Properties

Label 1260.2.ej.a.233.11
Level $1260$
Weight $2$
Character 1260.233
Analytic conductor $10.061$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(53,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.ej (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.11
Character \(\chi\) \(=\) 1260.233
Dual form 1260.2.ej.a.557.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11962 + 1.93557i) q^{5} +(-0.988471 + 2.45417i) q^{7} +(-2.72089 + 1.57091i) q^{11} +(-0.380199 - 0.380199i) q^{13} +(0.321846 - 1.20115i) q^{17} +(-5.59110 - 3.22802i) q^{19} +(2.12591 + 7.93400i) q^{23} +(-2.49289 + 4.33422i) q^{25} -4.09991 q^{29} +(2.84794 + 4.93277i) q^{31} +(-5.85693 + 0.834480i) q^{35} +(-2.89360 - 10.7991i) q^{37} -7.39900i q^{41} +(-8.31257 - 8.31257i) q^{43} +(-1.56762 + 0.420044i) q^{47} +(-5.04585 - 4.85174i) q^{49} +(10.7595 + 2.88301i) q^{53} +(-6.08698 - 3.50766i) q^{55} +(5.50159 + 9.52904i) q^{59} +(-3.74059 + 6.47889i) q^{61} +(0.310224 - 1.16158i) q^{65} +(-4.89021 - 1.31033i) q^{67} +15.1301i q^{71} +(-2.51813 + 9.39779i) q^{73} +(-1.16575 - 8.23032i) q^{77} +(3.95167 + 2.28150i) q^{79} +(2.60611 - 2.60611i) q^{83} +(2.68525 - 0.721873i) q^{85} +(-4.35104 + 7.53622i) q^{89} +(1.30889 - 0.557255i) q^{91} +(-0.0118431 - 14.4361i) q^{95} +(2.02356 - 2.02356i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 32 q^{31} + 16 q^{37} - 16 q^{43} + 32 q^{55} + 48 q^{61} + 32 q^{67} + 40 q^{73} + 80 q^{85} + 96 q^{91} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.11962 + 1.93557i 0.500710 + 0.865615i
\(6\) 0 0
\(7\) −0.988471 + 2.45417i −0.373607 + 0.927587i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.72089 + 1.57091i −0.820380 + 0.473647i −0.850548 0.525898i \(-0.823729\pi\)
0.0301675 + 0.999545i \(0.490396\pi\)
\(12\) 0 0
\(13\) −0.380199 0.380199i −0.105448 0.105448i 0.652414 0.757863i \(-0.273756\pi\)
−0.757863 + 0.652414i \(0.773756\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.321846 1.20115i 0.0780592 0.291321i −0.915850 0.401520i \(-0.868482\pi\)
0.993910 + 0.110199i \(0.0351488\pi\)
\(18\) 0 0
\(19\) −5.59110 3.22802i −1.28269 0.740559i −0.305347 0.952241i \(-0.598773\pi\)
−0.977339 + 0.211682i \(0.932106\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.12591 + 7.93400i 0.443283 + 1.65435i 0.720431 + 0.693527i \(0.243944\pi\)
−0.277148 + 0.960827i \(0.589389\pi\)
\(24\) 0 0
\(25\) −2.49289 + 4.33422i −0.498578 + 0.866845i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.09991 −0.761334 −0.380667 0.924712i \(-0.624306\pi\)
−0.380667 + 0.924712i \(0.624306\pi\)
\(30\) 0 0
\(31\) 2.84794 + 4.93277i 0.511505 + 0.885952i 0.999911 + 0.0133360i \(0.00424510\pi\)
−0.488406 + 0.872616i \(0.662422\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.85693 + 0.834480i −0.990002 + 0.141053i
\(36\) 0 0
\(37\) −2.89360 10.7991i −0.475706 1.77536i −0.618693 0.785633i \(-0.712337\pi\)
0.142987 0.989725i \(-0.454329\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.39900i 1.15553i −0.816203 0.577765i \(-0.803925\pi\)
0.816203 0.577765i \(-0.196075\pi\)
\(42\) 0 0
\(43\) −8.31257 8.31257i −1.26766 1.26766i −0.947296 0.320359i \(-0.896197\pi\)
−0.320359 0.947296i \(-0.603803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.56762 + 0.420044i −0.228661 + 0.0612697i −0.371330 0.928501i \(-0.621098\pi\)
0.142669 + 0.989770i \(0.454432\pi\)
\(48\) 0 0
\(49\) −5.04585 4.85174i −0.720836 0.693106i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.7595 + 2.88301i 1.47793 + 0.396011i 0.905644 0.424040i \(-0.139388\pi\)
0.572290 + 0.820051i \(0.306055\pi\)
\(54\) 0 0
\(55\) −6.08698 3.50766i −0.820768 0.472973i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.50159 + 9.52904i 0.716246 + 1.24058i 0.962477 + 0.271364i \(0.0874746\pi\)
−0.246231 + 0.969211i \(0.579192\pi\)
\(60\) 0 0
\(61\) −3.74059 + 6.47889i −0.478933 + 0.829537i −0.999708 0.0241574i \(-0.992310\pi\)
0.520775 + 0.853694i \(0.325643\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.310224 1.16158i 0.0384785 0.144077i
\(66\) 0 0
\(67\) −4.89021 1.31033i −0.597434 0.160082i −0.0525853 0.998616i \(-0.516746\pi\)
−0.544848 + 0.838535i \(0.683413\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.1301i 1.79561i 0.440389 + 0.897807i \(0.354841\pi\)
−0.440389 + 0.897807i \(0.645159\pi\)
\(72\) 0 0
\(73\) −2.51813 + 9.39779i −0.294725 + 1.09993i 0.646711 + 0.762735i \(0.276144\pi\)
−0.941436 + 0.337192i \(0.890523\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.16575 8.23032i −0.132849 0.937932i
\(78\) 0 0
\(79\) 3.95167 + 2.28150i 0.444598 + 0.256688i 0.705546 0.708664i \(-0.250702\pi\)
−0.260948 + 0.965353i \(0.584035\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.60611 2.60611i 0.286057 0.286057i −0.549462 0.835519i \(-0.685167\pi\)
0.835519 + 0.549462i \(0.185167\pi\)
\(84\) 0 0
\(85\) 2.68525 0.721873i 0.291257 0.0782982i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.35104 + 7.53622i −0.461209 + 0.798838i −0.999022 0.0442266i \(-0.985918\pi\)
0.537812 + 0.843065i \(0.319251\pi\)
\(90\) 0 0
\(91\) 1.30889 0.557255i 0.137209 0.0584162i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0118431 14.4361i −0.00121508 1.48112i
\(96\) 0 0
\(97\) 2.02356 2.02356i 0.205461 0.205461i −0.596874 0.802335i \(-0.703591\pi\)
0.802335 + 0.596874i \(0.203591\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.2993 + 7.10098i −1.22382 + 0.706574i −0.965731 0.259547i \(-0.916427\pi\)
−0.258091 + 0.966121i \(0.583093\pi\)
\(102\) 0 0
\(103\) −3.45232 + 0.925045i −0.340167 + 0.0911474i −0.424858 0.905260i \(-0.639676\pi\)
0.0846916 + 0.996407i \(0.473009\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.60336 0.697568i 0.251676 0.0674364i −0.130775 0.991412i \(-0.541747\pi\)
0.382451 + 0.923976i \(0.375080\pi\)
\(108\) 0 0
\(109\) 4.95186 2.85896i 0.474302 0.273839i −0.243737 0.969841i \(-0.578373\pi\)
0.718039 + 0.696003i \(0.245040\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.976035 0.976035i 0.0918177 0.0918177i −0.659706 0.751524i \(-0.729319\pi\)
0.751524 + 0.659706i \(0.229319\pi\)
\(114\) 0 0
\(115\) −12.9766 + 12.9979i −1.21008 + 1.21206i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.62968 + 1.97716i 0.241062 + 0.181246i
\(120\) 0 0
\(121\) −0.564495 + 0.977734i −0.0513177 + 0.0888849i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 + 0.0275163i −0.999997 + 0.00246114i
\(126\) 0 0
\(127\) −5.69577 + 5.69577i −0.505417 + 0.505417i −0.913116 0.407699i \(-0.866331\pi\)
0.407699 + 0.913116i \(0.366331\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1697 + 6.44881i 0.975899 + 0.563435i 0.901029 0.433758i \(-0.142813\pi\)
0.0748691 + 0.997193i \(0.476146\pi\)
\(132\) 0 0
\(133\) 13.4487 10.5307i 1.16615 0.913125i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.19916 + 4.47534i −0.102451 + 0.382354i −0.998044 0.0625222i \(-0.980086\pi\)
0.895592 + 0.444876i \(0.146752\pi\)
\(138\) 0 0
\(139\) 7.85056i 0.665876i 0.942949 + 0.332938i \(0.108040\pi\)
−0.942949 + 0.332938i \(0.891960\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.63174 + 0.437223i 0.136453 + 0.0365624i
\(144\) 0 0
\(145\) −4.59035 7.93567i −0.381208 0.659022i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.03231 6.98416i 0.330340 0.572165i −0.652239 0.758014i \(-0.726170\pi\)
0.982578 + 0.185849i \(0.0595034\pi\)
\(150\) 0 0
\(151\) 3.05240 + 5.28692i 0.248401 + 0.430243i 0.963082 0.269207i \(-0.0867616\pi\)
−0.714681 + 0.699450i \(0.753428\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.35913 + 11.0352i −0.510778 + 0.886372i
\(156\) 0 0
\(157\) 13.5182 + 3.62219i 1.07887 + 0.289082i 0.754133 0.656722i \(-0.228058\pi\)
0.324737 + 0.945804i \(0.394724\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −21.5727 2.62520i −1.70017 0.206894i
\(162\) 0 0
\(163\) 11.3029 3.02860i 0.885309 0.237218i 0.212613 0.977137i \(-0.431803\pi\)
0.672696 + 0.739919i \(0.265136\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.72175 1.72175i −0.133233 0.133233i 0.637345 0.770578i \(-0.280032\pi\)
−0.770578 + 0.637345i \(0.780032\pi\)
\(168\) 0 0
\(169\) 12.7109i 0.977761i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.56749 + 9.58199i 0.195202 + 0.728505i 0.992214 + 0.124542i \(0.0397461\pi\)
−0.797012 + 0.603963i \(0.793587\pi\)
\(174\) 0 0
\(175\) −8.17275 10.4022i −0.617802 0.786334i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.39946 + 11.0842i 0.478318 + 0.828471i 0.999691 0.0248576i \(-0.00791323\pi\)
−0.521373 + 0.853329i \(0.674580\pi\)
\(180\) 0 0
\(181\) 20.6067 1.53168 0.765841 0.643030i \(-0.222323\pi\)
0.765841 + 0.643030i \(0.222323\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 17.6627 17.6917i 1.29859 1.30072i
\(186\) 0 0
\(187\) 1.01118 + 3.77378i 0.0739450 + 0.275966i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.4274 9.48434i −1.18864 0.686262i −0.230644 0.973038i \(-0.574083\pi\)
−0.957998 + 0.286776i \(0.907417\pi\)
\(192\) 0 0
\(193\) 0.179426 0.669626i 0.0129153 0.0482007i −0.959167 0.282839i \(-0.908724\pi\)
0.972083 + 0.234638i \(0.0753905\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.03090 2.03090i −0.144696 0.144696i 0.631048 0.775744i \(-0.282625\pi\)
−0.775744 + 0.631048i \(0.782625\pi\)
\(198\) 0 0
\(199\) 6.05795 3.49756i 0.429437 0.247936i −0.269670 0.962953i \(-0.586915\pi\)
0.699107 + 0.715017i \(0.253581\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.05264 10.0618i 0.284439 0.706203i
\(204\) 0 0
\(205\) 14.3213 8.28409i 1.00024 0.578586i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.2837 1.40305
\(210\) 0 0
\(211\) −23.3394 −1.60675 −0.803375 0.595474i \(-0.796964\pi\)
−0.803375 + 0.595474i \(0.796964\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.78265 25.3965i 0.462573 1.73203i
\(216\) 0 0
\(217\) −14.9209 + 2.11341i −1.01290 + 0.143468i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.579040 + 0.334309i −0.0389505 + 0.0224881i
\(222\) 0 0
\(223\) 4.20268 + 4.20268i 0.281432 + 0.281432i 0.833680 0.552248i \(-0.186230\pi\)
−0.552248 + 0.833680i \(0.686230\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.13240 15.4223i 0.274277 1.02362i −0.682047 0.731308i \(-0.738910\pi\)
0.956324 0.292308i \(-0.0944232\pi\)
\(228\) 0 0
\(229\) 18.6115 + 10.7453i 1.22988 + 0.710071i 0.967005 0.254759i \(-0.0819960\pi\)
0.262875 + 0.964830i \(0.415329\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.46192 20.3842i −0.357823 1.33541i −0.876895 0.480682i \(-0.840389\pi\)
0.519072 0.854730i \(-0.326277\pi\)
\(234\) 0 0
\(235\) −2.56817 2.56396i −0.167529 0.167254i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.49125 −0.225830 −0.112915 0.993605i \(-0.536019\pi\)
−0.112915 + 0.993605i \(0.536019\pi\)
\(240\) 0 0
\(241\) 11.5764 + 20.0509i 0.745700 + 1.29159i 0.949867 + 0.312654i \(0.101218\pi\)
−0.204167 + 0.978936i \(0.565449\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.74145 15.1987i 0.239033 0.971012i
\(246\) 0 0
\(247\) 0.898439 + 3.35302i 0.0571663 + 0.213348i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.3285i 1.28313i 0.767071 + 0.641563i \(0.221714\pi\)
−0.767071 + 0.641563i \(0.778286\pi\)
\(252\) 0 0
\(253\) −18.2480 18.2480i −1.14724 1.14724i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.213922 + 0.0573203i −0.0133441 + 0.00357554i −0.265485 0.964115i \(-0.585532\pi\)
0.252141 + 0.967691i \(0.418865\pi\)
\(258\) 0 0
\(259\) 29.3630 + 3.57319i 1.82453 + 0.222027i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.70116 0.723773i −0.166560 0.0446297i 0.174575 0.984644i \(-0.444145\pi\)
−0.341136 + 0.940014i \(0.610812\pi\)
\(264\) 0 0
\(265\) 6.46633 + 24.0537i 0.397224 + 1.47761i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.05513 + 8.75575i 0.308217 + 0.533847i 0.977972 0.208734i \(-0.0669344\pi\)
−0.669755 + 0.742582i \(0.733601\pi\)
\(270\) 0 0
\(271\) −0.417054 + 0.722359i −0.0253343 + 0.0438802i −0.878415 0.477899i \(-0.841398\pi\)
0.853080 + 0.521780i \(0.174732\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0257748 15.7091i −0.00155428 0.947292i
\(276\) 0 0
\(277\) −0.482749 0.129352i −0.0290056 0.00777202i 0.244287 0.969703i \(-0.421446\pi\)
−0.273293 + 0.961931i \(0.588113\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.50960i 0.269020i 0.990912 + 0.134510i \(0.0429461\pi\)
−0.990912 + 0.134510i \(0.957054\pi\)
\(282\) 0 0
\(283\) 2.87653 10.7354i 0.170992 0.638151i −0.826208 0.563366i \(-0.809506\pi\)
0.997200 0.0747854i \(-0.0238272\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.1584 + 7.31370i 1.07186 + 0.431714i
\(288\) 0 0
\(289\) 13.3833 + 7.72683i 0.787251 + 0.454519i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.3240 15.3240i 0.895239 0.895239i −0.0997714 0.995010i \(-0.531811\pi\)
0.995010 + 0.0997714i \(0.0318112\pi\)
\(294\) 0 0
\(295\) −12.2845 + 21.3177i −0.715228 + 1.24116i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.20823 3.82477i 0.127705 0.221192i
\(300\) 0 0
\(301\) 28.6171 12.1837i 1.64947 0.702256i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.7284 + 0.0137237i −0.957866 + 0.000785814i
\(306\) 0 0
\(307\) −11.4605 + 11.4605i −0.654087 + 0.654087i −0.953974 0.299888i \(-0.903051\pi\)
0.299888 + 0.953974i \(0.403051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.38389 2.53104i 0.248587 0.143522i −0.370530 0.928821i \(-0.620824\pi\)
0.619117 + 0.785299i \(0.287491\pi\)
\(312\) 0 0
\(313\) 8.19791 2.19662i 0.463373 0.124160i −0.0195769 0.999808i \(-0.506232\pi\)
0.482950 + 0.875648i \(0.339565\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.11319 + 2.17392i −0.455682 + 0.122100i −0.479357 0.877620i \(-0.659130\pi\)
0.0236748 + 0.999720i \(0.492463\pi\)
\(318\) 0 0
\(319\) 11.1554 6.44058i 0.624583 0.360603i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.67680 + 5.67680i −0.315866 + 0.315866i
\(324\) 0 0
\(325\) 2.59566 0.700072i 0.143981 0.0388330i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.518694 4.26241i 0.0285965 0.234994i
\(330\) 0 0
\(331\) 5.39047 9.33657i 0.296287 0.513185i −0.678996 0.734142i \(-0.737585\pi\)
0.975284 + 0.220957i \(0.0709181\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.93895 10.9324i −0.160572 0.597302i
\(336\) 0 0
\(337\) 14.1629 14.1629i 0.771501 0.771501i −0.206868 0.978369i \(-0.566327\pi\)
0.978369 + 0.206868i \(0.0663271\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.4979 8.94770i −0.839257 0.484545i
\(342\) 0 0
\(343\) 16.8946 7.58755i 0.912225 0.409689i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.21878 26.9409i 0.387525 1.44626i −0.446624 0.894722i \(-0.647374\pi\)
0.834149 0.551540i \(-0.185959\pi\)
\(348\) 0 0
\(349\) 26.6684i 1.42753i −0.700387 0.713764i \(-0.746989\pi\)
0.700387 0.713764i \(-0.253011\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.0566 + 8.32160i 1.65298 + 0.442914i 0.960444 0.278472i \(-0.0898279\pi\)
0.692533 + 0.721386i \(0.256495\pi\)
\(354\) 0 0
\(355\) −29.2855 + 16.9400i −1.55431 + 0.899083i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.46072 + 4.26209i −0.129872 + 0.224944i −0.923627 0.383293i \(-0.874790\pi\)
0.793755 + 0.608238i \(0.208123\pi\)
\(360\) 0 0
\(361\) 11.3403 + 19.6419i 0.596856 + 1.03378i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0095 + 5.64795i −1.09969 + 0.295627i
\(366\) 0 0
\(367\) −19.9454 5.34435i −1.04114 0.278973i −0.302554 0.953132i \(-0.597839\pi\)
−0.738586 + 0.674160i \(0.764506\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.7108 + 23.5559i −0.919501 + 1.22296i
\(372\) 0 0
\(373\) 27.6436 7.40708i 1.43133 0.383524i 0.541842 0.840480i \(-0.317727\pi\)
0.889489 + 0.456956i \(0.151060\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.55878 + 1.55878i 0.0802813 + 0.0802813i
\(378\) 0 0
\(379\) 10.2503i 0.526522i 0.964725 + 0.263261i \(0.0847980\pi\)
−0.964725 + 0.263261i \(0.915202\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.31099 + 27.2850i 0.373574 + 1.39420i 0.855417 + 0.517939i \(0.173301\pi\)
−0.481843 + 0.876257i \(0.660033\pi\)
\(384\) 0 0
\(385\) 14.6252 11.4712i 0.745369 0.584628i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.54833 2.68179i −0.0785036 0.135972i 0.824101 0.566443i \(-0.191681\pi\)
−0.902605 + 0.430471i \(0.858348\pi\)
\(390\) 0 0
\(391\) 10.2141 0.516550
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.00837047 + 10.2032i 0.000421164 + 0.513377i
\(396\) 0 0
\(397\) 6.71038 + 25.0435i 0.336785 + 1.25690i 0.901922 + 0.431900i \(0.142157\pi\)
−0.565137 + 0.824997i \(0.691177\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.1316 8.73625i −0.755638 0.436268i 0.0720896 0.997398i \(-0.477033\pi\)
−0.827727 + 0.561131i \(0.810367\pi\)
\(402\) 0 0
\(403\) 0.792652 2.95822i 0.0394848 0.147359i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.8375 + 24.8375i 1.23115 + 1.23115i
\(408\) 0 0
\(409\) −27.1742 + 15.6890i −1.34368 + 0.775772i −0.987345 0.158588i \(-0.949306\pi\)
−0.356332 + 0.934360i \(0.615973\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −28.8240 + 4.08264i −1.41834 + 0.200894i
\(414\) 0 0
\(415\) 7.96217 + 2.12646i 0.390847 + 0.104384i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.1134 −1.17802 −0.589008 0.808127i \(-0.700481\pi\)
−0.589008 + 0.808127i \(0.700481\pi\)
\(420\) 0 0
\(421\) −27.7464 −1.35228 −0.676139 0.736774i \(-0.736348\pi\)
−0.676139 + 0.736774i \(0.736348\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.40371 + 4.38928i 0.213611 + 0.212912i
\(426\) 0 0
\(427\) −12.2028 15.5842i −0.590535 0.754173i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.5060 + 11.8391i −0.987739 + 0.570271i −0.904598 0.426266i \(-0.859829\pi\)
−0.0831413 + 0.996538i \(0.526495\pi\)
\(432\) 0 0
\(433\) 12.7820 + 12.7820i 0.614264 + 0.614264i 0.944054 0.329790i \(-0.106978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.7250 51.2223i 0.656554 2.45029i
\(438\) 0 0
\(439\) −21.1416 12.2061i −1.00903 0.582565i −0.0981240 0.995174i \(-0.531284\pi\)
−0.910908 + 0.412609i \(0.864618\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.90926 10.8575i −0.138223 0.515855i −0.999964 0.00850631i \(-0.997292\pi\)
0.861741 0.507349i \(-0.169374\pi\)
\(444\) 0 0
\(445\) −19.4584 + 0.0159633i −0.922419 + 0.000756734i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.29747 0.344389 0.172194 0.985063i \(-0.444914\pi\)
0.172194 + 0.985063i \(0.444914\pi\)
\(450\) 0 0
\(451\) 11.6232 + 20.1319i 0.547313 + 0.947974i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.54407 + 1.90953i 0.119268 + 0.0895202i
\(456\) 0 0
\(457\) −1.78721 6.66995i −0.0836020 0.312007i 0.911444 0.411425i \(-0.134969\pi\)
−0.995046 + 0.0994176i \(0.968302\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.23973i 0.104315i 0.998639 + 0.0521574i \(0.0166097\pi\)
−0.998639 + 0.0521574i \(0.983390\pi\)
\(462\) 0 0
\(463\) −24.7669 24.7669i −1.15101 1.15101i −0.986349 0.164665i \(-0.947346\pi\)
−0.164665 0.986349i \(-0.552654\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.6447 + 6.33559i −1.09415 + 0.293176i −0.760380 0.649479i \(-0.774987\pi\)
−0.333769 + 0.942655i \(0.608320\pi\)
\(468\) 0 0
\(469\) 8.04958 10.7062i 0.371695 0.494364i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.6759 + 9.55933i 1.64038 + 0.439538i
\(474\) 0 0
\(475\) 27.9290 16.1860i 1.28147 0.742663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.9499 + 24.1620i 0.637388 + 1.10399i 0.986004 + 0.166722i \(0.0533183\pi\)
−0.348616 + 0.937266i \(0.613348\pi\)
\(480\) 0 0
\(481\) −3.00565 + 5.20594i −0.137046 + 0.237371i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.18236 + 1.65112i 0.280727 + 0.0749737i
\(486\) 0 0
\(487\) 23.6119 + 6.32679i 1.06996 + 0.286694i 0.750476 0.660898i \(-0.229824\pi\)
0.319482 + 0.947592i \(0.396491\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.50191i 0.338556i −0.985568 0.169278i \(-0.945856\pi\)
0.985568 0.169278i \(-0.0541436\pi\)
\(492\) 0 0
\(493\) −1.31954 + 4.92459i −0.0594291 + 0.221792i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −37.1318 14.9557i −1.66559 0.670854i
\(498\) 0 0
\(499\) 16.2317 + 9.37137i 0.726630 + 0.419520i 0.817188 0.576371i \(-0.195532\pi\)
−0.0905579 + 0.995891i \(0.528865\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.1780 16.1780i 0.721342 0.721342i −0.247537 0.968879i \(-0.579621\pi\)
0.968879 + 0.247537i \(0.0796210\pi\)
\(504\) 0 0
\(505\) −27.5150 15.8557i −1.22440 0.705569i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.7815 35.9945i 0.921122 1.59543i 0.123439 0.992352i \(-0.460608\pi\)
0.797683 0.603078i \(-0.206059\pi\)
\(510\) 0 0
\(511\) −20.5746 15.4693i −0.910168 0.684323i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.65578 5.64651i −0.249224 0.248815i
\(516\) 0 0
\(517\) 3.60549 3.60549i 0.158569 0.158569i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.376731 + 0.217506i −0.0165049 + 0.00952910i −0.508230 0.861222i \(-0.669700\pi\)
0.491725 + 0.870751i \(0.336367\pi\)
\(522\) 0 0
\(523\) −6.73764 + 1.80535i −0.294616 + 0.0789422i −0.403100 0.915156i \(-0.632067\pi\)
0.108483 + 0.994098i \(0.465401\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.84158 1.83320i 0.298024 0.0798553i
\(528\) 0 0
\(529\) −38.5103 + 22.2339i −1.67436 + 0.966693i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.81309 + 2.81309i −0.121849 + 0.121849i
\(534\) 0 0
\(535\) 4.26497 + 4.25798i 0.184391 + 0.184088i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.3509 + 5.27449i 0.919647 + 0.227189i
\(540\) 0 0
\(541\) −9.69165 + 16.7864i −0.416677 + 0.721705i −0.995603 0.0936748i \(-0.970139\pi\)
0.578926 + 0.815380i \(0.303472\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0779 + 6.38374i 0.474527 + 0.273449i
\(546\) 0 0
\(547\) −6.02367 + 6.02367i −0.257554 + 0.257554i −0.824058 0.566505i \(-0.808295\pi\)
0.566505 + 0.824058i \(0.308295\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.9230 + 13.2346i 0.976552 + 0.563813i
\(552\) 0 0
\(553\) −9.50528 + 7.44286i −0.404206 + 0.316502i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.72301 + 36.2868i −0.411977 + 1.53752i 0.378837 + 0.925463i \(0.376324\pi\)
−0.790814 + 0.612056i \(0.790343\pi\)
\(558\) 0 0
\(559\) 6.32086i 0.267344i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0264 + 9.65324i 1.51833 + 0.406835i 0.919192 0.393810i \(-0.128843\pi\)
0.599139 + 0.800645i \(0.295510\pi\)
\(564\) 0 0
\(565\) 2.98198 + 0.796397i 0.125453 + 0.0335047i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.66323 + 15.0052i −0.363182 + 0.629049i −0.988483 0.151335i \(-0.951643\pi\)
0.625301 + 0.780384i \(0.284976\pi\)
\(570\) 0 0
\(571\) 11.0308 + 19.1059i 0.461625 + 0.799558i 0.999042 0.0437587i \(-0.0139333\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −39.6874 10.5644i −1.65508 0.440568i
\(576\) 0 0
\(577\) −24.1437 6.46928i −1.00512 0.269320i −0.281528 0.959553i \(-0.590841\pi\)
−0.723587 + 0.690233i \(0.757508\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.81976 + 8.97187i 0.158470 + 0.372216i
\(582\) 0 0
\(583\) −33.8044 + 9.05787i −1.40004 + 0.375139i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.5063 + 11.5063i 0.474915 + 0.474915i 0.903501 0.428586i \(-0.140988\pi\)
−0.428586 + 0.903501i \(0.640988\pi\)
\(588\) 0 0
\(589\) 36.7728i 1.51520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.1729 + 45.4299i 0.499881 + 1.86558i 0.500768 + 0.865581i \(0.333051\pi\)
−0.000887582 1.00000i \(0.500283\pi\)
\(594\) 0 0
\(595\) −0.882699 + 7.30361i −0.0361871 + 0.299419i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.48145 + 6.03005i 0.142248 + 0.246381i 0.928343 0.371725i \(-0.121234\pi\)
−0.786095 + 0.618106i \(0.787900\pi\)
\(600\) 0 0
\(601\) −27.5177 −1.12247 −0.561235 0.827657i \(-0.689674\pi\)
−0.561235 + 0.827657i \(0.689674\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.52450 + 0.00207105i −0.102635 + 8.42001e-5i
\(606\) 0 0
\(607\) −7.95377 29.6839i −0.322834 1.20483i −0.916472 0.400099i \(-0.868976\pi\)
0.593638 0.804732i \(-0.297691\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.755709 + 0.436309i 0.0305727 + 0.0176512i
\(612\) 0 0
\(613\) 7.47201 27.8859i 0.301792 1.12630i −0.633880 0.773431i \(-0.718539\pi\)
0.935672 0.352871i \(-0.114795\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.259882 + 0.259882i 0.0104625 + 0.0104625i 0.712319 0.701856i \(-0.247645\pi\)
−0.701856 + 0.712319i \(0.747645\pi\)
\(618\) 0 0
\(619\) 16.3858 9.46036i 0.658602 0.380244i −0.133142 0.991097i \(-0.542507\pi\)
0.791744 + 0.610853i \(0.209173\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.1943 18.1275i −0.568681 0.726263i
\(624\) 0 0
\(625\) −12.5710 21.6095i −0.502839 0.864380i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.9026 −0.554332
\(630\) 0 0
\(631\) −2.77349 −0.110411 −0.0552055 0.998475i \(-0.517581\pi\)
−0.0552055 + 0.998475i \(0.517581\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17.4017 4.64747i −0.690565 0.184429i
\(636\) 0 0
\(637\) 0.0738011 + 3.76305i 0.00292411 + 0.149098i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.12501 2.38158i 0.162928 0.0940667i −0.416319 0.909219i \(-0.636680\pi\)
0.579247 + 0.815152i \(0.303347\pi\)
\(642\) 0 0
\(643\) −12.2522 12.2522i −0.483178 0.483178i 0.422967 0.906145i \(-0.360989\pi\)
−0.906145 + 0.422967i \(0.860989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.414222 + 1.54590i −0.0162848 + 0.0607755i −0.973590 0.228303i \(-0.926682\pi\)
0.957305 + 0.289079i \(0.0933489\pi\)
\(648\) 0 0
\(649\) −29.9385 17.2850i −1.17519 0.678495i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.01478 3.78720i −0.0397113 0.148205i 0.943224 0.332159i \(-0.107777\pi\)
−0.982935 + 0.183954i \(0.941110\pi\)
\(654\) 0 0
\(655\) 0.0236597 + 28.8400i 0.000924462 + 1.12687i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.1996 −0.981635 −0.490818 0.871262i \(-0.663302\pi\)
−0.490818 + 0.871262i \(0.663302\pi\)
\(660\) 0 0
\(661\) 17.7559 + 30.7542i 0.690626 + 1.19620i 0.971633 + 0.236494i \(0.0759984\pi\)
−0.281007 + 0.959706i \(0.590668\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 35.4404 + 14.2406i 1.37432 + 0.552228i
\(666\) 0 0
\(667\) −8.71603 32.5287i −0.337486 1.25952i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23.5045i 0.907380i
\(672\) 0 0
\(673\) 9.74176 + 9.74176i 0.375517 + 0.375517i 0.869482 0.493965i \(-0.164453\pi\)
−0.493965 + 0.869482i \(0.664453\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.6209 + 6.59716i −0.946259 + 0.253549i −0.698774 0.715342i \(-0.746271\pi\)
−0.247485 + 0.968892i \(0.579604\pi\)
\(678\) 0 0
\(679\) 2.96592 + 6.96637i 0.113821 + 0.267345i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.56677 0.419816i −0.0599510 0.0160638i 0.228719 0.973493i \(-0.426546\pi\)
−0.288670 + 0.957429i \(0.593213\pi\)
\(684\) 0 0
\(685\) −10.0050 + 2.68962i −0.382270 + 0.102765i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.99464 5.18687i −0.114087 0.197604i
\(690\) 0 0
\(691\) 6.68922 11.5861i 0.254470 0.440755i −0.710281 0.703918i \(-0.751432\pi\)
0.964751 + 0.263163i \(0.0847657\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.1953 + 8.78966i −0.576392 + 0.333411i
\(696\) 0 0
\(697\) −8.88729 2.38134i −0.336630 0.0901998i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.6890i 0.856950i 0.903554 + 0.428475i \(0.140949\pi\)
−0.903554 + 0.428475i \(0.859051\pi\)
\(702\) 0 0
\(703\) −18.6812 + 69.7193i −0.704576 + 2.62951i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.26952 37.2035i −0.198181 1.39918i
\(708\) 0 0
\(709\) −32.7244 18.8934i −1.22899 0.709558i −0.262172 0.965021i \(-0.584439\pi\)
−0.966819 + 0.255463i \(0.917772\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.0822 + 33.0822i −1.23894 + 1.23894i
\(714\) 0 0
\(715\) 0.980653 + 3.64787i 0.0366743 + 0.136423i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.5922 + 42.5949i −0.917133 + 1.58852i −0.113385 + 0.993551i \(0.536169\pi\)
−0.803748 + 0.594970i \(0.797164\pi\)
\(720\) 0 0
\(721\) 1.14230 9.38693i 0.0425414 0.349588i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.2206 17.7699i 0.379584 0.659958i
\(726\) 0 0
\(727\) 20.0541 20.0541i 0.743766 0.743766i −0.229534 0.973301i \(-0.573720\pi\)
0.973301 + 0.229534i \(0.0737203\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.6600 + 7.30925i −0.468247 + 0.270342i
\(732\) 0 0
\(733\) −25.1099 + 6.72817i −0.927454 + 0.248510i −0.690769 0.723076i \(-0.742728\pi\)
−0.236685 + 0.971586i \(0.576061\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.3641 4.11681i 0.565945 0.151645i
\(738\) 0 0
\(739\) 6.88907 3.97740i 0.253418 0.146311i −0.367910 0.929861i \(-0.619927\pi\)
0.621328 + 0.783550i \(0.286593\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.0815 + 11.0815i −0.406541 + 0.406541i −0.880531 0.473989i \(-0.842814\pi\)
0.473989 + 0.880531i \(0.342814\pi\)
\(744\) 0 0
\(745\) 18.0330 0.0147939i 0.660679 0.000542008i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.861397 + 7.07859i −0.0314747 + 0.258646i
\(750\) 0 0
\(751\) 19.8106 34.3130i 0.722899 1.25210i −0.236934 0.971526i \(-0.576142\pi\)
0.959833 0.280572i \(-0.0905243\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.81568 + 11.8275i −0.248048 + 0.430447i
\(756\) 0 0
\(757\) 9.30716 9.30716i 0.338274 0.338274i −0.517443 0.855718i \(-0.673116\pi\)
0.855718 + 0.517443i \(0.173116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.5097 + 19.9242i 1.25098 + 0.722252i 0.971303 0.237844i \(-0.0764407\pi\)
0.279673 + 0.960095i \(0.409774\pi\)
\(762\) 0 0
\(763\) 2.12159 + 14.9787i 0.0768066 + 0.542265i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.53123 5.71463i 0.0552895 0.206343i
\(768\) 0 0
\(769\) 52.6681i 1.89926i 0.313373 + 0.949630i \(0.398541\pi\)
−0.313373 + 0.949630i \(0.601459\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −41.4276 11.1005i −1.49005 0.399257i −0.580294 0.814407i \(-0.697062\pi\)
−0.909753 + 0.415151i \(0.863729\pi\)
\(774\) 0 0
\(775\) −28.4793 + 0.0467278i −1.02301 + 0.00167851i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.8841 + 41.3686i −0.855738 + 1.48218i
\(780\) 0 0
\(781\) −23.7680 41.1674i −0.850487 1.47309i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.12426 + 30.2210i 0.289967 + 1.07863i
\(786\) 0 0
\(787\) −1.12663 0.301878i −0.0401599 0.0107608i 0.238683 0.971097i \(-0.423284\pi\)
−0.278843 + 0.960337i \(0.589951\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.43057 + 3.36013i 0.0508652 + 0.119473i
\(792\) 0 0
\(793\) 3.88543 1.04110i 0.137976 0.0369705i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.61236 1.61236i −0.0571127 0.0571127i 0.677974 0.735086i \(-0.262858\pi\)
−0.735086 + 0.677974i \(0.762858\pi\)
\(798\) 0 0
\(799\) 2.01814i 0.0713965i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.91150 29.5261i −0.279191 1.04195i
\(804\) 0 0
\(805\) −19.0721 44.6949i −0.672202 1.57529i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.67507 + 4.63335i 0.0940503 + 0.162900i 0.909212 0.416334i \(-0.136685\pi\)
−0.815162 + 0.579234i \(0.803352\pi\)
\(810\) 0 0
\(811\) 19.7244 0.692618 0.346309 0.938120i \(-0.387435\pi\)
0.346309 + 0.938120i \(0.387435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.5170 + 18.4867i 0.648623 + 0.647559i
\(816\) 0 0
\(817\) 19.6432 + 73.3096i 0.687230 + 2.56478i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.7054 14.2636i −0.862223 0.497805i 0.00253295 0.999997i \(-0.499194\pi\)
−0.864756 + 0.502192i \(0.832527\pi\)
\(822\) 0 0
\(823\) −0.333167 + 1.24340i −0.0116135 + 0.0433421i −0.971489 0.237083i \(-0.923809\pi\)
0.959876 + 0.280425i \(0.0904754\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.6915 + 33.6915i 1.17157 + 1.17157i 0.981836 + 0.189733i \(0.0607622\pi\)
0.189733 + 0.981836i \(0.439238\pi\)
\(828\) 0 0
\(829\) 20.0337 11.5665i 0.695799 0.401720i −0.109982 0.993934i \(-0.535079\pi\)
0.805781 + 0.592214i \(0.201746\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.45164 + 4.49929i −0.258184 + 0.155891i
\(834\) 0 0
\(835\) 1.40486 5.26028i 0.0486173 0.182040i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.8467 0.788756 0.394378 0.918948i \(-0.370960\pi\)
0.394378 + 0.918948i \(0.370960\pi\)
\(840\) 0 0
\(841\) −12.1908 −0.420371
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.6029 14.2314i 0.846365 0.489575i
\(846\) 0 0
\(847\) −1.84153 2.35183i −0.0632759 0.0808097i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 79.5284 45.9157i 2.72620 1.57397i
\(852\) 0 0
\(853\) −14.3579 14.3579i −0.491604 0.491604i 0.417207 0.908811i \(-0.363009\pi\)
−0.908811 + 0.417207i \(0.863009\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.0523 + 44.9798i −0.411699 + 1.53648i 0.379658 + 0.925127i \(0.376042\pi\)
−0.791357 + 0.611355i \(0.790625\pi\)
\(858\) 0 0
\(859\) −14.7100 8.49281i −0.501898 0.289771i 0.227599 0.973755i \(-0.426912\pi\)
−0.729497 + 0.683984i \(0.760246\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.98905 29.8155i −0.271950 1.01493i −0.957858 0.287243i \(-0.907261\pi\)
0.685907 0.727689i \(-0.259406\pi\)
\(864\) 0 0
\(865\) −15.6720 + 15.6978i −0.532865 + 0.533740i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.3361 −0.486319
\(870\) 0 0
\(871\) 1.36107 + 2.35744i 0.0461180 + 0.0798787i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.9839 27.4655i 0.371323 0.928504i
\(876\) 0 0
\(877\) 13.6921 + 51.0998i 0.462351 + 1.72552i 0.665526 + 0.746375i \(0.268207\pi\)
−0.203175 + 0.979142i \(0.565126\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 40.0911i 1.35070i −0.737496 0.675351i \(-0.763992\pi\)
0.737496 0.675351i \(-0.236008\pi\)
\(882\) 0 0
\(883\) −9.29675 9.29675i −0.312860 0.312860i 0.533156 0.846017i \(-0.321006\pi\)
−0.846017 + 0.533156i \(0.821006\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.57674 + 0.958383i −0.120095 + 0.0321794i −0.318366 0.947968i \(-0.603134\pi\)
0.198271 + 0.980147i \(0.436467\pi\)
\(888\) 0 0
\(889\) −8.34825 19.6084i −0.279991 0.657646i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1207 + 2.71182i 0.338675 + 0.0907476i
\(894\) 0 0
\(895\) −14.2893 + 24.7967i −0.477638 + 0.828864i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.6763 20.2239i −0.389426 0.674505i
\(900\) 0 0
\(901\) 6.92582 11.9959i 0.230733 0.399641i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.0717 + 39.8857i 0.766929 + 1.32585i
\(906\) 0 0
\(907\) 11.0009 + 2.94768i 0.365279 + 0.0978763i 0.436790 0.899564i \(-0.356115\pi\)
−0.0715107 + 0.997440i \(0.522782\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.6632i 1.08218i −0.840965 0.541090i \(-0.818012\pi\)
0.840965 0.541090i \(-0.181988\pi\)
\(912\) 0 0
\(913\) −2.99698 + 11.1849i −0.0991856 + 0.370166i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26.8673 + 21.0378i −0.887238 + 0.694728i
\(918\) 0 0
\(919\) 15.2690 + 8.81555i 0.503677 + 0.290798i 0.730231 0.683201i \(-0.239413\pi\)
−0.226554 + 0.973999i \(0.572746\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.75245 5.75245i 0.189344 0.189344i
\(924\) 0 0
\(925\) 54.0191 + 14.3794i 1.77614 + 0.472792i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.0115 17.3405i 0.328468 0.568923i −0.653740 0.756719i \(-0.726801\pi\)
0.982208 + 0.187796i \(0.0601343\pi\)
\(930\) 0 0
\(931\) 12.5503 + 43.4147i 0.411320 + 1.42286i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.17229 + 6.18243i −0.201856 + 0.202187i
\(936\) 0 0
\(937\) 5.61057 5.61057i 0.183289 0.183289i −0.609498 0.792788i \(-0.708629\pi\)
0.792788 + 0.609498i \(0.208629\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.4386 + 6.02672i −0.340288 + 0.196466i −0.660400 0.750914i \(-0.729613\pi\)
0.320111 + 0.947380i \(0.396280\pi\)
\(942\) 0 0
\(943\) 58.7037 15.7296i 1.91166 0.512227i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.3184 8.92765i 1.08270 0.290110i 0.327001 0.945024i \(-0.393962\pi\)
0.755703 + 0.654915i \(0.227295\pi\)
\(948\) 0 0
\(949\) 4.53042 2.61564i 0.147064 0.0849072i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.1921 10.1921i 0.330156 0.330156i −0.522490 0.852646i \(-0.674997\pi\)
0.852646 + 0.522490i \(0.174997\pi\)
\(954\) 0 0
\(955\) −0.0347966 42.4152i −0.00112599 1.37252i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.79788 7.36668i −0.316390 0.237883i
\(960\) 0 0
\(961\) −0.721506 + 1.24969i −0.0232744 + 0.0403124i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.49700 0.402436i 0.0481901 0.0129549i
\(966\) 0 0
\(967\) 6.82630 6.82630i 0.219519 0.219519i −0.588777 0.808296i \(-0.700390\pi\)
0.808296 + 0.588777i \(0.200390\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.92560 + 3.42115i 0.190162 + 0.109790i 0.592058 0.805895i \(-0.298316\pi\)
−0.401897 + 0.915685i \(0.631649\pi\)
\(972\) 0 0
\(973\) −19.2666 7.76005i −0.617658 0.248776i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.5558 + 43.1269i −0.369704 + 1.37975i 0.491228 + 0.871031i \(0.336548\pi\)
−0.860931 + 0.508721i \(0.830118\pi\)
\(978\) 0 0
\(979\) 27.3403i 0.873801i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.6380 13.0325i −1.55131 0.415673i −0.621411 0.783485i \(-0.713440\pi\)
−0.929900 + 0.367812i \(0.880107\pi\)
\(984\) 0 0
\(985\) 1.65712 6.20480i 0.0528001 0.197701i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 48.2802 83.6237i 1.53522 2.65908i
\(990\) 0 0
\(991\) −22.3110 38.6437i −0.708731 1.22756i −0.965328 0.261040i \(-0.915935\pi\)
0.256597 0.966518i \(-0.417399\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.5524 + 7.80967i 0.429640 + 0.247583i
\(996\) 0 0
\(997\) −18.1286 4.85753i −0.574137 0.153840i −0.0399439 0.999202i \(-0.512718\pi\)
−0.534193 + 0.845362i \(0.679385\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.ej.a.233.11 yes 64
3.2 odd 2 inner 1260.2.ej.a.233.6 yes 64
5.2 odd 4 inner 1260.2.ej.a.737.16 yes 64
7.4 even 3 inner 1260.2.ej.a.53.1 64
15.2 even 4 inner 1260.2.ej.a.737.1 yes 64
21.11 odd 6 inner 1260.2.ej.a.53.16 yes 64
35.32 odd 12 inner 1260.2.ej.a.557.6 yes 64
105.32 even 12 inner 1260.2.ej.a.557.11 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.ej.a.53.1 64 7.4 even 3 inner
1260.2.ej.a.53.16 yes 64 21.11 odd 6 inner
1260.2.ej.a.233.6 yes 64 3.2 odd 2 inner
1260.2.ej.a.233.11 yes 64 1.1 even 1 trivial
1260.2.ej.a.557.6 yes 64 35.32 odd 12 inner
1260.2.ej.a.557.11 yes 64 105.32 even 12 inner
1260.2.ej.a.737.1 yes 64 15.2 even 4 inner
1260.2.ej.a.737.16 yes 64 5.2 odd 4 inner