Properties

Label 1260.2.n.a.71.5
Level $1260$
Weight $2$
Character 1260.71
Analytic conductor $10.061$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(71,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.5
Character \(\chi\) \(=\) 1260.71
Dual form 1260.2.n.a.71.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13949 - 0.837595i) q^{2} +(0.596870 + 1.90886i) q^{4} -1.00000i q^{5} -1.00000i q^{7} +(0.918725 - 2.67506i) q^{8} +(-0.837595 + 1.13949i) q^{10} +3.58982 q^{11} -2.60436 q^{13} +(-0.837595 + 1.13949i) q^{14} +(-3.28749 + 2.27868i) q^{16} -5.87840i q^{17} +2.36141i q^{19} +(1.90886 - 0.596870i) q^{20} +(-4.09056 - 3.00681i) q^{22} +0.872147 q^{23} -1.00000 q^{25} +(2.96764 + 2.18140i) q^{26} +(1.90886 - 0.596870i) q^{28} -5.80406i q^{29} +0.479206i q^{31} +(5.65467 + 0.157056i) q^{32} +(-4.92372 + 6.69837i) q^{34} -1.00000 q^{35} +1.21097 q^{37} +(1.97790 - 2.69080i) q^{38} +(-2.67506 - 0.918725i) q^{40} +3.33273i q^{41} +1.07785i q^{43} +(2.14265 + 6.85246i) q^{44} +(-0.993802 - 0.730506i) q^{46} -1.79111 q^{47} -1.00000 q^{49} +(1.13949 + 0.837595i) q^{50} +(-1.55447 - 4.97137i) q^{52} -10.2314i q^{53} -3.58982i q^{55} +(-2.67506 - 0.918725i) q^{56} +(-4.86145 + 6.61366i) q^{58} -9.15424 q^{59} +7.76517 q^{61} +(0.401381 - 0.546050i) q^{62} +(-6.31189 - 4.91529i) q^{64} +2.60436i q^{65} -11.6184i q^{67} +(11.2210 - 3.50864i) q^{68} +(1.13949 + 0.837595i) q^{70} +9.51142 q^{71} -1.40325 q^{73} +(-1.37988 - 1.01430i) q^{74} +(-4.50759 + 1.40945i) q^{76} -3.58982i q^{77} -13.2047i q^{79} +(2.27868 + 3.28749i) q^{80} +(2.79148 - 3.79761i) q^{82} -15.5080 q^{83} -5.87840 q^{85} +(0.902799 - 1.22819i) q^{86} +(3.29806 - 9.60298i) q^{88} +0.714137i q^{89} +2.60436i q^{91} +(0.520558 + 1.66481i) q^{92} +(2.04095 + 1.50023i) q^{94} +2.36141 q^{95} +2.39247 q^{97} +(1.13949 + 0.837595i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{10} - 4 q^{14} + 4 q^{20} - 4 q^{22} - 24 q^{25} - 40 q^{26} + 4 q^{28} + 40 q^{32} + 8 q^{34} - 24 q^{35} + 4 q^{40} + 48 q^{44} + 36 q^{46} + 16 q^{47} - 24 q^{49} + 32 q^{52} + 4 q^{56}+ \cdots + 12 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13949 0.837595i −0.805740 0.592269i
\(3\) 0 0
\(4\) 0.596870 + 1.90886i 0.298435 + 0.954430i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0.918725 2.67506i 0.324818 0.945776i
\(9\) 0 0
\(10\) −0.837595 + 1.13949i −0.264871 + 0.360338i
\(11\) 3.58982 1.08237 0.541186 0.840903i \(-0.317976\pi\)
0.541186 + 0.840903i \(0.317976\pi\)
\(12\) 0 0
\(13\) −2.60436 −0.722321 −0.361160 0.932504i \(-0.617619\pi\)
−0.361160 + 0.932504i \(0.617619\pi\)
\(14\) −0.837595 + 1.13949i −0.223857 + 0.304541i
\(15\) 0 0
\(16\) −3.28749 + 2.27868i −0.821873 + 0.569670i
\(17\) 5.87840i 1.42572i −0.701306 0.712860i \(-0.747399\pi\)
0.701306 0.712860i \(-0.252601\pi\)
\(18\) 0 0
\(19\) 2.36141i 0.541744i 0.962615 + 0.270872i \(0.0873120\pi\)
−0.962615 + 0.270872i \(0.912688\pi\)
\(20\) 1.90886 0.596870i 0.426834 0.133464i
\(21\) 0 0
\(22\) −4.09056 3.00681i −0.872110 0.641055i
\(23\) 0.872147 0.181855 0.0909276 0.995858i \(-0.471017\pi\)
0.0909276 + 0.995858i \(0.471017\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 2.96764 + 2.18140i 0.582003 + 0.427808i
\(27\) 0 0
\(28\) 1.90886 0.596870i 0.360741 0.112798i
\(29\) 5.80406i 1.07779i −0.842374 0.538894i \(-0.818843\pi\)
0.842374 0.538894i \(-0.181157\pi\)
\(30\) 0 0
\(31\) 0.479206i 0.0860679i 0.999074 + 0.0430340i \(0.0137024\pi\)
−0.999074 + 0.0430340i \(0.986298\pi\)
\(32\) 5.65467 + 0.157056i 0.999615 + 0.0277639i
\(33\) 0 0
\(34\) −4.92372 + 6.69837i −0.844410 + 1.14876i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 1.21097 0.199081 0.0995407 0.995033i \(-0.468263\pi\)
0.0995407 + 0.995033i \(0.468263\pi\)
\(38\) 1.97790 2.69080i 0.320858 0.436505i
\(39\) 0 0
\(40\) −2.67506 0.918725i −0.422964 0.145263i
\(41\) 3.33273i 0.520486i 0.965543 + 0.260243i \(0.0838026\pi\)
−0.965543 + 0.260243i \(0.916197\pi\)
\(42\) 0 0
\(43\) 1.07785i 0.164370i 0.996617 + 0.0821850i \(0.0261898\pi\)
−0.996617 + 0.0821850i \(0.973810\pi\)
\(44\) 2.14265 + 6.85246i 0.323017 + 1.03305i
\(45\) 0 0
\(46\) −0.993802 0.730506i −0.146528 0.107707i
\(47\) −1.79111 −0.261260 −0.130630 0.991431i \(-0.541700\pi\)
−0.130630 + 0.991431i \(0.541700\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 1.13949 + 0.837595i 0.161148 + 0.118454i
\(51\) 0 0
\(52\) −1.55447 4.97137i −0.215566 0.689404i
\(53\) 10.2314i 1.40539i −0.711489 0.702697i \(-0.751979\pi\)
0.711489 0.702697i \(-0.248021\pi\)
\(54\) 0 0
\(55\) 3.58982i 0.484051i
\(56\) −2.67506 0.918725i −0.357470 0.122770i
\(57\) 0 0
\(58\) −4.86145 + 6.61366i −0.638340 + 0.868416i
\(59\) −9.15424 −1.19178 −0.595890 0.803066i \(-0.703201\pi\)
−0.595890 + 0.803066i \(0.703201\pi\)
\(60\) 0 0
\(61\) 7.76517 0.994228 0.497114 0.867685i \(-0.334393\pi\)
0.497114 + 0.867685i \(0.334393\pi\)
\(62\) 0.401381 0.546050i 0.0509754 0.0693484i
\(63\) 0 0
\(64\) −6.31189 4.91529i −0.788986 0.614411i
\(65\) 2.60436i 0.323032i
\(66\) 0 0
\(67\) 11.6184i 1.41942i −0.704495 0.709709i \(-0.748827\pi\)
0.704495 0.709709i \(-0.251173\pi\)
\(68\) 11.2210 3.50864i 1.36075 0.425485i
\(69\) 0 0
\(70\) 1.13949 + 0.837595i 0.136195 + 0.100112i
\(71\) 9.51142 1.12880 0.564399 0.825502i \(-0.309108\pi\)
0.564399 + 0.825502i \(0.309108\pi\)
\(72\) 0 0
\(73\) −1.40325 −0.164238 −0.0821192 0.996623i \(-0.526169\pi\)
−0.0821192 + 0.996623i \(0.526169\pi\)
\(74\) −1.37988 1.01430i −0.160408 0.117910i
\(75\) 0 0
\(76\) −4.50759 + 1.40945i −0.517057 + 0.161675i
\(77\) 3.58982i 0.409098i
\(78\) 0 0
\(79\) 13.2047i 1.48564i −0.669489 0.742822i \(-0.733487\pi\)
0.669489 0.742822i \(-0.266513\pi\)
\(80\) 2.27868 + 3.28749i 0.254764 + 0.367553i
\(81\) 0 0
\(82\) 2.79148 3.79761i 0.308267 0.419376i
\(83\) −15.5080 −1.70222 −0.851111 0.524985i \(-0.824071\pi\)
−0.851111 + 0.524985i \(0.824071\pi\)
\(84\) 0 0
\(85\) −5.87840 −0.637602
\(86\) 0.902799 1.22819i 0.0973513 0.132440i
\(87\) 0 0
\(88\) 3.29806 9.60298i 0.351574 1.02368i
\(89\) 0.714137i 0.0756984i 0.999283 + 0.0378492i \(0.0120506\pi\)
−0.999283 + 0.0378492i \(0.987949\pi\)
\(90\) 0 0
\(91\) 2.60436i 0.273012i
\(92\) 0.520558 + 1.66481i 0.0542719 + 0.173568i
\(93\) 0 0
\(94\) 2.04095 + 1.50023i 0.210508 + 0.154736i
\(95\) 2.36141 0.242275
\(96\) 0 0
\(97\) 2.39247 0.242918 0.121459 0.992596i \(-0.461243\pi\)
0.121459 + 0.992596i \(0.461243\pi\)
\(98\) 1.13949 + 0.837595i 0.115106 + 0.0846099i
\(99\) 0 0
\(100\) −0.596870 1.90886i −0.0596870 0.190886i
\(101\) 17.3805i 1.72943i −0.502267 0.864713i \(-0.667501\pi\)
0.502267 0.864713i \(-0.332499\pi\)
\(102\) 0 0
\(103\) 1.99963i 0.197030i 0.995136 + 0.0985149i \(0.0314092\pi\)
−0.995136 + 0.0985149i \(0.968591\pi\)
\(104\) −2.39269 + 6.96683i −0.234623 + 0.683154i
\(105\) 0 0
\(106\) −8.56979 + 11.6586i −0.832372 + 1.13238i
\(107\) 6.34669 0.613558 0.306779 0.951781i \(-0.400749\pi\)
0.306779 + 0.951781i \(0.400749\pi\)
\(108\) 0 0
\(109\) −4.55888 −0.436662 −0.218331 0.975875i \(-0.570061\pi\)
−0.218331 + 0.975875i \(0.570061\pi\)
\(110\) −3.00681 + 4.09056i −0.286688 + 0.390019i
\(111\) 0 0
\(112\) 2.27868 + 3.28749i 0.215315 + 0.310639i
\(113\) 9.72497i 0.914848i −0.889249 0.457424i \(-0.848772\pi\)
0.889249 0.457424i \(-0.151228\pi\)
\(114\) 0 0
\(115\) 0.872147i 0.0813281i
\(116\) 11.0791 3.46427i 1.02867 0.321649i
\(117\) 0 0
\(118\) 10.4312 + 7.66755i 0.960266 + 0.705855i
\(119\) −5.87840 −0.538872
\(120\) 0 0
\(121\) 1.88680 0.171527
\(122\) −8.84832 6.50407i −0.801090 0.588850i
\(123\) 0 0
\(124\) −0.914737 + 0.286023i −0.0821458 + 0.0256857i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 7.17430i 0.636616i −0.947987 0.318308i \(-0.896885\pi\)
0.947987 0.318308i \(-0.103115\pi\)
\(128\) 3.07530 + 10.8877i 0.271821 + 0.962348i
\(129\) 0 0
\(130\) 2.18140 2.96764i 0.191322 0.260280i
\(131\) −11.3808 −0.994343 −0.497171 0.867652i \(-0.665628\pi\)
−0.497171 + 0.867652i \(0.665628\pi\)
\(132\) 0 0
\(133\) 2.36141 0.204760
\(134\) −9.73154 + 13.2391i −0.840677 + 1.14368i
\(135\) 0 0
\(136\) −15.7251 5.40063i −1.34841 0.463100i
\(137\) 8.84221i 0.755441i −0.925920 0.377721i \(-0.876708\pi\)
0.925920 0.377721i \(-0.123292\pi\)
\(138\) 0 0
\(139\) 6.51008i 0.552178i 0.961132 + 0.276089i \(0.0890384\pi\)
−0.961132 + 0.276089i \(0.910962\pi\)
\(140\) −0.596870 1.90886i −0.0504447 0.161328i
\(141\) 0 0
\(142\) −10.8382 7.96672i −0.909518 0.668552i
\(143\) −9.34920 −0.781819
\(144\) 0 0
\(145\) −5.80406 −0.482001
\(146\) 1.59899 + 1.17536i 0.132333 + 0.0972733i
\(147\) 0 0
\(148\) 0.722788 + 2.31156i 0.0594128 + 0.190009i
\(149\) 22.9084i 1.87673i 0.345647 + 0.938365i \(0.387660\pi\)
−0.345647 + 0.938365i \(0.612340\pi\)
\(150\) 0 0
\(151\) 15.3898i 1.25241i −0.779660 0.626203i \(-0.784608\pi\)
0.779660 0.626203i \(-0.215392\pi\)
\(152\) 6.31690 + 2.16948i 0.512368 + 0.175968i
\(153\) 0 0
\(154\) −3.00681 + 4.09056i −0.242296 + 0.329627i
\(155\) 0.479206 0.0384908
\(156\) 0 0
\(157\) 1.98895 0.158735 0.0793677 0.996845i \(-0.474710\pi\)
0.0793677 + 0.996845i \(0.474710\pi\)
\(158\) −11.0602 + 15.0466i −0.879901 + 1.19704i
\(159\) 0 0
\(160\) 0.157056 5.65467i 0.0124164 0.447041i
\(161\) 0.872147i 0.0687348i
\(162\) 0 0
\(163\) 18.4312i 1.44364i 0.692079 + 0.721821i \(0.256695\pi\)
−0.692079 + 0.721821i \(0.743305\pi\)
\(164\) −6.36172 + 1.98921i −0.496767 + 0.155331i
\(165\) 0 0
\(166\) 17.6712 + 12.9894i 1.37155 + 1.00817i
\(167\) −8.43531 −0.652744 −0.326372 0.945241i \(-0.605826\pi\)
−0.326372 + 0.945241i \(0.605826\pi\)
\(168\) 0 0
\(169\) −6.21729 −0.478253
\(170\) 6.69837 + 4.92372i 0.513741 + 0.377632i
\(171\) 0 0
\(172\) −2.05746 + 0.643334i −0.156880 + 0.0490537i
\(173\) 20.6332i 1.56871i −0.620312 0.784355i \(-0.712994\pi\)
0.620312 0.784355i \(-0.287006\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) −11.8015 + 8.18005i −0.889572 + 0.616595i
\(177\) 0 0
\(178\) 0.598158 0.813751i 0.0448338 0.0609932i
\(179\) −10.4672 −0.782354 −0.391177 0.920315i \(-0.627932\pi\)
−0.391177 + 0.920315i \(0.627932\pi\)
\(180\) 0 0
\(181\) 2.32299 0.172667 0.0863333 0.996266i \(-0.472485\pi\)
0.0863333 + 0.996266i \(0.472485\pi\)
\(182\) 2.18140 2.96764i 0.161696 0.219976i
\(183\) 0 0
\(184\) 0.801264 2.33305i 0.0590699 0.171994i
\(185\) 1.21097i 0.0890319i
\(186\) 0 0
\(187\) 21.1024i 1.54316i
\(188\) −1.06906 3.41898i −0.0779692 0.249355i
\(189\) 0 0
\(190\) −2.69080 1.97790i −0.195211 0.143492i
\(191\) −19.2308 −1.39149 −0.695745 0.718289i \(-0.744925\pi\)
−0.695745 + 0.718289i \(0.744925\pi\)
\(192\) 0 0
\(193\) 26.8100 1.92983 0.964913 0.262571i \(-0.0845703\pi\)
0.964913 + 0.262571i \(0.0845703\pi\)
\(194\) −2.72619 2.00392i −0.195729 0.143873i
\(195\) 0 0
\(196\) −0.596870 1.90886i −0.0426335 0.136347i
\(197\) 9.19939i 0.655430i −0.944777 0.327715i \(-0.893721\pi\)
0.944777 0.327715i \(-0.106279\pi\)
\(198\) 0 0
\(199\) 14.1951i 1.00626i 0.864209 + 0.503132i \(0.167819\pi\)
−0.864209 + 0.503132i \(0.832181\pi\)
\(200\) −0.918725 + 2.67506i −0.0649637 + 0.189155i
\(201\) 0 0
\(202\) −14.5578 + 19.8049i −1.02429 + 1.39347i
\(203\) −5.80406 −0.407365
\(204\) 0 0
\(205\) 3.33273 0.232768
\(206\) 1.67488 2.27856i 0.116695 0.158755i
\(207\) 0 0
\(208\) 8.56183 5.93451i 0.593656 0.411485i
\(209\) 8.47702i 0.586368i
\(210\) 0 0
\(211\) 16.1624i 1.11267i 0.830959 + 0.556334i \(0.187793\pi\)
−0.830959 + 0.556334i \(0.812207\pi\)
\(212\) 19.5304 6.10683i 1.34135 0.419419i
\(213\) 0 0
\(214\) −7.23199 5.31596i −0.494368 0.363391i
\(215\) 1.07785 0.0735085
\(216\) 0 0
\(217\) 0.479206 0.0325306
\(218\) 5.19480 + 3.81850i 0.351836 + 0.258621i
\(219\) 0 0
\(220\) 6.85246 2.14265i 0.461993 0.144458i
\(221\) 15.3095i 1.02983i
\(222\) 0 0
\(223\) 1.03839i 0.0695357i −0.999395 0.0347679i \(-0.988931\pi\)
0.999395 0.0347679i \(-0.0110692\pi\)
\(224\) 0.157056 5.65467i 0.0104938 0.377819i
\(225\) 0 0
\(226\) −8.14558 + 11.0815i −0.541836 + 0.737130i
\(227\) 15.8964 1.05508 0.527539 0.849531i \(-0.323115\pi\)
0.527539 + 0.849531i \(0.323115\pi\)
\(228\) 0 0
\(229\) 24.2848 1.60479 0.802393 0.596796i \(-0.203560\pi\)
0.802393 + 0.596796i \(0.203560\pi\)
\(230\) −0.730506 + 0.993802i −0.0481681 + 0.0655294i
\(231\) 0 0
\(232\) −15.5262 5.33234i −1.01935 0.350085i
\(233\) 3.33491i 0.218477i −0.994016 0.109239i \(-0.965159\pi\)
0.994016 0.109239i \(-0.0348413\pi\)
\(234\) 0 0
\(235\) 1.79111i 0.116839i
\(236\) −5.46389 17.4742i −0.355669 1.13747i
\(237\) 0 0
\(238\) 6.69837 + 4.92372i 0.434191 + 0.319157i
\(239\) 3.31866 0.214667 0.107333 0.994223i \(-0.465769\pi\)
0.107333 + 0.994223i \(0.465769\pi\)
\(240\) 0 0
\(241\) 30.0266 1.93418 0.967092 0.254429i \(-0.0818874\pi\)
0.967092 + 0.254429i \(0.0818874\pi\)
\(242\) −2.14999 1.58037i −0.138207 0.101590i
\(243\) 0 0
\(244\) 4.63479 + 14.8226i 0.296712 + 0.948921i
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 6.14996i 0.391313i
\(248\) 1.28190 + 0.440259i 0.0814010 + 0.0279565i
\(249\) 0 0
\(250\) 0.837595 1.13949i 0.0529742 0.0720676i
\(251\) 22.9155 1.44641 0.723206 0.690632i \(-0.242668\pi\)
0.723206 + 0.690632i \(0.242668\pi\)
\(252\) 0 0
\(253\) 3.13085 0.196835
\(254\) −6.00916 + 8.17503i −0.377048 + 0.512947i
\(255\) 0 0
\(256\) 5.61523 14.9823i 0.350952 0.936394i
\(257\) 28.2082i 1.75958i 0.475361 + 0.879791i \(0.342317\pi\)
−0.475361 + 0.879791i \(0.657683\pi\)
\(258\) 0 0
\(259\) 1.21097i 0.0752457i
\(260\) −4.97137 + 1.55447i −0.308311 + 0.0964039i
\(261\) 0 0
\(262\) 12.9683 + 9.53248i 0.801182 + 0.588918i
\(263\) 19.5448 1.20518 0.602591 0.798050i \(-0.294135\pi\)
0.602591 + 0.798050i \(0.294135\pi\)
\(264\) 0 0
\(265\) −10.2314 −0.628511
\(266\) −2.69080 1.97790i −0.164983 0.121273i
\(267\) 0 0
\(268\) 22.1780 6.93469i 1.35473 0.423603i
\(269\) 23.4068i 1.42714i 0.700584 + 0.713569i \(0.252923\pi\)
−0.700584 + 0.713569i \(0.747077\pi\)
\(270\) 0 0
\(271\) 32.2986i 1.96200i −0.194014 0.980999i \(-0.562151\pi\)
0.194014 0.980999i \(-0.437849\pi\)
\(272\) 13.3950 + 19.3252i 0.812191 + 1.17176i
\(273\) 0 0
\(274\) −7.40619 + 10.0756i −0.447425 + 0.608690i
\(275\) −3.58982 −0.216474
\(276\) 0 0
\(277\) 13.0963 0.786882 0.393441 0.919350i \(-0.371285\pi\)
0.393441 + 0.919350i \(0.371285\pi\)
\(278\) 5.45281 7.41816i 0.327038 0.444912i
\(279\) 0 0
\(280\) −0.918725 + 2.67506i −0.0549043 + 0.159865i
\(281\) 5.09428i 0.303899i 0.988388 + 0.151950i \(0.0485552\pi\)
−0.988388 + 0.151950i \(0.951445\pi\)
\(282\) 0 0
\(283\) 25.6782i 1.52641i 0.646156 + 0.763205i \(0.276376\pi\)
−0.646156 + 0.763205i \(0.723624\pi\)
\(284\) 5.67708 + 18.1560i 0.336873 + 1.07736i
\(285\) 0 0
\(286\) 10.6533 + 7.83084i 0.629943 + 0.463047i
\(287\) 3.33273 0.196725
\(288\) 0 0
\(289\) −17.5556 −1.03268
\(290\) 6.61366 + 4.86145i 0.388368 + 0.285474i
\(291\) 0 0
\(292\) −0.837559 2.67861i −0.0490144 0.156754i
\(293\) 12.5836i 0.735140i −0.929996 0.367570i \(-0.880190\pi\)
0.929996 0.367570i \(-0.119810\pi\)
\(294\) 0 0
\(295\) 9.15424i 0.532981i
\(296\) 1.11254 3.23940i 0.0646653 0.188287i
\(297\) 0 0
\(298\) 19.1880 26.1039i 1.11153 1.51216i
\(299\) −2.27139 −0.131358
\(300\) 0 0
\(301\) 1.07785 0.0621260
\(302\) −12.8904 + 17.5365i −0.741761 + 1.00911i
\(303\) 0 0
\(304\) −5.38089 7.76311i −0.308615 0.445245i
\(305\) 7.76517i 0.444632i
\(306\) 0 0
\(307\) 28.5693i 1.63054i 0.579082 + 0.815269i \(0.303411\pi\)
−0.579082 + 0.815269i \(0.696589\pi\)
\(308\) 6.85246 2.14265i 0.390455 0.122089i
\(309\) 0 0
\(310\) −0.546050 0.401381i −0.0310136 0.0227969i
\(311\) −0.482828 −0.0273786 −0.0136893 0.999906i \(-0.504358\pi\)
−0.0136893 + 0.999906i \(0.504358\pi\)
\(312\) 0 0
\(313\) −13.7234 −0.775693 −0.387847 0.921724i \(-0.626781\pi\)
−0.387847 + 0.921724i \(0.626781\pi\)
\(314\) −2.26638 1.66593i −0.127899 0.0940140i
\(315\) 0 0
\(316\) 25.2059 7.88148i 1.41794 0.443368i
\(317\) 19.3004i 1.08402i 0.840372 + 0.542010i \(0.182336\pi\)
−0.840372 + 0.542010i \(0.817664\pi\)
\(318\) 0 0
\(319\) 20.8355i 1.16657i
\(320\) −4.91529 + 6.31189i −0.274773 + 0.352845i
\(321\) 0 0
\(322\) −0.730506 + 0.993802i −0.0407095 + 0.0553824i
\(323\) 13.8813 0.772375
\(324\) 0 0
\(325\) 2.60436 0.144464
\(326\) 15.4379 21.0021i 0.855025 1.16320i
\(327\) 0 0
\(328\) 8.91526 + 3.06187i 0.492263 + 0.169063i
\(329\) 1.79111i 0.0987471i
\(330\) 0 0
\(331\) 10.4267i 0.573103i −0.958065 0.286551i \(-0.907491\pi\)
0.958065 0.286551i \(-0.0925089\pi\)
\(332\) −9.25624 29.6026i −0.508002 1.62465i
\(333\) 0 0
\(334\) 9.61194 + 7.06537i 0.525942 + 0.386600i
\(335\) −11.6184 −0.634783
\(336\) 0 0
\(337\) 23.6446 1.28800 0.644000 0.765025i \(-0.277273\pi\)
0.644000 + 0.765025i \(0.277273\pi\)
\(338\) 7.08453 + 5.20757i 0.385348 + 0.283254i
\(339\) 0 0
\(340\) −3.50864 11.2210i −0.190283 0.608546i
\(341\) 1.72026i 0.0931575i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 2.88330 + 0.990245i 0.155457 + 0.0533904i
\(345\) 0 0
\(346\) −17.2822 + 23.5112i −0.929098 + 1.26397i
\(347\) 27.7318 1.48872 0.744359 0.667779i \(-0.232755\pi\)
0.744359 + 0.667779i \(0.232755\pi\)
\(348\) 0 0
\(349\) −22.4719 −1.20289 −0.601447 0.798913i \(-0.705409\pi\)
−0.601447 + 0.798913i \(0.705409\pi\)
\(350\) 0.837595 1.13949i 0.0447713 0.0609082i
\(351\) 0 0
\(352\) 20.2993 + 0.563804i 1.08195 + 0.0300508i
\(353\) 33.2233i 1.76830i −0.467206 0.884148i \(-0.654739\pi\)
0.467206 0.884148i \(-0.345261\pi\)
\(354\) 0 0
\(355\) 9.51142i 0.504814i
\(356\) −1.36319 + 0.426247i −0.0722488 + 0.0225910i
\(357\) 0 0
\(358\) 11.9272 + 8.76726i 0.630374 + 0.463364i
\(359\) 5.18864 0.273846 0.136923 0.990582i \(-0.456279\pi\)
0.136923 + 0.990582i \(0.456279\pi\)
\(360\) 0 0
\(361\) 13.4238 0.706514
\(362\) −2.64702 1.94573i −0.139124 0.102265i
\(363\) 0 0
\(364\) −4.97137 + 1.55447i −0.260570 + 0.0814761i
\(365\) 1.40325i 0.0734496i
\(366\) 0 0
\(367\) 16.3430i 0.853095i 0.904465 + 0.426548i \(0.140270\pi\)
−0.904465 + 0.426548i \(0.859730\pi\)
\(368\) −2.86718 + 1.98734i −0.149462 + 0.103598i
\(369\) 0 0
\(370\) −1.01430 + 1.37988i −0.0527309 + 0.0717366i
\(371\) −10.2314 −0.531189
\(372\) 0 0
\(373\) −34.5059 −1.78665 −0.893325 0.449412i \(-0.851634\pi\)
−0.893325 + 0.449412i \(0.851634\pi\)
\(374\) −17.6753 + 24.0459i −0.913965 + 1.24339i
\(375\) 0 0
\(376\) −1.64554 + 4.79133i −0.0848622 + 0.247094i
\(377\) 15.1159i 0.778508i
\(378\) 0 0
\(379\) 29.8103i 1.53125i 0.643287 + 0.765625i \(0.277570\pi\)
−0.643287 + 0.765625i \(0.722430\pi\)
\(380\) 1.40945 + 4.50759i 0.0723033 + 0.231235i
\(381\) 0 0
\(382\) 21.9132 + 16.1076i 1.12118 + 0.824136i
\(383\) 6.66634 0.340634 0.170317 0.985389i \(-0.445521\pi\)
0.170317 + 0.985389i \(0.445521\pi\)
\(384\) 0 0
\(385\) −3.58982 −0.182954
\(386\) −30.5497 22.4559i −1.55494 1.14298i
\(387\) 0 0
\(388\) 1.42799 + 4.56689i 0.0724953 + 0.231849i
\(389\) 15.4102i 0.781330i 0.920533 + 0.390665i \(0.127755\pi\)
−0.920533 + 0.390665i \(0.872245\pi\)
\(390\) 0 0
\(391\) 5.12683i 0.259275i
\(392\) −0.918725 + 2.67506i −0.0464026 + 0.135111i
\(393\) 0 0
\(394\) −7.70537 + 10.4826i −0.388191 + 0.528106i
\(395\) −13.2047 −0.664400
\(396\) 0 0
\(397\) −8.50360 −0.426783 −0.213392 0.976967i \(-0.568451\pi\)
−0.213392 + 0.976967i \(0.568451\pi\)
\(398\) 11.8898 16.1752i 0.595980 0.810788i
\(399\) 0 0
\(400\) 3.28749 2.27868i 0.164375 0.113934i
\(401\) 4.78726i 0.239064i 0.992830 + 0.119532i \(0.0381395\pi\)
−0.992830 + 0.119532i \(0.961861\pi\)
\(402\) 0 0
\(403\) 1.24803i 0.0621686i
\(404\) 33.1770 10.3739i 1.65062 0.516121i
\(405\) 0 0
\(406\) 6.61366 + 4.86145i 0.328231 + 0.241270i
\(407\) 4.34715 0.215480
\(408\) 0 0
\(409\) 22.4758 1.11136 0.555680 0.831397i \(-0.312458\pi\)
0.555680 + 0.831397i \(0.312458\pi\)
\(410\) −3.79761 2.79148i −0.187551 0.137861i
\(411\) 0 0
\(412\) −3.81702 + 1.19352i −0.188051 + 0.0588006i
\(413\) 9.15424i 0.450451i
\(414\) 0 0
\(415\) 15.5080i 0.761257i
\(416\) −14.7268 0.409032i −0.722042 0.0200544i
\(417\) 0 0
\(418\) 7.10031 9.65947i 0.347288 0.472460i
\(419\) −23.8180 −1.16358 −0.581792 0.813337i \(-0.697648\pi\)
−0.581792 + 0.813337i \(0.697648\pi\)
\(420\) 0 0
\(421\) 30.4389 1.48350 0.741752 0.670675i \(-0.233995\pi\)
0.741752 + 0.670675i \(0.233995\pi\)
\(422\) 13.5376 18.4169i 0.658999 0.896522i
\(423\) 0 0
\(424\) −27.3697 9.39987i −1.32919 0.456498i
\(425\) 5.87840i 0.285144i
\(426\) 0 0
\(427\) 7.76517i 0.375783i
\(428\) 3.78815 + 12.1149i 0.183107 + 0.585598i
\(429\) 0 0
\(430\) −1.22819 0.902799i −0.0592288 0.0435368i
\(431\) 30.5890 1.47342 0.736710 0.676209i \(-0.236378\pi\)
0.736710 + 0.676209i \(0.236378\pi\)
\(432\) 0 0
\(433\) −18.8112 −0.904009 −0.452005 0.892016i \(-0.649291\pi\)
−0.452005 + 0.892016i \(0.649291\pi\)
\(434\) −0.546050 0.401381i −0.0262112 0.0192669i
\(435\) 0 0
\(436\) −2.72106 8.70227i −0.130315 0.416763i
\(437\) 2.05949i 0.0985189i
\(438\) 0 0
\(439\) 12.5370i 0.598359i −0.954197 0.299180i \(-0.903287\pi\)
0.954197 0.299180i \(-0.0967130\pi\)
\(440\) −9.60298 3.29806i −0.457804 0.157229i
\(441\) 0 0
\(442\) 12.8231 17.4450i 0.609935 0.829774i
\(443\) 12.4287 0.590506 0.295253 0.955419i \(-0.404596\pi\)
0.295253 + 0.955419i \(0.404596\pi\)
\(444\) 0 0
\(445\) 0.714137 0.0338533
\(446\) −0.869750 + 1.18323i −0.0411839 + 0.0560277i
\(447\) 0 0
\(448\) −4.91529 + 6.31189i −0.232226 + 0.298209i
\(449\) 19.0317i 0.898163i −0.893491 0.449081i \(-0.851751\pi\)
0.893491 0.449081i \(-0.148249\pi\)
\(450\) 0 0
\(451\) 11.9639i 0.563359i
\(452\) 18.5636 5.80454i 0.873158 0.273022i
\(453\) 0 0
\(454\) −18.1137 13.3147i −0.850119 0.624890i
\(455\) 2.60436 0.122094
\(456\) 0 0
\(457\) −8.37088 −0.391573 −0.195787 0.980647i \(-0.562726\pi\)
−0.195787 + 0.980647i \(0.562726\pi\)
\(458\) −27.6723 20.3408i −1.29304 0.950465i
\(459\) 0 0
\(460\) 1.66481 0.520558i 0.0776220 0.0242711i
\(461\) 14.0183i 0.652898i 0.945215 + 0.326449i \(0.105852\pi\)
−0.945215 + 0.326449i \(0.894148\pi\)
\(462\) 0 0
\(463\) 37.2795i 1.73252i 0.499590 + 0.866262i \(0.333484\pi\)
−0.499590 + 0.866262i \(0.666516\pi\)
\(464\) 13.2256 + 19.0808i 0.613983 + 0.885805i
\(465\) 0 0
\(466\) −2.79330 + 3.80009i −0.129397 + 0.176036i
\(467\) −26.1681 −1.21092 −0.605459 0.795877i \(-0.707010\pi\)
−0.605459 + 0.795877i \(0.707010\pi\)
\(468\) 0 0
\(469\) −11.6184 −0.536489
\(470\) 1.50023 2.04095i 0.0692002 0.0941420i
\(471\) 0 0
\(472\) −8.41023 + 24.4881i −0.387112 + 1.12716i
\(473\) 3.86927i 0.177909i
\(474\) 0 0
\(475\) 2.36141i 0.108349i
\(476\) −3.50864 11.2210i −0.160818 0.514315i
\(477\) 0 0
\(478\) −3.78158 2.77970i −0.172965 0.127140i
\(479\) 34.7589 1.58818 0.794088 0.607803i \(-0.207949\pi\)
0.794088 + 0.607803i \(0.207949\pi\)
\(480\) 0 0
\(481\) −3.15379 −0.143801
\(482\) −34.2150 25.1501i −1.55845 1.14556i
\(483\) 0 0
\(484\) 1.12617 + 3.60164i 0.0511897 + 0.163711i
\(485\) 2.39247i 0.108636i
\(486\) 0 0
\(487\) 8.68409i 0.393514i −0.980452 0.196757i \(-0.936959\pi\)
0.980452 0.196757i \(-0.0630409\pi\)
\(488\) 7.13406 20.7723i 0.322944 0.940317i
\(489\) 0 0
\(490\) 0.837595 1.13949i 0.0378387 0.0514769i
\(491\) 16.8740 0.761513 0.380756 0.924675i \(-0.375664\pi\)
0.380756 + 0.924675i \(0.375664\pi\)
\(492\) 0 0
\(493\) −34.1186 −1.53662
\(494\) −5.15118 + 7.00781i −0.231762 + 0.315296i
\(495\) 0 0
\(496\) −1.09196 1.57539i −0.0490303 0.0707369i
\(497\) 9.51142i 0.426646i
\(498\) 0 0
\(499\) 11.4898i 0.514356i −0.966364 0.257178i \(-0.917207\pi\)
0.966364 0.257178i \(-0.0827926\pi\)
\(500\) −1.90886 + 0.596870i −0.0853668 + 0.0266928i
\(501\) 0 0
\(502\) −26.1119 19.1939i −1.16543 0.856665i
\(503\) −37.9135 −1.69048 −0.845240 0.534387i \(-0.820542\pi\)
−0.845240 + 0.534387i \(0.820542\pi\)
\(504\) 0 0
\(505\) −17.3805 −0.773422
\(506\) −3.56757 2.62238i −0.158598 0.116579i
\(507\) 0 0
\(508\) 13.6947 4.28212i 0.607606 0.189988i
\(509\) 29.2840i 1.29799i 0.760792 + 0.648996i \(0.224811\pi\)
−0.760792 + 0.648996i \(0.775189\pi\)
\(510\) 0 0
\(511\) 1.40325i 0.0620763i
\(512\) −18.9476 + 12.3689i −0.837373 + 0.546632i
\(513\) 0 0
\(514\) 23.6271 32.1430i 1.04215 1.41777i
\(515\) 1.99963 0.0881144
\(516\) 0 0
\(517\) −6.42976 −0.282781
\(518\) −1.01430 + 1.37988i −0.0445657 + 0.0606285i
\(519\) 0 0
\(520\) 6.96683 + 2.39269i 0.305516 + 0.104927i
\(521\) 5.66968i 0.248393i −0.992258 0.124196i \(-0.960365\pi\)
0.992258 0.124196i \(-0.0396353\pi\)
\(522\) 0 0
\(523\) 21.6997i 0.948863i 0.880292 + 0.474432i \(0.157346\pi\)
−0.880292 + 0.474432i \(0.842654\pi\)
\(524\) −6.79284 21.7243i −0.296746 0.949031i
\(525\) 0 0
\(526\) −22.2710 16.3706i −0.971064 0.713792i
\(527\) 2.81696 0.122709
\(528\) 0 0
\(529\) −22.2394 −0.966929
\(530\) 11.6586 + 8.56979i 0.506417 + 0.372248i
\(531\) 0 0
\(532\) 1.40945 + 4.50759i 0.0611075 + 0.195429i
\(533\) 8.67965i 0.375957i
\(534\) 0 0
\(535\) 6.34669i 0.274391i
\(536\) −31.0800 10.6741i −1.34245 0.461053i
\(537\) 0 0
\(538\) 19.6054 26.6718i 0.845250 1.14990i
\(539\) −3.58982 −0.154624
\(540\) 0 0
\(541\) 15.0023 0.645001 0.322501 0.946569i \(-0.395477\pi\)
0.322501 + 0.946569i \(0.395477\pi\)
\(542\) −27.0531 + 36.8038i −1.16203 + 1.58086i
\(543\) 0 0
\(544\) 0.923239 33.2404i 0.0395836 1.42517i
\(545\) 4.55888i 0.195281i
\(546\) 0 0
\(547\) 36.1766i 1.54680i 0.633917 + 0.773401i \(0.281446\pi\)
−0.633917 + 0.773401i \(0.718554\pi\)
\(548\) 16.8785 5.27765i 0.721016 0.225450i
\(549\) 0 0
\(550\) 4.09056 + 3.00681i 0.174422 + 0.128211i
\(551\) 13.7057 0.583884
\(552\) 0 0
\(553\) −13.2047 −0.561521
\(554\) −14.9231 10.9694i −0.634023 0.466046i
\(555\) 0 0
\(556\) −12.4268 + 3.88567i −0.527015 + 0.164789i
\(557\) 20.7444i 0.878970i −0.898250 0.439485i \(-0.855161\pi\)
0.898250 0.439485i \(-0.144839\pi\)
\(558\) 0 0
\(559\) 2.80710i 0.118728i
\(560\) 3.28749 2.27868i 0.138922 0.0962918i
\(561\) 0 0
\(562\) 4.26695 5.80488i 0.179990 0.244864i
\(563\) −24.8774 −1.04846 −0.524230 0.851577i \(-0.675647\pi\)
−0.524230 + 0.851577i \(0.675647\pi\)
\(564\) 0 0
\(565\) −9.72497 −0.409132
\(566\) 21.5079 29.2600i 0.904046 1.22989i
\(567\) 0 0
\(568\) 8.73838 25.4436i 0.366654 1.06759i
\(569\) 7.89228i 0.330861i 0.986221 + 0.165431i \(0.0529014\pi\)
−0.986221 + 0.165431i \(0.947099\pi\)
\(570\) 0 0
\(571\) 6.33939i 0.265295i 0.991163 + 0.132648i \(0.0423478\pi\)
−0.991163 + 0.132648i \(0.957652\pi\)
\(572\) −5.58025 17.8463i −0.233322 0.746192i
\(573\) 0 0
\(574\) −3.79761 2.79148i −0.158509 0.116514i
\(575\) −0.872147 −0.0363710
\(576\) 0 0
\(577\) −21.9071 −0.912006 −0.456003 0.889978i \(-0.650719\pi\)
−0.456003 + 0.889978i \(0.650719\pi\)
\(578\) 20.0044 + 14.7044i 0.832072 + 0.611624i
\(579\) 0 0
\(580\) −3.46427 11.0791i −0.143846 0.460036i
\(581\) 15.5080i 0.643380i
\(582\) 0 0
\(583\) 36.7290i 1.52116i
\(584\) −1.28920 + 3.75379i −0.0533476 + 0.155333i
\(585\) 0 0
\(586\) −10.5399 + 14.3388i −0.435401 + 0.592332i
\(587\) −22.1877 −0.915784 −0.457892 0.889008i \(-0.651395\pi\)
−0.457892 + 0.889008i \(0.651395\pi\)
\(588\) 0 0
\(589\) −1.13160 −0.0466268
\(590\) 7.66755 10.4312i 0.315668 0.429444i
\(591\) 0 0
\(592\) −3.98104 + 2.75940i −0.163620 + 0.113411i
\(593\) 3.01170i 0.123676i 0.998086 + 0.0618378i \(0.0196962\pi\)
−0.998086 + 0.0618378i \(0.980304\pi\)
\(594\) 0 0
\(595\) 5.87840i 0.240991i
\(596\) −43.7289 + 13.6733i −1.79121 + 0.560081i
\(597\) 0 0
\(598\) 2.58822 + 1.90250i 0.105840 + 0.0777992i
\(599\) 35.9136 1.46739 0.733696 0.679478i \(-0.237794\pi\)
0.733696 + 0.679478i \(0.237794\pi\)
\(600\) 0 0
\(601\) −13.0045 −0.530465 −0.265232 0.964184i \(-0.585449\pi\)
−0.265232 + 0.964184i \(0.585449\pi\)
\(602\) −1.22819 0.902799i −0.0500575 0.0367953i
\(603\) 0 0
\(604\) 29.3770 9.18571i 1.19533 0.373761i
\(605\) 1.88680i 0.0767094i
\(606\) 0 0
\(607\) 1.24671i 0.0506022i −0.999680 0.0253011i \(-0.991946\pi\)
0.999680 0.0253011i \(-0.00805446\pi\)
\(608\) −0.370874 + 13.3530i −0.0150409 + 0.541535i
\(609\) 0 0
\(610\) −6.50407 + 8.84832i −0.263342 + 0.358258i
\(611\) 4.66470 0.188714
\(612\) 0 0
\(613\) −38.4840 −1.55436 −0.777178 0.629281i \(-0.783350\pi\)
−0.777178 + 0.629281i \(0.783350\pi\)
\(614\) 23.9295 32.5544i 0.965717 1.31379i
\(615\) 0 0
\(616\) −9.60298 3.29806i −0.386915 0.132883i
\(617\) 23.6915i 0.953784i 0.878962 + 0.476892i \(0.158237\pi\)
−0.878962 + 0.476892i \(0.841763\pi\)
\(618\) 0 0
\(619\) 24.6978i 0.992687i −0.868126 0.496343i \(-0.834676\pi\)
0.868126 0.496343i \(-0.165324\pi\)
\(620\) 0.286023 + 0.914737i 0.0114870 + 0.0367367i
\(621\) 0 0
\(622\) 0.550177 + 0.404414i 0.0220601 + 0.0162155i
\(623\) 0.714137 0.0286113
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 15.6377 + 11.4947i 0.625007 + 0.459419i
\(627\) 0 0
\(628\) 1.18714 + 3.79662i 0.0473721 + 0.151502i
\(629\) 7.11854i 0.283835i
\(630\) 0 0
\(631\) 25.1132i 0.999740i −0.866100 0.499870i \(-0.833381\pi\)
0.866100 0.499870i \(-0.166619\pi\)
\(632\) −35.3233 12.1315i −1.40509 0.482565i
\(633\) 0 0
\(634\) 16.1659 21.9926i 0.642031 0.873438i
\(635\) −7.17430 −0.284703
\(636\) 0 0
\(637\) 2.60436 0.103189
\(638\) −17.4517 + 23.7419i −0.690921 + 0.939949i
\(639\) 0 0
\(640\) 10.8877 3.07530i 0.430375 0.121562i
\(641\) 38.4579i 1.51900i 0.650510 + 0.759498i \(0.274555\pi\)
−0.650510 + 0.759498i \(0.725445\pi\)
\(642\) 0 0
\(643\) 11.6798i 0.460608i −0.973119 0.230304i \(-0.926028\pi\)
0.973119 0.230304i \(-0.0739720\pi\)
\(644\) 1.66481 0.520558i 0.0656026 0.0205129i
\(645\) 0 0
\(646\) −15.8176 11.6269i −0.622334 0.457454i
\(647\) 29.1208 1.14486 0.572428 0.819955i \(-0.306001\pi\)
0.572428 + 0.819955i \(0.306001\pi\)
\(648\) 0 0
\(649\) −32.8621 −1.28995
\(650\) −2.96764 2.18140i −0.116401 0.0855616i
\(651\) 0 0
\(652\) −35.1826 + 11.0010i −1.37786 + 0.430833i
\(653\) 9.45117i 0.369853i −0.982752 0.184927i \(-0.940795\pi\)
0.982752 0.184927i \(-0.0592047\pi\)
\(654\) 0 0
\(655\) 11.3808i 0.444684i
\(656\) −7.59424 10.9563i −0.296505 0.427773i
\(657\) 0 0
\(658\) 1.50023 2.04095i 0.0584849 0.0795645i
\(659\) 10.8158 0.421325 0.210663 0.977559i \(-0.432438\pi\)
0.210663 + 0.977559i \(0.432438\pi\)
\(660\) 0 0
\(661\) −30.8184 −1.19870 −0.599348 0.800489i \(-0.704573\pi\)
−0.599348 + 0.800489i \(0.704573\pi\)
\(662\) −8.73335 + 11.8811i −0.339431 + 0.461772i
\(663\) 0 0
\(664\) −14.2476 + 41.4848i −0.552913 + 1.60992i
\(665\) 2.36141i 0.0915714i
\(666\) 0 0
\(667\) 5.06200i 0.196001i
\(668\) −5.03478 16.1018i −0.194801 0.622998i
\(669\) 0 0
\(670\) 13.2391 + 9.73154i 0.511470 + 0.375962i
\(671\) 27.8756 1.07612
\(672\) 0 0
\(673\) 20.8541 0.803867 0.401933 0.915669i \(-0.368338\pi\)
0.401933 + 0.915669i \(0.368338\pi\)
\(674\) −26.9427 19.8046i −1.03779 0.762843i
\(675\) 0 0
\(676\) −3.71091 11.8679i −0.142727 0.456459i
\(677\) 24.5631i 0.944037i 0.881589 + 0.472018i \(0.156474\pi\)
−0.881589 + 0.472018i \(0.843526\pi\)
\(678\) 0 0
\(679\) 2.39247i 0.0918145i
\(680\) −5.40063 + 15.7251i −0.207105 + 0.603029i
\(681\) 0 0
\(682\) 1.44088 1.96022i 0.0551743 0.0750607i
\(683\) −30.3548 −1.16149 −0.580747 0.814084i \(-0.697239\pi\)
−0.580747 + 0.814084i \(0.697239\pi\)
\(684\) 0 0
\(685\) −8.84221 −0.337844
\(686\) 0.837595 1.13949i 0.0319795 0.0435059i
\(687\) 0 0
\(688\) −2.45607 3.54341i −0.0936367 0.135091i
\(689\) 26.6464i 1.01515i
\(690\) 0 0
\(691\) 22.5570i 0.858108i −0.903279 0.429054i \(-0.858847\pi\)
0.903279 0.429054i \(-0.141153\pi\)
\(692\) 39.3858 12.3153i 1.49722 0.468158i
\(693\) 0 0
\(694\) −31.6000 23.2280i −1.19952 0.881722i
\(695\) 6.51008 0.246941
\(696\) 0 0
\(697\) 19.5911 0.742067
\(698\) 25.6065 + 18.8224i 0.969220 + 0.712437i
\(699\) 0 0
\(700\) −1.90886 + 0.596870i −0.0721481 + 0.0225595i
\(701\) 26.6571i 1.00682i −0.864047 0.503412i \(-0.832078\pi\)
0.864047 0.503412i \(-0.167922\pi\)
\(702\) 0 0
\(703\) 2.85958i 0.107851i
\(704\) −22.6585 17.6450i −0.853976 0.665021i
\(705\) 0 0
\(706\) −27.8277 + 37.8576i −1.04731 + 1.42479i
\(707\) −17.3805 −0.653661
\(708\) 0 0
\(709\) 7.09780 0.266564 0.133282 0.991078i \(-0.457448\pi\)
0.133282 + 0.991078i \(0.457448\pi\)
\(710\) −7.96672 + 10.8382i −0.298986 + 0.406749i
\(711\) 0 0
\(712\) 1.91036 + 0.656096i 0.0715937 + 0.0245882i
\(713\) 0.417938i 0.0156519i
\(714\) 0 0
\(715\) 9.34920i 0.349640i
\(716\) −6.24754 19.9804i −0.233482 0.746702i
\(717\) 0 0
\(718\) −5.91239 4.34598i −0.220649 0.162190i
\(719\) 16.0257 0.597657 0.298828 0.954307i \(-0.403404\pi\)
0.298828 + 0.954307i \(0.403404\pi\)
\(720\) 0 0
\(721\) 1.99963 0.0744703
\(722\) −15.2962 11.2437i −0.569267 0.418446i
\(723\) 0 0
\(724\) 1.38652 + 4.43427i 0.0515297 + 0.164798i
\(725\) 5.80406i 0.215557i
\(726\) 0 0
\(727\) 34.9152i 1.29493i −0.762093 0.647467i \(-0.775828\pi\)
0.762093 0.647467i \(-0.224172\pi\)
\(728\) 6.96683 + 2.39269i 0.258208 + 0.0886792i
\(729\) 0 0
\(730\) 1.17536 1.59899i 0.0435019 0.0591813i
\(731\) 6.33601 0.234346
\(732\) 0 0
\(733\) −1.81762 −0.0671355 −0.0335677 0.999436i \(-0.510687\pi\)
−0.0335677 + 0.999436i \(0.510687\pi\)
\(734\) 13.6888 18.6226i 0.505262 0.687373i
\(735\) 0 0
\(736\) 4.93171 + 0.136976i 0.181785 + 0.00504901i
\(737\) 41.7081i 1.53634i
\(738\) 0 0
\(739\) 3.62547i 0.133365i 0.997774 + 0.0666826i \(0.0212415\pi\)
−0.997774 + 0.0666826i \(0.978759\pi\)
\(740\) 2.31156 0.722788i 0.0849748 0.0265702i
\(741\) 0 0
\(742\) 11.6586 + 8.56979i 0.428000 + 0.314607i
\(743\) 47.6574 1.74838 0.874191 0.485582i \(-0.161392\pi\)
0.874191 + 0.485582i \(0.161392\pi\)
\(744\) 0 0
\(745\) 22.9084 0.839299
\(746\) 39.3191 + 28.9020i 1.43958 + 1.05818i
\(747\) 0 0
\(748\) 40.2815 12.5954i 1.47284 0.460532i
\(749\) 6.34669i 0.231903i
\(750\) 0 0
\(751\) 23.8259i 0.869419i −0.900571 0.434710i \(-0.856851\pi\)
0.900571 0.434710i \(-0.143149\pi\)
\(752\) 5.88826 4.08137i 0.214723 0.148832i
\(753\) 0 0
\(754\) 12.6610 17.2244i 0.461086 0.627275i
\(755\) −15.3898 −0.560093
\(756\) 0 0
\(757\) 8.81992 0.320565 0.160283 0.987071i \(-0.448759\pi\)
0.160283 + 0.987071i \(0.448759\pi\)
\(758\) 24.9689 33.9685i 0.906912 1.23379i
\(759\) 0 0
\(760\) 2.16948 6.31690i 0.0786954 0.229138i
\(761\) 16.3035i 0.591003i −0.955342 0.295502i \(-0.904513\pi\)
0.955342 0.295502i \(-0.0954868\pi\)
\(762\) 0 0
\(763\) 4.55888i 0.165043i
\(764\) −11.4783 36.7088i −0.415269 1.32808i
\(765\) 0 0
\(766\) −7.59622 5.58369i −0.274463 0.201747i
\(767\) 23.8410 0.860848
\(768\) 0 0
\(769\) −8.98768 −0.324104 −0.162052 0.986782i \(-0.551811\pi\)
−0.162052 + 0.986782i \(0.551811\pi\)
\(770\) 4.09056 + 3.00681i 0.147414 + 0.108358i
\(771\) 0 0
\(772\) 16.0021 + 51.1765i 0.575927 + 1.84188i
\(773\) 25.7264i 0.925316i −0.886537 0.462658i \(-0.846896\pi\)
0.886537 0.462658i \(-0.153104\pi\)
\(774\) 0 0
\(775\) 0.479206i 0.0172136i
\(776\) 2.19802 6.40000i 0.0789044 0.229747i
\(777\) 0 0
\(778\) 12.9075 17.5598i 0.462758 0.629549i
\(779\) −7.86994 −0.281970
\(780\) 0 0
\(781\) 34.1443 1.22178
\(782\) −4.29420 + 5.84196i −0.153560 + 0.208908i
\(783\) 0 0
\(784\) 3.28749 2.27868i 0.117410 0.0813815i
\(785\) 1.98895i 0.0709886i
\(786\) 0 0
\(787\) 26.0679i 0.929220i 0.885516 + 0.464610i \(0.153805\pi\)
−0.885516 + 0.464610i \(0.846195\pi\)
\(788\) 17.5604 5.49084i 0.625562 0.195603i
\(789\) 0 0
\(790\) 15.0466 + 11.0602i 0.535334 + 0.393504i
\(791\) −9.72497 −0.345780
\(792\) 0 0
\(793\) −20.2233 −0.718151
\(794\) 9.68975 + 7.12257i 0.343876 + 0.252770i
\(795\) 0 0
\(796\) −27.0965 + 8.47263i −0.960409 + 0.300304i
\(797\) 20.8372i 0.738090i 0.929412 + 0.369045i \(0.120315\pi\)
−0.929412 + 0.369045i \(0.879685\pi\)
\(798\) 0 0
\(799\) 10.5289i 0.372484i
\(800\) −5.65467 0.157056i −0.199923 0.00555278i
\(801\) 0 0
\(802\) 4.00978 5.45503i 0.141590 0.192624i
\(803\) −5.03742 −0.177767
\(804\) 0 0
\(805\) −0.872147 −0.0307391
\(806\) −1.04534 + 1.42211i −0.0368206 + 0.0500918i
\(807\) 0 0
\(808\) −46.4939 15.9679i −1.63565 0.561749i
\(809\) 23.3563i 0.821165i −0.911823 0.410582i \(-0.865325\pi\)
0.911823 0.410582i \(-0.134675\pi\)
\(810\) 0 0
\(811\) 24.0752i 0.845396i 0.906271 + 0.422698i \(0.138917\pi\)
−0.906271 + 0.422698i \(0.861083\pi\)
\(812\) −3.46427 11.0791i −0.121572 0.388802i
\(813\) 0 0
\(814\) −4.95353 3.64115i −0.173621 0.127622i
\(815\) 18.4312 0.645617
\(816\) 0 0
\(817\) −2.54523 −0.0890464
\(818\) −25.6110 18.8257i −0.895467 0.658224i
\(819\) 0 0
\(820\) 1.98921 + 6.36172i 0.0694661 + 0.222161i
\(821\) 12.2285i 0.426778i 0.976967 + 0.213389i \(0.0684501\pi\)
−0.976967 + 0.213389i \(0.931550\pi\)
\(822\) 0 0
\(823\) 32.3094i 1.12623i −0.826377 0.563117i \(-0.809602\pi\)
0.826377 0.563117i \(-0.190398\pi\)
\(824\) 5.34914 + 1.83711i 0.186346 + 0.0639989i
\(825\) 0 0
\(826\) 7.66755 10.4312i 0.266788 0.362946i
\(827\) −16.7250 −0.581585 −0.290793 0.956786i \(-0.593919\pi\)
−0.290793 + 0.956786i \(0.593919\pi\)
\(828\) 0 0
\(829\) 10.0479 0.348979 0.174490 0.984659i \(-0.444172\pi\)
0.174490 + 0.984659i \(0.444172\pi\)
\(830\) 12.9894 17.6712i 0.450869 0.613376i
\(831\) 0 0
\(832\) 16.4385 + 12.8012i 0.569901 + 0.443802i
\(833\) 5.87840i 0.203674i
\(834\) 0 0
\(835\) 8.43531i 0.291916i
\(836\) −16.1814 + 5.05968i −0.559647 + 0.174993i
\(837\) 0 0
\(838\) 27.1403 + 19.9498i 0.937547 + 0.689155i
\(839\) −4.77268 −0.164771 −0.0823856 0.996601i \(-0.526254\pi\)
−0.0823856 + 0.996601i \(0.526254\pi\)
\(840\) 0 0
\(841\) −4.68713 −0.161625
\(842\) −34.6848 25.4955i −1.19532 0.878633i
\(843\) 0 0
\(844\) −30.8518 + 9.64687i −1.06196 + 0.332059i
\(845\) 6.21729i 0.213881i
\(846\) 0 0
\(847\) 1.88680i 0.0648313i
\(848\) 23.3142 + 33.6357i 0.800611 + 1.15506i
\(849\) 0 0
\(850\) 4.92372 6.69837i 0.168882 0.229752i
\(851\) 1.05614 0.0362040
\(852\) 0 0
\(853\) 39.4076 1.34929 0.674645 0.738142i \(-0.264297\pi\)
0.674645 + 0.738142i \(0.264297\pi\)
\(854\) −6.50407 + 8.84832i −0.222565 + 0.302783i
\(855\) 0 0
\(856\) 5.83087 16.9778i 0.199295 0.580289i
\(857\) 1.85185i 0.0632579i 0.999500 + 0.0316290i \(0.0100695\pi\)
−0.999500 + 0.0316290i \(0.989931\pi\)
\(858\) 0 0
\(859\) 18.9182i 0.645480i −0.946488 0.322740i \(-0.895396\pi\)
0.946488 0.322740i \(-0.104604\pi\)
\(860\) 0.643334 + 2.05746i 0.0219375 + 0.0701587i
\(861\) 0 0
\(862\) −34.8558 25.6212i −1.18719 0.872661i
\(863\) −5.40450 −0.183971 −0.0919856 0.995760i \(-0.529321\pi\)
−0.0919856 + 0.995760i \(0.529321\pi\)
\(864\) 0 0
\(865\) −20.6332 −0.701548
\(866\) 21.4352 + 15.7562i 0.728397 + 0.535417i
\(867\) 0 0
\(868\) 0.286023 + 0.914737i 0.00970827 + 0.0310482i
\(869\) 47.4025i 1.60802i
\(870\) 0 0
\(871\) 30.2586i 1.02527i
\(872\) −4.18836 + 12.1953i −0.141836 + 0.412984i
\(873\) 0 0
\(874\) 1.72502 2.34677i 0.0583497 0.0793807i
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 40.8534 1.37952 0.689760 0.724038i \(-0.257716\pi\)
0.689760 + 0.724038i \(0.257716\pi\)
\(878\) −10.5009 + 14.2858i −0.354390 + 0.482122i
\(879\) 0 0
\(880\) 8.18005 + 11.8015i 0.275750 + 0.397829i
\(881\) 31.8457i 1.07291i 0.843929 + 0.536455i \(0.180237\pi\)
−0.843929 + 0.536455i \(0.819763\pi\)
\(882\) 0 0
\(883\) 48.7222i 1.63963i 0.572627 + 0.819816i \(0.305924\pi\)
−0.572627 + 0.819816i \(0.694076\pi\)
\(884\) −29.2237 + 9.13777i −0.982898 + 0.307336i
\(885\) 0 0
\(886\) −14.1624 10.4102i −0.475795 0.349738i
\(887\) −30.3870 −1.02030 −0.510148 0.860087i \(-0.670409\pi\)
−0.510148 + 0.860087i \(0.670409\pi\)
\(888\) 0 0
\(889\) −7.17430 −0.240618
\(890\) −0.813751 0.598158i −0.0272770 0.0200503i
\(891\) 0 0
\(892\) 1.98214 0.619783i 0.0663670 0.0207519i
\(893\) 4.22954i 0.141536i
\(894\) 0 0
\(895\) 10.4672i 0.349879i
\(896\) 10.8877 3.07530i 0.363733 0.102739i
\(897\) 0 0
\(898\) −15.9409 + 21.6864i −0.531954 + 0.723686i
\(899\) 2.78134 0.0927629
\(900\) 0 0
\(901\) −60.1444 −2.00370
\(902\) 10.0209 13.6327i 0.333660 0.453921i
\(903\) 0 0
\(904\) −26.0149 8.93457i −0.865242 0.297159i
\(905\) 2.32299i 0.0772189i
\(906\) 0 0
\(907\) 10.9457i 0.363446i 0.983350 + 0.181723i \(0.0581674\pi\)
−0.983350 + 0.181723i \(0.941833\pi\)
\(908\) 9.48805 + 30.3439i 0.314872 + 1.00700i
\(909\) 0 0
\(910\) −2.96764 2.18140i −0.0983764 0.0723128i
\(911\) 18.9089 0.626480 0.313240 0.949674i \(-0.398586\pi\)
0.313240 + 0.949674i \(0.398586\pi\)
\(912\) 0 0
\(913\) −55.6709 −1.84244
\(914\) 9.53852 + 7.01141i 0.315506 + 0.231917i
\(915\) 0 0
\(916\) 14.4949 + 46.3563i 0.478924 + 1.53166i
\(917\) 11.3808i 0.375826i
\(918\) 0 0
\(919\) 28.9497i 0.954961i −0.878642 0.477481i \(-0.841550\pi\)
0.878642 0.477481i \(-0.158450\pi\)
\(920\) −2.33305 0.801264i −0.0769182 0.0264169i
\(921\) 0 0
\(922\) 11.7417 15.9737i 0.386691 0.526066i
\(923\) −24.7712 −0.815354
\(924\) 0 0
\(925\) −1.21097 −0.0398163
\(926\) 31.2251 42.4795i 1.02612 1.39596i
\(927\) 0 0
\(928\) 0.911564 32.8201i 0.0299236 1.07737i
\(929\) 20.1647i 0.661584i −0.943704 0.330792i \(-0.892684\pi\)
0.943704 0.330792i \(-0.107316\pi\)
\(930\) 0 0
\(931\) 2.36141i 0.0773920i
\(932\) 6.36588 1.99051i 0.208521 0.0652012i
\(933\) 0 0
\(934\) 29.8183 + 21.9183i 0.975685 + 0.717189i
\(935\) −21.1024 −0.690122
\(936\) 0 0
\(937\) 12.4656 0.407234 0.203617 0.979051i \(-0.434730\pi\)
0.203617 + 0.979051i \(0.434730\pi\)
\(938\) 13.2391 + 9.73154i 0.432271 + 0.317746i
\(939\) 0 0
\(940\) −3.41898 + 1.06906i −0.111515 + 0.0348689i
\(941\) 27.9547i 0.911299i 0.890159 + 0.455649i \(0.150593\pi\)
−0.890159 + 0.455649i \(0.849407\pi\)
\(942\) 0 0
\(943\) 2.90663i 0.0946530i
\(944\) 30.0945 20.8596i 0.979493 0.678922i
\(945\) 0 0
\(946\) 3.24088 4.40899i 0.105370 0.143349i
\(947\) −23.3661 −0.759298 −0.379649 0.925131i \(-0.623955\pi\)
−0.379649 + 0.925131i \(0.623955\pi\)
\(948\) 0 0
\(949\) 3.65458 0.118633
\(950\) −1.97790 + 2.69080i −0.0641716 + 0.0873010i
\(951\) 0 0
\(952\) −5.40063 + 15.7251i −0.175036 + 0.509652i
\(953\) 2.47400i 0.0801409i 0.999197 + 0.0400704i \(0.0127582\pi\)
−0.999197 + 0.0400704i \(0.987242\pi\)
\(954\) 0 0
\(955\) 19.2308i 0.622293i
\(956\) 1.98081 + 6.33486i 0.0640640 + 0.204884i
\(957\) 0 0
\(958\) −39.6074 29.1139i −1.27966 0.940627i
\(959\) −8.84221 −0.285530
\(960\) 0 0
\(961\) 30.7704 0.992592
\(962\) 3.59371 + 2.64160i 0.115866 + 0.0851687i
\(963\) 0 0
\(964\) 17.9220 + 57.3166i 0.577227 + 1.84604i
\(965\) 26.8100i 0.863044i
\(966\) 0 0
\(967\) 7.25947i 0.233449i 0.993164 + 0.116724i \(0.0372394\pi\)
−0.993164 + 0.116724i \(0.962761\pi\)
\(968\) 1.73345 5.04731i 0.0557153 0.162227i
\(969\) 0 0
\(970\) −2.00392 + 2.72619i −0.0643420 + 0.0875327i
\(971\) 41.7114 1.33858 0.669291 0.743000i \(-0.266598\pi\)
0.669291 + 0.743000i \(0.266598\pi\)
\(972\) 0 0
\(973\) 6.51008 0.208704
\(974\) −7.27375 + 9.89542i −0.233066 + 0.317070i
\(975\) 0 0
\(976\) −25.5279 + 17.6943i −0.817130 + 0.566382i
\(977\) 32.1833i 1.02963i 0.857300 + 0.514817i \(0.172140\pi\)
−0.857300 + 0.514817i \(0.827860\pi\)
\(978\) 0 0
\(979\) 2.56362i 0.0819337i
\(980\) −1.90886 + 0.596870i −0.0609763 + 0.0190663i
\(981\) 0 0
\(982\) −19.2277 14.1336i −0.613582 0.451020i
\(983\) 21.4545 0.684291 0.342145 0.939647i \(-0.388846\pi\)
0.342145 + 0.939647i \(0.388846\pi\)
\(984\) 0 0
\(985\) −9.19939 −0.293117
\(986\) 38.8777 + 28.5775i 1.23812 + 0.910095i
\(987\) 0 0
\(988\) 11.7394 3.67072i 0.373481 0.116781i
\(989\) 0.940041i 0.0298916i
\(990\) 0 0
\(991\) 49.4406i 1.57053i 0.619158 + 0.785266i \(0.287474\pi\)
−0.619158 + 0.785266i \(0.712526\pi\)
\(992\) −0.0752623 + 2.70975i −0.00238958 + 0.0860348i
\(993\) 0 0
\(994\) −7.96672 + 10.8382i −0.252689 + 0.343766i
\(995\) 14.1951 0.450015
\(996\) 0 0
\(997\) 19.2350 0.609179 0.304589 0.952484i \(-0.401481\pi\)
0.304589 + 0.952484i \(0.401481\pi\)
\(998\) −9.62383 + 13.0925i −0.304637 + 0.414437i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.n.a.71.5 24
3.2 odd 2 1260.2.n.b.71.20 yes 24
4.3 odd 2 1260.2.n.b.71.19 yes 24
12.11 even 2 inner 1260.2.n.a.71.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.n.a.71.5 24 1.1 even 1 trivial
1260.2.n.a.71.6 yes 24 12.11 even 2 inner
1260.2.n.b.71.19 yes 24 4.3 odd 2
1260.2.n.b.71.20 yes 24 3.2 odd 2