Properties

Label 1260.2.ej.a.557.11
Level $1260$
Weight $2$
Character 1260.557
Analytic conductor $10.061$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(53,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.ej (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.11
Character \(\chi\) \(=\) 1260.557
Dual form 1260.2.ej.a.233.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11962 - 1.93557i) q^{5} +(-0.988471 - 2.45417i) q^{7} +(-2.72089 - 1.57091i) q^{11} +(-0.380199 + 0.380199i) q^{13} +(0.321846 + 1.20115i) q^{17} +(-5.59110 + 3.22802i) q^{19} +(2.12591 - 7.93400i) q^{23} +(-2.49289 - 4.33422i) q^{25} -4.09991 q^{29} +(2.84794 - 4.93277i) q^{31} +(-5.85693 - 0.834480i) q^{35} +(-2.89360 + 10.7991i) q^{37} +7.39900i q^{41} +(-8.31257 + 8.31257i) q^{43} +(-1.56762 - 0.420044i) q^{47} +(-5.04585 + 4.85174i) q^{49} +(10.7595 - 2.88301i) q^{53} +(-6.08698 + 3.50766i) q^{55} +(5.50159 - 9.52904i) q^{59} +(-3.74059 - 6.47889i) q^{61} +(0.310224 + 1.16158i) q^{65} +(-4.89021 + 1.31033i) q^{67} -15.1301i q^{71} +(-2.51813 - 9.39779i) q^{73} +(-1.16575 + 8.23032i) q^{77} +(3.95167 - 2.28150i) q^{79} +(2.60611 + 2.60611i) q^{83} +(2.68525 + 0.721873i) q^{85} +(-4.35104 - 7.53622i) q^{89} +(1.30889 + 0.557255i) q^{91} +(-0.0118431 + 14.4361i) q^{95} +(2.02356 + 2.02356i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 32 q^{31} + 16 q^{37} - 16 q^{43} + 32 q^{55} + 48 q^{61} + 32 q^{67} + 40 q^{73} + 80 q^{85} + 96 q^{91} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.11962 1.93557i 0.500710 0.865615i
\(6\) 0 0
\(7\) −0.988471 2.45417i −0.373607 0.927587i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.72089 1.57091i −0.820380 0.473647i 0.0301675 0.999545i \(-0.490396\pi\)
−0.850548 + 0.525898i \(0.823729\pi\)
\(12\) 0 0
\(13\) −0.380199 + 0.380199i −0.105448 + 0.105448i −0.757863 0.652414i \(-0.773756\pi\)
0.652414 + 0.757863i \(0.273756\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.321846 + 1.20115i 0.0780592 + 0.291321i 0.993910 0.110199i \(-0.0351488\pi\)
−0.915850 + 0.401520i \(0.868482\pi\)
\(18\) 0 0
\(19\) −5.59110 + 3.22802i −1.28269 + 0.740559i −0.977339 0.211682i \(-0.932106\pi\)
−0.305347 + 0.952241i \(0.598773\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.12591 7.93400i 0.443283 1.65435i −0.277148 0.960827i \(-0.589389\pi\)
0.720431 0.693527i \(-0.243944\pi\)
\(24\) 0 0
\(25\) −2.49289 4.33422i −0.498578 0.866845i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.09991 −0.761334 −0.380667 0.924712i \(-0.624306\pi\)
−0.380667 + 0.924712i \(0.624306\pi\)
\(30\) 0 0
\(31\) 2.84794 4.93277i 0.511505 0.885952i −0.488406 0.872616i \(-0.662422\pi\)
0.999911 0.0133360i \(-0.00424510\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5.85693 0.834480i −0.990002 0.141053i
\(36\) 0 0
\(37\) −2.89360 + 10.7991i −0.475706 + 1.77536i 0.142987 + 0.989725i \(0.454329\pi\)
−0.618693 + 0.785633i \(0.712337\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.39900i 1.15553i 0.816203 + 0.577765i \(0.196075\pi\)
−0.816203 + 0.577765i \(0.803925\pi\)
\(42\) 0 0
\(43\) −8.31257 + 8.31257i −1.26766 + 1.26766i −0.320359 + 0.947296i \(0.603803\pi\)
−0.947296 + 0.320359i \(0.896197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.56762 0.420044i −0.228661 0.0612697i 0.142669 0.989770i \(-0.454432\pi\)
−0.371330 + 0.928501i \(0.621098\pi\)
\(48\) 0 0
\(49\) −5.04585 + 4.85174i −0.720836 + 0.693106i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.7595 2.88301i 1.47793 0.396011i 0.572290 0.820051i \(-0.306055\pi\)
0.905644 + 0.424040i \(0.139388\pi\)
\(54\) 0 0
\(55\) −6.08698 + 3.50766i −0.820768 + 0.472973i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.50159 9.52904i 0.716246 1.24058i −0.246231 0.969211i \(-0.579192\pi\)
0.962477 0.271364i \(-0.0874746\pi\)
\(60\) 0 0
\(61\) −3.74059 6.47889i −0.478933 0.829537i 0.520775 0.853694i \(-0.325643\pi\)
−0.999708 + 0.0241574i \(0.992310\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.310224 + 1.16158i 0.0384785 + 0.144077i
\(66\) 0 0
\(67\) −4.89021 + 1.31033i −0.597434 + 0.160082i −0.544848 0.838535i \(-0.683413\pi\)
−0.0525853 + 0.998616i \(0.516746\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.1301i 1.79561i −0.440389 0.897807i \(-0.645159\pi\)
0.440389 0.897807i \(-0.354841\pi\)
\(72\) 0 0
\(73\) −2.51813 9.39779i −0.294725 1.09993i −0.941436 0.337192i \(-0.890523\pi\)
0.646711 0.762735i \(-0.276144\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.16575 + 8.23032i −0.132849 + 0.937932i
\(78\) 0 0
\(79\) 3.95167 2.28150i 0.444598 0.256688i −0.260948 0.965353i \(-0.584035\pi\)
0.705546 + 0.708664i \(0.250702\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.60611 + 2.60611i 0.286057 + 0.286057i 0.835519 0.549462i \(-0.185167\pi\)
−0.549462 + 0.835519i \(0.685167\pi\)
\(84\) 0 0
\(85\) 2.68525 + 0.721873i 0.291257 + 0.0782982i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.35104 7.53622i −0.461209 0.798838i 0.537812 0.843065i \(-0.319251\pi\)
−0.999022 + 0.0442266i \(0.985918\pi\)
\(90\) 0 0
\(91\) 1.30889 + 0.557255i 0.137209 + 0.0584162i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0118431 + 14.4361i −0.00121508 + 1.48112i
\(96\) 0 0
\(97\) 2.02356 + 2.02356i 0.205461 + 0.205461i 0.802335 0.596874i \(-0.203591\pi\)
−0.596874 + 0.802335i \(0.703591\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.2993 7.10098i −1.22382 0.706574i −0.258091 0.966121i \(-0.583093\pi\)
−0.965731 + 0.259547i \(0.916427\pi\)
\(102\) 0 0
\(103\) −3.45232 0.925045i −0.340167 0.0911474i 0.0846916 0.996407i \(-0.473009\pi\)
−0.424858 + 0.905260i \(0.639676\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.60336 + 0.697568i 0.251676 + 0.0674364i 0.382451 0.923976i \(-0.375080\pi\)
−0.130775 + 0.991412i \(0.541747\pi\)
\(108\) 0 0
\(109\) 4.95186 + 2.85896i 0.474302 + 0.273839i 0.718039 0.696003i \(-0.245040\pi\)
−0.243737 + 0.969841i \(0.578373\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.976035 + 0.976035i 0.0918177 + 0.0918177i 0.751524 0.659706i \(-0.229319\pi\)
−0.659706 + 0.751524i \(0.729319\pi\)
\(114\) 0 0
\(115\) −12.9766 12.9979i −1.21008 1.21206i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.62968 1.97716i 0.241062 0.181246i
\(120\) 0 0
\(121\) −0.564495 0.977734i −0.0513177 0.0888849i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −11.1803 0.0275163i −0.999997 0.00246114i
\(126\) 0 0
\(127\) −5.69577 5.69577i −0.505417 0.505417i 0.407699 0.913116i \(-0.366331\pi\)
−0.913116 + 0.407699i \(0.866331\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 11.1697 6.44881i 0.975899 0.563435i 0.0748691 0.997193i \(-0.476146\pi\)
0.901029 + 0.433758i \(0.142813\pi\)
\(132\) 0 0
\(133\) 13.4487 + 10.5307i 1.16615 + 0.913125i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.19916 4.47534i −0.102451 0.382354i 0.895592 0.444876i \(-0.146752\pi\)
−0.998044 + 0.0625222i \(0.980086\pi\)
\(138\) 0 0
\(139\) 7.85056i 0.665876i −0.942949 0.332938i \(-0.891960\pi\)
0.942949 0.332938i \(-0.108040\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.63174 0.437223i 0.136453 0.0365624i
\(144\) 0 0
\(145\) −4.59035 + 7.93567i −0.381208 + 0.659022i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.03231 + 6.98416i 0.330340 + 0.572165i 0.982578 0.185849i \(-0.0595034\pi\)
−0.652239 + 0.758014i \(0.726170\pi\)
\(150\) 0 0
\(151\) 3.05240 5.28692i 0.248401 0.430243i −0.714681 0.699450i \(-0.753428\pi\)
0.963082 + 0.269207i \(0.0867616\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.35913 11.0352i −0.510778 0.886372i
\(156\) 0 0
\(157\) 13.5182 3.62219i 1.07887 0.289082i 0.324737 0.945804i \(-0.394724\pi\)
0.754133 + 0.656722i \(0.228058\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −21.5727 + 2.62520i −1.70017 + 0.206894i
\(162\) 0 0
\(163\) 11.3029 + 3.02860i 0.885309 + 0.237218i 0.672696 0.739919i \(-0.265136\pi\)
0.212613 + 0.977137i \(0.431803\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.72175 + 1.72175i −0.133233 + 0.133233i −0.770578 0.637345i \(-0.780032\pi\)
0.637345 + 0.770578i \(0.280032\pi\)
\(168\) 0 0
\(169\) 12.7109i 0.977761i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.56749 9.58199i 0.195202 0.728505i −0.797012 0.603963i \(-0.793587\pi\)
0.992214 0.124542i \(-0.0397461\pi\)
\(174\) 0 0
\(175\) −8.17275 + 10.4022i −0.617802 + 0.786334i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.39946 11.0842i 0.478318 0.828471i −0.521373 0.853329i \(-0.674580\pi\)
0.999691 + 0.0248576i \(0.00791323\pi\)
\(180\) 0 0
\(181\) 20.6067 1.53168 0.765841 0.643030i \(-0.222323\pi\)
0.765841 + 0.643030i \(0.222323\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 17.6627 + 17.6917i 1.29859 + 1.30072i
\(186\) 0 0
\(187\) 1.01118 3.77378i 0.0739450 0.275966i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.4274 + 9.48434i −1.18864 + 0.686262i −0.957998 0.286776i \(-0.907417\pi\)
−0.230644 + 0.973038i \(0.574083\pi\)
\(192\) 0 0
\(193\) 0.179426 + 0.669626i 0.0129153 + 0.0482007i 0.972083 0.234638i \(-0.0753905\pi\)
−0.959167 + 0.282839i \(0.908724\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.03090 + 2.03090i −0.144696 + 0.144696i −0.775744 0.631048i \(-0.782625\pi\)
0.631048 + 0.775744i \(0.282625\pi\)
\(198\) 0 0
\(199\) 6.05795 + 3.49756i 0.429437 + 0.247936i 0.699107 0.715017i \(-0.253581\pi\)
−0.269670 + 0.962953i \(0.586915\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.05264 + 10.0618i 0.284439 + 0.706203i
\(204\) 0 0
\(205\) 14.3213 + 8.28409i 1.00024 + 0.578586i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.2837 1.40305
\(210\) 0 0
\(211\) −23.3394 −1.60675 −0.803375 0.595474i \(-0.796964\pi\)
−0.803375 + 0.595474i \(0.796964\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.78265 + 25.3965i 0.462573 + 1.73203i
\(216\) 0 0
\(217\) −14.9209 2.11341i −1.01290 0.143468i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.579040 0.334309i −0.0389505 0.0224881i
\(222\) 0 0
\(223\) 4.20268 4.20268i 0.281432 0.281432i −0.552248 0.833680i \(-0.686230\pi\)
0.833680 + 0.552248i \(0.186230\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.13240 + 15.4223i 0.274277 + 1.02362i 0.956324 + 0.292308i \(0.0944232\pi\)
−0.682047 + 0.731308i \(0.738910\pi\)
\(228\) 0 0
\(229\) 18.6115 10.7453i 1.22988 0.710071i 0.262875 0.964830i \(-0.415329\pi\)
0.967005 + 0.254759i \(0.0819960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.46192 + 20.3842i −0.357823 + 1.33541i 0.519072 + 0.854730i \(0.326277\pi\)
−0.876895 + 0.480682i \(0.840389\pi\)
\(234\) 0 0
\(235\) −2.56817 + 2.56396i −0.167529 + 0.167254i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.49125 −0.225830 −0.112915 0.993605i \(-0.536019\pi\)
−0.112915 + 0.993605i \(0.536019\pi\)
\(240\) 0 0
\(241\) 11.5764 20.0509i 0.745700 1.29159i −0.204167 0.978936i \(-0.565449\pi\)
0.949867 0.312654i \(-0.101218\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.74145 + 15.1987i 0.239033 + 0.971012i
\(246\) 0 0
\(247\) 0.898439 3.35302i 0.0571663 0.213348i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.3285i 1.28313i −0.767071 0.641563i \(-0.778286\pi\)
0.767071 0.641563i \(-0.221714\pi\)
\(252\) 0 0
\(253\) −18.2480 + 18.2480i −1.14724 + 1.14724i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.213922 0.0573203i −0.0133441 0.00357554i 0.252141 0.967691i \(-0.418865\pi\)
−0.265485 + 0.964115i \(0.585532\pi\)
\(258\) 0 0
\(259\) 29.3630 3.57319i 1.82453 0.222027i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −2.70116 + 0.723773i −0.166560 + 0.0446297i −0.341136 0.940014i \(-0.610812\pi\)
0.174575 + 0.984644i \(0.444145\pi\)
\(264\) 0 0
\(265\) 6.46633 24.0537i 0.397224 1.47761i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.05513 8.75575i 0.308217 0.533847i −0.669755 0.742582i \(-0.733601\pi\)
0.977972 + 0.208734i \(0.0669344\pi\)
\(270\) 0 0
\(271\) −0.417054 0.722359i −0.0253343 0.0438802i 0.853080 0.521780i \(-0.174732\pi\)
−0.878415 + 0.477899i \(0.841398\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.0257748 + 15.7091i −0.00155428 + 0.947292i
\(276\) 0 0
\(277\) −0.482749 + 0.129352i −0.0290056 + 0.00777202i −0.273293 0.961931i \(-0.588113\pi\)
0.244287 + 0.969703i \(0.421446\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.50960i 0.269020i −0.990912 0.134510i \(-0.957054\pi\)
0.990912 0.134510i \(-0.0429461\pi\)
\(282\) 0 0
\(283\) 2.87653 + 10.7354i 0.170992 + 0.638151i 0.997200 + 0.0747854i \(0.0238272\pi\)
−0.826208 + 0.563366i \(0.809506\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 18.1584 7.31370i 1.07186 0.431714i
\(288\) 0 0
\(289\) 13.3833 7.72683i 0.787251 0.454519i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.3240 + 15.3240i 0.895239 + 0.895239i 0.995010 0.0997714i \(-0.0318112\pi\)
−0.0997714 + 0.995010i \(0.531811\pi\)
\(294\) 0 0
\(295\) −12.2845 21.3177i −0.715228 1.24116i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.20823 + 3.82477i 0.127705 + 0.221192i
\(300\) 0 0
\(301\) 28.6171 + 12.1837i 1.64947 + 0.702256i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.7284 0.0137237i −0.957866 0.000785814i
\(306\) 0 0
\(307\) −11.4605 11.4605i −0.654087 0.654087i 0.299888 0.953974i \(-0.403051\pi\)
−0.953974 + 0.299888i \(0.903051\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.38389 + 2.53104i 0.248587 + 0.143522i 0.619117 0.785299i \(-0.287491\pi\)
−0.370530 + 0.928821i \(0.620824\pi\)
\(312\) 0 0
\(313\) 8.19791 + 2.19662i 0.463373 + 0.124160i 0.482950 0.875648i \(-0.339565\pi\)
−0.0195769 + 0.999808i \(0.506232\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.11319 2.17392i −0.455682 0.122100i 0.0236748 0.999720i \(-0.492463\pi\)
−0.479357 + 0.877620i \(0.659130\pi\)
\(318\) 0 0
\(319\) 11.1554 + 6.44058i 0.624583 + 0.360603i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.67680 5.67680i −0.315866 0.315866i
\(324\) 0 0
\(325\) 2.59566 + 0.700072i 0.143981 + 0.0388330i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.518694 + 4.26241i 0.0285965 + 0.234994i
\(330\) 0 0
\(331\) 5.39047 + 9.33657i 0.296287 + 0.513185i 0.975284 0.220957i \(-0.0709181\pi\)
−0.678996 + 0.734142i \(0.737585\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.93895 + 10.9324i −0.160572 + 0.597302i
\(336\) 0 0
\(337\) 14.1629 + 14.1629i 0.771501 + 0.771501i 0.978369 0.206868i \(-0.0663271\pi\)
−0.206868 + 0.978369i \(0.566327\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −15.4979 + 8.94770i −0.839257 + 0.484545i
\(342\) 0 0
\(343\) 16.8946 + 7.58755i 0.912225 + 0.409689i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.21878 + 26.9409i 0.387525 + 1.44626i 0.834149 + 0.551540i \(0.185959\pi\)
−0.446624 + 0.894722i \(0.647374\pi\)
\(348\) 0 0
\(349\) 26.6684i 1.42753i 0.700387 + 0.713764i \(0.253011\pi\)
−0.700387 + 0.713764i \(0.746989\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.0566 8.32160i 1.65298 0.442914i 0.692533 0.721386i \(-0.256495\pi\)
0.960444 + 0.278472i \(0.0898279\pi\)
\(354\) 0 0
\(355\) −29.2855 16.9400i −1.55431 0.899083i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.46072 4.26209i −0.129872 0.224944i 0.793755 0.608238i \(-0.208123\pi\)
−0.923627 + 0.383293i \(0.874790\pi\)
\(360\) 0 0
\(361\) 11.3403 19.6419i 0.596856 1.03378i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −21.0095 5.64795i −1.09969 0.295627i
\(366\) 0 0
\(367\) −19.9454 + 5.34435i −1.04114 + 0.278973i −0.738586 0.674160i \(-0.764506\pi\)
−0.302554 + 0.953132i \(0.597839\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −17.7108 23.5559i −0.919501 1.22296i
\(372\) 0 0
\(373\) 27.6436 + 7.40708i 1.43133 + 0.383524i 0.889489 0.456956i \(-0.151060\pi\)
0.541842 + 0.840480i \(0.317727\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.55878 1.55878i 0.0802813 0.0802813i
\(378\) 0 0
\(379\) 10.2503i 0.526522i −0.964725 0.263261i \(-0.915202\pi\)
0.964725 0.263261i \(-0.0847980\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.31099 27.2850i 0.373574 1.39420i −0.481843 0.876257i \(-0.660033\pi\)
0.855417 0.517939i \(-0.173301\pi\)
\(384\) 0 0
\(385\) 14.6252 + 11.4712i 0.745369 + 0.584628i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.54833 + 2.68179i −0.0785036 + 0.135972i −0.902605 0.430471i \(-0.858348\pi\)
0.824101 + 0.566443i \(0.191681\pi\)
\(390\) 0 0
\(391\) 10.2141 0.516550
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.00837047 10.2032i 0.000421164 0.513377i
\(396\) 0 0
\(397\) 6.71038 25.0435i 0.336785 1.25690i −0.565137 0.824997i \(-0.691177\pi\)
0.901922 0.431900i \(-0.142157\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.1316 + 8.73625i −0.755638 + 0.436268i −0.827727 0.561131i \(-0.810367\pi\)
0.0720896 + 0.997398i \(0.477033\pi\)
\(402\) 0 0
\(403\) 0.792652 + 2.95822i 0.0394848 + 0.147359i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24.8375 24.8375i 1.23115 1.23115i
\(408\) 0 0
\(409\) −27.1742 15.6890i −1.34368 0.775772i −0.356332 0.934360i \(-0.615973\pi\)
−0.987345 + 0.158588i \(0.949306\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −28.8240 4.08264i −1.41834 0.200894i
\(414\) 0 0
\(415\) 7.96217 2.12646i 0.390847 0.104384i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −24.1134 −1.17802 −0.589008 0.808127i \(-0.700481\pi\)
−0.589008 + 0.808127i \(0.700481\pi\)
\(420\) 0 0
\(421\) −27.7464 −1.35228 −0.676139 0.736774i \(-0.736348\pi\)
−0.676139 + 0.736774i \(0.736348\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.40371 4.38928i 0.213611 0.212912i
\(426\) 0 0
\(427\) −12.2028 + 15.5842i −0.590535 + 0.754173i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −20.5060 11.8391i −0.987739 0.570271i −0.0831413 0.996538i \(-0.526495\pi\)
−0.904598 + 0.426266i \(0.859829\pi\)
\(432\) 0 0
\(433\) 12.7820 12.7820i 0.614264 0.614264i −0.329790 0.944054i \(-0.606978\pi\)
0.944054 + 0.329790i \(0.106978\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 13.7250 + 51.2223i 0.656554 + 2.45029i
\(438\) 0 0
\(439\) −21.1416 + 12.2061i −1.00903 + 0.582565i −0.910908 0.412609i \(-0.864618\pi\)
−0.0981240 + 0.995174i \(0.531284\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.90926 + 10.8575i −0.138223 + 0.515855i 0.861741 + 0.507349i \(0.169374\pi\)
−0.999964 + 0.00850631i \(0.997292\pi\)
\(444\) 0 0
\(445\) −19.4584 0.0159633i −0.922419 0.000756734i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.29747 0.344389 0.172194 0.985063i \(-0.444914\pi\)
0.172194 + 0.985063i \(0.444914\pi\)
\(450\) 0 0
\(451\) 11.6232 20.1319i 0.547313 0.947974i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.54407 1.90953i 0.119268 0.0895202i
\(456\) 0 0
\(457\) −1.78721 + 6.66995i −0.0836020 + 0.312007i −0.995046 0.0994176i \(-0.968302\pi\)
0.911444 + 0.411425i \(0.134969\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.23973i 0.104315i −0.998639 0.0521574i \(-0.983390\pi\)
0.998639 0.0521574i \(-0.0166097\pi\)
\(462\) 0 0
\(463\) −24.7669 + 24.7669i −1.15101 + 1.15101i −0.164665 + 0.986349i \(0.552654\pi\)
−0.986349 + 0.164665i \(0.947346\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.6447 6.33559i −1.09415 0.293176i −0.333769 0.942655i \(-0.608320\pi\)
−0.760380 + 0.649479i \(0.774987\pi\)
\(468\) 0 0
\(469\) 8.04958 + 10.7062i 0.371695 + 0.494364i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 35.6759 9.55933i 1.64038 0.439538i
\(474\) 0 0
\(475\) 27.9290 + 16.1860i 1.28147 + 0.742663i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.9499 24.1620i 0.637388 1.10399i −0.348616 0.937266i \(-0.613348\pi\)
0.986004 0.166722i \(-0.0533183\pi\)
\(480\) 0 0
\(481\) −3.00565 5.20594i −0.137046 0.237371i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 6.18236 1.65112i 0.280727 0.0749737i
\(486\) 0 0
\(487\) 23.6119 6.32679i 1.06996 0.286694i 0.319482 0.947592i \(-0.396491\pi\)
0.750476 + 0.660898i \(0.229824\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.50191i 0.338556i 0.985568 + 0.169278i \(0.0541436\pi\)
−0.985568 + 0.169278i \(0.945856\pi\)
\(492\) 0 0
\(493\) −1.31954 4.92459i −0.0594291 0.221792i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −37.1318 + 14.9557i −1.66559 + 0.670854i
\(498\) 0 0
\(499\) 16.2317 9.37137i 0.726630 0.419520i −0.0905579 0.995891i \(-0.528865\pi\)
0.817188 + 0.576371i \(0.195532\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.1780 + 16.1780i 0.721342 + 0.721342i 0.968879 0.247537i \(-0.0796210\pi\)
−0.247537 + 0.968879i \(0.579621\pi\)
\(504\) 0 0
\(505\) −27.5150 + 15.8557i −1.22440 + 0.705569i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.7815 + 35.9945i 0.921122 + 1.59543i 0.797683 + 0.603078i \(0.206059\pi\)
0.123439 + 0.992352i \(0.460608\pi\)
\(510\) 0 0
\(511\) −20.5746 + 15.4693i −0.910168 + 0.684323i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.65578 + 5.64651i −0.249224 + 0.248815i
\(516\) 0 0
\(517\) 3.60549 + 3.60549i 0.158569 + 0.158569i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.376731 0.217506i −0.0165049 0.00952910i 0.491725 0.870751i \(-0.336367\pi\)
−0.508230 + 0.861222i \(0.669700\pi\)
\(522\) 0 0
\(523\) −6.73764 1.80535i −0.294616 0.0789422i 0.108483 0.994098i \(-0.465401\pi\)
−0.403100 + 0.915156i \(0.632067\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.84158 + 1.83320i 0.298024 + 0.0798553i
\(528\) 0 0
\(529\) −38.5103 22.2339i −1.67436 0.966693i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.81309 2.81309i −0.121849 0.121849i
\(534\) 0 0
\(535\) 4.26497 4.25798i 0.184391 0.184088i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 21.3509 5.27449i 0.919647 0.227189i
\(540\) 0 0
\(541\) −9.69165 16.7864i −0.416677 0.721705i 0.578926 0.815380i \(-0.303472\pi\)
−0.995603 + 0.0936748i \(0.970139\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0779 6.38374i 0.474527 0.273449i
\(546\) 0 0
\(547\) −6.02367 6.02367i −0.257554 0.257554i 0.566505 0.824058i \(-0.308295\pi\)
−0.824058 + 0.566505i \(0.808295\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.9230 13.2346i 0.976552 0.563813i
\(552\) 0 0
\(553\) −9.50528 7.44286i −0.404206 0.316502i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.72301 36.2868i −0.411977 1.53752i −0.790814 0.612056i \(-0.790343\pi\)
0.378837 0.925463i \(-0.376324\pi\)
\(558\) 0 0
\(559\) 6.32086i 0.267344i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 36.0264 9.65324i 1.51833 0.406835i 0.599139 0.800645i \(-0.295510\pi\)
0.919192 + 0.393810i \(0.128843\pi\)
\(564\) 0 0
\(565\) 2.98198 0.796397i 0.125453 0.0335047i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.66323 15.0052i −0.363182 0.629049i 0.625301 0.780384i \(-0.284976\pi\)
−0.988483 + 0.151335i \(0.951643\pi\)
\(570\) 0 0
\(571\) 11.0308 19.1059i 0.461625 0.799558i −0.537417 0.843317i \(-0.680600\pi\)
0.999042 + 0.0437587i \(0.0139333\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −39.6874 + 10.5644i −1.65508 + 0.440568i
\(576\) 0 0
\(577\) −24.1437 + 6.46928i −1.00512 + 0.269320i −0.723587 0.690233i \(-0.757508\pi\)
−0.281528 + 0.959553i \(0.590841\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.81976 8.97187i 0.158470 0.372216i
\(582\) 0 0
\(583\) −33.8044 9.05787i −1.40004 0.375139i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.5063 11.5063i 0.474915 0.474915i −0.428586 0.903501i \(-0.640988\pi\)
0.903501 + 0.428586i \(0.140988\pi\)
\(588\) 0 0
\(589\) 36.7728i 1.51520i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.1729 45.4299i 0.499881 1.86558i −0.000887582 1.00000i \(-0.500283\pi\)
0.500768 0.865581i \(-0.333051\pi\)
\(594\) 0 0
\(595\) −0.882699 7.30361i −0.0361871 0.299419i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.48145 6.03005i 0.142248 0.246381i −0.786095 0.618106i \(-0.787900\pi\)
0.928343 + 0.371725i \(0.121234\pi\)
\(600\) 0 0
\(601\) −27.5177 −1.12247 −0.561235 0.827657i \(-0.689674\pi\)
−0.561235 + 0.827657i \(0.689674\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.52450 0.00207105i −0.102635 8.42001e-5i
\(606\) 0 0
\(607\) −7.95377 + 29.6839i −0.322834 + 1.20483i 0.593638 + 0.804732i \(0.297691\pi\)
−0.916472 + 0.400099i \(0.868976\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.755709 0.436309i 0.0305727 0.0176512i
\(612\) 0 0
\(613\) 7.47201 + 27.8859i 0.301792 + 1.12630i 0.935672 + 0.352871i \(0.114795\pi\)
−0.633880 + 0.773431i \(0.718539\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.259882 0.259882i 0.0104625 0.0104625i −0.701856 0.712319i \(-0.747645\pi\)
0.712319 + 0.701856i \(0.247645\pi\)
\(618\) 0 0
\(619\) 16.3858 + 9.46036i 0.658602 + 0.380244i 0.791744 0.610853i \(-0.209173\pi\)
−0.133142 + 0.991097i \(0.542507\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.1943 + 18.1275i −0.568681 + 0.726263i
\(624\) 0 0
\(625\) −12.5710 + 21.6095i −0.502839 + 0.864380i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.9026 −0.554332
\(630\) 0 0
\(631\) −2.77349 −0.110411 −0.0552055 0.998475i \(-0.517581\pi\)
−0.0552055 + 0.998475i \(0.517581\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −17.4017 + 4.64747i −0.690565 + 0.184429i
\(636\) 0 0
\(637\) 0.0738011 3.76305i 0.00292411 0.149098i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.12501 + 2.38158i 0.162928 + 0.0940667i 0.579247 0.815152i \(-0.303347\pi\)
−0.416319 + 0.909219i \(0.636680\pi\)
\(642\) 0 0
\(643\) −12.2522 + 12.2522i −0.483178 + 0.483178i −0.906145 0.422967i \(-0.860989\pi\)
0.422967 + 0.906145i \(0.360989\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.414222 1.54590i −0.0162848 0.0607755i 0.957305 0.289079i \(-0.0933489\pi\)
−0.973590 + 0.228303i \(0.926682\pi\)
\(648\) 0 0
\(649\) −29.9385 + 17.2850i −1.17519 + 0.678495i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.01478 + 3.78720i −0.0397113 + 0.148205i −0.982935 0.183954i \(-0.941110\pi\)
0.943224 + 0.332159i \(0.107777\pi\)
\(654\) 0 0
\(655\) 0.0236597 28.8400i 0.000924462 1.12687i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −25.1996 −0.981635 −0.490818 0.871262i \(-0.663302\pi\)
−0.490818 + 0.871262i \(0.663302\pi\)
\(660\) 0 0
\(661\) 17.7559 30.7542i 0.690626 1.19620i −0.281007 0.959706i \(-0.590668\pi\)
0.971633 0.236494i \(-0.0759984\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 35.4404 14.2406i 1.37432 0.552228i
\(666\) 0 0
\(667\) −8.71603 + 32.5287i −0.337486 + 1.25952i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 23.5045i 0.907380i
\(672\) 0 0
\(673\) 9.74176 9.74176i 0.375517 0.375517i −0.493965 0.869482i \(-0.664453\pi\)
0.869482 + 0.493965i \(0.164453\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −24.6209 6.59716i −0.946259 0.253549i −0.247485 0.968892i \(-0.579604\pi\)
−0.698774 + 0.715342i \(0.746271\pi\)
\(678\) 0 0
\(679\) 2.96592 6.96637i 0.113821 0.267345i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.56677 + 0.419816i −0.0599510 + 0.0160638i −0.288670 0.957429i \(-0.593213\pi\)
0.228719 + 0.973493i \(0.426546\pi\)
\(684\) 0 0
\(685\) −10.0050 2.68962i −0.382270 0.102765i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.99464 + 5.18687i −0.114087 + 0.197604i
\(690\) 0 0
\(691\) 6.68922 + 11.5861i 0.254470 + 0.440755i 0.964751 0.263163i \(-0.0847657\pi\)
−0.710281 + 0.703918i \(0.751432\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.1953 8.78966i −0.576392 0.333411i
\(696\) 0 0
\(697\) −8.88729 + 2.38134i −0.336630 + 0.0901998i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.6890i 0.856950i −0.903554 0.428475i \(-0.859051\pi\)
0.903554 0.428475i \(-0.140949\pi\)
\(702\) 0 0
\(703\) −18.6812 69.7193i −0.704576 2.62951i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5.26952 + 37.2035i −0.198181 + 1.39918i
\(708\) 0 0
\(709\) −32.7244 + 18.8934i −1.22899 + 0.709558i −0.966819 0.255463i \(-0.917772\pi\)
−0.262172 + 0.965021i \(0.584439\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.0822 33.0822i −1.23894 1.23894i
\(714\) 0 0
\(715\) 0.980653 3.64787i 0.0366743 0.136423i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.5922 42.5949i −0.917133 1.58852i −0.803748 0.594970i \(-0.797164\pi\)
−0.113385 0.993551i \(-0.536169\pi\)
\(720\) 0 0
\(721\) 1.14230 + 9.38693i 0.0425414 + 0.349588i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 10.2206 + 17.7699i 0.379584 + 0.659958i
\(726\) 0 0
\(727\) 20.0541 + 20.0541i 0.743766 + 0.743766i 0.973301 0.229534i \(-0.0737203\pi\)
−0.229534 + 0.973301i \(0.573720\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −12.6600 7.30925i −0.468247 0.270342i
\(732\) 0 0
\(733\) −25.1099 6.72817i −0.927454 0.248510i −0.236685 0.971586i \(-0.576061\pi\)
−0.690769 + 0.723076i \(0.742728\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.3641 + 4.11681i 0.565945 + 0.151645i
\(738\) 0 0
\(739\) 6.88907 + 3.97740i 0.253418 + 0.146311i 0.621328 0.783550i \(-0.286593\pi\)
−0.367910 + 0.929861i \(0.619927\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.0815 11.0815i −0.406541 0.406541i 0.473989 0.880531i \(-0.342814\pi\)
−0.880531 + 0.473989i \(0.842814\pi\)
\(744\) 0 0
\(745\) 18.0330 + 0.0147939i 0.660679 + 0.000542008i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.861397 7.07859i −0.0314747 0.258646i
\(750\) 0 0
\(751\) 19.8106 + 34.3130i 0.722899 + 1.25210i 0.959833 + 0.280572i \(0.0905243\pi\)
−0.236934 + 0.971526i \(0.576142\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.81568 11.8275i −0.248048 0.430447i
\(756\) 0 0
\(757\) 9.30716 + 9.30716i 0.338274 + 0.338274i 0.855718 0.517443i \(-0.173116\pi\)
−0.517443 + 0.855718i \(0.673116\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 34.5097 19.9242i 1.25098 0.722252i 0.279673 0.960095i \(-0.409774\pi\)
0.971303 + 0.237844i \(0.0764407\pi\)
\(762\) 0 0
\(763\) 2.12159 14.9787i 0.0768066 0.542265i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.53123 + 5.71463i 0.0552895 + 0.206343i
\(768\) 0 0
\(769\) 52.6681i 1.89926i −0.313373 0.949630i \(-0.601459\pi\)
0.313373 0.949630i \(-0.398541\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −41.4276 + 11.1005i −1.49005 + 0.399257i −0.909753 0.415151i \(-0.863729\pi\)
−0.580294 + 0.814407i \(0.697062\pi\)
\(774\) 0 0
\(775\) −28.4793 0.0467278i −1.02301 0.00167851i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.8841 41.3686i −0.855738 1.48218i
\(780\) 0 0
\(781\) −23.7680 + 41.1674i −0.850487 + 1.47309i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.12426 30.2210i 0.289967 1.07863i
\(786\) 0 0
\(787\) −1.12663 + 0.301878i −0.0401599 + 0.0107608i −0.278843 0.960337i \(-0.589951\pi\)
0.238683 + 0.971097i \(0.423284\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.43057 3.36013i 0.0508652 0.119473i
\(792\) 0 0
\(793\) 3.88543 + 1.04110i 0.137976 + 0.0369705i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.61236 + 1.61236i −0.0571127 + 0.0571127i −0.735086 0.677974i \(-0.762858\pi\)
0.677974 + 0.735086i \(0.262858\pi\)
\(798\) 0 0
\(799\) 2.01814i 0.0713965i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.91150 + 29.5261i −0.279191 + 1.04195i
\(804\) 0 0
\(805\) −19.0721 + 44.6949i −0.672202 + 1.57529i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.67507 4.63335i 0.0940503 0.162900i −0.815162 0.579234i \(-0.803352\pi\)
0.909212 + 0.416334i \(0.136685\pi\)
\(810\) 0 0
\(811\) 19.7244 0.692618 0.346309 0.938120i \(-0.387435\pi\)
0.346309 + 0.938120i \(0.387435\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.5170 18.4867i 0.648623 0.647559i
\(816\) 0 0
\(817\) 19.6432 73.3096i 0.687230 2.56478i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.7054 + 14.2636i −0.862223 + 0.497805i −0.864756 0.502192i \(-0.832527\pi\)
0.00253295 + 0.999997i \(0.499194\pi\)
\(822\) 0 0
\(823\) −0.333167 1.24340i −0.0116135 0.0433421i 0.959876 0.280425i \(-0.0904754\pi\)
−0.971489 + 0.237083i \(0.923809\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.6915 33.6915i 1.17157 1.17157i 0.189733 0.981836i \(-0.439238\pi\)
0.981836 0.189733i \(-0.0607622\pi\)
\(828\) 0 0
\(829\) 20.0337 + 11.5665i 0.695799 + 0.401720i 0.805781 0.592214i \(-0.201746\pi\)
−0.109982 + 0.993934i \(0.535079\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.45164 4.49929i −0.258184 0.155891i
\(834\) 0 0
\(835\) 1.40486 + 5.26028i 0.0486173 + 0.182040i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22.8467 0.788756 0.394378 0.918948i \(-0.370960\pi\)
0.394378 + 0.918948i \(0.370960\pi\)
\(840\) 0 0
\(841\) −12.1908 −0.420371
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 24.6029 + 14.2314i 0.846365 + 0.489575i
\(846\) 0 0
\(847\) −1.84153 + 2.35183i −0.0632759 + 0.0808097i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 79.5284 + 45.9157i 2.72620 + 1.57397i
\(852\) 0 0
\(853\) −14.3579 + 14.3579i −0.491604 + 0.491604i −0.908811 0.417207i \(-0.863009\pi\)
0.417207 + 0.908811i \(0.363009\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.0523 44.9798i −0.411699 1.53648i −0.791357 0.611355i \(-0.790625\pi\)
0.379658 0.925127i \(-0.376042\pi\)
\(858\) 0 0
\(859\) −14.7100 + 8.49281i −0.501898 + 0.289771i −0.729497 0.683984i \(-0.760246\pi\)
0.227599 + 0.973755i \(0.426912\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −7.98905 + 29.8155i −0.271950 + 1.01493i 0.685907 + 0.727689i \(0.259406\pi\)
−0.957858 + 0.287243i \(0.907261\pi\)
\(864\) 0 0
\(865\) −15.6720 15.6978i −0.532865 0.533740i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.3361 −0.486319
\(870\) 0 0
\(871\) 1.36107 2.35744i 0.0461180 0.0798787i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 10.9839 + 27.4655i 0.371323 + 0.928504i
\(876\) 0 0
\(877\) 13.6921 51.0998i 0.462351 1.72552i −0.203175 0.979142i \(-0.565126\pi\)
0.665526 0.746375i \(-0.268207\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 40.0911i 1.35070i 0.737496 + 0.675351i \(0.236008\pi\)
−0.737496 + 0.675351i \(0.763992\pi\)
\(882\) 0 0
\(883\) −9.29675 + 9.29675i −0.312860 + 0.312860i −0.846017 0.533156i \(-0.821006\pi\)
0.533156 + 0.846017i \(0.321006\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −3.57674 0.958383i −0.120095 0.0321794i 0.198271 0.980147i \(-0.436467\pi\)
−0.318366 + 0.947968i \(0.603134\pi\)
\(888\) 0 0
\(889\) −8.34825 + 19.6084i −0.279991 + 0.657646i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.1207 2.71182i 0.338675 0.0907476i
\(894\) 0 0
\(895\) −14.2893 24.7967i −0.477638 0.828864i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.6763 + 20.2239i −0.389426 + 0.674505i
\(900\) 0 0
\(901\) 6.92582 + 11.9959i 0.230733 + 0.399641i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.0717 39.8857i 0.766929 1.32585i
\(906\) 0 0
\(907\) 11.0009 2.94768i 0.365279 0.0978763i −0.0715107 0.997440i \(-0.522782\pi\)
0.436790 + 0.899564i \(0.356115\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 32.6632i 1.08218i 0.840965 + 0.541090i \(0.181988\pi\)
−0.840965 + 0.541090i \(0.818012\pi\)
\(912\) 0 0
\(913\) −2.99698 11.1849i −0.0991856 0.370166i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26.8673 21.0378i −0.887238 0.694728i
\(918\) 0 0
\(919\) 15.2690 8.81555i 0.503677 0.290798i −0.226554 0.973999i \(-0.572746\pi\)
0.730231 + 0.683201i \(0.239413\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 5.75245 + 5.75245i 0.189344 + 0.189344i
\(924\) 0 0
\(925\) 54.0191 14.3794i 1.77614 0.472792i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.0115 + 17.3405i 0.328468 + 0.568923i 0.982208 0.187796i \(-0.0601343\pi\)
−0.653740 + 0.756719i \(0.726801\pi\)
\(930\) 0 0
\(931\) 12.5503 43.4147i 0.411320 1.42286i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −6.17229 6.18243i −0.201856 0.202187i
\(936\) 0 0
\(937\) 5.61057 + 5.61057i 0.183289 + 0.183289i 0.792788 0.609498i \(-0.208629\pi\)
−0.609498 + 0.792788i \(0.708629\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.4386 6.02672i −0.340288 0.196466i 0.320111 0.947380i \(-0.396280\pi\)
−0.660400 + 0.750914i \(0.729613\pi\)
\(942\) 0 0
\(943\) 58.7037 + 15.7296i 1.91166 + 0.512227i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 33.3184 + 8.92765i 1.08270 + 0.290110i 0.755703 0.654915i \(-0.227295\pi\)
0.327001 + 0.945024i \(0.393962\pi\)
\(948\) 0 0
\(949\) 4.53042 + 2.61564i 0.147064 + 0.0849072i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.1921 + 10.1921i 0.330156 + 0.330156i 0.852646 0.522490i \(-0.174997\pi\)
−0.522490 + 0.852646i \(0.674997\pi\)
\(954\) 0 0
\(955\) −0.0347966 + 42.4152i −0.00112599 + 1.37252i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.79788 + 7.36668i −0.316390 + 0.237883i
\(960\) 0 0
\(961\) −0.721506 1.24969i −0.0232744 0.0403124i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.49700 + 0.402436i 0.0481901 + 0.0129549i
\(966\) 0 0
\(967\) 6.82630 + 6.82630i 0.219519 + 0.219519i 0.808296 0.588777i \(-0.200390\pi\)
−0.588777 + 0.808296i \(0.700390\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.92560 3.42115i 0.190162 0.109790i −0.401897 0.915685i \(-0.631649\pi\)
0.592058 + 0.805895i \(0.298316\pi\)
\(972\) 0 0
\(973\) −19.2666 + 7.76005i −0.617658 + 0.248776i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11.5558 43.1269i −0.369704 1.37975i −0.860931 0.508721i \(-0.830118\pi\)
0.491228 0.871031i \(-0.336548\pi\)
\(978\) 0 0
\(979\) 27.3403i 0.873801i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −48.6380 + 13.0325i −1.55131 + 0.415673i −0.929900 0.367812i \(-0.880107\pi\)
−0.621411 + 0.783485i \(0.713440\pi\)
\(984\) 0 0
\(985\) 1.65712 + 6.20480i 0.0528001 + 0.197701i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 48.2802 + 83.6237i 1.53522 + 2.65908i
\(990\) 0 0
\(991\) −22.3110 + 38.6437i −0.708731 + 1.22756i 0.256597 + 0.966518i \(0.417399\pi\)
−0.965328 + 0.261040i \(0.915935\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 13.5524 7.80967i 0.429640 0.247583i
\(996\) 0 0
\(997\) −18.1286 + 4.85753i −0.574137 + 0.153840i −0.534193 0.845362i \(-0.679385\pi\)
−0.0399439 + 0.999202i \(0.512718\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.ej.a.557.11 yes 64
3.2 odd 2 inner 1260.2.ej.a.557.6 yes 64
5.3 odd 4 inner 1260.2.ej.a.53.16 yes 64
7.2 even 3 inner 1260.2.ej.a.737.1 yes 64
15.8 even 4 inner 1260.2.ej.a.53.1 64
21.2 odd 6 inner 1260.2.ej.a.737.16 yes 64
35.23 odd 12 inner 1260.2.ej.a.233.6 yes 64
105.23 even 12 inner 1260.2.ej.a.233.11 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.ej.a.53.1 64 15.8 even 4 inner
1260.2.ej.a.53.16 yes 64 5.3 odd 4 inner
1260.2.ej.a.233.6 yes 64 35.23 odd 12 inner
1260.2.ej.a.233.11 yes 64 105.23 even 12 inner
1260.2.ej.a.557.6 yes 64 3.2 odd 2 inner
1260.2.ej.a.557.11 yes 64 1.1 even 1 trivial
1260.2.ej.a.737.1 yes 64 7.2 even 3 inner
1260.2.ej.a.737.16 yes 64 21.2 odd 6 inner