pi\)
0.991177 0.132544i \(-0.0423145\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.476171 0.0309306
\(238\) 0 0
\(239\) −14.5498 −0.941151 −0.470575 0.882360i \(-0.655954\pi\)
−0.470575 + 0.882360i \(0.655954\pi\)
\(240\) 0 0
\(241\) 6.41238 + 11.1066i 0.413057 + 0.715436i 0.995222 0.0976343i \(-0.0311275\pi\)
−0.582165 + 0.813071i \(0.697794\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 13.0192 22.5498i 0.828389 1.43481i
\(248\) 0 0
\(249\) −4.91238 8.50848i −0.311309 0.539203i
\(250\) 0 0
\(251\) −5.45017 −0.344011 −0.172006 0.985096i \(-0.555025\pi\)
−0.172006 + 0.985096i \(0.555025\pi\)
\(252\) 0 0
\(253\) −2.03559 −0.127976
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.3624 + 21.4124i −0.771148 + 1.33567i 0.165786 + 0.986162i \(0.446984\pi\)
−0.936934 + 0.349506i \(0.886350\pi\)
\(258\) 0 0
\(259\) 13.4124 + 6.38658i 0.833404 + 0.396843i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.4666 + 23.3248i 0.830383 + 1.43827i 0.897735 + 0.440536i \(0.145212\pi\)
−0.0673516 + 0.997729i \(0.521455\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 12.1244 0.741999
\(268\) 0 0
\(269\) 14.7749 + 25.5909i 0.900843 + 1.56031i 0.826403 + 0.563080i \(0.190384\pi\)
0.0744400 + 0.997225i \(0.476283\pi\)
\(270\) 0 0
\(271\) 6.41238 11.1066i 0.389524 0.674676i −0.602861 0.797846i \(-0.705973\pi\)
0.992386 + 0.123170i \(0.0393062\pi\)
\(272\) 0 0
\(273\) 22.9928 15.8248i 1.39159 0.957758i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.31697 + 16.1375i 0.559802 + 0.969606i 0.997512 + 0.0704898i \(0.0224562\pi\)
−0.437710 + 0.899116i \(0.644210\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −9.79314 16.9622i −0.582142 1.00830i −0.995225 0.0976056i \(-0.968882\pi\)
0.413084 0.910693i \(-0.364452\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.35999 + 29.7371i 0.139306 + 1.75533i
\(288\) 0 0
\(289\) −2.91238 + 5.04438i −0.171316 + 0.296728i
\(290\) 0 0
\(291\) 6.00000 + 10.3923i 0.351726 + 0.609208i
\(292\) 0 0
\(293\) −6.92820 −0.404750 −0.202375 0.979308i \(-0.564866\pi\)
−0.202375 + 0.979308i \(0.564866\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −5.91041 10.2371i −0.342957 0.594018i
\(298\) 0 0
\(299\) 2.72508 4.71998i 0.157596 0.272964i
\(300\) 0 0
\(301\) −1.36254 17.1687i −0.0785356 0.989590i
\(302\) 0 0
\(303\) 1.34220 2.32475i 0.0771071 0.133553i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.99782 0.228167 0.114084 0.993471i \(-0.463607\pi\)
0.114084 + 0.993471i \(0.463607\pi\)
\(308\) 0 0
\(309\) 4.45017 0.253161
\(310\) 0 0
\(311\) −6.41238 11.1066i −0.363612 0.629795i 0.624940 0.780673i \(-0.285123\pi\)
−0.988552 + 0.150878i \(0.951790\pi\)
\(312\) 0 0
\(313\) 7.22383 12.5120i 0.408315 0.707223i −0.586386 0.810032i \(-0.699450\pi\)
0.994701 + 0.102809i \(0.0327831\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.91259 3.31271i 0.107422 0.186060i −0.807303 0.590137i \(-0.799074\pi\)
0.914725 + 0.404077i \(0.132407\pi\)
\(318\) 0 0
\(319\) 3.72508 + 6.45203i 0.208565 + 0.361244i
\(320\) 0 0
\(321\) −24.0997 −1.34511
\(322\) 0 0
\(323\) 20.4235 1.13640
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 3.07425 5.32475i 0.170006 0.294459i
\(328\) 0 0
\(329\) −5.13746 2.44631i −0.283237 0.134869i
\(330\) 0 0
\(331\) 2.41238 4.17836i 0.132596 0.229663i −0.792080 0.610417i \(-0.791002\pi\)
0.924677 + 0.380753i \(0.124335\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0192 0.709198 0.354599 0.935018i \(-0.384617\pi\)
0.354599 + 0.935018i \(0.384617\pi\)
\(338\) 0 0
\(339\) −11.2749 19.5287i −0.612369 1.06065i
\(340\) 0 0
\(341\) 4.86254 8.42217i 0.263321 0.456086i
\(342\) 0 0
\(343\) 4.35890 + 18.0000i 0.235358 + 0.971909i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.06218 + 10.5000i 0.325435 + 0.563670i 0.981600 0.190947i \(-0.0611560\pi\)
−0.656165 + 0.754617i \(0.727823\pi\)
\(348\) 0 0
\(349\) −11.2749 −0.603532 −0.301766 0.953382i \(-0.597576\pi\)
−0.301766 + 0.953382i \(0.597576\pi\)
\(350\) 0 0
\(351\) 31.6495 1.68933
\(352\) 0 0
\(353\) 10.6304 + 18.4124i 0.565799 + 0.979992i 0.996975 + 0.0777242i \(0.0247654\pi\)
−0.431176 + 0.902268i \(0.641901\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 19.7668 + 9.41238i 1.04617 + 0.498156i
\(358\) 0 0
\(359\) 0.687293 1.19043i 0.0362739 0.0628283i −0.847318 0.531085i \(-0.821784\pi\)
0.883592 + 0.468257i \(0.155118\pi\)
\(360\) 0 0
\(361\) 0.362541 + 0.627940i 0.0190811 + 0.0330495i
\(362\) 0 0
\(363\) 10.0888 0.529523
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −7.37560 12.7749i −0.385003 0.666845i 0.606766 0.794880i \(-0.292466\pi\)
−0.991770 + 0.128035i \(0.959133\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.1375 11.1066i 0.837815 0.576624i
\(372\) 0 0
\(373\) 2.80739 4.86254i 0.145361 0.251773i −0.784146 0.620576i \(-0.786899\pi\)
0.929508 + 0.368803i \(0.120232\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −19.9474 −1.02734
\(378\) 0 0
\(379\) 23.6495 1.21479 0.607397 0.794399i \(-0.292214\pi\)
0.607397 + 0.794399i \(0.292214\pi\)
\(380\) 0 0
\(381\) −1.54983 2.68439i −0.0794004 0.137526i
\(382\) 0 0
\(383\) 10.0025 17.3248i 0.511101 0.885253i −0.488816 0.872387i \(-0.662571\pi\)
0.999917 0.0128665i \(-0.00409564\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.68729 + 4.65453i 0.136251 + 0.235994i 0.926075 0.377340i \(-0.123161\pi\)
−0.789824 + 0.613334i \(0.789828\pi\)
\(390\) 0 0
\(391\) 4.27492 0.216192
\(392\) 0 0
\(393\) 31.6531 1.59669
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.58492 13.1375i 0.380676 0.659350i −0.610483 0.792029i \(-0.709025\pi\)
0.991159 + 0.132679i \(0.0423580\pi\)
\(398\) 0 0
\(399\) −1.54983 19.5287i −0.0775888 0.977659i
\(400\) 0 0
\(401\) −1.50000 + 2.59808i −0.0749064 + 0.129742i −0.901046 0.433724i \(-0.857199\pi\)
0.826139 + 0.563466i \(0.190532\pi\)
\(402\) 0 0
\(403\) 13.0192 + 22.5498i 0.648530 + 1.12329i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.7732 0.633142
\(408\) 0 0
\(409\) −5.04983 8.74657i −0.249698 0.432490i 0.713744 0.700407i \(-0.246998\pi\)
−0.963442 + 0.267917i \(0.913665\pi\)
\(410\) 0 0
\(411\) −7.96221 + 13.7910i −0.392747 + 0.680258i
\(412\) 0 0
\(413\) −9.31697 + 6.41238i −0.458458 + 0.315532i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −14.8087 25.6495i −0.725187 1.25606i
\(418\) 0 0
\(419\) 17.0997 0.835373 0.417687 0.908591i \(-0.362841\pi\)
0.417687 + 0.908591i \(0.362841\pi\)
\(420\) 0 0
\(421\) 3.27492 0.159610 0.0798048 0.996811i \(-0.474570\pi\)
0.0798048 + 0.996811i \(0.474570\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.70219 + 1.76287i 0.179161 + 0.0853114i
\(428\) 0 0
\(429\) 12.0000 20.7846i 0.579365 1.00349i
\(430\) 0 0
\(431\) −9.68729 16.7789i −0.466620 0.808210i 0.532653 0.846334i \(-0.321195\pi\)
−0.999273 + 0.0381236i \(0.987862\pi\)
\(432\) 0 0
\(433\) 26.8756 1.29156 0.645778 0.763525i \(-0.276533\pi\)
0.645778 + 0.763525i \(0.276533\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.91259 3.31271i −0.0914917 0.158468i
\(438\) 0 0
\(439\) −0.587624 + 1.01779i −0.0280458 + 0.0485767i −0.879708 0.475515i \(-0.842262\pi\)
0.851662 + 0.524092i \(0.175595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.06218 + 10.5000i −0.288023 + 0.498870i −0.973338 0.229377i \(-0.926331\pi\)
0.685315 + 0.728247i \(0.259665\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −13.0767 −0.618507
\(448\) 0 0
\(449\) −25.8248 −1.21875 −0.609373 0.792884i \(-0.708579\pi\)
−0.609373 + 0.792884i \(0.708579\pi\)
\(450\) 0 0
\(451\) 12.8248 + 22.2131i 0.603894 + 1.04598i
\(452\) 0 0
\(453\) −17.5586 + 30.4124i −0.824975 + 1.42890i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.2118 17.6873i 0.477686 0.827377i −0.521987 0.852954i \(-0.674809\pi\)
0.999673 + 0.0255769i \(0.00814228\pi\)
\(458\) 0 0
\(459\) 12.4124 + 21.4989i 0.579360 + 1.00348i
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) −6.50958 −0.302526 −0.151263 0.988494i \(-0.548334\pi\)
−0.151263 + 0.988494i \(0.548334\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.58382 + 16.5997i −0.443486 + 0.768141i −0.997945 0.0640700i \(-0.979592\pi\)
0.554459 + 0.832211i \(0.312925\pi\)
\(468\) 0 0
\(469\) −30.3248 + 20.8709i −1.40027 + 0.963730i
\(470\) 0 0
\(471\) −9.41238 + 16.3027i −0.433699 + 0.751189i
\(472\) 0 0
\(473\) −7.40437 12.8248i −0.340453 0.589683i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6.41238 + 11.1066i 0.292989 + 0.507472i 0.974515 0.224322i \(-0.0720168\pi\)
−0.681526 + 0.731794i \(0.738683\pi\)
\(480\) 0 0
\(481\) −17.0997 + 29.6175i −0.779678 + 1.35044i
\(482\) 0 0
\(483\) −0.324401 4.08762i −0.0147608 0.185993i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 16.7213 + 28.9622i 0.757716 + 1.31240i 0.944013 + 0.329909i \(0.107018\pi\)
−0.186296 + 0.982494i \(0.559648\pi\)
\(488\) 0 0
\(489\) −12.8248 −0.579955
\(490\) 0 0
\(491\) −13.4502 −0.606997 −0.303499 0.952832i \(-0.598155\pi\)
−0.303499 + 0.952832i \(0.598155\pi\)
\(492\) 0 0
\(493\) −7.82300 13.5498i −0.352330 0.610254i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.20822 27.8248i −0.0990523 1.24811i
\(498\) 0 0
\(499\) −19.6873 + 34.0994i −0.881324 + 1.52650i −0.0314548 + 0.999505i \(0.510014\pi\)
−0.849869 + 0.526993i \(0.823319\pi\)
\(500\) 0 0
\(501\) −10.9124 18.9008i −0.487529 0.844425i
\(502\) 0 0
\(503\) 16.1797 0.721418 0.360709 0.932678i \(-0.382535\pi\)
0.360709 + 0.932678i \(0.382535\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 20.8709 + 36.1495i 0.926910 + 1.60546i
\(508\) 0 0
\(509\) 14.7749 25.5909i 0.654887 1.13430i −0.327036 0.945012i \(-0.606050\pi\)
0.981922 0.189285i \(-0.0606170\pi\)
\(510\) 0 0
\(511\) 4.68729 3.22602i 0.207354 0.142711i
\(512\) 0 0
\(513\) 11.1066 19.2371i 0.490367 0.849340i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −4.89261 −0.215177
\(518\) 0 0
\(519\) −32.4743 −1.42546
\(520\) 0 0
\(521\) 6.41238 + 11.1066i 0.280931 + 0.486587i 0.971614 0.236570i \(-0.0760234\pi\)
−0.690683 + 0.723158i \(0.742690\pi\)
\(522\) 0 0
\(523\) 5.85286 10.1375i 0.255928 0.443280i −0.709219 0.704988i \(-0.750952\pi\)
0.965147 + 0.261708i \(0.0842857\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.2118 + 17.6873i −0.444831 + 0.770471i
\(528\) 0 0
\(529\) 11.0997 + 19.2252i 0.482594 + 0.835878i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −68.6750 −2.97464
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0.238085 0.412376i 0.0102741 0.0177953i
\(538\) 0 0
\(539\) 10.0378 + 12.3624i 0.432358 + 0.532488i
\(540\) 0 0
\(541\) 1.22508 2.12191i 0.0526704 0.0912278i −0.838488 0.544920i \(-0.816560\pi\)
0.891159 + 0.453692i \(0.149893\pi\)
\(542\) 0 0
\(543\) −14.4843 25.0876i −0.621583 1.07661i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −36.1271 −1.54468 −0.772341 0.635208i \(-0.780914\pi\)
−0.772341 + 0.635208i \(0.780914\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −7.00000 + 12.1244i −0.298210 + 0.516515i
\(552\) 0 0
\(553\) −0.656712 0.312707i −0.0279262 0.0132977i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.80739 + 4.86254i 0.118953 + 0.206032i 0.919353 0.393434i \(-0.128713\pi\)
−0.800400 + 0.599466i \(0.795380\pi\)
\(558\) 0 0
\(559\) 39.6495 1.67700
\(560\) 0 0
\(561\) 18.8248 0.794782
\(562\) 0 0
\(563\) 6.11972 + 10.5997i 0.257916 + 0.446723i 0.965683 0.259722i \(-0.0836310\pi\)
−0.707768 + 0.706445i \(0.750298\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 19.6150 13.5000i 0.823754 0.566947i
\(568\) 0 0
\(569\) 14.6873 25.4391i 0.615723 1.06646i −0.374534 0.927213i \(-0.622197\pi\)
0.990257 0.139251i \(-0.0444694\pi\)
\(570\) 0 0
\(571\) 0.137459 + 0.238085i 0.00575246 + 0.00996356i 0.868887 0.495010i \(-0.164836\pi\)
−0.863135 + 0.504974i \(0.831502\pi\)
\(572\) 0 0
\(573\) −39.5336 −1.65154
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −4.12081 7.13746i −0.171552 0.297136i 0.767411 0.641156i \(-0.221545\pi\)
−0.938963 + 0.344019i \(0.888211\pi\)
\(578\) 0 0
\(579\) 7.96221 13.7910i 0.330898 0.573132i
\(580\) 0 0
\(581\) 1.18729 + 14.9605i 0.0492572 + 0.620667i
\(582\) 0 0
\(583\) 8.42217 14.5876i 0.348811 0.604158i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.9715 0.576665 0.288333 0.957530i \(-0.406899\pi\)
0.288333 + 0.957530i \(0.406899\pi\)
\(588\) 0 0
\(589\) 18.2749 0.753005
\(590\) 0 0
\(591\) −22.5498 39.0575i −0.927576 1.60661i
\(592\) 0 0
\(593\) 10.1542 17.5876i 0.416984 0.722237i −0.578651 0.815576i \(-0.696421\pi\)
0.995634 + 0.0933384i \(0.0297538\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.42217 14.5876i 0.344696 0.597032i
\(598\) 0 0
\(599\) 1.13746 + 1.97014i 0.0464753 + 0.0804976i 0.888327 0.459211i \(-0.151868\pi\)
−0.841852 + 0.539709i \(0.818534\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −16.0934 + 27.8746i −0.653211 + 1.13139i 0.329128 + 0.944285i \(0.393245\pi\)
−0.982339 + 0.187109i \(0.940088\pi\)
\(608\) 0 0
\(609\) −12.3625 + 8.50848i −0.500955 + 0.344781i
\(610\) 0 0
\(611\) 6.54983 11.3446i 0.264978 0.458955i
\(612\) 0 0
\(613\) 18.5109 + 32.0619i 0.747650 + 1.29497i 0.948947 + 0.315437i \(0.102151\pi\)
−0.201297 + 0.979530i \(0.564516\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −3.57919 −0.144093 −0.0720464 0.997401i \(-0.522953\pi\)
−0.0720464 + 0.997401i \(0.522953\pi\)
\(618\) 0 0
\(619\) −21.9622 38.0397i −0.882736 1.52894i −0.848287 0.529537i \(-0.822366\pi\)
−0.0344487 0.999406i \(-0.510968\pi\)
\(620\) 0 0
\(621\) 2.32475 4.02659i 0.0932891 0.161581i
\(622\) 0 0
\(623\) −16.7213 7.96221i −0.669926 0.318999i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −8.42217 14.5876i −0.336349 0.582574i
\(628\) 0 0
\(629\) −26.8248 −1.06957
\(630\) 0 0
\(631\) 2.90033 0.115460 0.0577302 0.998332i \(-0.481614\pi\)
0.0577302 + 0.998332i \(0.481614\pi\)
\(632\) 0 0
\(633\) −17.0170 29.4743i −0.676364 1.17150i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −42.1029 + 6.72508i −1.66818 + 0.266457i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.0498 24.3350i −0.554935 0.961176i −0.997909 0.0646411i \(-0.979410\pi\)
0.442973 0.896535i \(-0.353924\pi\)
\(642\) 0 0
\(643\) −38.3353 −1.51180 −0.755898 0.654689i \(-0.772800\pi\)
−0.755898 + 0.654689i \(0.772800\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0.389855 + 0.675248i 0.0153268 + 0.0265468i 0.873587 0.486668i \(-0.161788\pi\)
−0.858260 + 0.513215i \(0.828454\pi\)
\(648\) 0 0
\(649\) −4.86254 + 8.42217i −0.190871 + 0.330599i
\(650\) 0 0
\(651\) 17.6873 + 8.42217i 0.693220 + 0.330091i
\(652\) 0 0
\(653\) −18.5109 + 32.0619i −0.724389 + 1.25468i 0.234836 + 0.972035i \(0.424545\pi\)
−0.959225 + 0.282643i \(0.908789\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.4502 −0.991398 −0.495699 0.868494i \(-0.665088\pi\)
−0.495699 + 0.868494i \(0.665088\pi\)
\(660\) 0 0
\(661\) 7.77492 + 13.4666i 0.302409 + 0.523788i 0.976681 0.214695i \(-0.0688758\pi\)
−0.674272 + 0.738483i \(0.735542\pi\)
\(662\) 0 0
\(663\) −25.2011 + 43.6495i −0.978728 + 1.69521i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.46519 + 2.53779i −0.0567325 + 0.0982636i
\(668\) 0 0
\(669\) −7.54983 13.0767i −0.291893 0.505574i
\(670\) 0 0
\(671\) 3.52575 0.136110
\(672\) 0 0
\(673\) −3.57919 −0.137968 −0.0689838 0.997618i \(-0.521976\pi\)
−0.0689838 + 0.997618i \(0.521976\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 12.3049 21.3127i 0.472916 0.819114i −0.526604 0.850111i \(-0.676535\pi\)
0.999519 + 0.0309969i \(0.00986821\pi\)
\(678\) 0 0
\(679\) −1.45017 18.2728i −0.0556522 0.701248i
\(680\) 0 0
\(681\) 5.58762 9.67805i 0.214118 0.370864i
\(682\) 0 0
\(683\) −7.85177 13.5997i −0.300440 0.520377i 0.675796 0.737089i \(-0.263800\pi\)
−0.976236 + 0.216712i \(0.930467\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 7.40437 0.282494
\(688\) 0 0
\(689\) 22.5498 + 39.0575i 0.859080 + 1.48797i
\(690\) 0 0
\(691\) 3.68729 6.38658i 0.140271 0.242957i −0.787327 0.616535i \(-0.788536\pi\)
0.927599 + 0.373578i \(0.121869\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −26.9331 46.6495i −1.02016 1.76698i
\(698\) 0 0
\(699\) 32.2749 1.22075
\(700\) 0 0
\(701\) −13.8248 −0.522154 −0.261077 0.965318i \(-0.584078\pi\)
−0.261077 + 0.965318i \(0.584078\pi\)
\(702\) 0 0
\(703\) 12.0014 + 20.7870i 0.452640 + 0.783995i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.37779 + 2.32475i −0.127035 + 0.0874313i
\(708\) 0 0
\(709\) 12.7749 22.1268i 0.479772 0.830990i −0.519959 0.854191i \(-0.674053\pi\)
0.999731 + 0.0232018i \(0.00738601\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.82518 0.143254
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.6005 21.8248i −0.470575 0.815060i
\(718\) 0 0
\(719\) −3.68729 + 6.38658i −0.137513 + 0.238179i −0.926555 0.376160i \(-0.877244\pi\)
0.789042 + 0.614340i \(0.210577\pi\)
\(720\) 0 0
\(721\) −6.13746 2.92248i −0.228571 0.108839i
\(722\) 0 0
\(723\) −11.1066 + 19.2371i −0.413057 + 0.715436i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.6915 0.693228 0.346614 0.938008i \(-0.387331\pi\)
0.346614 + 0.938008i \(0.387331\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 15.5498 + 26.9331i 0.575131 + 0.996157i
\(732\) 0 0
\(733\) 16.6638 28.8625i 0.615491 1.06606i −0.374807 0.927103i \(-0.622291\pi\)
0.990298 0.138959i \(-0.0443757\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.8265 + 27.4124i −0.582978 + 1.00975i
\(738\) 0 0
\(739\) −15.9622 27.6474i −0.587179 1.01702i −0.994600 0.103784i \(-0.966905\pi\)
0.407420 0.913241i \(-0.366428\pi\)
\(740\) 0 0
\(741\) 45.0997 1.65678
\(742\) 0 0
\(743\) 19.5287 0.716440 0.358220 0.933637i \(-0.383384\pi\)
0.358220 + 0.933637i \(0.383384\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.2371 + 15.8265i 1.21446 + 0.578289i
\(750\) 0 0
\(751\) 11.1375 19.2906i 0.406412 0.703926i −0.588073 0.808808i \(-0.700113\pi\)
0.994485 + 0.104882i \(0.0334466\pi\)
\(752\) 0 0
\(753\) −4.71998 8.17525i −0.172006 0.297923i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.43996 −0.343101 −0.171551 0.985175i \(-0.554878\pi\)
−0.171551 + 0.985175i \(0.554878\pi\)
\(758\) 0 0
\(759\) −1.76287 3.05338i −0.0639882 0.110831i
\(760\) 0 0
\(761\) 14.9622 25.9153i 0.542380 0.939429i −0.456387 0.889781i \(-0.650857\pi\)
0.998767 0.0496479i \(-0.0158099\pi\)
\(762\) 0 0
\(763\) −7.73668 + 5.32475i −0.280087 + 0.192769i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.0192 22.5498i −0.470094 0.814227i
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −42.8248 −1.54230
\(772\) 0 0
\(773\) −13.6183 23.5876i −0.489817 0.848388i 0.510114 0.860107i \(-0.329603\pi\)
−0.999931 + 0.0117187i \(0.996270\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.03559 + 25.6495i 0.0730264 + 0.920171i
\(778\) 0 0
\(779\) −24.0997 + 41.7419i −0.863460 + 1.49556i
\(780\) 0 0
\(781\) −12.0000 20.7846i −0.429394 0.743732i
\(782\) 0 0
\(783\) −17.0170 −0.608137
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −0.866025 1.50000i −0.0308705 0.0534692i 0.850177 0.526496i \(-0.176495\pi\)
−0.881048 + 0.473027i \(0.843161\pi\)
\(788\) 0 0
\(789\) −23.3248 + 40.3997i −0.830383 + 1.43827i
\(790\) 0 0
\(791\) 2.72508 + 34.3375i 0.0968928 + 1.22090i
\(792\) 0 0
\(793\) −4.71998 + 8.17525i −0.167611 + 0.290312i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.3873 1.04095 0.520476 0.853876i \(-0.325754\pi\)
0.520476 + 0.853876i \(0.325754\pi\)
\(798\) 0 0
\(799\) 10.2749 0.363500
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.44631 4.23713i 0.0863283 0.149525i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −25.5909 + 44.3248i −0.900843 + 1.56031i
\(808\) 0 0
\(809\) −21.5997 37.4117i −0.759404 1.31533i −0.943155 0.332353i \(-0.892157\pi\)
0.183751 0.982973i \(-0.441176\pi\)
\(810\) 0 0
\(811\) 22.5498 0.791832 0.395916 0.918287i \(-0.370427\pi\)
0.395916 + 0.918287i \(0.370427\pi\)
\(812\) 0 0
\(813\) 22.2131 0.779048
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 13.9140 24.0997i 0.486788 0.843141i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.68729 + 15.0468i −0.303189 + 0.525138i −0.976856 0.213896i \(-0.931385\pi\)
0.673668 + 0.739034i \(0.264718\pi\)
\(822\) 0 0
\(823\) −16.1509 27.9743i −0.562987 0.975121i −0.997234 0.0743276i \(-0.976319\pi\)
0.434247 0.900794i \(-0.357014\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.5670 1.58452 0.792261 0.610183i \(-0.208904\pi\)
0.792261 + 0.610183i \(0.208904\pi\)
\(828\) 0 0
\(829\) −0.962210 1.66660i −0.0334189 0.0578833i 0.848832 0.528662i \(-0.177306\pi\)
−0.882251 + 0.470779i \(0.843973\pi\)
\(830\) 0 0
\(831\) −16.1375 + 27.9509i −0.559802 + 0.969606i
\(832\) 0 0
\(833\) −21.0802 25.9622i −0.730387 0.899537i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 11.1066 + 19.2371i 0.383899 + 0.664932i
\(838\) 0 0
\(839\) 10.9003 0.376321 0.188161 0.982138i \(-0.439747\pi\)
0.188161 + 0.982138i \(0.439747\pi\)
\(840\) 0 0
\(841\) −18.2749 −0.630170
\(842\) 0 0
\(843\) 5.19615 + 9.00000i 0.178965 + 0.309976i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −13.9140 6.62541i −0.478089 0.227652i
\(848\) 0 0
\(849\) 16.9622 29.3794i 0.582142 1.00830i
\(850\) 0 0
\(851\) 2.51204 + 4.35099i 0.0861118 + 0.149150i
\(852\) 0 0
\(853\) 30.4547 1.04275 0.521375 0.853327i \(-0.325419\pi\)
0.521375 + 0.853327i \(0.325419\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 16.6638 + 28.8625i 0.569224 + 0.985926i 0.996643 + 0.0818717i \(0.0260898\pi\)
−0.427418 + 0.904054i \(0.640577\pi\)
\(858\) 0 0
\(859\) −17.6873 + 30.6353i −0.603483 + 1.04526i 0.388807 + 0.921319i \(0.372887\pi\)
−0.992289 + 0.123943i \(0.960446\pi\)
\(860\) 0 0
\(861\) −42.5619 + 29.2931i −1.45050 + 0.998306i
\(862\) 0 0
\(863\) −12.5718 + 21.7749i −0.427947 + 0.741227i −0.996691 0.0812884i \(-0.974097\pi\)
0.568743 + 0.822515i \(0.307430\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −10.0888 −0.342632
\(868\) 0 0
\(869\) −0.625414 −0.0212157
\(870\) 0 0
\(871\) −42.3746 73.3949i −1.43581 2.48689i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −22.3361 + 38.6873i −0.754237 + 1.30638i 0.191516 + 0.981490i \(0.438660\pi\)
−0.945753 + 0.324887i \(0.894674\pi\)
\(878\) 0 0
\(879\) −6.00000 10.3923i −0.202375 0.350524i
\(880\) 0 0
\(881\) 40.0241 1.34845 0.674223 0.738528i \(-0.264479\pi\)
0.674223 + 0.738528i \(0.264479\pi\)
\(882\) 0 0
\(883\) −20.6695 −0.695585 −0.347792 0.937572i \(-0.613069\pi\)
−0.347792 + 0.937572i \(0.613069\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19.6150 33.9743i 0.658609 1.14074i −0.322367 0.946615i \(-0.604479\pi\)
0.980976 0.194129i \(-0.0621881\pi\)
\(888\) 0 0
\(889\) 0.374586 + 4.71998i 0.0125632 + 0.158303i
\(890\) 0 0
\(891\) 10.2371 17.7312i 0.342957 0.594018i
\(892\) 0 0
\(893\) −4.59698 7.96221i −0.153832 0.266445i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 9.43996 0.315191
\(898\) 0 0
\(899\) −7.00000 12.1244i −0.233463 0.404370i
\(900\) 0 0
\(901\) −17.6873 + 30.6353i −0.589249 + 1.02061i
\(902\) 0 0
\(903\) 24.5731 16.9124i 0.817742 0.562809i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 22.6605 + 39.2492i 0.752430 + 1.30325i 0.946642 + 0.322288i \(0.104452\pi\)
−0.194212 + 0.980960i \(0.562215\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.09967 0.168960 0.0844798 0.996425i \(-0.473077\pi\)
0.0844798 + 0.996425i \(0.473077\pi\)
\(912\) 0 0
\(913\) 6.45203 + 11.1752i 0.213531 + 0.369847i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −43.6544 20.7870i −1.44160 0.686446i
\(918\) 0 0
\(919\) −2.96221 + 5.13070i −0.0977143 + 0.169246i −0.910738 0.412984i \(-0.864486\pi\)
0.813024 + 0.582230i \(0.197820\pi\)
\(920\) 0 0
\(921\) 3.46221 + 5.99672i 0.114084 + 0.197599i
\(922\) 0 0
\(923\) 64.2585 2.11509
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 8.95017 15.5021i 0.293645 0.508609i −0.681023 0.732262i \(-0.738465\pi\)
0.974669 + 0.223653i \(0.0717982\pi\)
\(930\) 0 0
\(931\) −10.6873 + 27.9509i −0.350262 + 0.916054i
\(932\) 0 0
\(933\) 11.1066 19.2371i 0.363612 0.629795i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 10.5074 0.343262 0.171631 0.985161i \(-0.445096\pi\)
0.171631 + 0.985161i \(0.445096\pi\)
\(938\) 0 0
\(939\) 25.0241 0.816630
\(940\) 0 0
\(941\) −2.13746 3.70219i −0.0696792 0.120688i 0.829081 0.559129i \(-0.188864\pi\)
−0.898760 + 0.438441i \(0.855531\pi\)
\(942\) 0 0
\(943\) −5.04438 + 8.73713i −0.164268 + 0.284520i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.8709 36.1495i 0.678214 1.17470i −0.297304 0.954783i \(-0.596088\pi\)
0.975518 0.219918i \(-0.0705791\pi\)
\(948\) 0 0
\(949\) 6.54983 + 11.3446i 0.212617 + 0.368263i
\(950\) 0 0
\(951\) 6.62541 0.214844
\(952\) 0 0
\(953\) 29.6175 0.959405 0.479702 0.877431i \(-0.340745\pi\)
0.479702 + 0.877431i \(0.340745\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −6.45203 + 11.1752i −0.208565 + 0.361244i
\(958\) 0 0
\(959\) 20.0378 13.7910i 0.647054 0.445333i
\(960\) 0 0
\(961\) 6.36254 11.0202i 0.205243 0.355492i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 6.50958 0.209334 0.104667 0.994507i \(-0.466622\pi\)
0.104667 + 0.994507i \(0.466622\pi\)
\(968\) 0 0
\(969\) 17.6873 + 30.6353i 0.568198 + 0.984147i
\(970\) 0 0
\(971\) −7.96221 + 13.7910i −0.255519 + 0.442573i −0.965036 0.262116i \(-0.915580\pi\)
0.709517 + 0.704688i \(0.248913\pi\)
\(972\) 0 0
\(973\) 3.57919 + 45.0997i 0.114744 + 1.44583i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.42217 14.5876i −0.269449 0.466699i 0.699271 0.714857i \(-0.253508\pi\)
−0.968720 + 0.248158i \(0.920175\pi\)
\(978\) 0 0
\(979\) −15.9244 −0.508947
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.6052 + 32.2251i 0.593412 + 1.02782i 0.993769 + 0.111461i \(0.0355530\pi\)
−0.400356 + 0.916360i \(0.631114\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −0.779710 9.82475i −0.0248184 0.312725i
\(988\) 0 0
\(989\) 2.91238 5.04438i 0.0926082 0.160402i
\(990\) 0 0
\(991\) 17.2371 + 29.8556i 0.547555 + 0.948394i 0.998441 + 0.0558122i \(0.0177748\pi\)
−0.450886 + 0.892582i \(0.648892\pi\)
\(992\) 0 0
\(993\) 8.35671 0.265192
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 2.38876 + 4.13746i 0.0756529 + 0.131035i 0.901370 0.433050i \(-0.142563\pi\)
−0.825717 + 0.564084i \(0.809229\pi\)
\(998\) 0 0
\(999\) −14.5876 + 25.2665i −0.461532 + 0.799397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 700.2.i.f.401.4 8
5.2 odd 4 140.2.q.b.9.2 yes 4
5.3 odd 4 140.2.q.a.9.1 4
5.4 even 2 inner 700.2.i.f.401.1 8
7.2 even 3 4900.2.a.be.1.2 4
7.4 even 3 inner 700.2.i.f.501.4 8
7.5 odd 6 4900.2.a.bf.1.4 4
15.2 even 4 1260.2.bm.b.289.1 4
15.8 even 4 1260.2.bm.a.289.2 4
20.3 even 4 560.2.bw.e.289.1 4
20.7 even 4 560.2.bw.a.289.2 4
35.2 odd 12 980.2.e.f.589.4 4
35.3 even 12 980.2.q.b.949.2 4
35.4 even 6 inner 700.2.i.f.501.1 8
35.9 even 6 4900.2.a.be.1.4 4
35.12 even 12 980.2.e.c.589.1 4
35.13 even 4 980.2.q.g.569.2 4
35.17 even 12 980.2.q.g.949.2 4
35.18 odd 12 140.2.q.b.109.1 yes 4
35.19 odd 6 4900.2.a.bf.1.2 4
35.23 odd 12 980.2.e.f.589.2 4
35.27 even 4 980.2.q.b.569.1 4
35.32 odd 12 140.2.q.a.109.1 yes 4
35.33 even 12 980.2.e.c.589.3 4
105.32 even 12 1260.2.bm.a.109.2 4
105.53 even 12 1260.2.bm.b.109.2 4
140.67 even 12 560.2.bw.e.529.1 4
140.123 even 12 560.2.bw.a.529.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.2.q.a.9.1 4 5.3 odd 4
140.2.q.a.109.1 yes 4 35.32 odd 12
140.2.q.b.9.2 yes 4 5.2 odd 4
140.2.q.b.109.1 yes 4 35.18 odd 12
560.2.bw.a.289.2 4 20.7 even 4
560.2.bw.a.529.1 4 140.123 even 12
560.2.bw.e.289.1 4 20.3 even 4
560.2.bw.e.529.1 4 140.67 even 12
700.2.i.f.401.1 8 5.4 even 2 inner
700.2.i.f.401.4 8 1.1 even 1 trivial
700.2.i.f.501.1 8 35.4 even 6 inner
700.2.i.f.501.4 8 7.4 even 3 inner
980.2.e.c.589.1 4 35.12 even 12
980.2.e.c.589.3 4 35.33 even 12
980.2.e.f.589.2 4 35.23 odd 12
980.2.e.f.589.4 4 35.2 odd 12
980.2.q.b.569.1 4 35.27 even 4
980.2.q.b.949.2 4 35.3 even 12
980.2.q.g.569.2 4 35.13 even 4
980.2.q.g.949.2 4 35.17 even 12
1260.2.bm.a.109.2 4 105.32 even 12
1260.2.bm.a.289.2 4 15.8 even 4
1260.2.bm.b.109.2 4 105.53 even 12
1260.2.bm.b.289.1 4 15.2 even 4
4900.2.a.be.1.2 4 7.2 even 3
4900.2.a.be.1.4 4 35.9 even 6
4900.2.a.bf.1.2 4 35.19 odd 6
4900.2.a.bf.1.4 4 7.5 odd 6