Properties

Label 1260.2.n.a.71.4
Level $1260$
Weight $2$
Character 1260.71
Analytic conductor $10.061$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(71,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.4
Character \(\chi\) \(=\) 1260.71
Dual form 1260.2.n.a.71.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26282 + 0.636627i) q^{2} +(1.18941 - 1.60789i) q^{4} +1.00000i q^{5} +1.00000i q^{7} +(-0.478383 + 2.78768i) q^{8} +(-0.636627 - 1.26282i) q^{10} -2.48729 q^{11} +5.41860 q^{13} +(-0.636627 - 1.26282i) q^{14} +(-1.17060 - 3.82488i) q^{16} -7.95206i q^{17} -6.96500i q^{19} +(1.60789 + 1.18941i) q^{20} +(3.14099 - 1.58348i) q^{22} +0.834597 q^{23} -1.00000 q^{25} +(-6.84270 + 3.44963i) q^{26} +(1.60789 + 1.18941i) q^{28} +7.43818i q^{29} +1.06987i q^{31} +(3.91328 + 4.08488i) q^{32} +(5.06250 + 10.0420i) q^{34} -1.00000 q^{35} +0.204600 q^{37} +(4.43411 + 8.79552i) q^{38} +(-2.78768 - 0.478383i) q^{40} +1.84398i q^{41} -4.38652i q^{43} +(-2.95841 + 3.99928i) q^{44} +(-1.05394 + 0.531327i) q^{46} +7.00063 q^{47} -1.00000 q^{49} +(1.26282 - 0.636627i) q^{50} +(6.44495 - 8.71250i) q^{52} -4.95889i q^{53} -2.48729i q^{55} +(-2.78768 - 0.478383i) q^{56} +(-4.73535 - 9.39305i) q^{58} +4.06269 q^{59} +4.54979 q^{61} +(-0.681108 - 1.35105i) q^{62} +(-7.54230 - 2.66716i) q^{64} +5.41860i q^{65} -9.50187i q^{67} +(-12.7860 - 9.45826i) q^{68} +(1.26282 - 0.636627i) q^{70} +9.40833 q^{71} +14.2406 q^{73} +(-0.258372 + 0.130254i) q^{74} +(-11.1989 - 8.28425i) q^{76} -2.48729i q^{77} +17.6352i q^{79} +(3.82488 - 1.17060i) q^{80} +(-1.17393 - 2.32860i) q^{82} -8.48193 q^{83} +7.95206 q^{85} +(2.79258 + 5.53937i) q^{86} +(1.18988 - 6.93376i) q^{88} -13.7181i q^{89} +5.41860i q^{91} +(0.992679 - 1.34194i) q^{92} +(-8.84051 + 4.45679i) q^{94} +6.96500 q^{95} +4.91671 q^{97} +(1.26282 - 0.636627i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{10} - 4 q^{14} + 4 q^{20} - 4 q^{22} - 24 q^{25} - 40 q^{26} + 4 q^{28} + 40 q^{32} + 8 q^{34} - 24 q^{35} + 4 q^{40} + 48 q^{44} + 36 q^{46} + 16 q^{47} - 24 q^{49} + 32 q^{52} + 4 q^{56}+ \cdots + 12 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26282 + 0.636627i −0.892946 + 0.450164i
\(3\) 0 0
\(4\) 1.18941 1.60789i 0.594706 0.803944i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) −0.478383 + 2.78768i −0.169134 + 0.985593i
\(9\) 0 0
\(10\) −0.636627 1.26282i −0.201319 0.399338i
\(11\) −2.48729 −0.749945 −0.374973 0.927036i \(-0.622348\pi\)
−0.374973 + 0.927036i \(0.622348\pi\)
\(12\) 0 0
\(13\) 5.41860 1.50285 0.751425 0.659819i \(-0.229367\pi\)
0.751425 + 0.659819i \(0.229367\pi\)
\(14\) −0.636627 1.26282i −0.170146 0.337502i
\(15\) 0 0
\(16\) −1.17060 3.82488i −0.292650 0.956219i
\(17\) 7.95206i 1.92866i −0.264709 0.964328i \(-0.585276\pi\)
0.264709 0.964328i \(-0.414724\pi\)
\(18\) 0 0
\(19\) 6.96500i 1.59788i −0.601410 0.798941i \(-0.705394\pi\)
0.601410 0.798941i \(-0.294606\pi\)
\(20\) 1.60789 + 1.18941i 0.359534 + 0.265960i
\(21\) 0 0
\(22\) 3.14099 1.58348i 0.669661 0.337598i
\(23\) 0.834597 0.174025 0.0870127 0.996207i \(-0.472268\pi\)
0.0870127 + 0.996207i \(0.472268\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −6.84270 + 3.44963i −1.34196 + 0.676528i
\(27\) 0 0
\(28\) 1.60789 + 1.18941i 0.303862 + 0.224778i
\(29\) 7.43818i 1.38123i 0.723220 + 0.690617i \(0.242661\pi\)
−0.723220 + 0.690617i \(0.757339\pi\)
\(30\) 0 0
\(31\) 1.06987i 0.192154i 0.995374 + 0.0960770i \(0.0306295\pi\)
−0.995374 + 0.0960770i \(0.969370\pi\)
\(32\) 3.91328 + 4.08488i 0.691776 + 0.722112i
\(33\) 0 0
\(34\) 5.06250 + 10.0420i 0.868211 + 1.72219i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 0.204600 0.0336360 0.0168180 0.999859i \(-0.494646\pi\)
0.0168180 + 0.999859i \(0.494646\pi\)
\(38\) 4.43411 + 8.79552i 0.719308 + 1.42682i
\(39\) 0 0
\(40\) −2.78768 0.478383i −0.440771 0.0756390i
\(41\) 1.84398i 0.287981i 0.989579 + 0.143990i \(0.0459934\pi\)
−0.989579 + 0.143990i \(0.954007\pi\)
\(42\) 0 0
\(43\) 4.38652i 0.668938i −0.942407 0.334469i \(-0.891443\pi\)
0.942407 0.334469i \(-0.108557\pi\)
\(44\) −2.95841 + 3.99928i −0.445997 + 0.602914i
\(45\) 0 0
\(46\) −1.05394 + 0.531327i −0.155395 + 0.0783399i
\(47\) 7.00063 1.02115 0.510573 0.859834i \(-0.329433\pi\)
0.510573 + 0.859834i \(0.329433\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 1.26282 0.636627i 0.178589 0.0900327i
\(51\) 0 0
\(52\) 6.44495 8.71250i 0.893753 1.20821i
\(53\) 4.95889i 0.681156i −0.940216 0.340578i \(-0.889377\pi\)
0.940216 0.340578i \(-0.110623\pi\)
\(54\) 0 0
\(55\) 2.48729i 0.335386i
\(56\) −2.78768 0.478383i −0.372519 0.0639267i
\(57\) 0 0
\(58\) −4.73535 9.39305i −0.621782 1.23337i
\(59\) 4.06269 0.528917 0.264458 0.964397i \(-0.414807\pi\)
0.264458 + 0.964397i \(0.414807\pi\)
\(60\) 0 0
\(61\) 4.54979 0.582540 0.291270 0.956641i \(-0.405922\pi\)
0.291270 + 0.956641i \(0.405922\pi\)
\(62\) −0.681108 1.35105i −0.0865007 0.171583i
\(63\) 0 0
\(64\) −7.54230 2.66716i −0.942787 0.333395i
\(65\) 5.41860i 0.672095i
\(66\) 0 0
\(67\) 9.50187i 1.16084i −0.814318 0.580419i \(-0.802889\pi\)
0.814318 0.580419i \(-0.197111\pi\)
\(68\) −12.7860 9.45826i −1.55053 1.14698i
\(69\) 0 0
\(70\) 1.26282 0.636627i 0.150935 0.0760915i
\(71\) 9.40833 1.11656 0.558282 0.829651i \(-0.311461\pi\)
0.558282 + 0.829651i \(0.311461\pi\)
\(72\) 0 0
\(73\) 14.2406 1.66674 0.833368 0.552718i \(-0.186409\pi\)
0.833368 + 0.552718i \(0.186409\pi\)
\(74\) −0.258372 + 0.130254i −0.0300351 + 0.0151417i
\(75\) 0 0
\(76\) −11.1989 8.28425i −1.28461 0.950269i
\(77\) 2.48729i 0.283453i
\(78\) 0 0
\(79\) 17.6352i 1.98411i 0.125801 + 0.992056i \(0.459850\pi\)
−0.125801 + 0.992056i \(0.540150\pi\)
\(80\) 3.82488 1.17060i 0.427634 0.130877i
\(81\) 0 0
\(82\) −1.17393 2.32860i −0.129638 0.257151i
\(83\) −8.48193 −0.931013 −0.465506 0.885045i \(-0.654128\pi\)
−0.465506 + 0.885045i \(0.654128\pi\)
\(84\) 0 0
\(85\) 7.95206 0.862522
\(86\) 2.79258 + 5.53937i 0.301132 + 0.597326i
\(87\) 0 0
\(88\) 1.18988 6.93376i 0.126841 0.739141i
\(89\) 13.7181i 1.45412i −0.686573 0.727060i \(-0.740886\pi\)
0.686573 0.727060i \(-0.259114\pi\)
\(90\) 0 0
\(91\) 5.41860i 0.568024i
\(92\) 0.992679 1.34194i 0.103494 0.139907i
\(93\) 0 0
\(94\) −8.84051 + 4.45679i −0.911829 + 0.459683i
\(95\) 6.96500 0.714594
\(96\) 0 0
\(97\) 4.91671 0.499217 0.249608 0.968347i \(-0.419698\pi\)
0.249608 + 0.968347i \(0.419698\pi\)
\(98\) 1.26282 0.636627i 0.127564 0.0643091i
\(99\) 0 0
\(100\) −1.18941 + 1.60789i −0.118941 + 0.160789i
\(101\) 5.73117i 0.570273i −0.958487 0.285136i \(-0.907961\pi\)
0.958487 0.285136i \(-0.0920389\pi\)
\(102\) 0 0
\(103\) 12.8384i 1.26500i 0.774560 + 0.632501i \(0.217972\pi\)
−0.774560 + 0.632501i \(0.782028\pi\)
\(104\) −2.59217 + 15.1053i −0.254183 + 1.48120i
\(105\) 0 0
\(106\) 3.15696 + 6.26217i 0.306631 + 0.608235i
\(107\) 14.6535 1.41660 0.708302 0.705909i \(-0.249461\pi\)
0.708302 + 0.705909i \(0.249461\pi\)
\(108\) 0 0
\(109\) 4.95707 0.474801 0.237401 0.971412i \(-0.423705\pi\)
0.237401 + 0.971412i \(0.423705\pi\)
\(110\) 1.58348 + 3.14099i 0.150978 + 0.299481i
\(111\) 0 0
\(112\) 3.82488 1.17060i 0.361417 0.110611i
\(113\) 13.1965i 1.24142i −0.784039 0.620712i \(-0.786844\pi\)
0.784039 0.620712i \(-0.213156\pi\)
\(114\) 0 0
\(115\) 0.834597i 0.0778265i
\(116\) 11.9597 + 8.84705i 1.11043 + 0.821428i
\(117\) 0 0
\(118\) −5.13043 + 2.58642i −0.472294 + 0.238099i
\(119\) 7.95206 0.728964
\(120\) 0 0
\(121\) −4.81340 −0.437582
\(122\) −5.74554 + 2.89652i −0.520177 + 0.262238i
\(123\) 0 0
\(124\) 1.72023 + 1.27251i 0.154481 + 0.114275i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 14.2554i 1.26497i −0.774574 0.632483i \(-0.782036\pi\)
0.774574 0.632483i \(-0.217964\pi\)
\(128\) 11.2225 1.43350i 0.991940 0.126705i
\(129\) 0 0
\(130\) −3.44963 6.84270i −0.302553 0.600144i
\(131\) −1.49629 −0.130732 −0.0653659 0.997861i \(-0.520821\pi\)
−0.0653659 + 0.997861i \(0.520821\pi\)
\(132\) 0 0
\(133\) 6.96500 0.603942
\(134\) 6.04915 + 11.9991i 0.522567 + 1.03657i
\(135\) 0 0
\(136\) 22.1678 + 3.80413i 1.90087 + 0.326201i
\(137\) 6.20152i 0.529832i −0.964272 0.264916i \(-0.914656\pi\)
0.964272 0.264916i \(-0.0853442\pi\)
\(138\) 0 0
\(139\) 19.8155i 1.68073i 0.542024 + 0.840363i \(0.317658\pi\)
−0.542024 + 0.840363i \(0.682342\pi\)
\(140\) −1.18941 + 1.60789i −0.100524 + 0.135891i
\(141\) 0 0
\(142\) −11.8810 + 5.98960i −0.997031 + 0.502636i
\(143\) −13.4776 −1.12706
\(144\) 0 0
\(145\) −7.43818 −0.617707
\(146\) −17.9833 + 9.06596i −1.48831 + 0.750304i
\(147\) 0 0
\(148\) 0.243353 0.328973i 0.0200035 0.0270415i
\(149\) 2.27455i 0.186338i 0.995650 + 0.0931692i \(0.0296998\pi\)
−0.995650 + 0.0931692i \(0.970300\pi\)
\(150\) 0 0
\(151\) 19.0231i 1.54808i −0.633138 0.774039i \(-0.718233\pi\)
0.633138 0.774039i \(-0.281767\pi\)
\(152\) 19.4162 + 3.33194i 1.57486 + 0.270256i
\(153\) 0 0
\(154\) 1.58348 + 3.14099i 0.127600 + 0.253108i
\(155\) −1.06987 −0.0859339
\(156\) 0 0
\(157\) 5.87977 0.469257 0.234628 0.972085i \(-0.424613\pi\)
0.234628 + 0.972085i \(0.424613\pi\)
\(158\) −11.2270 22.2700i −0.893174 1.77170i
\(159\) 0 0
\(160\) −4.08488 + 3.91328i −0.322938 + 0.309372i
\(161\) 0.834597i 0.0657754i
\(162\) 0 0
\(163\) 5.73523i 0.449218i 0.974449 + 0.224609i \(0.0721105\pi\)
−0.974449 + 0.224609i \(0.927889\pi\)
\(164\) 2.96491 + 2.19325i 0.231520 + 0.171264i
\(165\) 0 0
\(166\) 10.7111 5.39983i 0.831344 0.419108i
\(167\) 11.6449 0.901112 0.450556 0.892748i \(-0.351226\pi\)
0.450556 + 0.892748i \(0.351226\pi\)
\(168\) 0 0
\(169\) 16.3612 1.25856
\(170\) −10.0420 + 5.06250i −0.770185 + 0.388276i
\(171\) 0 0
\(172\) −7.05303 5.21738i −0.537788 0.397821i
\(173\) 5.25832i 0.399783i 0.979818 + 0.199891i \(0.0640589\pi\)
−0.979818 + 0.199891i \(0.935941\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 2.91162 + 9.51357i 0.219472 + 0.717112i
\(177\) 0 0
\(178\) 8.73335 + 17.3235i 0.654592 + 1.29845i
\(179\) 16.5106 1.23406 0.617028 0.786941i \(-0.288336\pi\)
0.617028 + 0.786941i \(0.288336\pi\)
\(180\) 0 0
\(181\) −17.2678 −1.28351 −0.641754 0.766911i \(-0.721793\pi\)
−0.641754 + 0.766911i \(0.721793\pi\)
\(182\) −3.44963 6.84270i −0.255704 0.507215i
\(183\) 0 0
\(184\) −0.399257 + 2.32659i −0.0294336 + 0.171518i
\(185\) 0.204600i 0.0150425i
\(186\) 0 0
\(187\) 19.7790i 1.44639i
\(188\) 8.32662 11.2562i 0.607281 0.820944i
\(189\) 0 0
\(190\) −8.79552 + 4.43411i −0.638094 + 0.321684i
\(191\) −8.87665 −0.642292 −0.321146 0.947030i \(-0.604068\pi\)
−0.321146 + 0.947030i \(0.604068\pi\)
\(192\) 0 0
\(193\) 7.86931 0.566445 0.283223 0.959054i \(-0.408596\pi\)
0.283223 + 0.959054i \(0.408596\pi\)
\(194\) −6.20891 + 3.13011i −0.445774 + 0.224729i
\(195\) 0 0
\(196\) −1.18941 + 1.60789i −0.0849579 + 0.114849i
\(197\) 4.89698i 0.348896i 0.984666 + 0.174448i \(0.0558140\pi\)
−0.984666 + 0.174448i \(0.944186\pi\)
\(198\) 0 0
\(199\) 9.24144i 0.655108i 0.944832 + 0.327554i \(0.106224\pi\)
−0.944832 + 0.327554i \(0.893776\pi\)
\(200\) 0.478383 2.78768i 0.0338268 0.197119i
\(201\) 0 0
\(202\) 3.64862 + 7.23741i 0.256716 + 0.509223i
\(203\) −7.43818 −0.522058
\(204\) 0 0
\(205\) −1.84398 −0.128789
\(206\) −8.17326 16.2125i −0.569458 1.12958i
\(207\) 0 0
\(208\) −6.34302 20.7255i −0.439810 1.43705i
\(209\) 17.3240i 1.19832i
\(210\) 0 0
\(211\) 3.49293i 0.240463i 0.992746 + 0.120231i \(0.0383637\pi\)
−0.992746 + 0.120231i \(0.961636\pi\)
\(212\) −7.97333 5.89816i −0.547611 0.405087i
\(213\) 0 0
\(214\) −18.5046 + 9.32880i −1.26495 + 0.637704i
\(215\) 4.38652 0.299158
\(216\) 0 0
\(217\) −1.06987 −0.0726274
\(218\) −6.25987 + 3.15581i −0.423972 + 0.213738i
\(219\) 0 0
\(220\) −3.99928 2.95841i −0.269631 0.199456i
\(221\) 43.0890i 2.89848i
\(222\) 0 0
\(223\) 18.5637i 1.24312i 0.783367 + 0.621560i \(0.213501\pi\)
−0.783367 + 0.621560i \(0.786499\pi\)
\(224\) −4.08488 + 3.91328i −0.272933 + 0.261467i
\(225\) 0 0
\(226\) 8.40126 + 16.6648i 0.558844 + 1.10852i
\(227\) −19.3298 −1.28297 −0.641484 0.767137i \(-0.721681\pi\)
−0.641484 + 0.767137i \(0.721681\pi\)
\(228\) 0 0
\(229\) −13.9289 −0.920449 −0.460224 0.887803i \(-0.652231\pi\)
−0.460224 + 0.887803i \(0.652231\pi\)
\(230\) −0.531327 1.05394i −0.0350347 0.0694949i
\(231\) 0 0
\(232\) −20.7352 3.55830i −1.36134 0.233614i
\(233\) 18.7205i 1.22642i 0.789919 + 0.613211i \(0.210122\pi\)
−0.789919 + 0.613211i \(0.789878\pi\)
\(234\) 0 0
\(235\) 7.00063i 0.456671i
\(236\) 4.83221 6.53234i 0.314550 0.425219i
\(237\) 0 0
\(238\) −10.0420 + 5.06250i −0.650925 + 0.328153i
\(239\) −30.6030 −1.97954 −0.989771 0.142664i \(-0.954433\pi\)
−0.989771 + 0.142664i \(0.954433\pi\)
\(240\) 0 0
\(241\) −3.08754 −0.198886 −0.0994429 0.995043i \(-0.531706\pi\)
−0.0994429 + 0.995043i \(0.531706\pi\)
\(242\) 6.07844 3.06434i 0.390737 0.196983i
\(243\) 0 0
\(244\) 5.41157 7.31554i 0.346440 0.468329i
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 37.7406i 2.40138i
\(248\) −2.98245 0.511807i −0.189386 0.0324998i
\(249\) 0 0
\(250\) 0.636627 + 1.26282i 0.0402638 + 0.0798675i
\(251\) 12.1541 0.767161 0.383581 0.923507i \(-0.374691\pi\)
0.383581 + 0.923507i \(0.374691\pi\)
\(252\) 0 0
\(253\) −2.07588 −0.130510
\(254\) 9.07541 + 18.0020i 0.569442 + 1.12955i
\(255\) 0 0
\(256\) −13.2594 + 8.95482i −0.828711 + 0.559676i
\(257\) 21.4904i 1.34053i −0.742121 0.670266i \(-0.766180\pi\)
0.742121 0.670266i \(-0.233820\pi\)
\(258\) 0 0
\(259\) 0.204600i 0.0127132i
\(260\) 8.71250 + 6.44495i 0.540326 + 0.399699i
\(261\) 0 0
\(262\) 1.88955 0.952582i 0.116736 0.0588507i
\(263\) 29.7602 1.83509 0.917545 0.397631i \(-0.130168\pi\)
0.917545 + 0.397631i \(0.130168\pi\)
\(264\) 0 0
\(265\) 4.95889 0.304622
\(266\) −8.79552 + 4.43411i −0.539288 + 0.271873i
\(267\) 0 0
\(268\) −15.2779 11.3016i −0.933249 0.690357i
\(269\) 1.14752i 0.0699653i −0.999388 0.0349827i \(-0.988862\pi\)
0.999388 0.0349827i \(-0.0111376\pi\)
\(270\) 0 0
\(271\) 22.9369i 1.39332i −0.717404 0.696658i \(-0.754670\pi\)
0.717404 0.696658i \(-0.245330\pi\)
\(272\) −30.4156 + 9.30869i −1.84422 + 0.564422i
\(273\) 0 0
\(274\) 3.94806 + 7.83138i 0.238511 + 0.473111i
\(275\) 2.48729 0.149989
\(276\) 0 0
\(277\) −13.4681 −0.809218 −0.404609 0.914490i \(-0.632592\pi\)
−0.404609 + 0.914490i \(0.632592\pi\)
\(278\) −12.6151 25.0233i −0.756601 1.50080i
\(279\) 0 0
\(280\) 0.478383 2.78768i 0.0285889 0.166596i
\(281\) 30.1002i 1.79563i −0.440377 0.897813i \(-0.645155\pi\)
0.440377 0.897813i \(-0.354845\pi\)
\(282\) 0 0
\(283\) 7.88157i 0.468511i −0.972175 0.234255i \(-0.924735\pi\)
0.972175 0.234255i \(-0.0752651\pi\)
\(284\) 11.1904 15.1275i 0.664026 0.897654i
\(285\) 0 0
\(286\) 17.0198 8.58022i 1.00640 0.507359i
\(287\) −1.84398 −0.108846
\(288\) 0 0
\(289\) −46.2352 −2.71972
\(290\) 9.39305 4.73535i 0.551579 0.278069i
\(291\) 0 0
\(292\) 16.9379 22.8973i 0.991218 1.33996i
\(293\) 6.20476i 0.362486i −0.983438 0.181243i \(-0.941988\pi\)
0.983438 0.181243i \(-0.0580121\pi\)
\(294\) 0 0
\(295\) 4.06269i 0.236539i
\(296\) −0.0978772 + 0.570359i −0.00568899 + 0.0331514i
\(297\) 0 0
\(298\) −1.44804 2.87234i −0.0838827 0.166390i
\(299\) 4.52235 0.261534
\(300\) 0 0
\(301\) 4.38652 0.252835
\(302\) 12.1106 + 24.0227i 0.696888 + 1.38235i
\(303\) 0 0
\(304\) −26.6403 + 8.15324i −1.52793 + 0.467621i
\(305\) 4.54979i 0.260520i
\(306\) 0 0
\(307\) 16.1323i 0.920720i 0.887732 + 0.460360i \(0.152280\pi\)
−0.887732 + 0.460360i \(0.847720\pi\)
\(308\) −3.99928 2.95841i −0.227880 0.168571i
\(309\) 0 0
\(310\) 1.35105 0.681108i 0.0767343 0.0386843i
\(311\) −7.91901 −0.449046 −0.224523 0.974469i \(-0.572082\pi\)
−0.224523 + 0.974469i \(0.572082\pi\)
\(312\) 0 0
\(313\) 22.8934 1.29401 0.647006 0.762485i \(-0.276021\pi\)
0.647006 + 0.762485i \(0.276021\pi\)
\(314\) −7.42507 + 3.74322i −0.419021 + 0.211242i
\(315\) 0 0
\(316\) 28.3554 + 20.9755i 1.59511 + 1.17996i
\(317\) 5.89061i 0.330849i −0.986222 0.165425i \(-0.947101\pi\)
0.986222 0.165425i \(-0.0528995\pi\)
\(318\) 0 0
\(319\) 18.5009i 1.03585i
\(320\) 2.66716 7.54230i 0.149099 0.421627i
\(321\) 0 0
\(322\) −0.531327 1.05394i −0.0296097 0.0587339i
\(323\) −55.3861 −3.08176
\(324\) 0 0
\(325\) −5.41860 −0.300570
\(326\) −3.65121 7.24255i −0.202222 0.401128i
\(327\) 0 0
\(328\) −5.14041 0.882127i −0.283832 0.0487073i
\(329\) 7.00063i 0.385957i
\(330\) 0 0
\(331\) 12.1342i 0.666953i 0.942758 + 0.333477i \(0.108222\pi\)
−0.942758 + 0.333477i \(0.891778\pi\)
\(332\) −10.0885 + 13.6380i −0.553678 + 0.748482i
\(333\) 0 0
\(334\) −14.7054 + 7.41349i −0.804645 + 0.405648i
\(335\) 9.50187 0.519143
\(336\) 0 0
\(337\) −21.8008 −1.18757 −0.593784 0.804625i \(-0.702367\pi\)
−0.593784 + 0.804625i \(0.702367\pi\)
\(338\) −20.6612 + 10.4160i −1.12382 + 0.566556i
\(339\) 0 0
\(340\) 9.45826 12.7860i 0.512946 0.693419i
\(341\) 2.66107i 0.144105i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 12.2282 + 2.09844i 0.659301 + 0.113140i
\(345\) 0 0
\(346\) −3.34759 6.64030i −0.179968 0.356984i
\(347\) −33.4581 −1.79612 −0.898062 0.439868i \(-0.855025\pi\)
−0.898062 + 0.439868i \(0.855025\pi\)
\(348\) 0 0
\(349\) −18.6864 −1.00026 −0.500130 0.865950i \(-0.666714\pi\)
−0.500130 + 0.865950i \(0.666714\pi\)
\(350\) 0.636627 + 1.26282i 0.0340292 + 0.0675004i
\(351\) 0 0
\(352\) −9.73344 10.1603i −0.518794 0.541544i
\(353\) 3.89401i 0.207257i −0.994616 0.103629i \(-0.966955\pi\)
0.994616 0.103629i \(-0.0330454\pi\)
\(354\) 0 0
\(355\) 9.40833i 0.499342i
\(356\) −22.0572 16.3165i −1.16903 0.864774i
\(357\) 0 0
\(358\) −20.8498 + 10.5111i −1.10195 + 0.555527i
\(359\) 23.4636 1.23836 0.619180 0.785249i \(-0.287465\pi\)
0.619180 + 0.785249i \(0.287465\pi\)
\(360\) 0 0
\(361\) −29.5113 −1.55322
\(362\) 21.8061 10.9932i 1.14610 0.577788i
\(363\) 0 0
\(364\) 8.71250 + 6.44495i 0.456659 + 0.337807i
\(365\) 14.2406i 0.745387i
\(366\) 0 0
\(367\) 13.4974i 0.704557i 0.935895 + 0.352278i \(0.114593\pi\)
−0.935895 + 0.352278i \(0.885407\pi\)
\(368\) −0.976980 3.19223i −0.0509286 0.166407i
\(369\) 0 0
\(370\) −0.130254 0.258372i −0.00677158 0.0134321i
\(371\) 4.95889 0.257453
\(372\) 0 0
\(373\) 12.8282 0.664222 0.332111 0.943240i \(-0.392239\pi\)
0.332111 + 0.943240i \(0.392239\pi\)
\(374\) −12.5919 24.9773i −0.651111 1.29155i
\(375\) 0 0
\(376\) −3.34898 + 19.5155i −0.172711 + 1.00643i
\(377\) 40.3045i 2.07579i
\(378\) 0 0
\(379\) 7.52696i 0.386634i 0.981136 + 0.193317i \(0.0619245\pi\)
−0.981136 + 0.193317i \(0.938075\pi\)
\(380\) 8.28425 11.1989i 0.424973 0.574493i
\(381\) 0 0
\(382\) 11.2096 5.65112i 0.573532 0.289136i
\(383\) 5.83122 0.297961 0.148981 0.988840i \(-0.452401\pi\)
0.148981 + 0.988840i \(0.452401\pi\)
\(384\) 0 0
\(385\) 2.48729 0.126764
\(386\) −9.93749 + 5.00982i −0.505805 + 0.254993i
\(387\) 0 0
\(388\) 5.84800 7.90552i 0.296887 0.401342i
\(389\) 30.7081i 1.55696i 0.627667 + 0.778482i \(0.284010\pi\)
−0.627667 + 0.778482i \(0.715990\pi\)
\(390\) 0 0
\(391\) 6.63676i 0.335635i
\(392\) 0.478383 2.78768i 0.0241620 0.140799i
\(393\) 0 0
\(394\) −3.11755 6.18399i −0.157060 0.311545i
\(395\) −17.6352 −0.887321
\(396\) 0 0
\(397\) −29.4317 −1.47713 −0.738567 0.674180i \(-0.764497\pi\)
−0.738567 + 0.674180i \(0.764497\pi\)
\(398\) −5.88335 11.6702i −0.294906 0.584976i
\(399\) 0 0
\(400\) 1.17060 + 3.82488i 0.0585301 + 0.191244i
\(401\) 2.74458i 0.137058i −0.997649 0.0685289i \(-0.978169\pi\)
0.997649 0.0685289i \(-0.0218305\pi\)
\(402\) 0 0
\(403\) 5.79719i 0.288779i
\(404\) −9.21507 6.81672i −0.458467 0.339144i
\(405\) 0 0
\(406\) 9.39305 4.73535i 0.466169 0.235011i
\(407\) −0.508899 −0.0252252
\(408\) 0 0
\(409\) −4.41741 −0.218427 −0.109213 0.994018i \(-0.534833\pi\)
−0.109213 + 0.994018i \(0.534833\pi\)
\(410\) 2.32860 1.17393i 0.115002 0.0579761i
\(411\) 0 0
\(412\) 20.6426 + 15.2701i 1.01699 + 0.752304i
\(413\) 4.06269i 0.199912i
\(414\) 0 0
\(415\) 8.48193i 0.416362i
\(416\) 21.2045 + 22.1343i 1.03964 + 1.08523i
\(417\) 0 0
\(418\) −11.0289 21.8770i −0.539442 1.07004i
\(419\) −2.73140 −0.133438 −0.0667188 0.997772i \(-0.521253\pi\)
−0.0667188 + 0.997772i \(0.521253\pi\)
\(420\) 0 0
\(421\) 14.9534 0.728785 0.364392 0.931245i \(-0.381277\pi\)
0.364392 + 0.931245i \(0.381277\pi\)
\(422\) −2.22369 4.41093i −0.108248 0.214720i
\(423\) 0 0
\(424\) 13.8238 + 2.37225i 0.671342 + 0.115207i
\(425\) 7.95206i 0.385731i
\(426\) 0 0
\(427\) 4.54979i 0.220180i
\(428\) 17.4290 23.5611i 0.842463 1.13887i
\(429\) 0 0
\(430\) −5.53937 + 2.79258i −0.267132 + 0.134670i
\(431\) −14.5881 −0.702682 −0.351341 0.936248i \(-0.614274\pi\)
−0.351341 + 0.936248i \(0.614274\pi\)
\(432\) 0 0
\(433\) 30.6750 1.47415 0.737074 0.675812i \(-0.236207\pi\)
0.737074 + 0.675812i \(0.236207\pi\)
\(434\) 1.35105 0.681108i 0.0648524 0.0326942i
\(435\) 0 0
\(436\) 5.89600 7.97041i 0.282367 0.381714i
\(437\) 5.81297i 0.278072i
\(438\) 0 0
\(439\) 5.75530i 0.274686i −0.990524 0.137343i \(-0.956144\pi\)
0.990524 0.137343i \(-0.0438562\pi\)
\(440\) 6.93376 + 1.18988i 0.330554 + 0.0567251i
\(441\) 0 0
\(442\) 27.4316 + 54.4135i 1.30479 + 2.58819i
\(443\) −13.8296 −0.657064 −0.328532 0.944493i \(-0.606554\pi\)
−0.328532 + 0.944493i \(0.606554\pi\)
\(444\) 0 0
\(445\) 13.7181 0.650303
\(446\) −11.8182 23.4426i −0.559607 1.11004i
\(447\) 0 0
\(448\) 2.66716 7.54230i 0.126011 0.356340i
\(449\) 12.2246i 0.576914i 0.957493 + 0.288457i \(0.0931422\pi\)
−0.957493 + 0.288457i \(0.906858\pi\)
\(450\) 0 0
\(451\) 4.58650i 0.215970i
\(452\) −21.2185 15.6961i −0.998035 0.738282i
\(453\) 0 0
\(454\) 24.4101 12.3059i 1.14562 0.577545i
\(455\) −5.41860 −0.254028
\(456\) 0 0
\(457\) 2.93542 0.137313 0.0686565 0.997640i \(-0.478129\pi\)
0.0686565 + 0.997640i \(0.478129\pi\)
\(458\) 17.5897 8.86753i 0.821911 0.414352i
\(459\) 0 0
\(460\) 1.34194 + 0.992679i 0.0625682 + 0.0462839i
\(461\) 12.9345i 0.602421i 0.953558 + 0.301210i \(0.0973906\pi\)
−0.953558 + 0.301210i \(0.902609\pi\)
\(462\) 0 0
\(463\) 24.0549i 1.11793i −0.829193 0.558963i \(-0.811199\pi\)
0.829193 0.558963i \(-0.188801\pi\)
\(464\) 28.4501 8.70714i 1.32076 0.404219i
\(465\) 0 0
\(466\) −11.9180 23.6406i −0.552090 1.09513i
\(467\) 28.8997 1.33732 0.668659 0.743569i \(-0.266869\pi\)
0.668659 + 0.743569i \(0.266869\pi\)
\(468\) 0 0
\(469\) 9.50187 0.438756
\(470\) −4.45679 8.84051i −0.205576 0.407782i
\(471\) 0 0
\(472\) −1.94352 + 11.3255i −0.0894579 + 0.521297i
\(473\) 10.9105i 0.501667i
\(474\) 0 0
\(475\) 6.96500i 0.319576i
\(476\) 9.45826 12.7860i 0.433519 0.586046i
\(477\) 0 0
\(478\) 38.6460 19.4827i 1.76762 0.891118i
\(479\) −6.95060 −0.317581 −0.158790 0.987312i \(-0.550759\pi\)
−0.158790 + 0.987312i \(0.550759\pi\)
\(480\) 0 0
\(481\) 1.10865 0.0505499
\(482\) 3.89899 1.96561i 0.177594 0.0895311i
\(483\) 0 0
\(484\) −5.72511 + 7.73941i −0.260232 + 0.351791i
\(485\) 4.91671i 0.223256i
\(486\) 0 0
\(487\) 38.8925i 1.76239i −0.472756 0.881193i \(-0.656741\pi\)
0.472756 0.881193i \(-0.343259\pi\)
\(488\) −2.17654 + 12.6833i −0.0985274 + 0.574148i
\(489\) 0 0
\(490\) 0.636627 + 1.26282i 0.0287599 + 0.0570482i
\(491\) −24.8414 −1.12108 −0.560539 0.828128i \(-0.689406\pi\)
−0.560539 + 0.828128i \(0.689406\pi\)
\(492\) 0 0
\(493\) 59.1488 2.66393
\(494\) 24.0267 + 47.6594i 1.08101 + 2.14430i
\(495\) 0 0
\(496\) 4.09212 1.25239i 0.183741 0.0562340i
\(497\) 9.40833i 0.422021i
\(498\) 0 0
\(499\) 3.88746i 0.174027i 0.996207 + 0.0870133i \(0.0277323\pi\)
−0.996207 + 0.0870133i \(0.972268\pi\)
\(500\) −1.60789 1.18941i −0.0719069 0.0531921i
\(501\) 0 0
\(502\) −15.3484 + 7.73765i −0.685034 + 0.345348i
\(503\) 9.05859 0.403903 0.201951 0.979396i \(-0.435272\pi\)
0.201951 + 0.979396i \(0.435272\pi\)
\(504\) 0 0
\(505\) 5.73117 0.255034
\(506\) 2.62146 1.32156i 0.116538 0.0587506i
\(507\) 0 0
\(508\) −22.9211 16.9556i −1.01696 0.752283i
\(509\) 26.1427i 1.15876i 0.815059 + 0.579378i \(0.196704\pi\)
−0.815059 + 0.579378i \(0.803296\pi\)
\(510\) 0 0
\(511\) 14.2406i 0.629967i
\(512\) 11.0433 19.7496i 0.488049 0.872816i
\(513\) 0 0
\(514\) 13.6814 + 27.1384i 0.603459 + 1.19702i
\(515\) −12.8384 −0.565726
\(516\) 0 0
\(517\) −17.4126 −0.765804
\(518\) −0.130254 0.258372i −0.00572303 0.0113522i
\(519\) 0 0
\(520\) −15.1053 2.59217i −0.662412 0.113674i
\(521\) 27.1627i 1.19002i 0.803718 + 0.595011i \(0.202852\pi\)
−0.803718 + 0.595011i \(0.797148\pi\)
\(522\) 0 0
\(523\) 37.3095i 1.63143i −0.578453 0.815716i \(-0.696343\pi\)
0.578453 0.815716i \(-0.303657\pi\)
\(524\) −1.77971 + 2.40587i −0.0777470 + 0.105101i
\(525\) 0 0
\(526\) −37.5816 + 18.9461i −1.63864 + 0.826091i
\(527\) 8.50765 0.370599
\(528\) 0 0
\(529\) −22.3034 −0.969715
\(530\) −6.26217 + 3.15696i −0.272011 + 0.137130i
\(531\) 0 0
\(532\) 8.28425 11.1989i 0.359168 0.485536i
\(533\) 9.99177i 0.432792i
\(534\) 0 0
\(535\) 14.6535i 0.633525i
\(536\) 26.4882 + 4.54554i 1.14411 + 0.196337i
\(537\) 0 0
\(538\) 0.730541 + 1.44910i 0.0314958 + 0.0624753i
\(539\) 2.48729 0.107135
\(540\) 0 0
\(541\) −20.6030 −0.885792 −0.442896 0.896573i \(-0.646049\pi\)
−0.442896 + 0.896573i \(0.646049\pi\)
\(542\) 14.6022 + 28.9651i 0.627220 + 1.24416i
\(543\) 0 0
\(544\) 32.4832 31.1186i 1.39271 1.33420i
\(545\) 4.95707i 0.212338i
\(546\) 0 0
\(547\) 23.5518i 1.00700i 0.863995 + 0.503501i \(0.167955\pi\)
−0.863995 + 0.503501i \(0.832045\pi\)
\(548\) −9.97135 7.37616i −0.425955 0.315094i
\(549\) 0 0
\(550\) −3.14099 + 1.58348i −0.133932 + 0.0675196i
\(551\) 51.8069 2.20705
\(552\) 0 0
\(553\) −17.6352 −0.749923
\(554\) 17.0077 8.57415i 0.722588 0.364281i
\(555\) 0 0
\(556\) 31.8610 + 23.5687i 1.35121 + 0.999537i
\(557\) 22.7028i 0.961950i −0.876734 0.480975i \(-0.840283\pi\)
0.876734 0.480975i \(-0.159717\pi\)
\(558\) 0 0
\(559\) 23.7688i 1.00531i
\(560\) 1.17060 + 3.82488i 0.0494670 + 0.161631i
\(561\) 0 0
\(562\) 19.1626 + 38.0110i 0.808325 + 1.60340i
\(563\) −5.57405 −0.234918 −0.117459 0.993078i \(-0.537475\pi\)
−0.117459 + 0.993078i \(0.537475\pi\)
\(564\) 0 0
\(565\) 13.1965 0.555182
\(566\) 5.01762 + 9.95297i 0.210906 + 0.418355i
\(567\) 0 0
\(568\) −4.50079 + 26.2274i −0.188849 + 1.10048i
\(569\) 19.6588i 0.824142i −0.911152 0.412071i \(-0.864806\pi\)
0.911152 0.412071i \(-0.135194\pi\)
\(570\) 0 0
\(571\) 13.8200i 0.578351i −0.957276 0.289175i \(-0.906619\pi\)
0.957276 0.289175i \(-0.0933811\pi\)
\(572\) −16.0304 + 21.6705i −0.670266 + 0.906089i
\(573\) 0 0
\(574\) 2.32860 1.17393i 0.0971940 0.0489987i
\(575\) −0.834597 −0.0348051
\(576\) 0 0
\(577\) 7.85582 0.327042 0.163521 0.986540i \(-0.447715\pi\)
0.163521 + 0.986540i \(0.447715\pi\)
\(578\) 58.3866 29.4346i 2.42856 1.22432i
\(579\) 0 0
\(580\) −8.84705 + 11.9597i −0.367354 + 0.496602i
\(581\) 8.48193i 0.351890i
\(582\) 0 0
\(583\) 12.3342i 0.510829i
\(584\) −6.81247 + 39.6982i −0.281902 + 1.64272i
\(585\) 0 0
\(586\) 3.95012 + 7.83548i 0.163178 + 0.323681i
\(587\) −12.4434 −0.513595 −0.256798 0.966465i \(-0.582667\pi\)
−0.256798 + 0.966465i \(0.582667\pi\)
\(588\) 0 0
\(589\) 7.45164 0.307039
\(590\) −2.58642 5.13043i −0.106481 0.211216i
\(591\) 0 0
\(592\) −0.239505 0.782570i −0.00984359 0.0321634i
\(593\) 26.8790i 1.10379i 0.833915 + 0.551893i \(0.186094\pi\)
−0.833915 + 0.551893i \(0.813906\pi\)
\(594\) 0 0
\(595\) 7.95206i 0.326002i
\(596\) 3.65722 + 2.70538i 0.149806 + 0.110816i
\(597\) 0 0
\(598\) −5.71089 + 2.87905i −0.233536 + 0.117733i
\(599\) 3.61279 0.147615 0.0738074 0.997273i \(-0.476485\pi\)
0.0738074 + 0.997273i \(0.476485\pi\)
\(600\) 0 0
\(601\) −2.08012 −0.0848497 −0.0424248 0.999100i \(-0.513508\pi\)
−0.0424248 + 0.999100i \(0.513508\pi\)
\(602\) −5.53937 + 2.79258i −0.225768 + 0.113817i
\(603\) 0 0
\(604\) −30.5870 22.6263i −1.24457 0.920651i
\(605\) 4.81340i 0.195693i
\(606\) 0 0
\(607\) 17.2015i 0.698186i 0.937088 + 0.349093i \(0.113510\pi\)
−0.937088 + 0.349093i \(0.886490\pi\)
\(608\) 28.4512 27.2560i 1.15385 1.10538i
\(609\) 0 0
\(610\) −2.89652 5.74554i −0.117277 0.232630i
\(611\) 37.9336 1.53463
\(612\) 0 0
\(613\) −34.6310 −1.39873 −0.699367 0.714763i \(-0.746534\pi\)
−0.699367 + 0.714763i \(0.746534\pi\)
\(614\) −10.2703 20.3722i −0.414475 0.822154i
\(615\) 0 0
\(616\) 6.93376 + 1.18988i 0.279369 + 0.0479415i
\(617\) 30.9408i 1.24563i −0.782369 0.622815i \(-0.785989\pi\)
0.782369 0.622815i \(-0.214011\pi\)
\(618\) 0 0
\(619\) 5.93399i 0.238507i −0.992864 0.119254i \(-0.961950\pi\)
0.992864 0.119254i \(-0.0380501\pi\)
\(620\) −1.27251 + 1.72023i −0.0511054 + 0.0690860i
\(621\) 0 0
\(622\) 10.0003 5.04146i 0.400974 0.202144i
\(623\) 13.7181 0.549606
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −28.9102 + 14.5746i −1.15548 + 0.582517i
\(627\) 0 0
\(628\) 6.99347 9.45401i 0.279070 0.377256i
\(629\) 1.62699i 0.0648723i
\(630\) 0 0
\(631\) 33.4702i 1.33243i −0.745761 0.666214i \(-0.767914\pi\)
0.745761 0.666214i \(-0.232086\pi\)
\(632\) −49.1612 8.43637i −1.95553 0.335581i
\(633\) 0 0
\(634\) 3.75012 + 7.43876i 0.148936 + 0.295431i
\(635\) 14.2554 0.565710
\(636\) 0 0
\(637\) −5.41860 −0.214693
\(638\) 11.7782 + 23.3632i 0.466302 + 0.924959i
\(639\) 0 0
\(640\) 1.43350 + 11.2225i 0.0566642 + 0.443609i
\(641\) 21.5133i 0.849725i 0.905258 + 0.424862i \(0.139677\pi\)
−0.905258 + 0.424862i \(0.860323\pi\)
\(642\) 0 0
\(643\) 37.2929i 1.47069i 0.677693 + 0.735345i \(0.262980\pi\)
−0.677693 + 0.735345i \(0.737020\pi\)
\(644\) 1.34194 + 0.992679i 0.0528797 + 0.0391170i
\(645\) 0 0
\(646\) 69.9425 35.2603i 2.75185 1.38730i
\(647\) 2.94206 0.115664 0.0578321 0.998326i \(-0.481581\pi\)
0.0578321 + 0.998326i \(0.481581\pi\)
\(648\) 0 0
\(649\) −10.1051 −0.396659
\(650\) 6.84270 3.44963i 0.268393 0.135306i
\(651\) 0 0
\(652\) 9.22161 + 6.82155i 0.361146 + 0.267153i
\(653\) 30.8516i 1.20731i 0.797244 + 0.603657i \(0.206290\pi\)
−0.797244 + 0.603657i \(0.793710\pi\)
\(654\) 0 0
\(655\) 1.49629i 0.0584651i
\(656\) 7.05298 2.15856i 0.275373 0.0842777i
\(657\) 0 0
\(658\) −4.45679 8.84051i −0.173744 0.344639i
\(659\) 11.9174 0.464237 0.232119 0.972687i \(-0.425434\pi\)
0.232119 + 0.972687i \(0.425434\pi\)
\(660\) 0 0
\(661\) −21.8793 −0.851007 −0.425503 0.904957i \(-0.639903\pi\)
−0.425503 + 0.904957i \(0.639903\pi\)
\(662\) −7.72493 15.3232i −0.300238 0.595553i
\(663\) 0 0
\(664\) 4.05761 23.6449i 0.157466 0.917600i
\(665\) 6.96500i 0.270091i
\(666\) 0 0
\(667\) 6.20788i 0.240370i
\(668\) 13.8506 18.7237i 0.535897 0.724443i
\(669\) 0 0
\(670\) −11.9991 + 6.04915i −0.463566 + 0.233699i
\(671\) −11.3166 −0.436873
\(672\) 0 0
\(673\) 3.93612 0.151726 0.0758632 0.997118i \(-0.475829\pi\)
0.0758632 + 0.997118i \(0.475829\pi\)
\(674\) 27.5305 13.8790i 1.06043 0.534600i
\(675\) 0 0
\(676\) 19.4602 26.3070i 0.748471 1.01181i
\(677\) 37.4472i 1.43921i 0.694382 + 0.719606i \(0.255678\pi\)
−0.694382 + 0.719606i \(0.744322\pi\)
\(678\) 0 0
\(679\) 4.91671i 0.188686i
\(680\) −3.80413 + 22.1678i −0.145882 + 0.850095i
\(681\) 0 0
\(682\) 1.69411 + 3.36044i 0.0648708 + 0.128678i
\(683\) −10.9267 −0.418098 −0.209049 0.977905i \(-0.567037\pi\)
−0.209049 + 0.977905i \(0.567037\pi\)
\(684\) 0 0
\(685\) 6.20152 0.236948
\(686\) 0.636627 + 1.26282i 0.0243065 + 0.0482146i
\(687\) 0 0
\(688\) −16.7779 + 5.13487i −0.639652 + 0.195765i
\(689\) 26.8702i 1.02367i
\(690\) 0 0
\(691\) 15.0065i 0.570873i −0.958398 0.285437i \(-0.907861\pi\)
0.958398 0.285437i \(-0.0921386\pi\)
\(692\) 8.45479 + 6.25431i 0.321403 + 0.237753i
\(693\) 0 0
\(694\) 42.2514 21.3003i 1.60384 0.808550i
\(695\) −19.8155 −0.751643
\(696\) 0 0
\(697\) 14.6634 0.555416
\(698\) 23.5975 11.8963i 0.893179 0.450281i
\(699\) 0 0
\(700\) −1.60789 1.18941i −0.0607724 0.0449555i
\(701\) 5.70228i 0.215372i −0.994185 0.107686i \(-0.965656\pi\)
0.994185 0.107686i \(-0.0343441\pi\)
\(702\) 0 0
\(703\) 1.42504i 0.0537463i
\(704\) 18.7599 + 6.63399i 0.707039 + 0.250028i
\(705\) 0 0
\(706\) 2.47904 + 4.91743i 0.0932998 + 0.185070i
\(707\) 5.73117 0.215543
\(708\) 0 0
\(709\) 10.1141 0.379843 0.189922 0.981799i \(-0.439177\pi\)
0.189922 + 0.981799i \(0.439177\pi\)
\(710\) −5.98960 11.8810i −0.224786 0.445886i
\(711\) 0 0
\(712\) 38.2418 + 6.56253i 1.43317 + 0.245941i
\(713\) 0.892909i 0.0334397i
\(714\) 0 0
\(715\) 13.4776i 0.504034i
\(716\) 19.6378 26.5471i 0.733901 0.992112i
\(717\) 0 0
\(718\) −29.6302 + 14.9375i −1.10579 + 0.557464i
\(719\) 24.4097 0.910328 0.455164 0.890408i \(-0.349581\pi\)
0.455164 + 0.890408i \(0.349581\pi\)
\(720\) 0 0
\(721\) −12.8384 −0.478126
\(722\) 37.2673 18.7877i 1.38695 0.699205i
\(723\) 0 0
\(724\) −20.5386 + 27.7647i −0.763309 + 1.03187i
\(725\) 7.43818i 0.276247i
\(726\) 0 0
\(727\) 8.07951i 0.299653i −0.988712 0.149826i \(-0.952129\pi\)
0.988712 0.149826i \(-0.0478714\pi\)
\(728\) −15.1053 2.59217i −0.559840 0.0960721i
\(729\) 0 0
\(730\) −9.06596 17.9833i −0.335546 0.665591i
\(731\) −34.8819 −1.29015
\(732\) 0 0
\(733\) −16.7898 −0.620145 −0.310072 0.950713i \(-0.600353\pi\)
−0.310072 + 0.950713i \(0.600353\pi\)
\(734\) −8.59279 17.0447i −0.317166 0.629131i
\(735\) 0 0
\(736\) 3.26601 + 3.40923i 0.120387 + 0.125666i
\(737\) 23.6339i 0.870565i
\(738\) 0 0
\(739\) 5.36772i 0.197455i −0.995115 0.0987273i \(-0.968523\pi\)
0.995115 0.0987273i \(-0.0314772\pi\)
\(740\) 0.328973 + 0.243353i 0.0120933 + 0.00894585i
\(741\) 0 0
\(742\) −6.26217 + 3.15696i −0.229891 + 0.115896i
\(743\) −33.4658 −1.22774 −0.613870 0.789407i \(-0.710388\pi\)
−0.613870 + 0.789407i \(0.710388\pi\)
\(744\) 0 0
\(745\) −2.27455 −0.0833331
\(746\) −16.1997 + 8.16681i −0.593114 + 0.299008i
\(747\) 0 0
\(748\) 31.8025 + 23.5254i 1.16281 + 0.860175i
\(749\) 14.6535i 0.535426i
\(750\) 0 0
\(751\) 13.1817i 0.481008i 0.970648 + 0.240504i \(0.0773128\pi\)
−0.970648 + 0.240504i \(0.922687\pi\)
\(752\) −8.19495 26.7765i −0.298839 0.976440i
\(753\) 0 0
\(754\) −25.6590 50.8972i −0.934444 1.85357i
\(755\) 19.0231 0.692322
\(756\) 0 0
\(757\) 51.4957 1.87164 0.935821 0.352475i \(-0.114660\pi\)
0.935821 + 0.352475i \(0.114660\pi\)
\(758\) −4.79187 9.50516i −0.174048 0.345243i
\(759\) 0 0
\(760\) −3.33194 + 19.4162i −0.120862 + 0.704299i
\(761\) 5.75865i 0.208751i 0.994538 + 0.104375i \(0.0332843\pi\)
−0.994538 + 0.104375i \(0.966716\pi\)
\(762\) 0 0
\(763\) 4.95707i 0.179458i
\(764\) −10.5580 + 14.2727i −0.381975 + 0.516367i
\(765\) 0 0
\(766\) −7.36375 + 3.71231i −0.266063 + 0.134131i
\(767\) 22.0141 0.794883
\(768\) 0 0
\(769\) 51.9385 1.87295 0.936476 0.350733i \(-0.114067\pi\)
0.936476 + 0.350733i \(0.114067\pi\)
\(770\) −3.14099 + 1.58348i −0.113193 + 0.0570645i
\(771\) 0 0
\(772\) 9.35984 12.6530i 0.336868 0.455390i
\(773\) 54.9369i 1.97594i 0.154640 + 0.987971i \(0.450578\pi\)
−0.154640 + 0.987971i \(0.549422\pi\)
\(774\) 0 0
\(775\) 1.06987i 0.0384308i
\(776\) −2.35207 + 13.7062i −0.0844345 + 0.492025i
\(777\) 0 0
\(778\) −19.5496 38.7787i −0.700888 1.39029i
\(779\) 12.8433 0.460159
\(780\) 0 0
\(781\) −23.4012 −0.837361
\(782\) 4.22514 + 8.38101i 0.151091 + 0.299704i
\(783\) 0 0
\(784\) 1.17060 + 3.82488i 0.0418072 + 0.136603i
\(785\) 5.87977i 0.209858i
\(786\) 0 0
\(787\) 27.4559i 0.978696i −0.872089 0.489348i \(-0.837235\pi\)
0.872089 0.489348i \(-0.162765\pi\)
\(788\) 7.87380 + 5.82453i 0.280492 + 0.207490i
\(789\) 0 0
\(790\) 22.2700 11.2270i 0.792330 0.399440i
\(791\) 13.1965 0.469214
\(792\) 0 0
\(793\) 24.6535 0.875470
\(794\) 37.1668 18.7370i 1.31900 0.664952i
\(795\) 0 0
\(796\) 14.8592 + 10.9919i 0.526670 + 0.389596i
\(797\) 20.4682i 0.725022i −0.931979 0.362511i \(-0.881920\pi\)
0.931979 0.362511i \(-0.118080\pi\)
\(798\) 0 0
\(799\) 55.6694i 1.96944i
\(800\) −3.91328 4.08488i −0.138355 0.144422i
\(801\) 0 0
\(802\) 1.74727 + 3.46590i 0.0616984 + 0.122385i
\(803\) −35.4205 −1.24996
\(804\) 0 0
\(805\) −0.834597 −0.0294157
\(806\) −3.69065 7.32079i −0.129998 0.257864i
\(807\) 0 0
\(808\) 15.9767 + 2.74170i 0.562057 + 0.0964525i
\(809\) 26.2422i 0.922625i −0.887238 0.461313i \(-0.847379\pi\)
0.887238 0.461313i \(-0.152621\pi\)
\(810\) 0 0
\(811\) 12.9694i 0.455417i −0.973729 0.227709i \(-0.926877\pi\)
0.973729 0.227709i \(-0.0731234\pi\)
\(812\) −8.84705 + 11.9597i −0.310471 + 0.419705i
\(813\) 0 0
\(814\) 0.642646 0.323979i 0.0225247 0.0113555i
\(815\) −5.73523 −0.200896
\(816\) 0 0
\(817\) −30.5521 −1.06888
\(818\) 5.57838 2.81224i 0.195043 0.0983278i
\(819\) 0 0
\(820\) −2.19325 + 2.96491i −0.0765915 + 0.103539i
\(821\) 1.78987i 0.0624670i 0.999512 + 0.0312335i \(0.00994355\pi\)
−0.999512 + 0.0312335i \(0.990056\pi\)
\(822\) 0 0
\(823\) 3.90306i 0.136052i −0.997684 0.0680261i \(-0.978330\pi\)
0.997684 0.0680261i \(-0.0216701\pi\)
\(824\) −35.7892 6.14166i −1.24678 0.213955i
\(825\) 0 0
\(826\) −2.58642 5.13043i −0.0899930 0.178510i
\(827\) −53.0808 −1.84580 −0.922900 0.385039i \(-0.874188\pi\)
−0.922900 + 0.385039i \(0.874188\pi\)
\(828\) 0 0
\(829\) −50.5236 −1.75476 −0.877379 0.479798i \(-0.840710\pi\)
−0.877379 + 0.479798i \(0.840710\pi\)
\(830\) 5.39983 + 10.7111i 0.187431 + 0.371788i
\(831\) 0 0
\(832\) −40.8687 14.4523i −1.41687 0.501042i
\(833\) 7.95206i 0.275522i
\(834\) 0 0
\(835\) 11.6449i 0.402990i
\(836\) 27.8550 + 20.6053i 0.963384 + 0.712650i
\(837\) 0 0
\(838\) 3.44925 1.73888i 0.119153 0.0600687i
\(839\) 2.21893 0.0766059 0.0383030 0.999266i \(-0.487805\pi\)
0.0383030 + 0.999266i \(0.487805\pi\)
\(840\) 0 0
\(841\) −26.3265 −0.907810
\(842\) −18.8834 + 9.51975i −0.650766 + 0.328072i
\(843\) 0 0
\(844\) 5.61623 + 4.15453i 0.193319 + 0.143005i
\(845\) 16.3612i 0.562844i
\(846\) 0 0
\(847\) 4.81340i 0.165390i
\(848\) −18.9671 + 5.80488i −0.651334 + 0.199341i
\(849\) 0 0
\(850\) −5.06250 10.0420i −0.173642 0.344437i
\(851\) 0.170758 0.00585352
\(852\) 0 0
\(853\) 0.751556 0.0257328 0.0128664 0.999917i \(-0.495904\pi\)
0.0128664 + 0.999917i \(0.495904\pi\)
\(854\) −2.89652 5.74554i −0.0991168 0.196608i
\(855\) 0 0
\(856\) −7.00998 + 40.8492i −0.239596 + 1.39620i
\(857\) 5.58659i 0.190834i 0.995437 + 0.0954172i \(0.0304185\pi\)
−0.995437 + 0.0954172i \(0.969581\pi\)
\(858\) 0 0
\(859\) 34.8451i 1.18890i 0.804132 + 0.594451i \(0.202630\pi\)
−0.804132 + 0.594451i \(0.797370\pi\)
\(860\) 5.21738 7.05303i 0.177911 0.240506i
\(861\) 0 0
\(862\) 18.4220 9.28715i 0.627457 0.316322i
\(863\) 2.59624 0.0883771 0.0441885 0.999023i \(-0.485930\pi\)
0.0441885 + 0.999023i \(0.485930\pi\)
\(864\) 0 0
\(865\) −5.25832 −0.178788
\(866\) −38.7369 + 19.5286i −1.31633 + 0.663608i
\(867\) 0 0
\(868\) −1.27251 + 1.72023i −0.0431919 + 0.0583883i
\(869\) 43.8637i 1.48797i
\(870\) 0 0
\(871\) 51.4869i 1.74457i
\(872\) −2.37138 + 13.8187i −0.0803051 + 0.467961i
\(873\) 0 0
\(874\) 3.70069 + 7.34071i 0.125178 + 0.248303i
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 36.7477 1.24088 0.620440 0.784254i \(-0.286954\pi\)
0.620440 + 0.784254i \(0.286954\pi\)
\(878\) 3.66398 + 7.26789i 0.123653 + 0.245279i
\(879\) 0 0
\(880\) −9.51357 + 2.91162i −0.320702 + 0.0981508i
\(881\) 27.7667i 0.935482i −0.883866 0.467741i \(-0.845068\pi\)
0.883866 0.467741i \(-0.154932\pi\)
\(882\) 0 0
\(883\) 35.2319i 1.18565i 0.805333 + 0.592823i \(0.201987\pi\)
−0.805333 + 0.592823i \(0.798013\pi\)
\(884\) −69.2823 51.2506i −2.33022 1.72374i
\(885\) 0 0
\(886\) 17.4642 8.80430i 0.586723 0.295786i
\(887\) −17.2658 −0.579730 −0.289865 0.957068i \(-0.593610\pi\)
−0.289865 + 0.957068i \(0.593610\pi\)
\(888\) 0 0
\(889\) 14.2554 0.478112
\(890\) −17.3235 + 8.73335i −0.580685 + 0.292743i
\(891\) 0 0
\(892\) 29.8484 + 22.0799i 0.999398 + 0.739290i
\(893\) 48.7594i 1.63167i
\(894\) 0 0
\(895\) 16.5106i 0.551887i
\(896\) 1.43350 + 11.2225i 0.0478900 + 0.374918i
\(897\) 0 0
\(898\) −7.78250 15.4374i −0.259705 0.515153i
\(899\) −7.95787 −0.265410
\(900\) 0 0
\(901\) −39.4334 −1.31372
\(902\) 2.91989 + 5.79191i 0.0972217 + 0.192849i
\(903\) 0 0
\(904\) 36.7876 + 6.31299i 1.22354 + 0.209967i
\(905\) 17.2678i 0.574002i
\(906\) 0 0
\(907\) 16.3067i 0.541455i −0.962656 0.270727i \(-0.912736\pi\)
0.962656 0.270727i \(-0.0872642\pi\)
\(908\) −22.9911 + 31.0802i −0.762988 + 1.03143i
\(909\) 0 0
\(910\) 6.84270 3.44963i 0.226833 0.114354i
\(911\) −20.3584 −0.674502 −0.337251 0.941415i \(-0.609497\pi\)
−0.337251 + 0.941415i \(0.609497\pi\)
\(912\) 0 0
\(913\) 21.0970 0.698209
\(914\) −3.70689 + 1.86877i −0.122613 + 0.0618133i
\(915\) 0 0
\(916\) −16.5672 + 22.3961i −0.547396 + 0.739989i
\(917\) 1.49629i 0.0494120i
\(918\) 0 0
\(919\) 49.8797i 1.64538i −0.568490 0.822690i \(-0.692472\pi\)
0.568490 0.822690i \(-0.307528\pi\)
\(920\) −2.32659 0.399257i −0.0767053 0.0131631i
\(921\) 0 0
\(922\) −8.23447 16.3339i −0.271188 0.537929i
\(923\) 50.9800 1.67803
\(924\) 0 0
\(925\) −0.204600 −0.00672720
\(926\) 15.3140 + 30.3769i 0.503250 + 0.998248i
\(927\) 0 0
\(928\) −30.3841 + 29.1077i −0.997406 + 0.955505i
\(929\) 8.44716i 0.277142i −0.990352 0.138571i \(-0.955749\pi\)
0.990352 0.138571i \(-0.0442510\pi\)
\(930\) 0 0
\(931\) 6.96500i 0.228269i
\(932\) 30.1005 + 22.2664i 0.985974 + 0.729360i
\(933\) 0 0
\(934\) −36.4950 + 18.3983i −1.19415 + 0.602011i
\(935\) −19.7790 −0.646844
\(936\) 0 0
\(937\) −36.2899 −1.18554 −0.592769 0.805372i \(-0.701965\pi\)
−0.592769 + 0.805372i \(0.701965\pi\)
\(938\) −11.9991 + 6.04915i −0.391785 + 0.197512i
\(939\) 0 0
\(940\) 11.2562 + 8.32662i 0.367137 + 0.271585i
\(941\) 14.0802i 0.459000i 0.973309 + 0.229500i \(0.0737092\pi\)
−0.973309 + 0.229500i \(0.926291\pi\)
\(942\) 0 0
\(943\) 1.53898i 0.0501160i
\(944\) −4.75579 15.5393i −0.154788 0.505761i
\(945\) 0 0
\(946\) −6.94595 13.7780i −0.225832 0.447962i
\(947\) 10.6173 0.345015 0.172508 0.985008i \(-0.444813\pi\)
0.172508 + 0.985008i \(0.444813\pi\)
\(948\) 0 0
\(949\) 77.1642 2.50485
\(950\) −4.43411 8.79552i −0.143862 0.285364i
\(951\) 0 0
\(952\) −3.80413 + 22.1678i −0.123293 + 0.718462i
\(953\) 17.9791i 0.582401i 0.956662 + 0.291201i \(0.0940547\pi\)
−0.956662 + 0.291201i \(0.905945\pi\)
\(954\) 0 0
\(955\) 8.87665i 0.287242i
\(956\) −36.3995 + 49.2061i −1.17724 + 1.59144i
\(957\) 0 0
\(958\) 8.77733 4.42494i 0.283583 0.142963i
\(959\) 6.20152 0.200258
\(960\) 0 0
\(961\) 29.8554 0.963077
\(962\) −1.40002 + 0.705794i −0.0451383 + 0.0227557i
\(963\) 0 0
\(964\) −3.67235 + 4.96441i −0.118278 + 0.159893i
\(965\) 7.86931i 0.253322i
\(966\) 0 0
\(967\) 43.6700i 1.40433i 0.712013 + 0.702167i \(0.247784\pi\)
−0.712013 + 0.702167i \(0.752216\pi\)
\(968\) 2.30265 13.4182i 0.0740100 0.431278i
\(969\) 0 0
\(970\) −3.13011 6.20891i −0.100502 0.199356i
\(971\) 46.5960 1.49534 0.747668 0.664072i \(-0.231173\pi\)
0.747668 + 0.664072i \(0.231173\pi\)
\(972\) 0 0
\(973\) −19.8155 −0.635255
\(974\) 24.7600 + 49.1141i 0.793362 + 1.57372i
\(975\) 0 0
\(976\) −5.32599 17.4024i −0.170481 0.557036i
\(977\) 36.9817i 1.18315i 0.806251 + 0.591574i \(0.201493\pi\)
−0.806251 + 0.591574i \(0.798507\pi\)
\(978\) 0 0
\(979\) 34.1210i 1.09051i
\(980\) −1.60789 1.18941i −0.0513621 0.0379943i
\(981\) 0 0
\(982\) 31.3701 15.8147i 1.00106 0.504668i
\(983\) 47.8010 1.52461 0.762307 0.647215i \(-0.224067\pi\)
0.762307 + 0.647215i \(0.224067\pi\)
\(984\) 0 0
\(985\) −4.89698 −0.156031
\(986\) −74.6941 + 37.6557i −2.37874 + 1.19920i
\(987\) 0 0
\(988\) −60.6826 44.8891i −1.93057 1.42811i
\(989\) 3.66098i 0.116412i
\(990\) 0 0
\(991\) 43.3244i 1.37625i 0.725594 + 0.688123i \(0.241565\pi\)
−0.725594 + 0.688123i \(0.758435\pi\)
\(992\) −4.37029 + 4.18669i −0.138757 + 0.132928i
\(993\) 0 0
\(994\) −5.98960 11.8810i −0.189979 0.376842i
\(995\) −9.24144 −0.292973
\(996\) 0 0
\(997\) 2.18200 0.0691047 0.0345523 0.999403i \(-0.488999\pi\)
0.0345523 + 0.999403i \(0.488999\pi\)
\(998\) −2.47486 4.90915i −0.0783404 0.155396i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.n.a.71.4 yes 24
3.2 odd 2 1260.2.n.b.71.21 yes 24
4.3 odd 2 1260.2.n.b.71.22 yes 24
12.11 even 2 inner 1260.2.n.a.71.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.n.a.71.3 24 12.11 even 2 inner
1260.2.n.a.71.4 yes 24 1.1 even 1 trivial
1260.2.n.b.71.21 yes 24 3.2 odd 2
1260.2.n.b.71.22 yes 24 4.3 odd 2