Properties

Label 1260.2.dq.b
Level $1260$
Weight $2$
Character orbit 1260.dq
Analytic conductor $10.061$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(73,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 0, 9, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.73");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.dq (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 8 q^{7} - 12 q^{25} - 24 q^{31} - 4 q^{37} + 8 q^{43} - 24 q^{61} - 32 q^{67} - 60 q^{73} + 24 q^{85} + 88 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1 0 0 0 −2.12599 + 0.692949i 0 −2.46923 + 0.950207i 0 0 0
73.2 0 0 0 −1.33786 1.79168i 0 −0.921900 2.47994i 0 0 0
73.3 0 0 0 −1.01240 + 1.99375i 0 2.64371 0.103935i 0 0 0
73.4 0 0 0 −0.785053 2.09373i 0 −0.252577 + 2.63367i 0 0 0
73.5 0 0 0 0.785053 + 2.09373i 0 −0.252577 + 2.63367i 0 0 0
73.6 0 0 0 1.01240 1.99375i 0 2.64371 0.103935i 0 0 0
73.7 0 0 0 1.33786 + 1.79168i 0 −0.921900 2.47994i 0 0 0
73.8 0 0 0 2.12599 0.692949i 0 −2.46923 + 0.950207i 0 0 0
397.1 0 0 0 −2.12599 0.692949i 0 −2.46923 0.950207i 0 0 0
397.2 0 0 0 −1.33786 + 1.79168i 0 −0.921900 + 2.47994i 0 0 0
397.3 0 0 0 −1.01240 1.99375i 0 2.64371 + 0.103935i 0 0 0
397.4 0 0 0 −0.785053 + 2.09373i 0 −0.252577 2.63367i 0 0 0
397.5 0 0 0 0.785053 2.09373i 0 −0.252577 2.63367i 0 0 0
397.6 0 0 0 1.01240 + 1.99375i 0 2.64371 + 0.103935i 0 0 0
397.7 0 0 0 1.33786 1.79168i 0 −0.921900 + 2.47994i 0 0 0
397.8 0 0 0 2.12599 + 0.692949i 0 −2.46923 0.950207i 0 0 0
577.1 0 0 0 −2.23284 0.120113i 0 0.103935 + 2.64371i 0 0 0
577.2 0 0 0 −1.66310 + 1.49468i 0 −0.950207 2.46923i 0 0 0
577.3 0 0 0 −1.42069 1.72674i 0 −2.63367 0.252577i 0 0 0
577.4 0 0 0 −0.882709 2.05446i 0 2.47994 0.921900i 0 0 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
7.d odd 6 1 inner
15.e even 4 1 inner
21.g even 6 1 inner
35.k even 12 1 inner
105.w odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1260.2.dq.b 32
3.b odd 2 1 inner 1260.2.dq.b 32
5.c odd 4 1 inner 1260.2.dq.b 32
7.d odd 6 1 inner 1260.2.dq.b 32
15.e even 4 1 inner 1260.2.dq.b 32
21.g even 6 1 inner 1260.2.dq.b 32
35.k even 12 1 inner 1260.2.dq.b 32
105.w odd 12 1 inner 1260.2.dq.b 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1260.2.dq.b 32 1.a even 1 1 trivial
1260.2.dq.b 32 3.b odd 2 1 inner
1260.2.dq.b 32 5.c odd 4 1 inner
1260.2.dq.b 32 7.d odd 6 1 inner
1260.2.dq.b 32 15.e even 4 1 inner
1260.2.dq.b 32 21.g even 6 1 inner
1260.2.dq.b 32 35.k even 12 1 inner
1260.2.dq.b 32 105.w odd 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{16} + 38 T_{11}^{14} + 1138 T_{11}^{12} + 10568 T_{11}^{10} + 73246 T_{11}^{8} + 143180 T_{11}^{6} + \cdots + 62500 \) acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\). Copy content Toggle raw display