Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1260,2,Mod(71,1260)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1260.71");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1260.n (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.0611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
71.1 | −1.31265 | − | 0.526260i | 0 | 1.44610 | + | 1.38159i | 1.00000i | 0 | 1.00000i | −1.17115 | − | 2.57457i | 0 | 0.526260 | − | 1.31265i | ||||||||||
71.2 | −1.31265 | + | 0.526260i | 0 | 1.44610 | − | 1.38159i | − | 1.00000i | 0 | − | 1.00000i | −1.17115 | + | 2.57457i | 0 | 0.526260 | + | 1.31265i | ||||||||
71.3 | −1.26282 | − | 0.636627i | 0 | 1.18941 | + | 1.60789i | − | 1.00000i | 0 | − | 1.00000i | −0.478383 | − | 2.78768i | 0 | −0.636627 | + | 1.26282i | ||||||||
71.4 | −1.26282 | + | 0.636627i | 0 | 1.18941 | − | 1.60789i | 1.00000i | 0 | 1.00000i | −0.478383 | + | 2.78768i | 0 | −0.636627 | − | 1.26282i | ||||||||||
71.5 | −1.13949 | − | 0.837595i | 0 | 0.596870 | + | 1.90886i | − | 1.00000i | 0 | − | 1.00000i | 0.918725 | − | 2.67506i | 0 | −0.837595 | + | 1.13949i | ||||||||
71.6 | −1.13949 | + | 0.837595i | 0 | 0.596870 | − | 1.90886i | 1.00000i | 0 | 1.00000i | 0.918725 | + | 2.67506i | 0 | −0.837595 | − | 1.13949i | ||||||||||
71.7 | −0.862943 | − | 1.12041i | 0 | −0.510659 | + | 1.93371i | 1.00000i | 0 | 1.00000i | 2.60722 | − | 1.09653i | 0 | 1.12041 | − | 0.862943i | ||||||||||
71.8 | −0.862943 | + | 1.12041i | 0 | −0.510659 | − | 1.93371i | − | 1.00000i | 0 | − | 1.00000i | 2.60722 | + | 1.09653i | 0 | 1.12041 | + | 0.862943i | ||||||||
71.9 | −0.428129 | − | 1.34785i | 0 | −1.63341 | + | 1.15411i | − | 1.00000i | 0 | − | 1.00000i | 2.25488 | + | 1.70749i | 0 | −1.34785 | + | 0.428129i | ||||||||
71.10 | −0.428129 | + | 1.34785i | 0 | −1.63341 | − | 1.15411i | 1.00000i | 0 | 1.00000i | 2.25488 | − | 1.70749i | 0 | −1.34785 | − | 0.428129i | ||||||||||
71.11 | −0.132404 | − | 1.40800i | 0 | −1.96494 | + | 0.372850i | − | 1.00000i | 0 | − | 1.00000i | 0.785140 | + | 2.71727i | 0 | −1.40800 | + | 0.132404i | ||||||||
71.12 | −0.132404 | + | 1.40800i | 0 | −1.96494 | − | 0.372850i | 1.00000i | 0 | 1.00000i | 0.785140 | − | 2.71727i | 0 | −1.40800 | − | 0.132404i | ||||||||||
71.13 | 0.298198 | − | 1.38242i | 0 | −1.82216 | − | 0.824468i | 1.00000i | 0 | 1.00000i | −1.68312 | + | 2.27313i | 0 | 1.38242 | + | 0.298198i | ||||||||||
71.14 | 0.298198 | + | 1.38242i | 0 | −1.82216 | + | 0.824468i | − | 1.00000i | 0 | − | 1.00000i | −1.68312 | − | 2.27313i | 0 | 1.38242 | − | 0.298198i | ||||||||
71.15 | 0.463902 | − | 1.33596i | 0 | −1.56959 | − | 1.23951i | − | 1.00000i | 0 | − | 1.00000i | −2.38408 | + | 1.52190i | 0 | −1.33596 | − | 0.463902i | ||||||||
71.16 | 0.463902 | + | 1.33596i | 0 | −1.56959 | + | 1.23951i | 1.00000i | 0 | 1.00000i | −2.38408 | − | 1.52190i | 0 | −1.33596 | + | 0.463902i | ||||||||||
71.17 | 0.692735 | − | 1.23293i | 0 | −1.04024 | − | 1.70819i | 1.00000i | 0 | 1.00000i | −2.82669 | + | 0.0992196i | 0 | 1.23293 | + | 0.692735i | ||||||||||
71.18 | 0.692735 | + | 1.23293i | 0 | −1.04024 | + | 1.70819i | − | 1.00000i | 0 | − | 1.00000i | −2.82669 | − | 0.0992196i | 0 | 1.23293 | − | 0.692735i | ||||||||
71.19 | 0.935018 | − | 1.06101i | 0 | −0.251481 | − | 1.98413i | − | 1.00000i | 0 | − | 1.00000i | −2.34032 | − | 1.58837i | 0 | −1.06101 | − | 0.935018i | ||||||||
71.20 | 0.935018 | + | 1.06101i | 0 | −0.251481 | + | 1.98413i | 1.00000i | 0 | 1.00000i | −2.34032 | + | 1.58837i | 0 | −1.06101 | + | 0.935018i | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1260.2.n.a | ✓ | 24 |
3.b | odd | 2 | 1 | 1260.2.n.b | yes | 24 | |
4.b | odd | 2 | 1 | 1260.2.n.b | yes | 24 | |
12.b | even | 2 | 1 | inner | 1260.2.n.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1260.2.n.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
1260.2.n.a | ✓ | 24 | 12.b | even | 2 | 1 | inner |
1260.2.n.b | yes | 24 | 3.b | odd | 2 | 1 | |
1260.2.n.b | yes | 24 | 4.b | odd | 2 | 1 |