Properties

Label 1260.2.n.a.71.19
Level $1260$
Weight $2$
Character 1260.71
Analytic conductor $10.061$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(71,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.19
Character \(\chi\) \(=\) 1260.71
Dual form 1260.2.n.a.71.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.935018 - 1.06101i) q^{2} +(-0.251481 - 1.98413i) q^{4} -1.00000i q^{5} -1.00000i q^{7} +(-2.34032 - 1.58837i) q^{8} +(-1.06101 - 0.935018i) q^{10} -1.78504 q^{11} -6.14618 q^{13} +(-1.06101 - 0.935018i) q^{14} +(-3.87351 + 0.997940i) q^{16} +1.11477i q^{17} -2.67556i q^{19} +(-1.98413 + 0.251481i) q^{20} +(-1.66905 + 1.89395i) q^{22} +2.65580 q^{23} -1.00000 q^{25} +(-5.74679 + 6.52115i) q^{26} +(-1.98413 + 0.251481i) q^{28} -0.744661i q^{29} +8.66461i q^{31} +(-2.56298 + 5.04293i) q^{32} +(1.18278 + 1.04233i) q^{34} -1.00000 q^{35} -7.62886 q^{37} +(-2.83879 - 2.50170i) q^{38} +(-1.58837 + 2.34032i) q^{40} -10.5025i q^{41} -9.50600i q^{43} +(0.448904 + 3.54175i) q^{44} +(2.48322 - 2.81783i) q^{46} +5.00451 q^{47} -1.00000 q^{49} +(-0.935018 + 1.06101i) q^{50} +(1.54565 + 12.1948i) q^{52} -2.50082i q^{53} +1.78504i q^{55} +(-1.58837 + 2.34032i) q^{56} +(-0.790093 - 0.696272i) q^{58} +1.23850 q^{59} -6.41461 q^{61} +(9.19323 + 8.10157i) q^{62} +(2.95416 + 7.43458i) q^{64} +6.14618i q^{65} -3.77241i q^{67} +(2.21184 - 0.280343i) q^{68} +(-0.935018 + 1.06101i) q^{70} +15.5325 q^{71} -5.58799 q^{73} +(-7.13313 + 8.09430i) q^{74} +(-5.30865 + 0.672853i) q^{76} +1.78504i q^{77} -11.3475i q^{79} +(0.997940 + 3.87351i) q^{80} +(-11.1433 - 9.82007i) q^{82} -4.92476 q^{83} +1.11477 q^{85} +(-10.0860 - 8.88829i) q^{86} +(4.17756 + 2.83531i) q^{88} +11.2488i q^{89} +6.14618i q^{91} +(-0.667884 - 5.26945i) q^{92} +(4.67931 - 5.30984i) q^{94} -2.67556 q^{95} -17.2826 q^{97} +(-0.935018 + 1.06101i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{10} - 4 q^{14} + 4 q^{20} - 4 q^{22} - 24 q^{25} - 40 q^{26} + 4 q^{28} + 40 q^{32} + 8 q^{34} - 24 q^{35} + 4 q^{40} + 48 q^{44} + 36 q^{46} + 16 q^{47} - 24 q^{49} + 32 q^{52} + 4 q^{56}+ \cdots + 12 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.935018 1.06101i 0.661158 0.750247i
\(3\) 0 0
\(4\) −0.251481 1.98413i −0.125741 0.992063i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) −2.34032 1.58837i −0.827427 0.561574i
\(9\) 0 0
\(10\) −1.06101 0.935018i −0.335521 0.295679i
\(11\) −1.78504 −0.538210 −0.269105 0.963111i \(-0.586728\pi\)
−0.269105 + 0.963111i \(0.586728\pi\)
\(12\) 0 0
\(13\) −6.14618 −1.70464 −0.852321 0.523018i \(-0.824806\pi\)
−0.852321 + 0.523018i \(0.824806\pi\)
\(14\) −1.06101 0.935018i −0.283567 0.249894i
\(15\) 0 0
\(16\) −3.87351 + 0.997940i −0.968379 + 0.249485i
\(17\) 1.11477i 0.270371i 0.990820 + 0.135185i \(0.0431630\pi\)
−0.990820 + 0.135185i \(0.956837\pi\)
\(18\) 0 0
\(19\) 2.67556i 0.613816i −0.951739 0.306908i \(-0.900706\pi\)
0.951739 0.306908i \(-0.0992943\pi\)
\(20\) −1.98413 + 0.251481i −0.443664 + 0.0562329i
\(21\) 0 0
\(22\) −1.66905 + 1.89395i −0.355842 + 0.403791i
\(23\) 2.65580 0.553773 0.276886 0.960903i \(-0.410697\pi\)
0.276886 + 0.960903i \(0.410697\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −5.74679 + 6.52115i −1.12704 + 1.27890i
\(27\) 0 0
\(28\) −1.98413 + 0.251481i −0.374965 + 0.0475255i
\(29\) 0.744661i 0.138280i −0.997607 0.0691401i \(-0.977974\pi\)
0.997607 0.0691401i \(-0.0220255\pi\)
\(30\) 0 0
\(31\) 8.66461i 1.55621i 0.628135 + 0.778105i \(0.283819\pi\)
−0.628135 + 0.778105i \(0.716181\pi\)
\(32\) −2.56298 + 5.04293i −0.453076 + 0.891472i
\(33\) 0 0
\(34\) 1.18278 + 1.04233i 0.202845 + 0.178758i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −7.62886 −1.25418 −0.627089 0.778948i \(-0.715754\pi\)
−0.627089 + 0.778948i \(0.715754\pi\)
\(38\) −2.83879 2.50170i −0.460513 0.405829i
\(39\) 0 0
\(40\) −1.58837 + 2.34032i −0.251143 + 0.370036i
\(41\) 10.5025i 1.64022i −0.572205 0.820111i \(-0.693912\pi\)
0.572205 0.820111i \(-0.306088\pi\)
\(42\) 0 0
\(43\) 9.50600i 1.44965i −0.688932 0.724826i \(-0.741920\pi\)
0.688932 0.724826i \(-0.258080\pi\)
\(44\) 0.448904 + 3.54175i 0.0676749 + 0.533939i
\(45\) 0 0
\(46\) 2.48322 2.81783i 0.366131 0.415466i
\(47\) 5.00451 0.729984 0.364992 0.931011i \(-0.381072\pi\)
0.364992 + 0.931011i \(0.381072\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) −0.935018 + 1.06101i −0.132232 + 0.150049i
\(51\) 0 0
\(52\) 1.54565 + 12.1948i 0.214343 + 1.69111i
\(53\) 2.50082i 0.343513i −0.985139 0.171757i \(-0.945056\pi\)
0.985139 0.171757i \(-0.0549443\pi\)
\(54\) 0 0
\(55\) 1.78504i 0.240695i
\(56\) −1.58837 + 2.34032i −0.212255 + 0.312738i
\(57\) 0 0
\(58\) −0.790093 0.696272i −0.103744 0.0914250i
\(59\) 1.23850 0.161238 0.0806192 0.996745i \(-0.474310\pi\)
0.0806192 + 0.996745i \(0.474310\pi\)
\(60\) 0 0
\(61\) −6.41461 −0.821307 −0.410654 0.911791i \(-0.634699\pi\)
−0.410654 + 0.911791i \(0.634699\pi\)
\(62\) 9.19323 + 8.10157i 1.16754 + 1.02890i
\(63\) 0 0
\(64\) 2.95416 + 7.43458i 0.369269 + 0.929322i
\(65\) 6.14618i 0.762340i
\(66\) 0 0
\(67\) 3.77241i 0.460873i −0.973087 0.230436i \(-0.925985\pi\)
0.973087 0.230436i \(-0.0740154\pi\)
\(68\) 2.21184 0.280343i 0.268225 0.0339966i
\(69\) 0 0
\(70\) −0.935018 + 1.06101i −0.111756 + 0.126815i
\(71\) 15.5325 1.84337 0.921683 0.387944i \(-0.126815\pi\)
0.921683 + 0.387944i \(0.126815\pi\)
\(72\) 0 0
\(73\) −5.58799 −0.654024 −0.327012 0.945020i \(-0.606042\pi\)
−0.327012 + 0.945020i \(0.606042\pi\)
\(74\) −7.13313 + 8.09430i −0.829209 + 0.940943i
\(75\) 0 0
\(76\) −5.30865 + 0.672853i −0.608944 + 0.0771815i
\(77\) 1.78504i 0.203424i
\(78\) 0 0
\(79\) 11.3475i 1.27669i −0.769750 0.638345i \(-0.779619\pi\)
0.769750 0.638345i \(-0.220381\pi\)
\(80\) 0.997940 + 3.87351i 0.111573 + 0.433072i
\(81\) 0 0
\(82\) −11.1433 9.82007i −1.23057 1.08445i
\(83\) −4.92476 −0.540563 −0.270281 0.962781i \(-0.587117\pi\)
−0.270281 + 0.962781i \(0.587117\pi\)
\(84\) 0 0
\(85\) 1.11477 0.120913
\(86\) −10.0860 8.88829i −1.08760 0.958449i
\(87\) 0 0
\(88\) 4.17756 + 2.83531i 0.445330 + 0.302245i
\(89\) 11.2488i 1.19237i 0.802849 + 0.596183i \(0.203317\pi\)
−0.802849 + 0.596183i \(0.796683\pi\)
\(90\) 0 0
\(91\) 6.14618i 0.644294i
\(92\) −0.667884 5.26945i −0.0696317 0.549378i
\(93\) 0 0
\(94\) 4.67931 5.30984i 0.482634 0.547668i
\(95\) −2.67556 −0.274507
\(96\) 0 0
\(97\) −17.2826 −1.75478 −0.877392 0.479775i \(-0.840718\pi\)
−0.877392 + 0.479775i \(0.840718\pi\)
\(98\) −0.935018 + 1.06101i −0.0944511 + 0.107178i
\(99\) 0 0
\(100\) 0.251481 + 1.98413i 0.0251481 + 0.198413i
\(101\) 4.08304i 0.406278i −0.979150 0.203139i \(-0.934886\pi\)
0.979150 0.203139i \(-0.0651143\pi\)
\(102\) 0 0
\(103\) 2.57171i 0.253398i −0.991941 0.126699i \(-0.959562\pi\)
0.991941 0.126699i \(-0.0404383\pi\)
\(104\) 14.3840 + 9.76241i 1.41047 + 0.957283i
\(105\) 0 0
\(106\) −2.65339 2.33831i −0.257720 0.227117i
\(107\) 8.41742 0.813743 0.406871 0.913485i \(-0.366620\pi\)
0.406871 + 0.913485i \(0.366620\pi\)
\(108\) 0 0
\(109\) 10.9162 1.04558 0.522790 0.852462i \(-0.324891\pi\)
0.522790 + 0.852462i \(0.324891\pi\)
\(110\) 1.89395 + 1.66905i 0.180581 + 0.159137i
\(111\) 0 0
\(112\) 0.997940 + 3.87351i 0.0942965 + 0.366013i
\(113\) 1.78215i 0.167650i −0.996480 0.0838251i \(-0.973286\pi\)
0.996480 0.0838251i \(-0.0267137\pi\)
\(114\) 0 0
\(115\) 2.65580i 0.247655i
\(116\) −1.47750 + 0.187268i −0.137183 + 0.0173874i
\(117\) 0 0
\(118\) 1.15802 1.31406i 0.106604 0.120969i
\(119\) 1.11477 0.102191
\(120\) 0 0
\(121\) −7.81362 −0.710329
\(122\) −5.99778 + 6.80597i −0.543014 + 0.616183i
\(123\) 0 0
\(124\) 17.1917 2.17898i 1.54386 0.195679i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 9.25356i 0.821121i 0.911833 + 0.410561i \(0.134667\pi\)
−0.911833 + 0.410561i \(0.865333\pi\)
\(128\) 10.6503 + 3.81708i 0.941367 + 0.337386i
\(129\) 0 0
\(130\) 6.52115 + 5.74679i 0.571943 + 0.504027i
\(131\) −14.6313 −1.27834 −0.639172 0.769064i \(-0.720723\pi\)
−0.639172 + 0.769064i \(0.720723\pi\)
\(132\) 0 0
\(133\) −2.67556 −0.232001
\(134\) −4.00256 3.52727i −0.345768 0.304710i
\(135\) 0 0
\(136\) 1.77066 2.60891i 0.151833 0.223712i
\(137\) 0.366817i 0.0313393i 0.999877 + 0.0156696i \(0.00498800\pi\)
−0.999877 + 0.0156696i \(0.995012\pi\)
\(138\) 0 0
\(139\) 2.39442i 0.203092i −0.994831 0.101546i \(-0.967621\pi\)
0.994831 0.101546i \(-0.0323789\pi\)
\(140\) 0.251481 + 1.98413i 0.0212540 + 0.167689i
\(141\) 0 0
\(142\) 14.5232 16.4801i 1.21876 1.38298i
\(143\) 10.9712 0.917457
\(144\) 0 0
\(145\) −0.744661 −0.0618408
\(146\) −5.22487 + 5.92891i −0.432413 + 0.490680i
\(147\) 0 0
\(148\) 1.91852 + 15.1366i 0.157701 + 1.24422i
\(149\) 17.4267i 1.42765i −0.700326 0.713824i \(-0.746962\pi\)
0.700326 0.713824i \(-0.253038\pi\)
\(150\) 0 0
\(151\) 20.8266i 1.69484i −0.530920 0.847422i \(-0.678154\pi\)
0.530920 0.847422i \(-0.321846\pi\)
\(152\) −4.24978 + 6.26166i −0.344703 + 0.507887i
\(153\) 0 0
\(154\) 1.89395 + 1.66905i 0.152619 + 0.134496i
\(155\) 8.66461 0.695958
\(156\) 0 0
\(157\) 6.48357 0.517445 0.258723 0.965952i \(-0.416698\pi\)
0.258723 + 0.965952i \(0.416698\pi\)
\(158\) −12.0398 10.6101i −0.957832 0.844094i
\(159\) 0 0
\(160\) 5.04293 + 2.56298i 0.398678 + 0.202622i
\(161\) 2.65580i 0.209307i
\(162\) 0 0
\(163\) 20.9447i 1.64051i −0.571995 0.820257i \(-0.693830\pi\)
0.571995 0.820257i \(-0.306170\pi\)
\(164\) −20.8384 + 2.64119i −1.62720 + 0.206242i
\(165\) 0 0
\(166\) −4.60474 + 5.22522i −0.357397 + 0.405555i
\(167\) 22.7297 1.75888 0.879438 0.476014i \(-0.157919\pi\)
0.879438 + 0.476014i \(0.157919\pi\)
\(168\) 0 0
\(169\) 24.7755 1.90581
\(170\) 1.04233 1.18278i 0.0799429 0.0907150i
\(171\) 0 0
\(172\) −18.8611 + 2.39058i −1.43815 + 0.182280i
\(173\) 4.89112i 0.371865i −0.982563 0.185933i \(-0.940469\pi\)
0.982563 0.185933i \(-0.0595306\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 6.91439 1.78137i 0.521192 0.134276i
\(177\) 0 0
\(178\) 11.9350 + 10.5178i 0.894569 + 0.788342i
\(179\) −0.638667 −0.0477362 −0.0238681 0.999715i \(-0.507598\pi\)
−0.0238681 + 0.999715i \(0.507598\pi\)
\(180\) 0 0
\(181\) 14.0537 1.04461 0.522303 0.852760i \(-0.325073\pi\)
0.522303 + 0.852760i \(0.325073\pi\)
\(182\) 6.52115 + 5.74679i 0.483380 + 0.425980i
\(183\) 0 0
\(184\) −6.21542 4.21840i −0.458206 0.310984i
\(185\) 7.62886i 0.560885i
\(186\) 0 0
\(187\) 1.98991i 0.145516i
\(188\) −1.25854 9.92959i −0.0917885 0.724190i
\(189\) 0 0
\(190\) −2.50170 + 2.83879i −0.181492 + 0.205948i
\(191\) 4.42730 0.320348 0.160174 0.987089i \(-0.448794\pi\)
0.160174 + 0.987089i \(0.448794\pi\)
\(192\) 0 0
\(193\) −16.8507 −1.21294 −0.606469 0.795107i \(-0.707415\pi\)
−0.606469 + 0.795107i \(0.707415\pi\)
\(194\) −16.1596 + 18.3370i −1.16019 + 1.31652i
\(195\) 0 0
\(196\) 0.251481 + 1.98413i 0.0179629 + 0.141723i
\(197\) 2.87374i 0.204746i 0.994746 + 0.102373i \(0.0326435\pi\)
−0.994746 + 0.102373i \(0.967357\pi\)
\(198\) 0 0
\(199\) 5.54254i 0.392900i 0.980514 + 0.196450i \(0.0629414\pi\)
−0.980514 + 0.196450i \(0.937059\pi\)
\(200\) 2.34032 + 1.58837i 0.165485 + 0.112315i
\(201\) 0 0
\(202\) −4.33214 3.81772i −0.304809 0.268614i
\(203\) −0.744661 −0.0522650
\(204\) 0 0
\(205\) −10.5025 −0.733529
\(206\) −2.72861 2.40460i −0.190111 0.167536i
\(207\) 0 0
\(208\) 23.8073 6.13352i 1.65074 0.425283i
\(209\) 4.77599i 0.330362i
\(210\) 0 0
\(211\) 10.9485i 0.753728i −0.926269 0.376864i \(-0.877002\pi\)
0.926269 0.376864i \(-0.122998\pi\)
\(212\) −4.96193 + 0.628908i −0.340787 + 0.0431936i
\(213\) 0 0
\(214\) 7.87044 8.93096i 0.538012 0.610508i
\(215\) −9.50600 −0.648304
\(216\) 0 0
\(217\) 8.66461 0.588192
\(218\) 10.2068 11.5822i 0.691293 0.784443i
\(219\) 0 0
\(220\) 3.54175 0.448904i 0.238785 0.0302651i
\(221\) 6.85156i 0.460886i
\(222\) 0 0
\(223\) 4.19996i 0.281250i 0.990063 + 0.140625i \(0.0449112\pi\)
−0.990063 + 0.140625i \(0.955089\pi\)
\(224\) 5.04293 + 2.56298i 0.336945 + 0.171247i
\(225\) 0 0
\(226\) −1.89087 1.66634i −0.125779 0.110843i
\(227\) 1.64703 0.109317 0.0546587 0.998505i \(-0.482593\pi\)
0.0546587 + 0.998505i \(0.482593\pi\)
\(228\) 0 0
\(229\) 0.841682 0.0556199 0.0278100 0.999613i \(-0.491147\pi\)
0.0278100 + 0.999613i \(0.491147\pi\)
\(230\) −2.81783 2.48322i −0.185802 0.163739i
\(231\) 0 0
\(232\) −1.18280 + 1.74274i −0.0776545 + 0.114417i
\(233\) 27.1058i 1.77576i −0.460073 0.887881i \(-0.652177\pi\)
0.460073 0.887881i \(-0.347823\pi\)
\(234\) 0 0
\(235\) 5.00451i 0.326459i
\(236\) −0.311458 2.45733i −0.0202742 0.159959i
\(237\) 0 0
\(238\) 1.04233 1.18278i 0.0675641 0.0766681i
\(239\) 11.9107 0.770441 0.385221 0.922825i \(-0.374125\pi\)
0.385221 + 0.922825i \(0.374125\pi\)
\(240\) 0 0
\(241\) 15.0360 0.968555 0.484277 0.874914i \(-0.339083\pi\)
0.484277 + 0.874914i \(0.339083\pi\)
\(242\) −7.30588 + 8.29033i −0.469640 + 0.532922i
\(243\) 0 0
\(244\) 1.61315 + 12.7274i 0.103272 + 0.814789i
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 16.4445i 1.04634i
\(248\) 13.7626 20.2779i 0.873927 1.28765i
\(249\) 0 0
\(250\) 1.06101 + 0.935018i 0.0671041 + 0.0591358i
\(251\) 13.0078 0.821046 0.410523 0.911850i \(-0.365346\pi\)
0.410523 + 0.911850i \(0.365346\pi\)
\(252\) 0 0
\(253\) −4.74072 −0.298046
\(254\) 9.81812 + 8.65225i 0.616043 + 0.542891i
\(255\) 0 0
\(256\) 14.0082 7.73107i 0.875514 0.483192i
\(257\) 31.6675i 1.97536i −0.156474 0.987682i \(-0.550013\pi\)
0.156474 0.987682i \(-0.449987\pi\)
\(258\) 0 0
\(259\) 7.62886i 0.474035i
\(260\) 12.1948 1.54565i 0.756289 0.0958570i
\(261\) 0 0
\(262\) −13.6805 + 15.5240i −0.845187 + 0.959073i
\(263\) −31.5615 −1.94616 −0.973082 0.230460i \(-0.925977\pi\)
−0.973082 + 0.230460i \(0.925977\pi\)
\(264\) 0 0
\(265\) −2.50082 −0.153624
\(266\) −2.50170 + 2.83879i −0.153389 + 0.174058i
\(267\) 0 0
\(268\) −7.48493 + 0.948689i −0.457215 + 0.0579504i
\(269\) 23.3005i 1.42066i 0.703870 + 0.710328i \(0.251454\pi\)
−0.703870 + 0.710328i \(0.748546\pi\)
\(270\) 0 0
\(271\) 17.7738i 1.07968i 0.841768 + 0.539839i \(0.181515\pi\)
−0.841768 + 0.539839i \(0.818485\pi\)
\(272\) −1.11247 4.31807i −0.0674535 0.261821i
\(273\) 0 0
\(274\) 0.389196 + 0.342980i 0.0235122 + 0.0207202i
\(275\) 1.78504 0.107642
\(276\) 0 0
\(277\) 28.3983 1.70629 0.853145 0.521674i \(-0.174692\pi\)
0.853145 + 0.521674i \(0.174692\pi\)
\(278\) −2.54050 2.23882i −0.152369 0.134276i
\(279\) 0 0
\(280\) 2.34032 + 1.58837i 0.139861 + 0.0949233i
\(281\) 1.77885i 0.106117i 0.998591 + 0.0530586i \(0.0168970\pi\)
−0.998591 + 0.0530586i \(0.983103\pi\)
\(282\) 0 0
\(283\) 11.2173i 0.666798i 0.942786 + 0.333399i \(0.108196\pi\)
−0.942786 + 0.333399i \(0.891804\pi\)
\(284\) −3.90612 30.8184i −0.231786 1.82874i
\(285\) 0 0
\(286\) 10.2583 11.6405i 0.606584 0.688319i
\(287\) −10.5025 −0.619945
\(288\) 0 0
\(289\) 15.7573 0.926900
\(290\) −0.696272 + 0.790093i −0.0408865 + 0.0463958i
\(291\) 0 0
\(292\) 1.40527 + 11.0873i 0.0822374 + 0.648833i
\(293\) 14.3304i 0.837193i −0.908172 0.418596i \(-0.862522\pi\)
0.908172 0.418596i \(-0.137478\pi\)
\(294\) 0 0
\(295\) 1.23850i 0.0721080i
\(296\) 17.8540 + 12.1175i 1.03774 + 0.704313i
\(297\) 0 0
\(298\) −18.4898 16.2942i −1.07109 0.943900i
\(299\) −16.3230 −0.943985
\(300\) 0 0
\(301\) −9.50600 −0.547917
\(302\) −22.0972 19.4732i −1.27155 1.12056i
\(303\) 0 0
\(304\) 2.67005 + 10.3638i 0.153138 + 0.594406i
\(305\) 6.41461i 0.367300i
\(306\) 0 0
\(307\) 20.0746i 1.14572i 0.819653 + 0.572860i \(0.194166\pi\)
−0.819653 + 0.572860i \(0.805834\pi\)
\(308\) 3.54175 0.448904i 0.201810 0.0255787i
\(309\) 0 0
\(310\) 8.10157 9.19323i 0.460138 0.522140i
\(311\) 24.4717 1.38766 0.693831 0.720138i \(-0.255921\pi\)
0.693831 + 0.720138i \(0.255921\pi\)
\(312\) 0 0
\(313\) −8.66395 −0.489715 −0.244858 0.969559i \(-0.578741\pi\)
−0.244858 + 0.969559i \(0.578741\pi\)
\(314\) 6.06226 6.87913i 0.342113 0.388212i
\(315\) 0 0
\(316\) −22.5148 + 2.85367i −1.26656 + 0.160532i
\(317\) 3.75557i 0.210934i 0.994423 + 0.105467i \(0.0336337\pi\)
−0.994423 + 0.105467i \(0.966366\pi\)
\(318\) 0 0
\(319\) 1.32925i 0.0744238i
\(320\) 7.43458 2.95416i 0.415606 0.165142i
\(321\) 0 0
\(322\) −2.81783 2.48322i −0.157032 0.138385i
\(323\) 2.98263 0.165958
\(324\) 0 0
\(325\) 6.14618 0.340929
\(326\) −22.2225 19.5837i −1.23079 1.08464i
\(327\) 0 0
\(328\) −16.6819 + 24.5793i −0.921105 + 1.35716i
\(329\) 5.00451i 0.275908i
\(330\) 0 0
\(331\) 26.5167i 1.45749i 0.684784 + 0.728746i \(0.259896\pi\)
−0.684784 + 0.728746i \(0.740104\pi\)
\(332\) 1.23848 + 9.77135i 0.0679707 + 0.536272i
\(333\) 0 0
\(334\) 21.2527 24.1164i 1.16289 1.31959i
\(335\) −3.77241 −0.206109
\(336\) 0 0
\(337\) −5.97601 −0.325534 −0.162767 0.986665i \(-0.552042\pi\)
−0.162767 + 0.986665i \(0.552042\pi\)
\(338\) 23.1655 26.2870i 1.26004 1.42983i
\(339\) 0 0
\(340\) −0.280343 2.21184i −0.0152037 0.119954i
\(341\) 15.4667i 0.837568i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −15.0991 + 22.2470i −0.814087 + 1.19948i
\(345\) 0 0
\(346\) −5.18952 4.57329i −0.278991 0.245861i
\(347\) −18.6211 −0.999635 −0.499818 0.866131i \(-0.666600\pi\)
−0.499818 + 0.866131i \(0.666600\pi\)
\(348\) 0 0
\(349\) 18.8450 1.00875 0.504374 0.863485i \(-0.331723\pi\)
0.504374 + 0.863485i \(0.331723\pi\)
\(350\) 1.06101 + 0.935018i 0.0567133 + 0.0499788i
\(351\) 0 0
\(352\) 4.57503 9.00184i 0.243850 0.479800i
\(353\) 12.7221i 0.677129i 0.940943 + 0.338565i \(0.109941\pi\)
−0.940943 + 0.338565i \(0.890059\pi\)
\(354\) 0 0
\(355\) 15.5325i 0.824378i
\(356\) 22.3190 2.82885i 1.18290 0.149929i
\(357\) 0 0
\(358\) −0.597166 + 0.677632i −0.0315612 + 0.0358140i
\(359\) −19.6912 −1.03926 −0.519630 0.854391i \(-0.673930\pi\)
−0.519630 + 0.854391i \(0.673930\pi\)
\(360\) 0 0
\(361\) 11.8414 0.623230
\(362\) 13.1405 14.9111i 0.690649 0.783712i
\(363\) 0 0
\(364\) 12.1948 1.54565i 0.639181 0.0810139i
\(365\) 5.58799i 0.292489i
\(366\) 0 0
\(367\) 4.33850i 0.226468i 0.993568 + 0.113234i \(0.0361209\pi\)
−0.993568 + 0.113234i \(0.963879\pi\)
\(368\) −10.2873 + 2.65033i −0.536262 + 0.138158i
\(369\) 0 0
\(370\) 8.09430 + 7.13313i 0.420802 + 0.370834i
\(371\) −2.50082 −0.129836
\(372\) 0 0
\(373\) −22.3464 −1.15705 −0.578526 0.815664i \(-0.696372\pi\)
−0.578526 + 0.815664i \(0.696372\pi\)
\(374\) −2.11131 1.86060i −0.109173 0.0962093i
\(375\) 0 0
\(376\) −11.7121 7.94903i −0.604008 0.409940i
\(377\) 4.57682i 0.235718i
\(378\) 0 0
\(379\) 19.7583i 1.01492i 0.861676 + 0.507458i \(0.169415\pi\)
−0.861676 + 0.507458i \(0.830585\pi\)
\(380\) 0.672853 + 5.30865i 0.0345166 + 0.272328i
\(381\) 0 0
\(382\) 4.13961 4.69741i 0.211801 0.240340i
\(383\) −16.9359 −0.865384 −0.432692 0.901542i \(-0.642436\pi\)
−0.432692 + 0.901542i \(0.642436\pi\)
\(384\) 0 0
\(385\) 1.78504 0.0909742
\(386\) −15.7557 + 17.8787i −0.801944 + 0.910003i
\(387\) 0 0
\(388\) 4.34625 + 34.2909i 0.220647 + 1.74086i
\(389\) 5.00795i 0.253913i 0.991908 + 0.126957i \(0.0405209\pi\)
−0.991908 + 0.126957i \(0.959479\pi\)
\(390\) 0 0
\(391\) 2.96060i 0.149724i
\(392\) 2.34032 + 1.58837i 0.118204 + 0.0802248i
\(393\) 0 0
\(394\) 3.04907 + 2.68700i 0.153610 + 0.135369i
\(395\) −11.3475 −0.570953
\(396\) 0 0
\(397\) −18.6811 −0.937579 −0.468789 0.883310i \(-0.655310\pi\)
−0.468789 + 0.883310i \(0.655310\pi\)
\(398\) 5.88068 + 5.18238i 0.294772 + 0.259769i
\(399\) 0 0
\(400\) 3.87351 0.997940i 0.193676 0.0498970i
\(401\) 27.6477i 1.38066i −0.723495 0.690330i \(-0.757465\pi\)
0.723495 0.690330i \(-0.242535\pi\)
\(402\) 0 0
\(403\) 53.2542i 2.65278i
\(404\) −8.10127 + 1.02681i −0.403053 + 0.0510856i
\(405\) 0 0
\(406\) −0.696272 + 0.790093i −0.0345554 + 0.0392116i
\(407\) 13.6178 0.675012
\(408\) 0 0
\(409\) −22.7082 −1.12285 −0.561425 0.827527i \(-0.689747\pi\)
−0.561425 + 0.827527i \(0.689747\pi\)
\(410\) −9.82007 + 11.1433i −0.484979 + 0.550328i
\(411\) 0 0
\(412\) −5.10260 + 0.646737i −0.251387 + 0.0318625i
\(413\) 1.23850i 0.0609424i
\(414\) 0 0
\(415\) 4.92476i 0.241747i
\(416\) 15.7526 30.9947i 0.772332 1.51964i
\(417\) 0 0
\(418\) 5.06737 + 4.46564i 0.247853 + 0.218421i
\(419\) 2.91843 0.142574 0.0712872 0.997456i \(-0.477289\pi\)
0.0712872 + 0.997456i \(0.477289\pi\)
\(420\) 0 0
\(421\) 4.58992 0.223699 0.111850 0.993725i \(-0.464323\pi\)
0.111850 + 0.993725i \(0.464323\pi\)
\(422\) −11.6165 10.2371i −0.565482 0.498333i
\(423\) 0 0
\(424\) −3.97222 + 5.85270i −0.192908 + 0.284232i
\(425\) 1.11477i 0.0540742i
\(426\) 0 0
\(427\) 6.41461i 0.310425i
\(428\) −2.11682 16.7012i −0.102320 0.807284i
\(429\) 0 0
\(430\) −8.88829 + 10.0860i −0.428631 + 0.486388i
\(431\) 30.8239 1.48473 0.742366 0.669994i \(-0.233703\pi\)
0.742366 + 0.669994i \(0.233703\pi\)
\(432\) 0 0
\(433\) −7.39741 −0.355497 −0.177748 0.984076i \(-0.556881\pi\)
−0.177748 + 0.984076i \(0.556881\pi\)
\(434\) 8.10157 9.19323i 0.388888 0.441289i
\(435\) 0 0
\(436\) −2.74521 21.6591i −0.131472 1.03728i
\(437\) 7.10576i 0.339915i
\(438\) 0 0
\(439\) 23.5342i 1.12322i 0.827401 + 0.561612i \(0.189819\pi\)
−0.827401 + 0.561612i \(0.810181\pi\)
\(440\) 2.83531 4.17756i 0.135168 0.199157i
\(441\) 0 0
\(442\) −7.26957 6.40633i −0.345778 0.304718i
\(443\) 1.52531 0.0724695 0.0362348 0.999343i \(-0.488464\pi\)
0.0362348 + 0.999343i \(0.488464\pi\)
\(444\) 0 0
\(445\) 11.2488 0.533242
\(446\) 4.45620 + 3.92704i 0.211007 + 0.185951i
\(447\) 0 0
\(448\) 7.43458 2.95416i 0.351251 0.139571i
\(449\) 36.8140i 1.73736i 0.495372 + 0.868681i \(0.335032\pi\)
−0.495372 + 0.868681i \(0.664968\pi\)
\(450\) 0 0
\(451\) 18.7475i 0.882784i
\(452\) −3.53600 + 0.448176i −0.166320 + 0.0210804i
\(453\) 0 0
\(454\) 1.54001 1.74752i 0.0722760 0.0820150i
\(455\) 6.14618 0.288137
\(456\) 0 0
\(457\) 17.5387 0.820427 0.410213 0.911990i \(-0.365454\pi\)
0.410213 + 0.911990i \(0.365454\pi\)
\(458\) 0.786988 0.893033i 0.0367736 0.0417287i
\(459\) 0 0
\(460\) −5.26945 + 0.667884i −0.245689 + 0.0311402i
\(461\) 20.6600i 0.962232i −0.876657 0.481116i \(-0.840232\pi\)
0.876657 0.481116i \(-0.159768\pi\)
\(462\) 0 0
\(463\) 33.8911i 1.57505i −0.616281 0.787526i \(-0.711361\pi\)
0.616281 0.787526i \(-0.288639\pi\)
\(464\) 0.743128 + 2.88446i 0.0344988 + 0.133908i
\(465\) 0 0
\(466\) −28.7595 25.3444i −1.33226 1.17406i
\(467\) −41.1355 −1.90353 −0.951763 0.306835i \(-0.900730\pi\)
−0.951763 + 0.306835i \(0.900730\pi\)
\(468\) 0 0
\(469\) −3.77241 −0.174194
\(470\) −5.30984 4.67931i −0.244924 0.215841i
\(471\) 0 0
\(472\) −2.89847 1.96719i −0.133413 0.0905473i
\(473\) 16.9686i 0.780218i
\(474\) 0 0
\(475\) 2.67556i 0.122763i
\(476\) −0.280343 2.21184i −0.0128495 0.101379i
\(477\) 0 0
\(478\) 11.1368 12.6374i 0.509383 0.578021i
\(479\) 3.83901 0.175409 0.0877043 0.996147i \(-0.472047\pi\)
0.0877043 + 0.996147i \(0.472047\pi\)
\(480\) 0 0
\(481\) 46.8884 2.13793
\(482\) 14.0590 15.9534i 0.640368 0.726655i
\(483\) 0 0
\(484\) 1.96498 + 15.5032i 0.0893172 + 0.704692i
\(485\) 17.2826i 0.784763i
\(486\) 0 0
\(487\) 23.8493i 1.08072i −0.841435 0.540358i \(-0.818289\pi\)
0.841435 0.540358i \(-0.181711\pi\)
\(488\) 15.0122 + 10.1888i 0.679571 + 0.461225i
\(489\) 0 0
\(490\) 1.06101 + 0.935018i 0.0479315 + 0.0422398i
\(491\) −7.57026 −0.341641 −0.170821 0.985302i \(-0.554642\pi\)
−0.170821 + 0.985302i \(0.554642\pi\)
\(492\) 0 0
\(493\) 0.830124 0.0373869
\(494\) 17.4477 + 15.3759i 0.785011 + 0.691794i
\(495\) 0 0
\(496\) −8.64676 33.5625i −0.388251 1.50700i
\(497\) 15.5325i 0.696727i
\(498\) 0 0
\(499\) 40.2092i 1.80001i −0.435878 0.900006i \(-0.643562\pi\)
0.435878 0.900006i \(-0.356438\pi\)
\(500\) 1.98413 0.251481i 0.0887328 0.0112466i
\(501\) 0 0
\(502\) 12.1625 13.8014i 0.542841 0.615987i
\(503\) −37.9674 −1.69288 −0.846441 0.532483i \(-0.821259\pi\)
−0.846441 + 0.532483i \(0.821259\pi\)
\(504\) 0 0
\(505\) −4.08304 −0.181693
\(506\) −4.43266 + 5.02995i −0.197056 + 0.223608i
\(507\) 0 0
\(508\) 18.3602 2.32710i 0.814604 0.103248i
\(509\) 26.9404i 1.19411i 0.802200 + 0.597056i \(0.203663\pi\)
−0.802200 + 0.597056i \(0.796337\pi\)
\(510\) 0 0
\(511\) 5.58799i 0.247198i
\(512\) 4.89521 22.0916i 0.216340 0.976318i
\(513\) 0 0
\(514\) −33.5995 29.6097i −1.48201 1.30603i
\(515\) −2.57171 −0.113323
\(516\) 0 0
\(517\) −8.93327 −0.392885
\(518\) 8.09430 + 7.13313i 0.355643 + 0.313412i
\(519\) 0 0
\(520\) 9.76241 14.3840i 0.428110 0.630780i
\(521\) 30.0568i 1.31681i 0.752663 + 0.658406i \(0.228769\pi\)
−0.752663 + 0.658406i \(0.771231\pi\)
\(522\) 0 0
\(523\) 1.53868i 0.0672817i 0.999434 + 0.0336409i \(0.0107102\pi\)
−0.999434 + 0.0336409i \(0.989290\pi\)
\(524\) 3.67950 + 29.0304i 0.160740 + 1.26820i
\(525\) 0 0
\(526\) −29.5106 + 33.4870i −1.28672 + 1.46010i
\(527\) −9.65902 −0.420754
\(528\) 0 0
\(529\) −15.9467 −0.693335
\(530\) −2.33831 + 2.65339i −0.101570 + 0.115256i
\(531\) 0 0
\(532\) 0.672853 + 5.30865i 0.0291719 + 0.230159i
\(533\) 64.5505i 2.79599i
\(534\) 0 0
\(535\) 8.41742i 0.363917i
\(536\) −5.99198 + 8.82862i −0.258814 + 0.381339i
\(537\) 0 0
\(538\) 24.7220 + 21.7864i 1.06584 + 0.939278i
\(539\) 1.78504 0.0768872
\(540\) 0 0
\(541\) 20.0807 0.863338 0.431669 0.902032i \(-0.357925\pi\)
0.431669 + 0.902032i \(0.357925\pi\)
\(542\) 18.8581 + 16.6188i 0.810025 + 0.713838i
\(543\) 0 0
\(544\) −5.62169 2.85713i −0.241028 0.122498i
\(545\) 10.9162i 0.467597i
\(546\) 0 0
\(547\) 7.42216i 0.317349i −0.987331 0.158674i \(-0.949278\pi\)
0.987331 0.158674i \(-0.0507220\pi\)
\(548\) 0.727811 0.0922474i 0.0310905 0.00394062i
\(549\) 0 0
\(550\) 1.66905 1.89395i 0.0711684 0.0807581i
\(551\) −1.99239 −0.0848785
\(552\) 0 0
\(553\) −11.3475 −0.482543
\(554\) 26.5529 30.1309i 1.12813 1.28014i
\(555\) 0 0
\(556\) −4.75083 + 0.602151i −0.201480 + 0.0255369i
\(557\) 26.2422i 1.11192i 0.831209 + 0.555960i \(0.187649\pi\)
−0.831209 + 0.555960i \(0.812351\pi\)
\(558\) 0 0
\(559\) 58.4256i 2.47114i
\(560\) 3.87351 0.997940i 0.163686 0.0421707i
\(561\) 0 0
\(562\) 1.88737 + 1.66325i 0.0796140 + 0.0701602i
\(563\) −14.6337 −0.616736 −0.308368 0.951267i \(-0.599783\pi\)
−0.308368 + 0.951267i \(0.599783\pi\)
\(564\) 0 0
\(565\) −1.78215 −0.0749755
\(566\) 11.9016 + 10.4884i 0.500263 + 0.440858i
\(567\) 0 0
\(568\) −36.3509 24.6713i −1.52525 1.03519i
\(569\) 11.2621i 0.472132i 0.971737 + 0.236066i \(0.0758581\pi\)
−0.971737 + 0.236066i \(0.924142\pi\)
\(570\) 0 0
\(571\) 27.9392i 1.16922i 0.811315 + 0.584610i \(0.198752\pi\)
−0.811315 + 0.584610i \(0.801248\pi\)
\(572\) −2.75905 21.7682i −0.115362 0.910175i
\(573\) 0 0
\(574\) −9.82007 + 11.1433i −0.409882 + 0.465112i
\(575\) −2.65580 −0.110755
\(576\) 0 0
\(577\) 31.7206 1.32055 0.660273 0.751026i \(-0.270441\pi\)
0.660273 + 0.751026i \(0.270441\pi\)
\(578\) 14.7334 16.7186i 0.612827 0.695403i
\(579\) 0 0
\(580\) 0.187268 + 1.47750i 0.00777589 + 0.0613499i
\(581\) 4.92476i 0.204314i
\(582\) 0 0
\(583\) 4.46406i 0.184883i
\(584\) 13.0777 + 8.87580i 0.541157 + 0.367283i
\(585\) 0 0
\(586\) −15.2047 13.3992i −0.628101 0.553517i
\(587\) −11.1828 −0.461564 −0.230782 0.973005i \(-0.574128\pi\)
−0.230782 + 0.973005i \(0.574128\pi\)
\(588\) 0 0
\(589\) 23.1827 0.955226
\(590\) −1.31406 1.15802i −0.0540988 0.0476748i
\(591\) 0 0
\(592\) 29.5505 7.61315i 1.21452 0.312899i
\(593\) 6.96062i 0.285838i 0.989734 + 0.142919i \(0.0456489\pi\)
−0.989734 + 0.142919i \(0.954351\pi\)
\(594\) 0 0
\(595\) 1.11477i 0.0457010i
\(596\) −34.5767 + 4.38247i −1.41632 + 0.179513i
\(597\) 0 0
\(598\) −15.2623 + 17.3189i −0.624123 + 0.708222i
\(599\) 1.08694 0.0444111 0.0222055 0.999753i \(-0.492931\pi\)
0.0222055 + 0.999753i \(0.492931\pi\)
\(600\) 0 0
\(601\) −25.4366 −1.03758 −0.518789 0.854902i \(-0.673617\pi\)
−0.518789 + 0.854902i \(0.673617\pi\)
\(602\) −8.88829 + 10.0860i −0.362259 + 0.411073i
\(603\) 0 0
\(604\) −41.3226 + 5.23749i −1.68139 + 0.213111i
\(605\) 7.81362i 0.317669i
\(606\) 0 0
\(607\) 1.83622i 0.0745299i 0.999305 + 0.0372649i \(0.0118645\pi\)
−0.999305 + 0.0372649i \(0.988135\pi\)
\(608\) 13.4927 + 6.85742i 0.547199 + 0.278105i
\(609\) 0 0
\(610\) 6.80597 + 5.99778i 0.275565 + 0.242843i
\(611\) −30.7586 −1.24436
\(612\) 0 0
\(613\) −18.5165 −0.747876 −0.373938 0.927454i \(-0.621993\pi\)
−0.373938 + 0.927454i \(0.621993\pi\)
\(614\) 21.2994 + 18.7702i 0.859573 + 0.757502i
\(615\) 0 0
\(616\) 2.83531 4.17756i 0.114238 0.168319i
\(617\) 23.2330i 0.935324i 0.883907 + 0.467662i \(0.154904\pi\)
−0.883907 + 0.467662i \(0.845096\pi\)
\(618\) 0 0
\(619\) 35.9146i 1.44353i −0.692138 0.721766i \(-0.743331\pi\)
0.692138 0.721766i \(-0.256669\pi\)
\(620\) −2.17898 17.1917i −0.0875101 0.690434i
\(621\) 0 0
\(622\) 22.8815 25.9647i 0.917464 1.04109i
\(623\) 11.2488 0.450672
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −8.10095 + 9.19253i −0.323779 + 0.367407i
\(627\) 0 0
\(628\) −1.63050 12.8642i −0.0650639 0.513338i
\(629\) 8.50441i 0.339093i
\(630\) 0 0
\(631\) 29.9098i 1.19069i 0.803469 + 0.595346i \(0.202985\pi\)
−0.803469 + 0.595346i \(0.797015\pi\)
\(632\) −18.0240 + 26.5567i −0.716956 + 1.05637i
\(633\) 0 0
\(634\) 3.98469 + 3.51153i 0.158252 + 0.139460i
\(635\) 9.25356 0.367216
\(636\) 0 0
\(637\) 6.14618 0.243520
\(638\) 1.41035 + 1.24288i 0.0558362 + 0.0492059i
\(639\) 0 0
\(640\) 3.81708 10.6503i 0.150883 0.420992i
\(641\) 15.0812i 0.595672i 0.954617 + 0.297836i \(0.0962648\pi\)
−0.954617 + 0.297836i \(0.903735\pi\)
\(642\) 0 0
\(643\) 15.2532i 0.601529i 0.953699 + 0.300764i \(0.0972417\pi\)
−0.953699 + 0.300764i \(0.902758\pi\)
\(644\) −5.26945 + 0.667884i −0.207645 + 0.0263183i
\(645\) 0 0
\(646\) 2.78881 3.16460i 0.109724 0.124509i
\(647\) 27.3851 1.07662 0.538309 0.842748i \(-0.319063\pi\)
0.538309 + 0.842748i \(0.319063\pi\)
\(648\) 0 0
\(649\) −2.21077 −0.0867802
\(650\) 5.74679 6.52115i 0.225408 0.255781i
\(651\) 0 0
\(652\) −41.5569 + 5.26719i −1.62749 + 0.206279i
\(653\) 25.2084i 0.986480i 0.869893 + 0.493240i \(0.164188\pi\)
−0.869893 + 0.493240i \(0.835812\pi\)
\(654\) 0 0
\(655\) 14.6313i 0.571693i
\(656\) 10.4809 + 40.6817i 0.409211 + 1.58836i
\(657\) 0 0
\(658\) −5.30984 4.67931i −0.206999 0.182419i
\(659\) 31.4030 1.22329 0.611644 0.791133i \(-0.290509\pi\)
0.611644 + 0.791133i \(0.290509\pi\)
\(660\) 0 0
\(661\) 2.05842 0.0800631 0.0400316 0.999198i \(-0.487254\pi\)
0.0400316 + 0.999198i \(0.487254\pi\)
\(662\) 28.1345 + 24.7936i 1.09348 + 0.963632i
\(663\) 0 0
\(664\) 11.5255 + 7.82235i 0.447276 + 0.303566i
\(665\) 2.67556i 0.103754i
\(666\) 0 0
\(667\) 1.97767i 0.0765758i
\(668\) −5.71609 45.0986i −0.221162 1.74492i
\(669\) 0 0
\(670\) −3.52727 + 4.00256i −0.136270 + 0.154632i
\(671\) 11.4504 0.442036
\(672\) 0 0
\(673\) −14.8449 −0.572231 −0.286115 0.958195i \(-0.592364\pi\)
−0.286115 + 0.958195i \(0.592364\pi\)
\(674\) −5.58768 + 6.34060i −0.215229 + 0.244231i
\(675\) 0 0
\(676\) −6.23057 49.1577i −0.239637 1.89068i
\(677\) 11.8667i 0.456073i −0.973653 0.228036i \(-0.926770\pi\)
0.973653 0.228036i \(-0.0732305\pi\)
\(678\) 0 0
\(679\) 17.2826i 0.663246i
\(680\) −2.60891 1.77066i −0.100047 0.0679019i
\(681\) 0 0
\(682\) −16.4103 14.4616i −0.628383 0.553765i
\(683\) −18.8529 −0.721387 −0.360694 0.932684i \(-0.617460\pi\)
−0.360694 + 0.932684i \(0.617460\pi\)
\(684\) 0 0
\(685\) 0.366817 0.0140153
\(686\) 1.06101 + 0.935018i 0.0405095 + 0.0356992i
\(687\) 0 0
\(688\) 9.48642 + 36.8216i 0.361666 + 1.40381i
\(689\) 15.3705i 0.585568i
\(690\) 0 0
\(691\) 29.5363i 1.12362i −0.827268 0.561808i \(-0.810106\pi\)
0.827268 0.561808i \(-0.189894\pi\)
\(692\) −9.70460 + 1.23002i −0.368914 + 0.0467585i
\(693\) 0 0
\(694\) −17.4111 + 19.7572i −0.660917 + 0.749973i
\(695\) −2.39442 −0.0908254
\(696\) 0 0
\(697\) 11.7079 0.443468
\(698\) 17.6204 19.9947i 0.666942 0.756810i
\(699\) 0 0
\(700\) 1.98413 0.251481i 0.0749929 0.00950509i
\(701\) 11.7575i 0.444074i 0.975038 + 0.222037i \(0.0712706\pi\)
−0.975038 + 0.222037i \(0.928729\pi\)
\(702\) 0 0
\(703\) 20.4115i 0.769834i
\(704\) −5.27329 13.2710i −0.198745 0.500171i
\(705\) 0 0
\(706\) 13.4983 + 11.8954i 0.508014 + 0.447689i
\(707\) −4.08304 −0.153559
\(708\) 0 0
\(709\) −30.8039 −1.15686 −0.578432 0.815731i \(-0.696335\pi\)
−0.578432 + 0.815731i \(0.696335\pi\)
\(710\) −16.4801 14.5232i −0.618487 0.545044i
\(711\) 0 0
\(712\) 17.8672 26.3256i 0.669602 0.986595i
\(713\) 23.0115i 0.861787i
\(714\) 0 0
\(715\) 10.9712i 0.410299i
\(716\) 0.160613 + 1.26720i 0.00600238 + 0.0473574i
\(717\) 0 0
\(718\) −18.4116 + 20.8925i −0.687115 + 0.779702i
\(719\) −10.5183 −0.392266 −0.196133 0.980577i \(-0.562838\pi\)
−0.196133 + 0.980577i \(0.562838\pi\)
\(720\) 0 0
\(721\) −2.57171 −0.0957756
\(722\) 11.0719 12.5638i 0.412054 0.467577i
\(723\) 0 0
\(724\) −3.53425 27.8844i −0.131349 1.03631i
\(725\) 0.744661i 0.0276560i
\(726\) 0 0
\(727\) 36.9943i 1.37204i 0.727582 + 0.686021i \(0.240644\pi\)
−0.727582 + 0.686021i \(0.759356\pi\)
\(728\) 9.76241 14.3840i 0.361819 0.533106i
\(729\) 0 0
\(730\) 5.92891 + 5.22487i 0.219439 + 0.193381i
\(731\) 10.5970 0.391943
\(732\) 0 0
\(733\) −25.6451 −0.947222 −0.473611 0.880734i \(-0.657050\pi\)
−0.473611 + 0.880734i \(0.657050\pi\)
\(734\) 4.60319 + 4.05658i 0.169907 + 0.149731i
\(735\) 0 0
\(736\) −6.80678 + 13.3930i −0.250901 + 0.493673i
\(737\) 6.73391i 0.248047i
\(738\) 0 0
\(739\) 17.7468i 0.652825i −0.945227 0.326413i \(-0.894160\pi\)
0.945227 0.326413i \(-0.105840\pi\)
\(740\) 15.1366 1.91852i 0.556434 0.0705260i
\(741\) 0 0
\(742\) −2.33831 + 2.65339i −0.0858420 + 0.0974089i
\(743\) 50.3247 1.84623 0.923117 0.384520i \(-0.125633\pi\)
0.923117 + 0.384520i \(0.125633\pi\)
\(744\) 0 0
\(745\) −17.4267 −0.638463
\(746\) −20.8943 + 23.7097i −0.764994 + 0.868074i
\(747\) 0 0
\(748\) −3.94823 + 0.500424i −0.144361 + 0.0182973i
\(749\) 8.41742i 0.307566i
\(750\) 0 0
\(751\) 35.2002i 1.28447i 0.766506 + 0.642237i \(0.221993\pi\)
−0.766506 + 0.642237i \(0.778007\pi\)
\(752\) −19.3851 + 4.99421i −0.706900 + 0.182120i
\(753\) 0 0
\(754\) 4.85605 + 4.27941i 0.176847 + 0.155847i
\(755\) −20.8266 −0.757957
\(756\) 0 0
\(757\) 26.4292 0.960587 0.480293 0.877108i \(-0.340530\pi\)
0.480293 + 0.877108i \(0.340530\pi\)
\(758\) 20.9638 + 18.4744i 0.761438 + 0.671020i
\(759\) 0 0
\(760\) 6.26166 + 4.24978i 0.227134 + 0.154156i
\(761\) 40.8769i 1.48179i −0.671623 0.740893i \(-0.734403\pi\)
0.671623 0.740893i \(-0.265597\pi\)
\(762\) 0 0
\(763\) 10.9162i 0.395192i
\(764\) −1.11338 8.78433i −0.0402808 0.317806i
\(765\) 0 0
\(766\) −15.8354 + 17.9691i −0.572155 + 0.649251i
\(767\) −7.61201 −0.274854
\(768\) 0 0
\(769\) −19.6885 −0.709986 −0.354993 0.934869i \(-0.615517\pi\)
−0.354993 + 0.934869i \(0.615517\pi\)
\(770\) 1.66905 1.89395i 0.0601483 0.0682531i
\(771\) 0 0
\(772\) 4.23763 + 33.4339i 0.152516 + 1.20331i
\(773\) 38.9707i 1.40168i −0.713319 0.700840i \(-0.752809\pi\)
0.713319 0.700840i \(-0.247191\pi\)
\(774\) 0 0
\(775\) 8.66461i 0.311242i
\(776\) 40.4468 + 27.4512i 1.45195 + 0.985441i
\(777\) 0 0
\(778\) 5.31348 + 4.68253i 0.190498 + 0.167877i
\(779\) −28.1002 −1.00679
\(780\) 0 0
\(781\) −27.7261 −0.992119
\(782\) 3.14123 + 2.76822i 0.112330 + 0.0989912i
\(783\) 0 0
\(784\) 3.87351 0.997940i 0.138340 0.0356407i
\(785\) 6.48357i 0.231409i
\(786\) 0 0
\(787\) 33.2816i 1.18636i −0.805070 0.593180i \(-0.797872\pi\)
0.805070 0.593180i \(-0.202128\pi\)
\(788\) 5.70187 0.722692i 0.203121 0.0257448i
\(789\) 0 0
\(790\) −10.6101 + 12.0398i −0.377490 + 0.428356i
\(791\) −1.78215 −0.0633659
\(792\) 0 0
\(793\) 39.4254 1.40004
\(794\) −17.4672 + 19.8208i −0.619888 + 0.703416i
\(795\) 0 0
\(796\) 10.9971 1.39384i 0.389782 0.0494035i
\(797\) 35.3250i 1.25128i −0.780114 0.625638i \(-0.784839\pi\)
0.780114 0.625638i \(-0.215161\pi\)
\(798\) 0 0
\(799\) 5.57887i 0.197366i
\(800\) 2.56298 5.04293i 0.0906152 0.178294i
\(801\) 0 0
\(802\) −29.3345 25.8511i −1.03584 0.912834i
\(803\) 9.97479 0.352003
\(804\) 0 0
\(805\) −2.65580 −0.0936047
\(806\) −56.5032 49.7937i −1.99024 1.75391i
\(807\) 0 0
\(808\) −6.48539 + 9.55561i −0.228155 + 0.336165i
\(809\) 25.3389i 0.890868i −0.895315 0.445434i \(-0.853049\pi\)
0.895315 0.445434i \(-0.146951\pi\)
\(810\) 0 0
\(811\) 13.7848i 0.484048i −0.970270 0.242024i \(-0.922189\pi\)
0.970270 0.242024i \(-0.0778113\pi\)
\(812\) 0.187268 + 1.47750i 0.00657183 + 0.0518502i
\(813\) 0 0
\(814\) 12.7329 14.4487i 0.446289 0.506425i
\(815\) −20.9447 −0.733660
\(816\) 0 0
\(817\) −25.4339 −0.889819
\(818\) −21.2326 + 24.0937i −0.742381 + 0.842415i
\(819\) 0 0
\(820\) 2.64119 + 20.8384i 0.0922344 + 0.727707i
\(821\) 29.9654i 1.04580i 0.852395 + 0.522899i \(0.175150\pi\)
−0.852395 + 0.522899i \(0.824850\pi\)
\(822\) 0 0
\(823\) 24.7094i 0.861315i 0.902516 + 0.430657i \(0.141718\pi\)
−0.902516 + 0.430657i \(0.858282\pi\)
\(824\) −4.08484 + 6.01862i −0.142302 + 0.209669i
\(825\) 0 0
\(826\) −1.31406 1.15802i −0.0457218 0.0402925i
\(827\) 51.5762 1.79348 0.896741 0.442556i \(-0.145928\pi\)
0.896741 + 0.442556i \(0.145928\pi\)
\(828\) 0 0
\(829\) −7.45707 −0.258995 −0.129497 0.991580i \(-0.541336\pi\)
−0.129497 + 0.991580i \(0.541336\pi\)
\(830\) 5.22522 + 4.60474i 0.181370 + 0.159833i
\(831\) 0 0
\(832\) −18.1568 45.6942i −0.629473 1.58416i
\(833\) 1.11477i 0.0386244i
\(834\) 0 0
\(835\) 22.7297i 0.786593i
\(836\) 9.47616 1.20107i 0.327740 0.0415399i
\(837\) 0 0
\(838\) 2.72878 3.09648i 0.0942643 0.106966i
\(839\) 1.23046 0.0424803 0.0212401 0.999774i \(-0.493239\pi\)
0.0212401 + 0.999774i \(0.493239\pi\)
\(840\) 0 0
\(841\) 28.4455 0.980879
\(842\) 4.29166 4.86995i 0.147900 0.167830i
\(843\) 0 0
\(844\) −21.7233 + 2.75335i −0.747746 + 0.0947742i
\(845\) 24.7755i 0.852303i
\(846\) 0 0
\(847\) 7.81362i 0.268479i
\(848\) 2.49566 + 9.68695i 0.0857015 + 0.332651i
\(849\) 0 0
\(850\) −1.18278 1.04233i −0.0405690 0.0357516i
\(851\) −20.2608 −0.694530
\(852\) 0 0
\(853\) −48.1173 −1.64750 −0.823752 0.566950i \(-0.808123\pi\)
−0.823752 + 0.566950i \(0.808123\pi\)
\(854\) 6.80597 + 5.99778i 0.232895 + 0.205240i
\(855\) 0 0
\(856\) −19.6994 13.3700i −0.673312 0.456977i
\(857\) 5.29995i 0.181043i −0.995895 0.0905214i \(-0.971147\pi\)
0.995895 0.0905214i \(-0.0288534\pi\)
\(858\) 0 0
\(859\) 5.19530i 0.177261i 0.996065 + 0.0886306i \(0.0282491\pi\)
−0.996065 + 0.0886306i \(0.971751\pi\)
\(860\) 2.39058 + 18.8611i 0.0815181 + 0.643158i
\(861\) 0 0
\(862\) 28.8209 32.7044i 0.981643 1.11392i
\(863\) −6.02897 −0.205228 −0.102614 0.994721i \(-0.532721\pi\)
−0.102614 + 0.994721i \(0.532721\pi\)
\(864\) 0 0
\(865\) −4.89112 −0.166303
\(866\) −6.91671 + 7.84872i −0.235039 + 0.266710i
\(867\) 0 0
\(868\) −2.17898 17.1917i −0.0739596 0.583523i
\(869\) 20.2557i 0.687128i
\(870\) 0 0
\(871\) 23.1859i 0.785624i
\(872\) −25.5473 17.3389i −0.865140 0.587170i
\(873\) 0 0
\(874\) −7.53927 6.64401i −0.255020 0.224737i
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 7.51155 0.253647 0.126823 0.991925i \(-0.459522\pi\)
0.126823 + 0.991925i \(0.459522\pi\)
\(878\) 24.9700 + 22.0049i 0.842695 + 0.742629i
\(879\) 0 0
\(880\) −1.78137 6.91439i −0.0600498 0.233084i
\(881\) 17.6401i 0.594311i 0.954829 + 0.297155i \(0.0960379\pi\)
−0.954829 + 0.297155i \(0.903962\pi\)
\(882\) 0 0
\(883\) 41.0668i 1.38201i −0.722851 0.691004i \(-0.757169\pi\)
0.722851 0.691004i \(-0.242831\pi\)
\(884\) −13.5944 + 1.72304i −0.457228 + 0.0579520i
\(885\) 0 0
\(886\) 1.42619 1.61836i 0.0479138 0.0543700i
\(887\) 52.6103 1.76648 0.883241 0.468919i \(-0.155356\pi\)
0.883241 + 0.468919i \(0.155356\pi\)
\(888\) 0 0
\(889\) 9.25356 0.310355
\(890\) 10.5178 11.9350i 0.352557 0.400063i
\(891\) 0 0
\(892\) 8.33325 1.05621i 0.279018 0.0353645i
\(893\) 13.3899i 0.448075i
\(894\) 0 0
\(895\) 0.638667i 0.0213483i
\(896\) 3.81708 10.6503i 0.127520 0.355803i
\(897\) 0 0
\(898\) 39.0600 + 34.4218i 1.30345 + 1.14867i
\(899\) 6.45220 0.215193
\(900\) 0 0
\(901\) 2.78783 0.0928760
\(902\) 19.8912 + 17.5292i 0.662306 + 0.583660i
\(903\) 0 0
\(904\) −2.83071 + 4.17079i −0.0941480 + 0.138718i
\(905\) 14.0537i 0.467162i
\(906\) 0 0
\(907\) 40.0392i 1.32948i −0.747075 0.664740i \(-0.768542\pi\)
0.747075 0.664740i \(-0.231458\pi\)
\(908\) −0.414197 3.26792i −0.0137456 0.108450i
\(909\) 0 0
\(910\) 5.74679 6.52115i 0.190504 0.216174i
\(911\) −53.4697 −1.77153 −0.885765 0.464134i \(-0.846366\pi\)
−0.885765 + 0.464134i \(0.846366\pi\)
\(912\) 0 0
\(913\) 8.79091 0.290937
\(914\) 16.3990 18.6087i 0.542432 0.615523i
\(915\) 0 0
\(916\) −0.211667 1.67000i −0.00699368 0.0551785i
\(917\) 14.6313i 0.483169i
\(918\) 0 0
\(919\) 59.5338i 1.96384i 0.189301 + 0.981919i \(0.439378\pi\)
−0.189301 + 0.981919i \(0.560622\pi\)
\(920\) −4.21840 + 6.21542i −0.139076 + 0.204916i
\(921\) 0 0
\(922\) −21.9204 19.3175i −0.721911 0.636187i
\(923\) −95.4654 −3.14228
\(924\) 0 0
\(925\) 7.62886 0.250836
\(926\) −35.9588 31.6888i −1.18168 1.04136i
\(927\) 0 0
\(928\) 3.75527 + 1.90855i 0.123273 + 0.0626514i
\(929\) 22.8841i 0.750804i −0.926862 0.375402i \(-0.877505\pi\)
0.926862 0.375402i \(-0.122495\pi\)
\(930\) 0 0
\(931\) 2.67556i 0.0876879i
\(932\) −53.7814 + 6.81660i −1.76167 + 0.223285i
\(933\) 0 0
\(934\) −38.4625 + 43.6452i −1.25853 + 1.42811i
\(935\) −1.98991 −0.0650769
\(936\) 0 0
\(937\) 31.4871 1.02864 0.514319 0.857599i \(-0.328045\pi\)
0.514319 + 0.857599i \(0.328045\pi\)
\(938\) −3.52727 + 4.00256i −0.115169 + 0.130688i
\(939\) 0 0
\(940\) −9.92959 + 1.25854i −0.323868 + 0.0410491i
\(941\) 22.8467i 0.744780i −0.928076 0.372390i \(-0.878538\pi\)
0.928076 0.372390i \(-0.121462\pi\)
\(942\) 0 0
\(943\) 27.8927i 0.908310i
\(944\) −4.79733 + 1.23594i −0.156140 + 0.0402266i
\(945\) 0 0
\(946\) 18.0039 + 15.8660i 0.585356 + 0.515847i
\(947\) −60.4353 −1.96388 −0.981942 0.189180i \(-0.939417\pi\)
−0.981942 + 0.189180i \(0.939417\pi\)
\(948\) 0 0
\(949\) 34.3448 1.11488
\(950\) 2.83879 + 2.50170i 0.0921026 + 0.0811658i
\(951\) 0 0
\(952\) −2.60891 1.77066i −0.0845552 0.0573876i
\(953\) 24.3381i 0.788389i 0.919027 + 0.394195i \(0.128976\pi\)
−0.919027 + 0.394195i \(0.871024\pi\)
\(954\) 0 0
\(955\) 4.42730i 0.143264i
\(956\) −2.99532 23.6324i −0.0968757 0.764326i
\(957\) 0 0
\(958\) 3.58954 4.07322i 0.115973 0.131600i
\(959\) 0.366817 0.0118451
\(960\) 0 0
\(961\) −44.0754 −1.42179
\(962\) 43.8415 49.7490i 1.41351 1.60397i
\(963\) 0 0
\(964\) −3.78127 29.8334i −0.121787 0.960868i
\(965\) 16.8507i 0.542443i
\(966\) 0 0
\(967\) 1.74714i 0.0561844i 0.999605 + 0.0280922i \(0.00894320\pi\)
−0.999605 + 0.0280922i \(0.991057\pi\)
\(968\) 18.2863 + 12.4109i 0.587745 + 0.398903i
\(969\) 0 0
\(970\) 18.3370 + 16.1596i 0.588766 + 0.518852i
\(971\) −30.5704 −0.981050 −0.490525 0.871427i \(-0.663195\pi\)
−0.490525 + 0.871427i \(0.663195\pi\)
\(972\) 0 0
\(973\) −2.39442 −0.0767615
\(974\) −25.3043 22.2995i −0.810803 0.714523i
\(975\) 0 0
\(976\) 24.8471 6.40140i 0.795336 0.204904i
\(977\) 23.2429i 0.743605i −0.928312 0.371803i \(-0.878740\pi\)
0.928312 0.371803i \(-0.121260\pi\)
\(978\) 0 0
\(979\) 20.0795i 0.641744i
\(980\) 1.98413 0.251481i 0.0633806 0.00803327i
\(981\) 0 0
\(982\) −7.07834 + 8.03212i −0.225879 + 0.256315i
\(983\) 49.4169 1.57615 0.788077 0.615577i \(-0.211077\pi\)
0.788077 + 0.615577i \(0.211077\pi\)
\(984\) 0 0
\(985\) 2.87374 0.0915650
\(986\) 0.776181 0.880769i 0.0247187 0.0280494i
\(987\) 0 0
\(988\) 32.6279 4.13547i 1.03803 0.131567i
\(989\) 25.2461i 0.802778i
\(990\) 0 0
\(991\) 9.52952i 0.302715i −0.988479 0.151358i \(-0.951635\pi\)
0.988479 0.151358i \(-0.0483645\pi\)
\(992\) −43.6950 22.2072i −1.38732 0.705081i
\(993\) 0 0
\(994\) −16.4801 14.5232i −0.522717 0.460646i
\(995\) 5.54254 0.175710
\(996\) 0 0
\(997\) 45.9421 1.45500 0.727500 0.686108i \(-0.240682\pi\)
0.727500 + 0.686108i \(0.240682\pi\)
\(998\) −42.6623 37.5964i −1.35045 1.19009i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.n.a.71.19 24
3.2 odd 2 1260.2.n.b.71.6 yes 24
4.3 odd 2 1260.2.n.b.71.5 yes 24
12.11 even 2 inner 1260.2.n.a.71.20 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.n.a.71.19 24 1.1 even 1 trivial
1260.2.n.a.71.20 yes 24 12.11 even 2 inner
1260.2.n.b.71.5 yes 24 4.3 odd 2
1260.2.n.b.71.6 yes 24 3.2 odd 2