Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1260,2,Mod(73,1260)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 0, 9, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1260.73");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.dq (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
73.1 | 0 | 0 | 0 | −2.12599 | + | 0.692949i | 0 | −2.46923 | + | 0.950207i | 0 | 0 | 0 | ||||||||||||||
73.2 | 0 | 0 | 0 | −1.33786 | − | 1.79168i | 0 | −0.921900 | − | 2.47994i | 0 | 0 | 0 | ||||||||||||||
73.3 | 0 | 0 | 0 | −1.01240 | + | 1.99375i | 0 | 2.64371 | − | 0.103935i | 0 | 0 | 0 | ||||||||||||||
73.4 | 0 | 0 | 0 | −0.785053 | − | 2.09373i | 0 | −0.252577 | + | 2.63367i | 0 | 0 | 0 | ||||||||||||||
73.5 | 0 | 0 | 0 | 0.785053 | + | 2.09373i | 0 | −0.252577 | + | 2.63367i | 0 | 0 | 0 | ||||||||||||||
73.6 | 0 | 0 | 0 | 1.01240 | − | 1.99375i | 0 | 2.64371 | − | 0.103935i | 0 | 0 | 0 | ||||||||||||||
73.7 | 0 | 0 | 0 | 1.33786 | + | 1.79168i | 0 | −0.921900 | − | 2.47994i | 0 | 0 | 0 | ||||||||||||||
73.8 | 0 | 0 | 0 | 2.12599 | − | 0.692949i | 0 | −2.46923 | + | 0.950207i | 0 | 0 | 0 | ||||||||||||||
397.1 | 0 | 0 | 0 | −2.12599 | − | 0.692949i | 0 | −2.46923 | − | 0.950207i | 0 | 0 | 0 | ||||||||||||||
397.2 | 0 | 0 | 0 | −1.33786 | + | 1.79168i | 0 | −0.921900 | + | 2.47994i | 0 | 0 | 0 | ||||||||||||||
397.3 | 0 | 0 | 0 | −1.01240 | − | 1.99375i | 0 | 2.64371 | + | 0.103935i | 0 | 0 | 0 | ||||||||||||||
397.4 | 0 | 0 | 0 | −0.785053 | + | 2.09373i | 0 | −0.252577 | − | 2.63367i | 0 | 0 | 0 | ||||||||||||||
397.5 | 0 | 0 | 0 | 0.785053 | − | 2.09373i | 0 | −0.252577 | − | 2.63367i | 0 | 0 | 0 | ||||||||||||||
397.6 | 0 | 0 | 0 | 1.01240 | + | 1.99375i | 0 | 2.64371 | + | 0.103935i | 0 | 0 | 0 | ||||||||||||||
397.7 | 0 | 0 | 0 | 1.33786 | − | 1.79168i | 0 | −0.921900 | + | 2.47994i | 0 | 0 | 0 | ||||||||||||||
397.8 | 0 | 0 | 0 | 2.12599 | + | 0.692949i | 0 | −2.46923 | − | 0.950207i | 0 | 0 | 0 | ||||||||||||||
577.1 | 0 | 0 | 0 | −2.23284 | − | 0.120113i | 0 | 0.103935 | + | 2.64371i | 0 | 0 | 0 | ||||||||||||||
577.2 | 0 | 0 | 0 | −1.66310 | + | 1.49468i | 0 | −0.950207 | − | 2.46923i | 0 | 0 | 0 | ||||||||||||||
577.3 | 0 | 0 | 0 | −1.42069 | − | 1.72674i | 0 | −2.63367 | − | 0.252577i | 0 | 0 | 0 | ||||||||||||||
577.4 | 0 | 0 | 0 | −0.882709 | − | 2.05446i | 0 | 2.47994 | − | 0.921900i | 0 | 0 | 0 | ||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.e | even | 4 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.k | even | 12 | 1 | inner |
105.w | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.2.dq.b | ✓ | 32 |
3.b | odd | 2 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
5.c | odd | 4 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
7.d | odd | 6 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
15.e | even | 4 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
21.g | even | 6 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
35.k | even | 12 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
105.w | odd | 12 | 1 | inner | 1260.2.dq.b | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.2.dq.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
1260.2.dq.b | ✓ | 32 | 3.b | odd | 2 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 5.c | odd | 4 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 15.e | even | 4 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 21.g | even | 6 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 35.k | even | 12 | 1 | inner |
1260.2.dq.b | ✓ | 32 | 105.w | odd | 12 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{16} + 38 T_{11}^{14} + 1138 T_{11}^{12} + 10568 T_{11}^{10} + 73246 T_{11}^{8} + 143180 T_{11}^{6} + \cdots + 62500 \) acting on \(S_{2}^{\mathrm{new}}(1260, [\chi])\).