Properties

Label 1260.2.n.a.71.7
Level $1260$
Weight $2$
Character 1260.71
Analytic conductor $10.061$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,2,Mod(71,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1260.n (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.0611506547\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 71.7
Character \(\chi\) \(=\) 1260.71
Dual form 1260.2.n.a.71.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.862943 - 1.12041i) q^{2} +(-0.510659 + 1.93371i) q^{4} +1.00000i q^{5} +1.00000i q^{7} +(2.60722 - 1.09653i) q^{8} +(1.12041 - 0.862943i) q^{10} -4.23748 q^{11} -1.31554 q^{13} +(1.12041 - 0.862943i) q^{14} +(-3.47845 - 1.97493i) q^{16} -3.77232i q^{17} +4.64697i q^{19} +(-1.93371 - 0.510659i) q^{20} +(3.65670 + 4.74773i) q^{22} -1.08635 q^{23} -1.00000 q^{25} +(1.13523 + 1.47395i) q^{26} +(-1.93371 - 0.510659i) q^{28} -7.76079i q^{29} +2.35940i q^{31} +(0.788967 + 5.60157i) q^{32} +(-4.22657 + 3.25530i) q^{34} -1.00000 q^{35} +2.46382 q^{37} +(5.20654 - 4.01007i) q^{38} +(1.09653 + 2.60722i) q^{40} -11.6084i q^{41} -11.9776i q^{43} +(2.16391 - 8.19404i) q^{44} +(0.937460 + 1.21716i) q^{46} +1.69888 q^{47} -1.00000 q^{49} +(0.862943 + 1.12041i) q^{50} +(0.671791 - 2.54387i) q^{52} -2.07653i q^{53} -4.23748i q^{55} +(1.09653 + 2.60722i) q^{56} +(-8.69530 + 6.69712i) q^{58} -1.79326 q^{59} -11.7790 q^{61} +(2.64351 - 2.03603i) q^{62} +(5.59524 - 5.71780i) q^{64} -1.31554i q^{65} +5.42889i q^{67} +(7.29458 + 1.92637i) q^{68} +(0.862943 + 1.12041i) q^{70} -3.12413 q^{71} -1.47020 q^{73} +(-2.12614 - 2.76050i) q^{74} +(-8.98589 - 2.37302i) q^{76} -4.23748i q^{77} -14.4467i q^{79} +(1.97493 - 3.47845i) q^{80} +(-13.0062 + 10.0174i) q^{82} -3.23955 q^{83} +3.77232 q^{85} +(-13.4199 + 10.3360i) q^{86} +(-11.0481 + 4.64652i) q^{88} -18.6736i q^{89} -1.31554i q^{91} +(0.554755 - 2.10069i) q^{92} +(-1.46603 - 1.90345i) q^{94} -4.64697 q^{95} +7.79292 q^{97} +(0.862943 + 1.12041i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{4} - 4 q^{10} - 4 q^{14} + 4 q^{20} - 4 q^{22} - 24 q^{25} - 40 q^{26} + 4 q^{28} + 40 q^{32} + 8 q^{34} - 24 q^{35} + 4 q^{40} + 48 q^{44} + 36 q^{46} + 16 q^{47} - 24 q^{49} + 32 q^{52} + 4 q^{56}+ \cdots + 12 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1260\mathbb{Z}\right)^\times\).

\(n\) \(281\) \(631\) \(757\) \(1081\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.862943 1.12041i −0.610193 0.792253i
\(3\) 0 0
\(4\) −0.510659 + 1.93371i −0.255329 + 0.966854i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 2.60722 1.09653i 0.921793 0.387682i
\(9\) 0 0
\(10\) 1.12041 0.862943i 0.354306 0.272887i
\(11\) −4.23748 −1.27765 −0.638824 0.769353i \(-0.720579\pi\)
−0.638824 + 0.769353i \(0.720579\pi\)
\(12\) 0 0
\(13\) −1.31554 −0.364864 −0.182432 0.983218i \(-0.558397\pi\)
−0.182432 + 0.983218i \(0.558397\pi\)
\(14\) 1.12041 0.862943i 0.299443 0.230631i
\(15\) 0 0
\(16\) −3.47845 1.97493i −0.869614 0.493733i
\(17\) 3.77232i 0.914923i −0.889229 0.457462i \(-0.848759\pi\)
0.889229 0.457462i \(-0.151241\pi\)
\(18\) 0 0
\(19\) 4.64697i 1.06609i 0.846087 + 0.533044i \(0.178952\pi\)
−0.846087 + 0.533044i \(0.821048\pi\)
\(20\) −1.93371 0.510659i −0.432390 0.114187i
\(21\) 0 0
\(22\) 3.65670 + 4.74773i 0.779611 + 1.01222i
\(23\) −1.08635 −0.226520 −0.113260 0.993565i \(-0.536129\pi\)
−0.113260 + 0.993565i \(0.536129\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 1.13523 + 1.47395i 0.222638 + 0.289065i
\(27\) 0 0
\(28\) −1.93371 0.510659i −0.365437 0.0965055i
\(29\) 7.76079i 1.44114i −0.693381 0.720571i \(-0.743880\pi\)
0.693381 0.720571i \(-0.256120\pi\)
\(30\) 0 0
\(31\) 2.35940i 0.423762i 0.977296 + 0.211881i \(0.0679588\pi\)
−0.977296 + 0.211881i \(0.932041\pi\)
\(32\) 0.788967 + 5.60157i 0.139471 + 0.990226i
\(33\) 0 0
\(34\) −4.22657 + 3.25530i −0.724851 + 0.558280i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 2.46382 0.405050 0.202525 0.979277i \(-0.435085\pi\)
0.202525 + 0.979277i \(0.435085\pi\)
\(38\) 5.20654 4.01007i 0.844612 0.650519i
\(39\) 0 0
\(40\) 1.09653 + 2.60722i 0.173377 + 0.412238i
\(41\) 11.6084i 1.81292i −0.422288 0.906462i \(-0.638773\pi\)
0.422288 0.906462i \(-0.361227\pi\)
\(42\) 0 0
\(43\) 11.9776i 1.82657i −0.407319 0.913286i \(-0.633536\pi\)
0.407319 0.913286i \(-0.366464\pi\)
\(44\) 2.16391 8.19404i 0.326221 1.23530i
\(45\) 0 0
\(46\) 0.937460 + 1.21716i 0.138221 + 0.179461i
\(47\) 1.69888 0.247806 0.123903 0.992294i \(-0.460459\pi\)
0.123903 + 0.992294i \(0.460459\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0.862943 + 1.12041i 0.122039 + 0.158451i
\(51\) 0 0
\(52\) 0.671791 2.54387i 0.0931606 0.352771i
\(53\) 2.07653i 0.285233i −0.989778 0.142616i \(-0.954448\pi\)
0.989778 0.142616i \(-0.0455515\pi\)
\(54\) 0 0
\(55\) 4.23748i 0.571381i
\(56\) 1.09653 + 2.60722i 0.146530 + 0.348405i
\(57\) 0 0
\(58\) −8.69530 + 6.69712i −1.14175 + 0.879375i
\(59\) −1.79326 −0.233462 −0.116731 0.993164i \(-0.537242\pi\)
−0.116731 + 0.993164i \(0.537242\pi\)
\(60\) 0 0
\(61\) −11.7790 −1.50815 −0.754075 0.656788i \(-0.771915\pi\)
−0.754075 + 0.656788i \(0.771915\pi\)
\(62\) 2.64351 2.03603i 0.335726 0.258576i
\(63\) 0 0
\(64\) 5.59524 5.71780i 0.699405 0.714725i
\(65\) 1.31554i 0.163172i
\(66\) 0 0
\(67\) 5.42889i 0.663245i 0.943412 + 0.331622i \(0.107596\pi\)
−0.943412 + 0.331622i \(0.892404\pi\)
\(68\) 7.29458 + 1.92637i 0.884597 + 0.233607i
\(69\) 0 0
\(70\) 0.862943 + 1.12041i 0.103141 + 0.133915i
\(71\) −3.12413 −0.370766 −0.185383 0.982666i \(-0.559353\pi\)
−0.185383 + 0.982666i \(0.559353\pi\)
\(72\) 0 0
\(73\) −1.47020 −0.172074 −0.0860368 0.996292i \(-0.527420\pi\)
−0.0860368 + 0.996292i \(0.527420\pi\)
\(74\) −2.12614 2.76050i −0.247159 0.320902i
\(75\) 0 0
\(76\) −8.98589 2.37302i −1.03075 0.272204i
\(77\) 4.23748i 0.482905i
\(78\) 0 0
\(79\) 14.4467i 1.62539i −0.582692 0.812693i \(-0.698001\pi\)
0.582692 0.812693i \(-0.301999\pi\)
\(80\) 1.97493 3.47845i 0.220804 0.388903i
\(81\) 0 0
\(82\) −13.0062 + 10.0174i −1.43629 + 1.10623i
\(83\) −3.23955 −0.355587 −0.177793 0.984068i \(-0.556896\pi\)
−0.177793 + 0.984068i \(0.556896\pi\)
\(84\) 0 0
\(85\) 3.77232 0.409166
\(86\) −13.4199 + 10.3360i −1.44711 + 1.11456i
\(87\) 0 0
\(88\) −11.0481 + 4.64652i −1.17773 + 0.495321i
\(89\) 18.6736i 1.97940i −0.143167 0.989699i \(-0.545728\pi\)
0.143167 0.989699i \(-0.454272\pi\)
\(90\) 0 0
\(91\) 1.31554i 0.137906i
\(92\) 0.554755 2.10069i 0.0578372 0.219012i
\(93\) 0 0
\(94\) −1.46603 1.90345i −0.151210 0.196325i
\(95\) −4.64697 −0.476769
\(96\) 0 0
\(97\) 7.79292 0.791251 0.395626 0.918412i \(-0.370528\pi\)
0.395626 + 0.918412i \(0.370528\pi\)
\(98\) 0.862943 + 1.12041i 0.0871704 + 0.113179i
\(99\) 0 0
\(100\) 0.510659 1.93371i 0.0510659 0.193371i
\(101\) 11.5811i 1.15236i 0.817323 + 0.576179i \(0.195457\pi\)
−0.817323 + 0.576179i \(0.804543\pi\)
\(102\) 0 0
\(103\) 4.48639i 0.442057i 0.975267 + 0.221029i \(0.0709414\pi\)
−0.975267 + 0.221029i \(0.929059\pi\)
\(104\) −3.42990 + 1.44253i −0.336330 + 0.141451i
\(105\) 0 0
\(106\) −2.32657 + 1.79192i −0.225977 + 0.174047i
\(107\) −17.8681 −1.72738 −0.863688 0.504027i \(-0.831851\pi\)
−0.863688 + 0.504027i \(0.831851\pi\)
\(108\) 0 0
\(109\) −1.38174 −0.132347 −0.0661735 0.997808i \(-0.521079\pi\)
−0.0661735 + 0.997808i \(0.521079\pi\)
\(110\) −4.74773 + 3.65670i −0.452678 + 0.348653i
\(111\) 0 0
\(112\) 1.97493 3.47845i 0.186613 0.328683i
\(113\) 18.8688i 1.77503i 0.460780 + 0.887514i \(0.347570\pi\)
−0.460780 + 0.887514i \(0.652430\pi\)
\(114\) 0 0
\(115\) 1.08635i 0.101303i
\(116\) 15.0071 + 3.96312i 1.39337 + 0.367966i
\(117\) 0 0
\(118\) 1.54748 + 2.00919i 0.142457 + 0.184961i
\(119\) 3.77232 0.345808
\(120\) 0 0
\(121\) 6.95621 0.632382
\(122\) 10.1646 + 13.1974i 0.920263 + 1.19484i
\(123\) 0 0
\(124\) −4.56240 1.20485i −0.409716 0.108199i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.86559i 0.431751i −0.976421 0.215876i \(-0.930739\pi\)
0.976421 0.215876i \(-0.0692606\pi\)
\(128\) −11.2347 1.33486i −0.993015 0.117986i
\(129\) 0 0
\(130\) −1.47395 + 1.13523i −0.129274 + 0.0995666i
\(131\) −10.0799 −0.880689 −0.440345 0.897829i \(-0.645144\pi\)
−0.440345 + 0.897829i \(0.645144\pi\)
\(132\) 0 0
\(133\) −4.64697 −0.402943
\(134\) 6.08261 4.68482i 0.525458 0.404707i
\(135\) 0 0
\(136\) −4.13647 9.83530i −0.354699 0.843370i
\(137\) 7.30663i 0.624247i 0.950042 + 0.312124i \(0.101040\pi\)
−0.950042 + 0.312124i \(0.898960\pi\)
\(138\) 0 0
\(139\) 7.32996i 0.621719i −0.950456 0.310859i \(-0.899383\pi\)
0.950456 0.310859i \(-0.100617\pi\)
\(140\) 0.510659 1.93371i 0.0431586 0.163428i
\(141\) 0 0
\(142\) 2.69594 + 3.50032i 0.226239 + 0.293740i
\(143\) 5.57456 0.466168
\(144\) 0 0
\(145\) 7.76079 0.644498
\(146\) 1.26870 + 1.64723i 0.104998 + 0.136326i
\(147\) 0 0
\(148\) −1.25817 + 4.76431i −0.103421 + 0.391624i
\(149\) 8.80287i 0.721159i −0.932728 0.360580i \(-0.882579\pi\)
0.932728 0.360580i \(-0.117421\pi\)
\(150\) 0 0
\(151\) 5.98779i 0.487279i 0.969866 + 0.243640i \(0.0783414\pi\)
−0.969866 + 0.243640i \(0.921659\pi\)
\(152\) 5.09554 + 12.1157i 0.413303 + 0.982713i
\(153\) 0 0
\(154\) −4.74773 + 3.65670i −0.382583 + 0.294665i
\(155\) −2.35940 −0.189512
\(156\) 0 0
\(157\) 9.56287 0.763200 0.381600 0.924327i \(-0.375373\pi\)
0.381600 + 0.924327i \(0.375373\pi\)
\(158\) −16.1864 + 12.4667i −1.28772 + 0.991799i
\(159\) 0 0
\(160\) −5.60157 + 0.788967i −0.442843 + 0.0623733i
\(161\) 1.08635i 0.0856165i
\(162\) 0 0
\(163\) 7.69971i 0.603088i 0.953452 + 0.301544i \(0.0975020\pi\)
−0.953452 + 0.301544i \(0.902498\pi\)
\(164\) 22.4472 + 5.92792i 1.75283 + 0.462893i
\(165\) 0 0
\(166\) 2.79555 + 3.62964i 0.216976 + 0.281715i
\(167\) 6.34861 0.491270 0.245635 0.969362i \(-0.421003\pi\)
0.245635 + 0.969362i \(0.421003\pi\)
\(168\) 0 0
\(169\) −11.2694 −0.866874
\(170\) −3.25530 4.22657i −0.249670 0.324163i
\(171\) 0 0
\(172\) 23.1612 + 6.11649i 1.76603 + 0.466378i
\(173\) 5.13430i 0.390353i 0.980768 + 0.195177i \(0.0625280\pi\)
−0.980768 + 0.195177i \(0.937472\pi\)
\(174\) 0 0
\(175\) 1.00000i 0.0755929i
\(176\) 14.7399 + 8.36872i 1.11106 + 0.630816i
\(177\) 0 0
\(178\) −20.9222 + 16.1142i −1.56818 + 1.20781i
\(179\) −12.5019 −0.934435 −0.467217 0.884142i \(-0.654743\pi\)
−0.467217 + 0.884142i \(0.654743\pi\)
\(180\) 0 0
\(181\) −9.87390 −0.733921 −0.366961 0.930236i \(-0.619602\pi\)
−0.366961 + 0.930236i \(0.619602\pi\)
\(182\) −1.47395 + 1.13523i −0.109256 + 0.0841491i
\(183\) 0 0
\(184\) −2.83236 + 1.19122i −0.208805 + 0.0878177i
\(185\) 2.46382i 0.181144i
\(186\) 0 0
\(187\) 15.9851i 1.16895i
\(188\) −0.867546 + 3.28513i −0.0632723 + 0.239593i
\(189\) 0 0
\(190\) 4.01007 + 5.20654i 0.290921 + 0.377722i
\(191\) −15.2297 −1.10198 −0.550991 0.834511i \(-0.685750\pi\)
−0.550991 + 0.834511i \(0.685750\pi\)
\(192\) 0 0
\(193\) 3.63859 0.261912 0.130956 0.991388i \(-0.458195\pi\)
0.130956 + 0.991388i \(0.458195\pi\)
\(194\) −6.72484 8.73130i −0.482816 0.626871i
\(195\) 0 0
\(196\) 0.510659 1.93371i 0.0364756 0.138122i
\(197\) 15.4630i 1.10169i 0.834607 + 0.550846i \(0.185695\pi\)
−0.834607 + 0.550846i \(0.814305\pi\)
\(198\) 0 0
\(199\) 14.0154i 0.993527i −0.867886 0.496764i \(-0.834522\pi\)
0.867886 0.496764i \(-0.165478\pi\)
\(200\) −2.60722 + 1.09653i −0.184359 + 0.0775364i
\(201\) 0 0
\(202\) 12.9756 9.99380i 0.912960 0.703161i
\(203\) 7.76079 0.544701
\(204\) 0 0
\(205\) 11.6084 0.810764
\(206\) 5.02662 3.87150i 0.350221 0.269740i
\(207\) 0 0
\(208\) 4.57604 + 2.59809i 0.317291 + 0.180145i
\(209\) 19.6914i 1.36208i
\(210\) 0 0
\(211\) 19.7206i 1.35763i −0.734311 0.678813i \(-0.762495\pi\)
0.734311 0.678813i \(-0.237505\pi\)
\(212\) 4.01540 + 1.06040i 0.275779 + 0.0728283i
\(213\) 0 0
\(214\) 15.4192 + 20.0197i 1.05403 + 1.36852i
\(215\) 11.9776 0.816868
\(216\) 0 0
\(217\) −2.35940 −0.160167
\(218\) 1.19237 + 1.54813i 0.0807572 + 0.104852i
\(219\) 0 0
\(220\) 8.19404 + 2.16391i 0.552442 + 0.145890i
\(221\) 4.96263i 0.333823i
\(222\) 0 0
\(223\) 28.8639i 1.93287i −0.256906 0.966436i \(-0.582703\pi\)
0.256906 0.966436i \(-0.417297\pi\)
\(224\) −5.60157 + 0.788967i −0.374270 + 0.0527150i
\(225\) 0 0
\(226\) 21.1409 16.2827i 1.40627 1.08311i
\(227\) −14.6043 −0.969323 −0.484662 0.874702i \(-0.661057\pi\)
−0.484662 + 0.874702i \(0.661057\pi\)
\(228\) 0 0
\(229\) 30.1559 1.99276 0.996378 0.0850370i \(-0.0271008\pi\)
0.996378 + 0.0850370i \(0.0271008\pi\)
\(230\) −1.21716 + 0.937460i −0.0802575 + 0.0618143i
\(231\) 0 0
\(232\) −8.50994 20.2341i −0.558705 1.32844i
\(233\) 12.3687i 0.810298i −0.914251 0.405149i \(-0.867220\pi\)
0.914251 0.405149i \(-0.132780\pi\)
\(234\) 0 0
\(235\) 1.69888i 0.110822i
\(236\) 0.915742 3.46763i 0.0596097 0.225724i
\(237\) 0 0
\(238\) −3.25530 4.22657i −0.211010 0.273968i
\(239\) −18.9704 −1.22709 −0.613547 0.789658i \(-0.710258\pi\)
−0.613547 + 0.789658i \(0.710258\pi\)
\(240\) 0 0
\(241\) −17.2866 −1.11353 −0.556764 0.830671i \(-0.687957\pi\)
−0.556764 + 0.830671i \(0.687957\pi\)
\(242\) −6.00281 7.79384i −0.385875 0.501007i
\(243\) 0 0
\(244\) 6.01507 22.7772i 0.385075 1.45816i
\(245\) 1.00000i 0.0638877i
\(246\) 0 0
\(247\) 6.11326i 0.388978i
\(248\) 2.58716 + 6.15150i 0.164285 + 0.390620i
\(249\) 0 0
\(250\) −1.12041 + 0.862943i −0.0708613 + 0.0545773i
\(251\) 8.58477 0.541866 0.270933 0.962598i \(-0.412668\pi\)
0.270933 + 0.962598i \(0.412668\pi\)
\(252\) 0 0
\(253\) 4.60339 0.289413
\(254\) −5.45148 + 4.19873i −0.342056 + 0.263452i
\(255\) 0 0
\(256\) 8.19930 + 13.7394i 0.512456 + 0.858713i
\(257\) 11.8992i 0.742250i 0.928583 + 0.371125i \(0.121028\pi\)
−0.928583 + 0.371125i \(0.878972\pi\)
\(258\) 0 0
\(259\) 2.46382i 0.153095i
\(260\) 2.54387 + 0.671791i 0.157764 + 0.0416627i
\(261\) 0 0
\(262\) 8.69842 + 11.2937i 0.537390 + 0.697729i
\(263\) 14.5407 0.896620 0.448310 0.893878i \(-0.352026\pi\)
0.448310 + 0.893878i \(0.352026\pi\)
\(264\) 0 0
\(265\) 2.07653 0.127560
\(266\) 4.01007 + 5.20654i 0.245873 + 0.319233i
\(267\) 0 0
\(268\) −10.4979 2.77231i −0.641261 0.169346i
\(269\) 1.70559i 0.103991i 0.998647 + 0.0519957i \(0.0165582\pi\)
−0.998647 + 0.0519957i \(0.983442\pi\)
\(270\) 0 0
\(271\) 20.1881i 1.22634i 0.789952 + 0.613169i \(0.210106\pi\)
−0.789952 + 0.613169i \(0.789894\pi\)
\(272\) −7.45008 + 13.1219i −0.451727 + 0.795630i
\(273\) 0 0
\(274\) 8.18645 6.30520i 0.494562 0.380911i
\(275\) 4.23748 0.255529
\(276\) 0 0
\(277\) 7.46554 0.448561 0.224280 0.974525i \(-0.427997\pi\)
0.224280 + 0.974525i \(0.427997\pi\)
\(278\) −8.21259 + 6.32533i −0.492559 + 0.379368i
\(279\) 0 0
\(280\) −2.60722 + 1.09653i −0.155811 + 0.0655302i
\(281\) 3.18026i 0.189718i −0.995491 0.0948592i \(-0.969760\pi\)
0.995491 0.0948592i \(-0.0302401\pi\)
\(282\) 0 0
\(283\) 11.8824i 0.706333i −0.935561 0.353166i \(-0.885105\pi\)
0.935561 0.353166i \(-0.114895\pi\)
\(284\) 1.59536 6.04115i 0.0946674 0.358476i
\(285\) 0 0
\(286\) −4.81053 6.24582i −0.284452 0.369323i
\(287\) 11.6084 0.685221
\(288\) 0 0
\(289\) 2.76956 0.162916
\(290\) −6.69712 8.69530i −0.393268 0.510606i
\(291\) 0 0
\(292\) 0.750769 2.84293i 0.0439354 0.166370i
\(293\) 16.1811i 0.945311i 0.881247 + 0.472656i \(0.156704\pi\)
−0.881247 + 0.472656i \(0.843296\pi\)
\(294\) 0 0
\(295\) 1.79326i 0.104407i
\(296\) 6.42374 2.70166i 0.373372 0.157031i
\(297\) 0 0
\(298\) −9.86286 + 7.59637i −0.571340 + 0.440046i
\(299\) 1.42914 0.0826491
\(300\) 0 0
\(301\) 11.9776 0.690379
\(302\) 6.70880 5.16712i 0.386048 0.297334i
\(303\) 0 0
\(304\) 9.17745 16.1643i 0.526363 0.927085i
\(305\) 11.7790i 0.674466i
\(306\) 0 0
\(307\) 18.9644i 1.08236i 0.840908 + 0.541178i \(0.182022\pi\)
−0.840908 + 0.541178i \(0.817978\pi\)
\(308\) 8.19404 + 2.16391i 0.466899 + 0.123300i
\(309\) 0 0
\(310\) 2.03603 + 2.64351i 0.115639 + 0.150141i
\(311\) 28.6640 1.62539 0.812693 0.582692i \(-0.198001\pi\)
0.812693 + 0.582692i \(0.198001\pi\)
\(312\) 0 0
\(313\) 29.0626 1.64271 0.821356 0.570415i \(-0.193218\pi\)
0.821356 + 0.570415i \(0.193218\pi\)
\(314\) −8.25221 10.7144i −0.465699 0.604648i
\(315\) 0 0
\(316\) 27.9358 + 7.37736i 1.57151 + 0.415009i
\(317\) 27.0582i 1.51974i −0.650076 0.759870i \(-0.725263\pi\)
0.650076 0.759870i \(-0.274737\pi\)
\(318\) 0 0
\(319\) 32.8862i 1.84127i
\(320\) 5.71780 + 5.59524i 0.319635 + 0.312784i
\(321\) 0 0
\(322\) −1.21716 + 0.937460i −0.0678299 + 0.0522426i
\(323\) 17.5299 0.975389
\(324\) 0 0
\(325\) 1.31554 0.0729729
\(326\) 8.62687 6.64441i 0.477798 0.368000i
\(327\) 0 0
\(328\) −12.7289 30.2656i −0.702838 1.67114i
\(329\) 1.69888i 0.0936620i
\(330\) 0 0
\(331\) 28.4611i 1.56436i 0.623050 + 0.782182i \(0.285893\pi\)
−0.623050 + 0.782182i \(0.714107\pi\)
\(332\) 1.65430 6.26434i 0.0907918 0.343800i
\(333\) 0 0
\(334\) −5.47849 7.11308i −0.299770 0.389210i
\(335\) −5.42889 −0.296612
\(336\) 0 0
\(337\) −29.6313 −1.61412 −0.807061 0.590468i \(-0.798943\pi\)
−0.807061 + 0.590468i \(0.798943\pi\)
\(338\) 9.72482 + 12.6264i 0.528960 + 0.686783i
\(339\) 0 0
\(340\) −1.92637 + 7.29458i −0.104472 + 0.395604i
\(341\) 9.99792i 0.541418i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −13.1338 31.2284i −0.708129 1.68372i
\(345\) 0 0
\(346\) 5.75254 4.43061i 0.309259 0.238191i
\(347\) −9.51489 −0.510786 −0.255393 0.966837i \(-0.582205\pi\)
−0.255393 + 0.966837i \(0.582205\pi\)
\(348\) 0 0
\(349\) 20.3042 1.08686 0.543430 0.839454i \(-0.317125\pi\)
0.543430 + 0.839454i \(0.317125\pi\)
\(350\) −1.12041 + 0.862943i −0.0598887 + 0.0461262i
\(351\) 0 0
\(352\) −3.34323 23.7365i −0.178195 1.26516i
\(353\) 29.9901i 1.59621i 0.602517 + 0.798106i \(0.294164\pi\)
−0.602517 + 0.798106i \(0.705836\pi\)
\(354\) 0 0
\(355\) 3.12413i 0.165812i
\(356\) 36.1093 + 9.53584i 1.91379 + 0.505398i
\(357\) 0 0
\(358\) 10.7884 + 14.0073i 0.570185 + 0.740309i
\(359\) −3.99394 −0.210792 −0.105396 0.994430i \(-0.533611\pi\)
−0.105396 + 0.994430i \(0.533611\pi\)
\(360\) 0 0
\(361\) −2.59434 −0.136544
\(362\) 8.52062 + 11.0629i 0.447834 + 0.581451i
\(363\) 0 0
\(364\) 2.54387 + 0.671791i 0.133335 + 0.0352114i
\(365\) 1.47020i 0.0769536i
\(366\) 0 0
\(367\) 25.7643i 1.34489i −0.740149 0.672443i \(-0.765245\pi\)
0.740149 0.672443i \(-0.234755\pi\)
\(368\) 3.77883 + 2.14547i 0.196985 + 0.111840i
\(369\) 0 0
\(370\) 2.76050 2.12614i 0.143512 0.110533i
\(371\) 2.07653 0.107808
\(372\) 0 0
\(373\) −1.61689 −0.0837194 −0.0418597 0.999123i \(-0.513328\pi\)
−0.0418597 + 0.999123i \(0.513328\pi\)
\(374\) 17.9100 13.7943i 0.926103 0.713284i
\(375\) 0 0
\(376\) 4.42935 1.86287i 0.228426 0.0960701i
\(377\) 10.2096i 0.525821i
\(378\) 0 0
\(379\) 8.07523i 0.414797i 0.978257 + 0.207398i \(0.0664996\pi\)
−0.978257 + 0.207398i \(0.933500\pi\)
\(380\) 2.37302 8.98589i 0.121733 0.460966i
\(381\) 0 0
\(382\) 13.1424 + 17.0636i 0.672422 + 0.873049i
\(383\) 21.3124 1.08901 0.544507 0.838756i \(-0.316717\pi\)
0.544507 + 0.838756i \(0.316717\pi\)
\(384\) 0 0
\(385\) 4.23748 0.215962
\(386\) −3.13990 4.07673i −0.159817 0.207500i
\(387\) 0 0
\(388\) −3.97952 + 15.0692i −0.202030 + 0.765024i
\(389\) 9.64962i 0.489255i 0.969617 + 0.244628i \(0.0786657\pi\)
−0.969617 + 0.244628i \(0.921334\pi\)
\(390\) 0 0
\(391\) 4.09807i 0.207248i
\(392\) −2.60722 + 1.09653i −0.131685 + 0.0553831i
\(393\) 0 0
\(394\) 17.3250 13.3437i 0.872819 0.672245i
\(395\) 14.4467 0.726895
\(396\) 0 0
\(397\) −20.8203 −1.04494 −0.522471 0.852657i \(-0.674990\pi\)
−0.522471 + 0.852657i \(0.674990\pi\)
\(398\) −15.7031 + 12.0945i −0.787125 + 0.606243i
\(399\) 0 0
\(400\) 3.47845 + 1.97493i 0.173923 + 0.0987465i
\(401\) 26.6966i 1.33316i 0.745432 + 0.666582i \(0.232243\pi\)
−0.745432 + 0.666582i \(0.767757\pi\)
\(402\) 0 0
\(403\) 3.10388i 0.154615i
\(404\) −22.3944 5.91397i −1.11416 0.294231i
\(405\) 0 0
\(406\) −6.69712 8.69530i −0.332372 0.431541i
\(407\) −10.4404 −0.517511
\(408\) 0 0
\(409\) 11.6715 0.577117 0.288559 0.957462i \(-0.406824\pi\)
0.288559 + 0.957462i \(0.406824\pi\)
\(410\) −10.0174 13.0062i −0.494722 0.642330i
\(411\) 0 0
\(412\) −8.67537 2.29101i −0.427405 0.112870i
\(413\) 1.79326i 0.0882403i
\(414\) 0 0
\(415\) 3.23955i 0.159023i
\(416\) −1.03791 7.36907i −0.0508880 0.361298i
\(417\) 0 0
\(418\) −22.0626 + 16.9926i −1.07912 + 0.831134i
\(419\) 15.8171 0.772717 0.386359 0.922349i \(-0.373733\pi\)
0.386359 + 0.922349i \(0.373733\pi\)
\(420\) 0 0
\(421\) −24.0192 −1.17062 −0.585312 0.810808i \(-0.699028\pi\)
−0.585312 + 0.810808i \(0.699028\pi\)
\(422\) −22.0953 + 17.0178i −1.07558 + 0.828413i
\(423\) 0 0
\(424\) −2.27697 5.41397i −0.110580 0.262926i
\(425\) 3.77232i 0.182985i
\(426\) 0 0
\(427\) 11.7790i 0.570027i
\(428\) 9.12451 34.5517i 0.441050 1.67012i
\(429\) 0 0
\(430\) −10.3360 13.4199i −0.498447 0.647166i
\(431\) −24.5202 −1.18109 −0.590547 0.807003i \(-0.701088\pi\)
−0.590547 + 0.807003i \(0.701088\pi\)
\(432\) 0 0
\(433\) 3.69889 0.177757 0.0888786 0.996042i \(-0.471672\pi\)
0.0888786 + 0.996042i \(0.471672\pi\)
\(434\) 2.03603 + 2.64351i 0.0977326 + 0.126893i
\(435\) 0 0
\(436\) 0.705600 2.67189i 0.0337921 0.127960i
\(437\) 5.04825i 0.241490i
\(438\) 0 0
\(439\) 21.0026i 1.00240i −0.865332 0.501199i \(-0.832892\pi\)
0.865332 0.501199i \(-0.167108\pi\)
\(440\) −4.64652 11.0481i −0.221514 0.526695i
\(441\) 0 0
\(442\) 5.56021 4.28247i 0.264472 0.203696i
\(443\) 26.7907 1.27287 0.636433 0.771332i \(-0.280409\pi\)
0.636433 + 0.771332i \(0.280409\pi\)
\(444\) 0 0
\(445\) 18.6736 0.885213
\(446\) −32.3396 + 24.9079i −1.53132 + 1.17943i
\(447\) 0 0
\(448\) 5.71780 + 5.59524i 0.270141 + 0.264350i
\(449\) 0.544339i 0.0256889i −0.999918 0.0128445i \(-0.995911\pi\)
0.999918 0.0128445i \(-0.00408863\pi\)
\(450\) 0 0
\(451\) 49.1902i 2.31628i
\(452\) −36.4868 9.63553i −1.71619 0.453217i
\(453\) 0 0
\(454\) 12.6027 + 16.3629i 0.591474 + 0.767949i
\(455\) 1.31554 0.0616733
\(456\) 0 0
\(457\) 13.5598 0.634302 0.317151 0.948375i \(-0.397274\pi\)
0.317151 + 0.948375i \(0.397274\pi\)
\(458\) −26.0228 33.7871i −1.21597 1.57877i
\(459\) 0 0
\(460\) 2.10069 + 0.554755i 0.0979451 + 0.0258656i
\(461\) 35.9347i 1.67365i −0.547474 0.836823i \(-0.684411\pi\)
0.547474 0.836823i \(-0.315589\pi\)
\(462\) 0 0
\(463\) 38.9453i 1.80994i −0.425475 0.904970i \(-0.639893\pi\)
0.425475 0.904970i \(-0.360107\pi\)
\(464\) −15.3270 + 26.9956i −0.711539 + 1.25324i
\(465\) 0 0
\(466\) −13.8580 + 10.6735i −0.641961 + 0.494438i
\(467\) −9.09883 −0.421044 −0.210522 0.977589i \(-0.567516\pi\)
−0.210522 + 0.977589i \(0.567516\pi\)
\(468\) 0 0
\(469\) −5.42889 −0.250683
\(470\) 1.90345 1.46603i 0.0877994 0.0676230i
\(471\) 0 0
\(472\) −4.67542 + 1.96636i −0.215204 + 0.0905090i
\(473\) 50.7549i 2.33371i
\(474\) 0 0
\(475\) 4.64697i 0.213218i
\(476\) −1.92637 + 7.29458i −0.0882951 + 0.334346i
\(477\) 0 0
\(478\) 16.3704 + 21.2547i 0.748764 + 0.972168i
\(479\) 22.3339 1.02046 0.510231 0.860038i \(-0.329560\pi\)
0.510231 + 0.860038i \(0.329560\pi\)
\(480\) 0 0
\(481\) −3.24125 −0.147788
\(482\) 14.9173 + 19.3682i 0.679466 + 0.882195i
\(483\) 0 0
\(484\) −3.55225 + 13.4513i −0.161466 + 0.611422i
\(485\) 7.79292i 0.353858i
\(486\) 0 0
\(487\) 11.7332i 0.531681i 0.964017 + 0.265840i \(0.0856494\pi\)
−0.964017 + 0.265840i \(0.914351\pi\)
\(488\) −30.7106 + 12.9161i −1.39020 + 0.584683i
\(489\) 0 0
\(490\) −1.12041 + 0.862943i −0.0506152 + 0.0389838i
\(491\) −40.4564 −1.82577 −0.912887 0.408213i \(-0.866152\pi\)
−0.912887 + 0.408213i \(0.866152\pi\)
\(492\) 0 0
\(493\) −29.2762 −1.31853
\(494\) −6.84939 + 5.27540i −0.308169 + 0.237351i
\(495\) 0 0
\(496\) 4.65966 8.20708i 0.209225 0.368509i
\(497\) 3.12413i 0.140136i
\(498\) 0 0
\(499\) 26.0278i 1.16516i 0.812772 + 0.582582i \(0.197957\pi\)
−0.812772 + 0.582582i \(0.802043\pi\)
\(500\) 1.93371 + 0.510659i 0.0864781 + 0.0228374i
\(501\) 0 0
\(502\) −7.40817 9.61851i −0.330643 0.429295i
\(503\) 9.18153 0.409384 0.204692 0.978826i \(-0.434381\pi\)
0.204692 + 0.978826i \(0.434381\pi\)
\(504\) 0 0
\(505\) −11.5811 −0.515351
\(506\) −3.97246 5.15771i −0.176598 0.229288i
\(507\) 0 0
\(508\) 9.40863 + 2.48466i 0.417441 + 0.110239i
\(509\) 12.0124i 0.532441i 0.963912 + 0.266220i \(0.0857749\pi\)
−0.963912 + 0.266220i \(0.914225\pi\)
\(510\) 0 0
\(511\) 1.47020i 0.0650377i
\(512\) 8.31832 21.0429i 0.367621 0.929976i
\(513\) 0 0
\(514\) 13.3320 10.2683i 0.588049 0.452915i
\(515\) −4.48639 −0.197694
\(516\) 0 0
\(517\) −7.19894 −0.316609
\(518\) 2.76050 2.12614i 0.121290 0.0934172i
\(519\) 0 0
\(520\) −1.44253 3.42990i −0.0632590 0.150411i
\(521\) 6.93500i 0.303828i −0.988394 0.151914i \(-0.951456\pi\)
0.988394 0.151914i \(-0.0485437\pi\)
\(522\) 0 0
\(523\) 14.5179i 0.634823i 0.948288 + 0.317412i \(0.102814\pi\)
−0.948288 + 0.317412i \(0.897186\pi\)
\(524\) 5.14742 19.4917i 0.224866 0.851498i
\(525\) 0 0
\(526\) −12.5478 16.2917i −0.547111 0.710350i
\(527\) 8.90044 0.387709
\(528\) 0 0
\(529\) −21.8198 −0.948689
\(530\) −1.79192 2.32657i −0.0778362 0.101060i
\(531\) 0 0
\(532\) 2.37302 8.98589i 0.102883 0.389588i
\(533\) 15.2712i 0.661471i
\(534\) 0 0
\(535\) 17.8681i 0.772506i
\(536\) 5.95294 + 14.1543i 0.257128 + 0.611374i
\(537\) 0 0
\(538\) 1.91097 1.47182i 0.0823876 0.0634549i
\(539\) 4.23748 0.182521
\(540\) 0 0
\(541\) −25.8429 −1.11107 −0.555536 0.831493i \(-0.687487\pi\)
−0.555536 + 0.831493i \(0.687487\pi\)
\(542\) 22.6190 17.4212i 0.971570 0.748303i
\(543\) 0 0
\(544\) 21.1309 2.97624i 0.905981 0.127605i
\(545\) 1.38174i 0.0591874i
\(546\) 0 0
\(547\) 20.6299i 0.882071i 0.897490 + 0.441036i \(0.145389\pi\)
−0.897490 + 0.441036i \(0.854611\pi\)
\(548\) −14.1289 3.73119i −0.603556 0.159389i
\(549\) 0 0
\(550\) −3.65670 4.74773i −0.155922 0.202444i
\(551\) 36.0642 1.53638
\(552\) 0 0
\(553\) 14.4467 0.614338
\(554\) −6.44233 8.36450i −0.273708 0.355373i
\(555\) 0 0
\(556\) 14.1740 + 3.74311i 0.601111 + 0.158743i
\(557\) 14.1785i 0.600762i −0.953819 0.300381i \(-0.902886\pi\)
0.953819 0.300381i \(-0.0971139\pi\)
\(558\) 0 0
\(559\) 15.7570i 0.666451i
\(560\) 3.47845 + 1.97493i 0.146992 + 0.0834561i
\(561\) 0 0
\(562\) −3.56321 + 2.74438i −0.150305 + 0.115765i
\(563\) −35.4562 −1.49430 −0.747151 0.664655i \(-0.768579\pi\)
−0.747151 + 0.664655i \(0.768579\pi\)
\(564\) 0 0
\(565\) −18.8688 −0.793817
\(566\) −13.3132 + 10.2538i −0.559594 + 0.430999i
\(567\) 0 0
\(568\) −8.14531 + 3.42570i −0.341769 + 0.143739i
\(569\) 0.442179i 0.0185371i −0.999957 0.00926854i \(-0.997050\pi\)
0.999957 0.00926854i \(-0.00295031\pi\)
\(570\) 0 0
\(571\) 38.8059i 1.62398i 0.583673 + 0.811989i \(0.301615\pi\)
−0.583673 + 0.811989i \(0.698385\pi\)
\(572\) −2.84670 + 10.7796i −0.119026 + 0.450716i
\(573\) 0 0
\(574\) −10.0174 13.0062i −0.418117 0.542868i
\(575\) 1.08635 0.0453040
\(576\) 0 0
\(577\) −40.8359 −1.70002 −0.850009 0.526767i \(-0.823404\pi\)
−0.850009 + 0.526767i \(0.823404\pi\)
\(578\) −2.38998 3.10306i −0.0994099 0.129070i
\(579\) 0 0
\(580\) −3.96312 + 15.0071i −0.164559 + 0.623136i
\(581\) 3.23955i 0.134399i
\(582\) 0 0
\(583\) 8.79923i 0.364427i
\(584\) −3.83313 + 1.61211i −0.158616 + 0.0667098i
\(585\) 0 0
\(586\) 18.1296 13.9634i 0.748925 0.576822i
\(587\) 42.5975 1.75819 0.879093 0.476651i \(-0.158149\pi\)
0.879093 + 0.476651i \(0.158149\pi\)
\(588\) 0 0
\(589\) −10.9641 −0.451767
\(590\) −2.00919 + 1.54748i −0.0827171 + 0.0637086i
\(591\) 0 0
\(592\) −8.57030 4.86588i −0.352237 0.199986i
\(593\) 18.4177i 0.756326i −0.925739 0.378163i \(-0.876556\pi\)
0.925739 0.378163i \(-0.123444\pi\)
\(594\) 0 0
\(595\) 3.77232i 0.154650i
\(596\) 17.0222 + 4.49526i 0.697256 + 0.184133i
\(597\) 0 0
\(598\) −1.23326 1.60123i −0.0504319 0.0654790i
\(599\) 2.39564 0.0978832 0.0489416 0.998802i \(-0.484415\pi\)
0.0489416 + 0.998802i \(0.484415\pi\)
\(600\) 0 0
\(601\) −7.59185 −0.309678 −0.154839 0.987940i \(-0.549486\pi\)
−0.154839 + 0.987940i \(0.549486\pi\)
\(602\) −10.3360 13.4199i −0.421265 0.546955i
\(603\) 0 0
\(604\) −11.5786 3.05772i −0.471128 0.124417i
\(605\) 6.95621i 0.282810i
\(606\) 0 0
\(607\) 32.4082i 1.31541i 0.753276 + 0.657705i \(0.228473\pi\)
−0.753276 + 0.657705i \(0.771527\pi\)
\(608\) −26.0303 + 3.66630i −1.05567 + 0.148688i
\(609\) 0 0
\(610\) −13.1974 + 10.1646i −0.534347 + 0.411554i
\(611\) −2.23493 −0.0904157
\(612\) 0 0
\(613\) −4.29133 −0.173325 −0.0866625 0.996238i \(-0.527620\pi\)
−0.0866625 + 0.996238i \(0.527620\pi\)
\(614\) 21.2480 16.3652i 0.857500 0.660446i
\(615\) 0 0
\(616\) −4.64652 11.0481i −0.187214 0.445139i
\(617\) 31.9496i 1.28624i 0.765764 + 0.643121i \(0.222361\pi\)
−0.765764 + 0.643121i \(0.777639\pi\)
\(618\) 0 0
\(619\) 44.0560i 1.77076i −0.464866 0.885381i \(-0.653898\pi\)
0.464866 0.885381i \(-0.346102\pi\)
\(620\) 1.20485 4.56240i 0.0483880 0.183230i
\(621\) 0 0
\(622\) −24.7354 32.1156i −0.991799 1.28772i
\(623\) 18.6736 0.748142
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −25.0793 32.5621i −1.00237 1.30144i
\(627\) 0 0
\(628\) −4.88337 + 18.4918i −0.194868 + 0.737903i
\(629\) 9.29434i 0.370590i
\(630\) 0 0
\(631\) 17.4015i 0.692742i −0.938098 0.346371i \(-0.887414\pi\)
0.938098 0.346371i \(-0.112586\pi\)
\(632\) −15.8413 37.6659i −0.630133 1.49827i
\(633\) 0 0
\(634\) −30.3164 + 23.3497i −1.20402 + 0.927334i
\(635\) 4.86559 0.193085
\(636\) 0 0
\(637\) 1.31554 0.0521235
\(638\) 36.8461 28.3789i 1.45875 1.12353i
\(639\) 0 0
\(640\) 1.33486 11.2347i 0.0527649 0.444090i
\(641\) 10.8073i 0.426863i 0.976958 + 0.213431i \(0.0684640\pi\)
−0.976958 + 0.213431i \(0.931536\pi\)
\(642\) 0 0
\(643\) 26.2818i 1.03645i −0.855244 0.518226i \(-0.826593\pi\)
0.855244 0.518226i \(-0.173407\pi\)
\(644\) 2.10069 + 0.554755i 0.0827787 + 0.0218604i
\(645\) 0 0
\(646\) −15.1273 19.6407i −0.595175 0.772755i
\(647\) 9.07329 0.356708 0.178354 0.983966i \(-0.442923\pi\)
0.178354 + 0.983966i \(0.442923\pi\)
\(648\) 0 0
\(649\) 7.59888 0.298282
\(650\) −1.13523 1.47395i −0.0445275 0.0578130i
\(651\) 0 0
\(652\) −14.8890 3.93192i −0.583098 0.153986i
\(653\) 35.6329i 1.39442i 0.716865 + 0.697212i \(0.245576\pi\)
−0.716865 + 0.697212i \(0.754424\pi\)
\(654\) 0 0
\(655\) 10.0799i 0.393856i
\(656\) −22.9257 + 40.3792i −0.895099 + 1.57654i
\(657\) 0 0
\(658\) 1.90345 1.46603i 0.0742040 0.0571519i
\(659\) −34.3086 −1.33647 −0.668237 0.743948i \(-0.732951\pi\)
−0.668237 + 0.743948i \(0.732951\pi\)
\(660\) 0 0
\(661\) −20.7598 −0.807462 −0.403731 0.914878i \(-0.632287\pi\)
−0.403731 + 0.914878i \(0.632287\pi\)
\(662\) 31.8883 24.5603i 1.23937 0.954564i
\(663\) 0 0
\(664\) −8.44623 + 3.55226i −0.327777 + 0.137855i
\(665\) 4.64697i 0.180202i
\(666\) 0 0
\(667\) 8.43095i 0.326448i
\(668\) −3.24198 + 12.2764i −0.125436 + 0.474987i
\(669\) 0 0
\(670\) 4.68482 + 6.08261i 0.180991 + 0.234992i
\(671\) 49.9134 1.92688
\(672\) 0 0
\(673\) −13.0915 −0.504642 −0.252321 0.967644i \(-0.581194\pi\)
−0.252321 + 0.967644i \(0.581194\pi\)
\(674\) 25.5702 + 33.1994i 0.984926 + 1.27879i
\(675\) 0 0
\(676\) 5.75480 21.7917i 0.221338 0.838141i
\(677\) 5.34791i 0.205537i −0.994705 0.102768i \(-0.967230\pi\)
0.994705 0.102768i \(-0.0327701\pi\)
\(678\) 0 0
\(679\) 7.79292i 0.299065i
\(680\) 9.83530 4.13647i 0.377167 0.158626i
\(681\) 0 0
\(682\) −11.2018 + 8.62763i −0.428940 + 0.330369i
\(683\) −38.8206 −1.48543 −0.742715 0.669608i \(-0.766462\pi\)
−0.742715 + 0.669608i \(0.766462\pi\)
\(684\) 0 0
\(685\) −7.30663 −0.279172
\(686\) −1.12041 + 0.862943i −0.0427776 + 0.0329473i
\(687\) 0 0
\(688\) −23.6550 + 41.6637i −0.901838 + 1.58841i
\(689\) 2.73175i 0.104071i
\(690\) 0 0
\(691\) 8.41840i 0.320251i −0.987097 0.160126i \(-0.948810\pi\)
0.987097 0.160126i \(-0.0511899\pi\)
\(692\) −9.92823 2.62187i −0.377415 0.0996687i
\(693\) 0 0
\(694\) 8.21081 + 10.6606i 0.311678 + 0.404672i
\(695\) 7.32996 0.278041
\(696\) 0 0
\(697\) −43.7906 −1.65869
\(698\) −17.5214 22.7492i −0.663194 0.861068i
\(699\) 0 0
\(700\) 1.93371 + 0.510659i 0.0730873 + 0.0193011i
\(701\) 31.6971i 1.19718i 0.801054 + 0.598592i \(0.204273\pi\)
−0.801054 + 0.598592i \(0.795727\pi\)
\(702\) 0 0
\(703\) 11.4493i 0.431819i
\(704\) −23.7097 + 24.2290i −0.893593 + 0.913167i
\(705\) 0 0
\(706\) 33.6013 25.8797i 1.26460 0.973997i
\(707\) −11.5811 −0.435551
\(708\) 0 0
\(709\) 5.42488 0.203736 0.101868 0.994798i \(-0.467518\pi\)
0.101868 + 0.994798i \(0.467518\pi\)
\(710\) −3.50032 + 2.69594i −0.131365 + 0.101177i
\(711\) 0 0
\(712\) −20.4762 48.6863i −0.767377 1.82459i
\(713\) 2.56314i 0.0959905i
\(714\) 0 0
\(715\) 5.57456i 0.208477i
\(716\) 6.38420 24.1750i 0.238589 0.903462i
\(717\) 0 0
\(718\) 3.44654 + 4.47487i 0.128624 + 0.167001i
\(719\) −34.3125 −1.27964 −0.639821 0.768524i \(-0.720992\pi\)
−0.639821 + 0.768524i \(0.720992\pi\)
\(720\) 0 0
\(721\) −4.48639 −0.167082
\(722\) 2.23876 + 2.90673i 0.0833182 + 0.108177i
\(723\) 0 0
\(724\) 5.04220 19.0932i 0.187392 0.709595i
\(725\) 7.76079i 0.288228i
\(726\) 0 0
\(727\) 2.56269i 0.0950448i 0.998870 + 0.0475224i \(0.0151325\pi\)
−0.998870 + 0.0475224i \(0.984867\pi\)
\(728\) −1.44253 3.42990i −0.0534636 0.127121i
\(729\) 0 0
\(730\) −1.64723 + 1.26870i −0.0609667 + 0.0469565i
\(731\) −45.1835 −1.67117
\(732\) 0 0
\(733\) 0.324469 0.0119845 0.00599226 0.999982i \(-0.498093\pi\)
0.00599226 + 0.999982i \(0.498093\pi\)
\(734\) −28.8667 + 22.2331i −1.06549 + 0.820640i
\(735\) 0 0
\(736\) −0.857095 6.08527i −0.0315930 0.224306i
\(737\) 23.0048i 0.847393i
\(738\) 0 0
\(739\) 33.4804i 1.23160i 0.787904 + 0.615798i \(0.211166\pi\)
−0.787904 + 0.615798i \(0.788834\pi\)
\(740\) −4.76431 1.25817i −0.175140 0.0462514i
\(741\) 0 0
\(742\) −1.79192 2.32657i −0.0657836 0.0854111i
\(743\) 44.7481 1.64165 0.820824 0.571181i \(-0.193515\pi\)
0.820824 + 0.571181i \(0.193515\pi\)
\(744\) 0 0
\(745\) 8.80287 0.322512
\(746\) 1.39528 + 1.81159i 0.0510850 + 0.0663269i
\(747\) 0 0
\(748\) −30.9106 8.16295i −1.13020 0.298467i
\(749\) 17.8681i 0.652887i
\(750\) 0 0
\(751\) 4.39318i 0.160309i −0.996782 0.0801547i \(-0.974459\pi\)
0.996782 0.0801547i \(-0.0255414\pi\)
\(752\) −5.90946 3.35516i −0.215496 0.122350i
\(753\) 0 0
\(754\) 11.4390 8.81031i 0.416584 0.320852i
\(755\) −5.98779 −0.217918
\(756\) 0 0
\(757\) −26.5993 −0.966768 −0.483384 0.875408i \(-0.660592\pi\)
−0.483384 + 0.875408i \(0.660592\pi\)
\(758\) 9.04761 6.96846i 0.328624 0.253106i
\(759\) 0 0
\(760\) −12.1157 + 5.09554i −0.439483 + 0.184835i
\(761\) 42.2116i 1.53017i −0.643930 0.765085i \(-0.722697\pi\)
0.643930 0.765085i \(-0.277303\pi\)
\(762\) 0 0
\(763\) 1.38174i 0.0500225i
\(764\) 7.77718 29.4498i 0.281369 1.06546i
\(765\) 0 0
\(766\) −18.3914 23.8788i −0.664509 0.862775i
\(767\) 2.35909 0.0851820
\(768\) 0 0
\(769\) 5.36652 0.193522 0.0967609 0.995308i \(-0.469152\pi\)
0.0967609 + 0.995308i \(0.469152\pi\)
\(770\) −3.65670 4.74773i −0.131778 0.171096i
\(771\) 0 0
\(772\) −1.85808 + 7.03597i −0.0668737 + 0.253230i
\(773\) 0.776297i 0.0279215i −0.999903 0.0139607i \(-0.995556\pi\)
0.999903 0.0139607i \(-0.00444399\pi\)
\(774\) 0 0
\(775\) 2.35940i 0.0847523i
\(776\) 20.3179 8.54517i 0.729370 0.306754i
\(777\) 0 0
\(778\) 10.8116 8.32707i 0.387614 0.298540i
\(779\) 53.9438 1.93274
\(780\) 0 0
\(781\) 13.2384 0.473708
\(782\) 4.59154 3.53640i 0.164193 0.126462i
\(783\) 0 0
\(784\) 3.47845 + 1.97493i 0.124231 + 0.0705332i
\(785\) 9.56287i 0.341314i
\(786\) 0 0
\(787\) 1.67264i 0.0596233i 0.999556 + 0.0298117i \(0.00949075\pi\)
−0.999556 + 0.0298117i \(0.990509\pi\)
\(788\) −29.9009 7.89631i −1.06518 0.281294i
\(789\) 0 0
\(790\) −12.4667 16.1864i −0.443546 0.575885i
\(791\) −18.8688 −0.670898
\(792\) 0 0
\(793\) 15.4958 0.550271
\(794\) 17.9667 + 23.3274i 0.637616 + 0.827858i
\(795\) 0 0
\(796\) 27.1017 + 7.15710i 0.960596 + 0.253677i
\(797\) 32.6861i 1.15780i −0.815398 0.578900i \(-0.803482\pi\)
0.815398 0.578900i \(-0.196518\pi\)
\(798\) 0 0
\(799\) 6.40871i 0.226724i
\(800\) −0.788967 5.60157i −0.0278942 0.198045i
\(801\) 0 0
\(802\) 29.9112 23.0376i 1.05620 0.813486i
\(803\) 6.22992 0.219849
\(804\) 0 0
\(805\) 1.08635 0.0382889
\(806\) −3.47764 + 2.67847i −0.122495 + 0.0943453i
\(807\) 0 0
\(808\) 12.6990 + 30.1944i 0.446749 + 1.06224i
\(809\) 0.255102i 0.00896889i −0.999990 0.00448445i \(-0.998573\pi\)
0.999990 0.00448445i \(-0.00142745\pi\)
\(810\) 0 0
\(811\) 25.6840i 0.901886i 0.892553 + 0.450943i \(0.148912\pi\)
−0.892553 + 0.450943i \(0.851088\pi\)
\(812\) −3.96312 + 15.0071i −0.139078 + 0.526646i
\(813\) 0 0
\(814\) 9.00946 + 11.6976i 0.315781 + 0.410000i
\(815\) −7.69971 −0.269709
\(816\) 0 0
\(817\) 55.6597 1.94729
\(818\) −10.0718 13.0769i −0.352153 0.457223i
\(819\) 0 0
\(820\) −5.92792 + 22.4472i −0.207012 + 0.783890i
\(821\) 37.1669i 1.29713i −0.761158 0.648567i \(-0.775369\pi\)
0.761158 0.648567i \(-0.224631\pi\)
\(822\) 0 0
\(823\) 38.2124i 1.33200i −0.745951 0.666000i \(-0.768005\pi\)
0.745951 0.666000i \(-0.231995\pi\)
\(824\) 4.91946 + 11.6970i 0.171378 + 0.407485i
\(825\) 0 0
\(826\) −2.00919 + 1.54748i −0.0699087 + 0.0538436i
\(827\) 14.3871 0.500289 0.250145 0.968208i \(-0.419522\pi\)
0.250145 + 0.968208i \(0.419522\pi\)
\(828\) 0 0
\(829\) −13.1711 −0.457451 −0.228726 0.973491i \(-0.573456\pi\)
−0.228726 + 0.973491i \(0.573456\pi\)
\(830\) −3.62964 + 2.79555i −0.125987 + 0.0970348i
\(831\) 0 0
\(832\) −7.36075 + 7.52198i −0.255188 + 0.260778i
\(833\) 3.77232i 0.130703i
\(834\) 0 0
\(835\) 6.34861i 0.219703i
\(836\) 38.0775 + 10.0556i 1.31694 + 0.347780i
\(837\) 0 0
\(838\) −13.6493 17.7217i −0.471507 0.612188i
\(839\) −15.2636 −0.526960 −0.263480 0.964665i \(-0.584870\pi\)
−0.263480 + 0.964665i \(0.584870\pi\)
\(840\) 0 0
\(841\) −31.2298 −1.07689
\(842\) 20.7272 + 26.9115i 0.714306 + 0.927430i
\(843\) 0 0
\(844\) 38.1340 + 10.0705i 1.31263 + 0.346642i
\(845\) 11.2694i 0.387678i
\(846\) 0 0
\(847\) 6.95621i 0.239018i
\(848\) −4.10100 + 7.22310i −0.140829 + 0.248042i
\(849\) 0 0
\(850\) 4.22657 3.25530i 0.144970 0.111656i
\(851\) −2.67658 −0.0917519
\(852\) 0 0
\(853\) 49.3068 1.68823 0.844117 0.536159i \(-0.180125\pi\)
0.844117 + 0.536159i \(0.180125\pi\)
\(854\) −13.1974 + 10.1646i −0.451606 + 0.347827i
\(855\) 0 0
\(856\) −46.5862 + 19.5929i −1.59228 + 0.669672i
\(857\) 50.0615i 1.71007i −0.518571 0.855035i \(-0.673536\pi\)
0.518571 0.855035i \(-0.326464\pi\)
\(858\) 0 0
\(859\) 45.2832i 1.54504i 0.634989 + 0.772521i \(0.281004\pi\)
−0.634989 + 0.772521i \(0.718996\pi\)
\(860\) −6.11649 + 23.1612i −0.208570 + 0.789792i
\(861\) 0 0
\(862\) 21.1595 + 27.4728i 0.720696 + 0.935726i
\(863\) 37.9740 1.29265 0.646326 0.763062i \(-0.276305\pi\)
0.646326 + 0.763062i \(0.276305\pi\)
\(864\) 0 0
\(865\) −5.13430 −0.174571
\(866\) −3.19193 4.14429i −0.108466 0.140829i
\(867\) 0 0
\(868\) 1.20485 4.56240i 0.0408953 0.154858i
\(869\) 61.2178i 2.07667i
\(870\) 0 0
\(871\) 7.14191i 0.241994i
\(872\) −3.60252 + 1.51512i −0.121997 + 0.0513086i
\(873\) 0 0
\(874\) −5.65613 + 4.35635i −0.191321 + 0.147356i
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) −35.1869 −1.18818 −0.594088 0.804400i \(-0.702487\pi\)
−0.594088 + 0.804400i \(0.702487\pi\)
\(878\) −23.5316 + 18.1240i −0.794153 + 0.611656i
\(879\) 0 0
\(880\) −8.36872 + 14.7399i −0.282110 + 0.496881i
\(881\) 23.7680i 0.800766i 0.916348 + 0.400383i \(0.131123\pi\)
−0.916348 + 0.400383i \(0.868877\pi\)
\(882\) 0 0
\(883\) 37.0669i 1.24740i 0.781664 + 0.623700i \(0.214371\pi\)
−0.781664 + 0.623700i \(0.785629\pi\)
\(884\) −9.59629 2.53421i −0.322758 0.0852348i
\(885\) 0 0
\(886\) −23.1189 30.0167i −0.776694 1.00843i
\(887\) 4.93846 0.165817 0.0829086 0.996557i \(-0.473579\pi\)
0.0829086 + 0.996557i \(0.473579\pi\)
\(888\) 0 0
\(889\) 4.86559 0.163187
\(890\) −16.1142 20.9222i −0.540151 0.701313i
\(891\) 0 0
\(892\) 55.8145 + 14.7396i 1.86881 + 0.493519i
\(893\) 7.89462i 0.264184i
\(894\) 0 0
\(895\) 12.5019i 0.417892i
\(896\) 1.33486 11.2347i 0.0445945 0.375324i
\(897\) 0 0
\(898\) −0.609885 + 0.469733i −0.0203521 + 0.0156752i
\(899\) 18.3108 0.610701
\(900\) 0 0
\(901\) −7.83333 −0.260966
\(902\) 55.1134 42.4483i 1.83508 1.41338i
\(903\) 0 0
\(904\) 20.6902 + 49.1952i 0.688146 + 1.63621i
\(905\) 9.87390i 0.328220i
\(906\) 0 0
\(907\) 14.9517i 0.496462i −0.968701 0.248231i \(-0.920151\pi\)
0.968701 0.248231i \(-0.0798492\pi\)
\(908\) 7.45783 28.2405i 0.247497 0.937194i
\(909\) 0 0
\(910\) −1.13523 1.47395i −0.0376326 0.0488609i
\(911\) −20.0427 −0.664044 −0.332022 0.943272i \(-0.607731\pi\)
−0.332022 + 0.943272i \(0.607731\pi\)
\(912\) 0 0
\(913\) 13.7275 0.454314
\(914\) −11.7014 15.1926i −0.387047 0.502528i
\(915\) 0 0
\(916\) −15.3994 + 58.3126i −0.508809 + 1.92670i
\(917\) 10.0799i 0.332869i
\(918\) 0 0
\(919\) 35.9364i 1.18543i −0.805412 0.592715i \(-0.798056\pi\)
0.805412 0.592715i \(-0.201944\pi\)
\(920\) −1.19122 2.83236i −0.0392733 0.0933803i
\(921\) 0 0
\(922\) −40.2618 + 31.0096i −1.32595 + 1.02125i
\(923\) 4.10991 0.135279
\(924\) 0 0
\(925\) −2.46382 −0.0810100
\(926\) −43.6349 + 33.6076i −1.43393 + 1.10441i
\(927\) 0 0
\(928\) 43.4726 6.12300i 1.42706 0.200997i
\(929\) 29.0377i 0.952696i −0.879257 0.476348i \(-0.841960\pi\)
0.879257 0.476348i \(-0.158040\pi\)
\(930\) 0 0
\(931\) 4.64697i 0.152298i
\(932\) 23.9174 + 6.31617i 0.783440 + 0.206893i
\(933\) 0 0
\(934\) 7.85177 + 10.1945i 0.256918 + 0.333573i
\(935\) −15.9851 −0.522770
\(936\) 0 0
\(937\) 7.13523 0.233098 0.116549 0.993185i \(-0.462817\pi\)
0.116549 + 0.993185i \(0.462817\pi\)
\(938\) 4.68482 + 6.08261i 0.152965 + 0.198604i
\(939\) 0 0
\(940\) −3.28513 0.867546i −0.107149 0.0282962i
\(941\) 25.8277i 0.841959i 0.907070 + 0.420979i \(0.138313\pi\)
−0.907070 + 0.420979i \(0.861687\pi\)
\(942\) 0 0
\(943\) 12.6108i 0.410663i
\(944\) 6.23776 + 3.54156i 0.203022 + 0.115268i
\(945\) 0 0
\(946\) 56.8666 43.7986i 1.84889 1.42402i
\(947\) −5.91834 −0.192320 −0.0961601 0.995366i \(-0.530656\pi\)
−0.0961601 + 0.995366i \(0.530656\pi\)
\(948\) 0 0
\(949\) 1.93410 0.0627835
\(950\) −5.20654 + 4.01007i −0.168922 + 0.130104i
\(951\) 0 0
\(952\) 9.83530 4.13647i 0.318764 0.134064i
\(953\) 12.4045i 0.401820i −0.979610 0.200910i \(-0.935610\pi\)
0.979610 0.200910i \(-0.0643899\pi\)
\(954\) 0 0
\(955\) 15.2297i 0.492821i
\(956\) 9.68741 36.6832i 0.313313 1.18642i
\(957\) 0 0
\(958\) −19.2729 25.0232i −0.622678 0.808464i
\(959\) −7.30663 −0.235943
\(960\) 0 0
\(961\) 25.4332 0.820426
\(962\) 2.79701 + 3.63155i 0.0901794 + 0.117086i
\(963\) 0 0
\(964\) 8.82755 33.4272i 0.284316 1.07662i
\(965\) 3.63859i 0.117130i
\(966\) 0 0
\(967\) 36.7509i 1.18183i −0.806734 0.590914i \(-0.798767\pi\)
0.806734 0.590914i \(-0.201233\pi\)
\(968\) 18.1364 7.62769i 0.582926 0.245163i
\(969\) 0 0
\(970\) 8.73130 6.72484i 0.280345 0.215922i
\(971\) −42.4798 −1.36324 −0.681620 0.731706i \(-0.738724\pi\)
−0.681620 + 0.731706i \(0.738724\pi\)
\(972\) 0 0
\(973\) 7.32996 0.234988
\(974\) 13.1460 10.1251i 0.421226 0.324428i
\(975\) 0 0
\(976\) 40.9728 + 23.2628i 1.31151 + 0.744623i
\(977\) 55.9107i 1.78874i −0.447326 0.894371i \(-0.647624\pi\)
0.447326 0.894371i \(-0.352376\pi\)
\(978\) 0 0
\(979\) 79.1289i 2.52897i
\(980\) 1.93371 + 0.510659i 0.0617700 + 0.0163124i
\(981\) 0 0
\(982\) 34.9116 + 45.3280i 1.11407 + 1.44647i
\(983\) −30.6691 −0.978194 −0.489097 0.872229i \(-0.662674\pi\)
−0.489097 + 0.872229i \(0.662674\pi\)
\(984\) 0 0
\(985\) −15.4630 −0.492692
\(986\) 25.2637 + 32.8015i 0.804560 + 1.04461i
\(987\) 0 0
\(988\) 11.8213 + 3.12179i 0.376085 + 0.0993174i
\(989\) 13.0119i 0.413755i
\(990\) 0 0
\(991\) 0.211793i 0.00672783i 0.999994 + 0.00336392i \(0.00107077\pi\)
−0.999994 + 0.00336392i \(0.998929\pi\)
\(992\) −13.2164 + 1.86149i −0.419620 + 0.0591024i
\(993\) 0 0
\(994\) −3.50032 + 2.69594i −0.111023 + 0.0855102i
\(995\) 14.0154 0.444319
\(996\) 0 0
\(997\) −0.290163 −0.00918954 −0.00459477 0.999989i \(-0.501463\pi\)
−0.00459477 + 0.999989i \(0.501463\pi\)
\(998\) 29.1619 22.4605i 0.923104 0.710974i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.2.n.a.71.7 24
3.2 odd 2 1260.2.n.b.71.18 yes 24
4.3 odd 2 1260.2.n.b.71.17 yes 24
12.11 even 2 inner 1260.2.n.a.71.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1260.2.n.a.71.7 24 1.1 even 1 trivial
1260.2.n.a.71.8 yes 24 12.11 even 2 inner
1260.2.n.b.71.17 yes 24 4.3 odd 2
1260.2.n.b.71.18 yes 24 3.2 odd 2