Properties

Label 1260.4.a.i.1.1
Level $1260$
Weight $4$
Character 1260.1
Self dual yes
Analytic conductor $74.342$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1260,4,Mod(1,1260)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1260, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1260.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1260 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1260.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(74.3424066072\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 140)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1260.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.00000 q^{5} -7.00000 q^{7} +7.00000 q^{11} -23.0000 q^{13} +25.0000 q^{17} -62.0000 q^{19} +86.0000 q^{23} +25.0000 q^{25} +29.0000 q^{29} -12.0000 q^{31} -35.0000 q^{35} -150.000 q^{37} -204.000 q^{41} -178.000 q^{43} -33.0000 q^{47} +49.0000 q^{49} -452.000 q^{53} +35.0000 q^{55} -120.000 q^{59} +920.000 q^{61} -115.000 q^{65} -300.000 q^{67} -520.000 q^{71} +370.000 q^{73} -49.0000 q^{77} -1013.00 q^{79} +636.000 q^{83} +125.000 q^{85} -292.000 q^{89} +161.000 q^{91} -310.000 q^{95} -1381.00 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7.00000 0.191871 0.0959354 0.995388i \(-0.469416\pi\)
0.0959354 + 0.995388i \(0.469416\pi\)
\(12\) 0 0
\(13\) −23.0000 −0.490696 −0.245348 0.969435i \(-0.578902\pi\)
−0.245348 + 0.969435i \(0.578902\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 25.0000 0.356670 0.178335 0.983970i \(-0.442929\pi\)
0.178335 + 0.983970i \(0.442929\pi\)
\(18\) 0 0
\(19\) −62.0000 −0.748620 −0.374310 0.927304i \(-0.622120\pi\)
−0.374310 + 0.927304i \(0.622120\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 86.0000 0.779663 0.389831 0.920886i \(-0.372533\pi\)
0.389831 + 0.920886i \(0.372533\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 29.0000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) 0 0
\(31\) −12.0000 −0.0695246 −0.0347623 0.999396i \(-0.511067\pi\)
−0.0347623 + 0.999396i \(0.511067\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −35.0000 −0.169031
\(36\) 0 0
\(37\) −150.000 −0.666482 −0.333241 0.942842i \(-0.608142\pi\)
−0.333241 + 0.942842i \(0.608142\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −204.000 −0.777060 −0.388530 0.921436i \(-0.627017\pi\)
−0.388530 + 0.921436i \(0.627017\pi\)
\(42\) 0 0
\(43\) −178.000 −0.631273 −0.315637 0.948880i \(-0.602218\pi\)
−0.315637 + 0.948880i \(0.602218\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.0000 −0.102416 −0.0512079 0.998688i \(-0.516307\pi\)
−0.0512079 + 0.998688i \(0.516307\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −452.000 −1.17145 −0.585726 0.810509i \(-0.699191\pi\)
−0.585726 + 0.810509i \(0.699191\pi\)
\(54\) 0 0
\(55\) 35.0000 0.0858073
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −120.000 −0.264791 −0.132396 0.991197i \(-0.542267\pi\)
−0.132396 + 0.991197i \(0.542267\pi\)
\(60\) 0 0
\(61\) 920.000 1.93105 0.965524 0.260314i \(-0.0838261\pi\)
0.965524 + 0.260314i \(0.0838261\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −115.000 −0.219446
\(66\) 0 0
\(67\) −300.000 −0.547027 −0.273514 0.961868i \(-0.588186\pi\)
−0.273514 + 0.961868i \(0.588186\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −520.000 −0.869192 −0.434596 0.900625i \(-0.643109\pi\)
−0.434596 + 0.900625i \(0.643109\pi\)
\(72\) 0 0
\(73\) 370.000 0.593222 0.296611 0.954998i \(-0.404143\pi\)
0.296611 + 0.954998i \(0.404143\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −49.0000 −0.0725204
\(78\) 0 0
\(79\) −1013.00 −1.44268 −0.721338 0.692583i \(-0.756473\pi\)
−0.721338 + 0.692583i \(0.756473\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 636.000 0.841085 0.420543 0.907273i \(-0.361840\pi\)
0.420543 + 0.907273i \(0.361840\pi\)
\(84\) 0 0
\(85\) 125.000 0.159508
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −292.000 −0.347775 −0.173887 0.984766i \(-0.555633\pi\)
−0.173887 + 0.984766i \(0.555633\pi\)
\(90\) 0 0
\(91\) 161.000 0.185466
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −310.000 −0.334793
\(96\) 0 0
\(97\) −1381.00 −1.44556 −0.722780 0.691078i \(-0.757136\pi\)
−0.722780 + 0.691078i \(0.757136\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1278.00 −1.25907 −0.629533 0.776973i \(-0.716754\pi\)
−0.629533 + 0.776973i \(0.716754\pi\)
\(102\) 0 0
\(103\) −875.000 −0.837052 −0.418526 0.908205i \(-0.637453\pi\)
−0.418526 + 0.908205i \(0.637453\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1986.00 1.79434 0.897168 0.441690i \(-0.145621\pi\)
0.897168 + 0.441690i \(0.145621\pi\)
\(108\) 0 0
\(109\) −223.000 −0.195959 −0.0979795 0.995188i \(-0.531238\pi\)
−0.0979795 + 0.995188i \(0.531238\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 930.000 0.774222 0.387111 0.922033i \(-0.373473\pi\)
0.387111 + 0.922033i \(0.373473\pi\)
\(114\) 0 0
\(115\) 430.000 0.348676
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −175.000 −0.134809
\(120\) 0 0
\(121\) −1282.00 −0.963186
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2056.00 −1.43654 −0.718270 0.695765i \(-0.755066\pi\)
−0.718270 + 0.695765i \(0.755066\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1442.00 −0.961741 −0.480871 0.876792i \(-0.659679\pi\)
−0.480871 + 0.876792i \(0.659679\pi\)
\(132\) 0 0
\(133\) 434.000 0.282952
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 908.000 0.566246 0.283123 0.959084i \(-0.408630\pi\)
0.283123 + 0.959084i \(0.408630\pi\)
\(138\) 0 0
\(139\) −1690.00 −1.03125 −0.515626 0.856814i \(-0.672440\pi\)
−0.515626 + 0.856814i \(0.672440\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −161.000 −0.0941503
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2014.00 1.10734 0.553669 0.832737i \(-0.313227\pi\)
0.553669 + 0.832737i \(0.313227\pi\)
\(150\) 0 0
\(151\) 619.000 0.333599 0.166800 0.985991i \(-0.446657\pi\)
0.166800 + 0.985991i \(0.446657\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −60.0000 −0.0310924
\(156\) 0 0
\(157\) 1446.00 0.735053 0.367527 0.930013i \(-0.380205\pi\)
0.367527 + 0.930013i \(0.380205\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −602.000 −0.294685
\(162\) 0 0
\(163\) −2638.00 −1.26763 −0.633816 0.773484i \(-0.718512\pi\)
−0.633816 + 0.773484i \(0.718512\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.0000 0.00509704 0.00254852 0.999997i \(-0.499189\pi\)
0.00254852 + 0.999997i \(0.499189\pi\)
\(168\) 0 0
\(169\) −1668.00 −0.759217
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3267.00 −1.43575 −0.717877 0.696170i \(-0.754886\pi\)
−0.717877 + 0.696170i \(0.754886\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3676.00 −1.53496 −0.767478 0.641075i \(-0.778489\pi\)
−0.767478 + 0.641075i \(0.778489\pi\)
\(180\) 0 0
\(181\) 780.000 0.320315 0.160157 0.987092i \(-0.448800\pi\)
0.160157 + 0.987092i \(0.448800\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −750.000 −0.298060
\(186\) 0 0
\(187\) 175.000 0.0684346
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 283.000 0.107210 0.0536051 0.998562i \(-0.482929\pi\)
0.0536051 + 0.998562i \(0.482929\pi\)
\(192\) 0 0
\(193\) −484.000 −0.180513 −0.0902567 0.995919i \(-0.528769\pi\)
−0.0902567 + 0.995919i \(0.528769\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 360.000 0.130198 0.0650988 0.997879i \(-0.479264\pi\)
0.0650988 + 0.997879i \(0.479264\pi\)
\(198\) 0 0
\(199\) 1032.00 0.367621 0.183810 0.982962i \(-0.441157\pi\)
0.183810 + 0.982962i \(0.441157\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −203.000 −0.0701862
\(204\) 0 0
\(205\) −1020.00 −0.347512
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −434.000 −0.143638
\(210\) 0 0
\(211\) −513.000 −0.167376 −0.0836881 0.996492i \(-0.526670\pi\)
−0.0836881 + 0.996492i \(0.526670\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −890.000 −0.282314
\(216\) 0 0
\(217\) 84.0000 0.0262778
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −575.000 −0.175017
\(222\) 0 0
\(223\) −907.000 −0.272364 −0.136182 0.990684i \(-0.543483\pi\)
−0.136182 + 0.990684i \(0.543483\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5701.00 −1.66691 −0.833455 0.552587i \(-0.813641\pi\)
−0.833455 + 0.552587i \(0.813641\pi\)
\(228\) 0 0
\(229\) −2044.00 −0.589831 −0.294916 0.955523i \(-0.595292\pi\)
−0.294916 + 0.955523i \(0.595292\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 2728.00 0.767027 0.383513 0.923535i \(-0.374714\pi\)
0.383513 + 0.923535i \(0.374714\pi\)
\(234\) 0 0
\(235\) −165.000 −0.0458018
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7095.00 −1.92024 −0.960120 0.279588i \(-0.909802\pi\)
−0.960120 + 0.279588i \(0.909802\pi\)
\(240\) 0 0
\(241\) −2618.00 −0.699752 −0.349876 0.936796i \(-0.613776\pi\)
−0.349876 + 0.936796i \(0.613776\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 245.000 0.0638877
\(246\) 0 0
\(247\) 1426.00 0.367345
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 3318.00 0.834384 0.417192 0.908818i \(-0.363014\pi\)
0.417192 + 0.908818i \(0.363014\pi\)
\(252\) 0 0
\(253\) 602.000 0.149595
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1678.00 −0.407279 −0.203640 0.979046i \(-0.565277\pi\)
−0.203640 + 0.979046i \(0.565277\pi\)
\(258\) 0 0
\(259\) 1050.00 0.251907
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 898.000 0.210544 0.105272 0.994443i \(-0.466429\pi\)
0.105272 + 0.994443i \(0.466429\pi\)
\(264\) 0 0
\(265\) −2260.00 −0.523889
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4902.00 1.11108 0.555539 0.831490i \(-0.312512\pi\)
0.555539 + 0.831490i \(0.312512\pi\)
\(270\) 0 0
\(271\) −7040.00 −1.57804 −0.789021 0.614366i \(-0.789412\pi\)
−0.789021 + 0.614366i \(0.789412\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 175.000 0.0383742
\(276\) 0 0
\(277\) −2402.00 −0.521019 −0.260509 0.965471i \(-0.583890\pi\)
−0.260509 + 0.965471i \(0.583890\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6525.00 1.38523 0.692614 0.721309i \(-0.256459\pi\)
0.692614 + 0.721309i \(0.256459\pi\)
\(282\) 0 0
\(283\) −4109.00 −0.863091 −0.431545 0.902091i \(-0.642032\pi\)
−0.431545 + 0.902091i \(0.642032\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1428.00 0.293701
\(288\) 0 0
\(289\) −4288.00 −0.872786
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3495.00 −0.696860 −0.348430 0.937335i \(-0.613285\pi\)
−0.348430 + 0.937335i \(0.613285\pi\)
\(294\) 0 0
\(295\) −600.000 −0.118418
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1978.00 −0.382578
\(300\) 0 0
\(301\) 1246.00 0.238599
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4600.00 0.863591
\(306\) 0 0
\(307\) 803.000 0.149282 0.0746411 0.997210i \(-0.476219\pi\)
0.0746411 + 0.997210i \(0.476219\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5438.00 0.991513 0.495757 0.868461i \(-0.334891\pi\)
0.495757 + 0.868461i \(0.334891\pi\)
\(312\) 0 0
\(313\) 681.000 0.122979 0.0614895 0.998108i \(-0.480415\pi\)
0.0614895 + 0.998108i \(0.480415\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9214.00 −1.63252 −0.816262 0.577683i \(-0.803957\pi\)
−0.816262 + 0.577683i \(0.803957\pi\)
\(318\) 0 0
\(319\) 203.000 0.0356295
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −1550.00 −0.267010
\(324\) 0 0
\(325\) −575.000 −0.0981393
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 231.000 0.0387096
\(330\) 0 0
\(331\) −2700.00 −0.448355 −0.224177 0.974548i \(-0.571969\pi\)
−0.224177 + 0.974548i \(0.571969\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1500.00 −0.244638
\(336\) 0 0
\(337\) −3834.00 −0.619737 −0.309868 0.950779i \(-0.600285\pi\)
−0.309868 + 0.950779i \(0.600285\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −84.0000 −0.0133398
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2626.00 0.406257 0.203128 0.979152i \(-0.434889\pi\)
0.203128 + 0.979152i \(0.434889\pi\)
\(348\) 0 0
\(349\) 8354.00 1.28132 0.640658 0.767826i \(-0.278662\pi\)
0.640658 + 0.767826i \(0.278662\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8213.00 1.23834 0.619170 0.785257i \(-0.287469\pi\)
0.619170 + 0.785257i \(0.287469\pi\)
\(354\) 0 0
\(355\) −2600.00 −0.388715
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6432.00 −0.945593 −0.472797 0.881172i \(-0.656755\pi\)
−0.472797 + 0.881172i \(0.656755\pi\)
\(360\) 0 0
\(361\) −3015.00 −0.439568
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1850.00 0.265297
\(366\) 0 0
\(367\) 11617.0 1.65232 0.826161 0.563434i \(-0.190520\pi\)
0.826161 + 0.563434i \(0.190520\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 3164.00 0.442767
\(372\) 0 0
\(373\) 11084.0 1.53863 0.769313 0.638872i \(-0.220599\pi\)
0.769313 + 0.638872i \(0.220599\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −667.000 −0.0911200
\(378\) 0 0
\(379\) 12292.0 1.66596 0.832978 0.553306i \(-0.186634\pi\)
0.832978 + 0.553306i \(0.186634\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10820.0 1.44354 0.721770 0.692133i \(-0.243329\pi\)
0.721770 + 0.692133i \(0.243329\pi\)
\(384\) 0 0
\(385\) −245.000 −0.0324321
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −7501.00 −0.977676 −0.488838 0.872375i \(-0.662579\pi\)
−0.488838 + 0.872375i \(0.662579\pi\)
\(390\) 0 0
\(391\) 2150.00 0.278082
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5065.00 −0.645184
\(396\) 0 0
\(397\) 7899.00 0.998588 0.499294 0.866433i \(-0.333593\pi\)
0.499294 + 0.866433i \(0.333593\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1753.00 −0.218306 −0.109153 0.994025i \(-0.534814\pi\)
−0.109153 + 0.994025i \(0.534814\pi\)
\(402\) 0 0
\(403\) 276.000 0.0341155
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1050.00 −0.127879
\(408\) 0 0
\(409\) −11834.0 −1.43069 −0.715347 0.698770i \(-0.753731\pi\)
−0.715347 + 0.698770i \(0.753731\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 840.000 0.100082
\(414\) 0 0
\(415\) 3180.00 0.376145
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6908.00 −0.805436 −0.402718 0.915324i \(-0.631935\pi\)
−0.402718 + 0.915324i \(0.631935\pi\)
\(420\) 0 0
\(421\) 8377.00 0.969762 0.484881 0.874580i \(-0.338863\pi\)
0.484881 + 0.874580i \(0.338863\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 625.000 0.0713340
\(426\) 0 0
\(427\) −6440.00 −0.729868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4287.00 0.479113 0.239556 0.970882i \(-0.422998\pi\)
0.239556 + 0.970882i \(0.422998\pi\)
\(432\) 0 0
\(433\) 15874.0 1.76179 0.880896 0.473310i \(-0.156941\pi\)
0.880896 + 0.473310i \(0.156941\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5332.00 −0.583671
\(438\) 0 0
\(439\) −7646.00 −0.831261 −0.415631 0.909534i \(-0.636439\pi\)
−0.415631 + 0.909534i \(0.636439\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1626.00 0.174387 0.0871937 0.996191i \(-0.472210\pi\)
0.0871937 + 0.996191i \(0.472210\pi\)
\(444\) 0 0
\(445\) −1460.00 −0.155530
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 841.000 0.0883948 0.0441974 0.999023i \(-0.485927\pi\)
0.0441974 + 0.999023i \(0.485927\pi\)
\(450\) 0 0
\(451\) −1428.00 −0.149095
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 805.000 0.0829428
\(456\) 0 0
\(457\) 15424.0 1.57878 0.789392 0.613889i \(-0.210396\pi\)
0.789392 + 0.613889i \(0.210396\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −10568.0 −1.06768 −0.533840 0.845585i \(-0.679252\pi\)
−0.533840 + 0.845585i \(0.679252\pi\)
\(462\) 0 0
\(463\) 4368.00 0.438441 0.219220 0.975675i \(-0.429649\pi\)
0.219220 + 0.975675i \(0.429649\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4329.00 0.428956 0.214478 0.976729i \(-0.431195\pi\)
0.214478 + 0.976729i \(0.431195\pi\)
\(468\) 0 0
\(469\) 2100.00 0.206757
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1246.00 −0.121123
\(474\) 0 0
\(475\) −1550.00 −0.149724
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11062.0 1.05519 0.527595 0.849496i \(-0.323094\pi\)
0.527595 + 0.849496i \(0.323094\pi\)
\(480\) 0 0
\(481\) 3450.00 0.327040
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6905.00 −0.646474
\(486\) 0 0
\(487\) −18698.0 −1.73981 −0.869905 0.493220i \(-0.835820\pi\)
−0.869905 + 0.493220i \(0.835820\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3003.00 −0.276015 −0.138008 0.990431i \(-0.544070\pi\)
−0.138008 + 0.990431i \(0.544070\pi\)
\(492\) 0 0
\(493\) 725.000 0.0662320
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3640.00 0.328524
\(498\) 0 0
\(499\) −3291.00 −0.295241 −0.147621 0.989044i \(-0.547161\pi\)
−0.147621 + 0.989044i \(0.547161\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12533.0 1.11097 0.555486 0.831526i \(-0.312532\pi\)
0.555486 + 0.831526i \(0.312532\pi\)
\(504\) 0 0
\(505\) −6390.00 −0.563072
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2406.00 0.209517 0.104758 0.994498i \(-0.466593\pi\)
0.104758 + 0.994498i \(0.466593\pi\)
\(510\) 0 0
\(511\) −2590.00 −0.224217
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4375.00 −0.374341
\(516\) 0 0
\(517\) −231.000 −0.0196506
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10098.0 0.849139 0.424569 0.905395i \(-0.360425\pi\)
0.424569 + 0.905395i \(0.360425\pi\)
\(522\) 0 0
\(523\) −16100.0 −1.34609 −0.673044 0.739603i \(-0.735013\pi\)
−0.673044 + 0.739603i \(0.735013\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −300.000 −0.0247974
\(528\) 0 0
\(529\) −4771.00 −0.392126
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4692.00 0.381300
\(534\) 0 0
\(535\) 9930.00 0.802451
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 343.000 0.0274101
\(540\) 0 0
\(541\) 16835.0 1.33788 0.668940 0.743316i \(-0.266748\pi\)
0.668940 + 0.743316i \(0.266748\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1115.00 −0.0876355
\(546\) 0 0
\(547\) −4104.00 −0.320794 −0.160397 0.987053i \(-0.551277\pi\)
−0.160397 + 0.987053i \(0.551277\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1798.00 −0.139015
\(552\) 0 0
\(553\) 7091.00 0.545280
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20280.0 1.54271 0.771357 0.636403i \(-0.219579\pi\)
0.771357 + 0.636403i \(0.219579\pi\)
\(558\) 0 0
\(559\) 4094.00 0.309763
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17092.0 1.27947 0.639735 0.768595i \(-0.279044\pi\)
0.639735 + 0.768595i \(0.279044\pi\)
\(564\) 0 0
\(565\) 4650.00 0.346242
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −242.000 −0.0178298 −0.00891491 0.999960i \(-0.502838\pi\)
−0.00891491 + 0.999960i \(0.502838\pi\)
\(570\) 0 0
\(571\) 1180.00 0.0864824 0.0432412 0.999065i \(-0.486232\pi\)
0.0432412 + 0.999065i \(0.486232\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2150.00 0.155933
\(576\) 0 0
\(577\) 18421.0 1.32907 0.664537 0.747255i \(-0.268629\pi\)
0.664537 + 0.747255i \(0.268629\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4452.00 −0.317900
\(582\) 0 0
\(583\) −3164.00 −0.224768
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19776.0 1.39053 0.695267 0.718752i \(-0.255286\pi\)
0.695267 + 0.718752i \(0.255286\pi\)
\(588\) 0 0
\(589\) 744.000 0.0520475
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2451.00 0.169731 0.0848655 0.996392i \(-0.472954\pi\)
0.0848655 + 0.996392i \(0.472954\pi\)
\(594\) 0 0
\(595\) −875.000 −0.0602882
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −18081.0 −1.23334 −0.616669 0.787222i \(-0.711518\pi\)
−0.616669 + 0.787222i \(0.711518\pi\)
\(600\) 0 0
\(601\) 18238.0 1.23784 0.618921 0.785453i \(-0.287570\pi\)
0.618921 + 0.785453i \(0.287570\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6410.00 −0.430750
\(606\) 0 0
\(607\) −10925.0 −0.730531 −0.365265 0.930903i \(-0.619022\pi\)
−0.365265 + 0.930903i \(0.619022\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 759.000 0.0502551
\(612\) 0 0
\(613\) 1506.00 0.0992280 0.0496140 0.998768i \(-0.484201\pi\)
0.0496140 + 0.998768i \(0.484201\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24142.0 1.57524 0.787618 0.616164i \(-0.211314\pi\)
0.787618 + 0.616164i \(0.211314\pi\)
\(618\) 0 0
\(619\) −16558.0 −1.07516 −0.537579 0.843214i \(-0.680661\pi\)
−0.537579 + 0.843214i \(0.680661\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2044.00 0.131446
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −3750.00 −0.237714
\(630\) 0 0
\(631\) 25025.0 1.57881 0.789405 0.613872i \(-0.210389\pi\)
0.789405 + 0.613872i \(0.210389\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −10280.0 −0.642440
\(636\) 0 0
\(637\) −1127.00 −0.0700995
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9154.00 −0.564058 −0.282029 0.959406i \(-0.591007\pi\)
−0.282029 + 0.959406i \(0.591007\pi\)
\(642\) 0 0
\(643\) 8225.00 0.504452 0.252226 0.967668i \(-0.418837\pi\)
0.252226 + 0.967668i \(0.418837\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −23688.0 −1.43937 −0.719684 0.694302i \(-0.755713\pi\)
−0.719684 + 0.694302i \(0.755713\pi\)
\(648\) 0 0
\(649\) −840.000 −0.0508057
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14518.0 0.870036 0.435018 0.900422i \(-0.356742\pi\)
0.435018 + 0.900422i \(0.356742\pi\)
\(654\) 0 0
\(655\) −7210.00 −0.430104
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −30381.0 −1.79587 −0.897933 0.440132i \(-0.854932\pi\)
−0.897933 + 0.440132i \(0.854932\pi\)
\(660\) 0 0
\(661\) 25568.0 1.50451 0.752254 0.658873i \(-0.228967\pi\)
0.752254 + 0.658873i \(0.228967\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2170.00 0.126540
\(666\) 0 0
\(667\) 2494.00 0.144780
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6440.00 0.370512
\(672\) 0 0
\(673\) 19428.0 1.11277 0.556385 0.830925i \(-0.312188\pi\)
0.556385 + 0.830925i \(0.312188\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −937.000 −0.0531933 −0.0265966 0.999646i \(-0.508467\pi\)
−0.0265966 + 0.999646i \(0.508467\pi\)
\(678\) 0 0
\(679\) 9667.00 0.546370
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15960.0 −0.894132 −0.447066 0.894501i \(-0.647531\pi\)
−0.447066 + 0.894501i \(0.647531\pi\)
\(684\) 0 0
\(685\) 4540.00 0.253233
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 10396.0 0.574827
\(690\) 0 0
\(691\) 10260.0 0.564846 0.282423 0.959290i \(-0.408862\pi\)
0.282423 + 0.959290i \(0.408862\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8450.00 −0.461190
\(696\) 0 0
\(697\) −5100.00 −0.277154
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 15465.0 0.833245 0.416623 0.909080i \(-0.363214\pi\)
0.416623 + 0.909080i \(0.363214\pi\)
\(702\) 0 0
\(703\) 9300.00 0.498942
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 8946.00 0.475883
\(708\) 0 0
\(709\) −21005.0 −1.11264 −0.556318 0.830969i \(-0.687786\pi\)
−0.556318 + 0.830969i \(0.687786\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1032.00 −0.0542058
\(714\) 0 0
\(715\) −805.000 −0.0421053
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 22.0000 0.00114111 0.000570557 1.00000i \(-0.499818\pi\)
0.000570557 1.00000i \(0.499818\pi\)
\(720\) 0 0
\(721\) 6125.00 0.316376
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) −1816.00 −0.0926433 −0.0463217 0.998927i \(-0.514750\pi\)
−0.0463217 + 0.998927i \(0.514750\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4450.00 −0.225156
\(732\) 0 0
\(733\) 24397.0 1.22936 0.614682 0.788775i \(-0.289284\pi\)
0.614682 + 0.788775i \(0.289284\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2100.00 −0.104959
\(738\) 0 0
\(739\) 6065.00 0.301901 0.150950 0.988541i \(-0.451767\pi\)
0.150950 + 0.988541i \(0.451767\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3660.00 −0.180717 −0.0903583 0.995909i \(-0.528801\pi\)
−0.0903583 + 0.995909i \(0.528801\pi\)
\(744\) 0 0
\(745\) 10070.0 0.495216
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13902.0 −0.678195
\(750\) 0 0
\(751\) −27077.0 −1.31565 −0.657825 0.753170i \(-0.728524\pi\)
−0.657825 + 0.753170i \(0.728524\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3095.00 0.149190
\(756\) 0 0
\(757\) −31424.0 −1.50875 −0.754376 0.656443i \(-0.772060\pi\)
−0.754376 + 0.656443i \(0.772060\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 16898.0 0.804930 0.402465 0.915435i \(-0.368153\pi\)
0.402465 + 0.915435i \(0.368153\pi\)
\(762\) 0 0
\(763\) 1561.00 0.0740655
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2760.00 0.129932
\(768\) 0 0
\(769\) 16294.0 0.764079 0.382039 0.924146i \(-0.375222\pi\)
0.382039 + 0.924146i \(0.375222\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35279.0 1.64152 0.820762 0.571271i \(-0.193549\pi\)
0.820762 + 0.571271i \(0.193549\pi\)
\(774\) 0 0
\(775\) −300.000 −0.0139049
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12648.0 0.581722
\(780\) 0 0
\(781\) −3640.00 −0.166773
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7230.00 0.328726
\(786\) 0 0
\(787\) 37829.0 1.71342 0.856708 0.515802i \(-0.172506\pi\)
0.856708 + 0.515802i \(0.172506\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −6510.00 −0.292628
\(792\) 0 0
\(793\) −21160.0 −0.947558
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27741.0 1.23292 0.616460 0.787387i \(-0.288566\pi\)
0.616460 + 0.787387i \(0.288566\pi\)
\(798\) 0 0
\(799\) −825.000 −0.0365287
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2590.00 0.113822
\(804\) 0 0
\(805\) −3010.00 −0.131787
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −27521.0 −1.19603 −0.598014 0.801486i \(-0.704043\pi\)
−0.598014 + 0.801486i \(0.704043\pi\)
\(810\) 0 0
\(811\) −10694.0 −0.463030 −0.231515 0.972831i \(-0.574368\pi\)
−0.231515 + 0.972831i \(0.574368\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13190.0 −0.566903
\(816\) 0 0
\(817\) 11036.0 0.472584
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13835.0 0.588118 0.294059 0.955787i \(-0.404994\pi\)
0.294059 + 0.955787i \(0.404994\pi\)
\(822\) 0 0
\(823\) −5196.00 −0.220074 −0.110037 0.993927i \(-0.535097\pi\)
−0.110037 + 0.993927i \(0.535097\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22346.0 0.939597 0.469798 0.882774i \(-0.344327\pi\)
0.469798 + 0.882774i \(0.344327\pi\)
\(828\) 0 0
\(829\) −22044.0 −0.923546 −0.461773 0.886998i \(-0.652787\pi\)
−0.461773 + 0.886998i \(0.652787\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1225.00 0.0509529
\(834\) 0 0
\(835\) 55.0000 0.00227947
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −21566.0 −0.887415 −0.443707 0.896172i \(-0.646337\pi\)
−0.443707 + 0.896172i \(0.646337\pi\)
\(840\) 0 0
\(841\) −23548.0 −0.965517
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8340.00 −0.339532
\(846\) 0 0
\(847\) 8974.00 0.364050
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −12900.0 −0.519631
\(852\) 0 0
\(853\) −6098.00 −0.244773 −0.122387 0.992483i \(-0.539055\pi\)
−0.122387 + 0.992483i \(0.539055\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40514.0 −1.61486 −0.807428 0.589966i \(-0.799141\pi\)
−0.807428 + 0.589966i \(0.799141\pi\)
\(858\) 0 0
\(859\) −24884.0 −0.988395 −0.494197 0.869350i \(-0.664538\pi\)
−0.494197 + 0.869350i \(0.664538\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 35968.0 1.41873 0.709366 0.704841i \(-0.248982\pi\)
0.709366 + 0.704841i \(0.248982\pi\)
\(864\) 0 0
\(865\) −16335.0 −0.642089
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7091.00 −0.276807
\(870\) 0 0
\(871\) 6900.00 0.268424
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −875.000 −0.0338062
\(876\) 0 0
\(877\) −9790.00 −0.376950 −0.188475 0.982078i \(-0.560354\pi\)
−0.188475 + 0.982078i \(0.560354\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 47008.0 1.79766 0.898831 0.438296i \(-0.144418\pi\)
0.898831 + 0.438296i \(0.144418\pi\)
\(882\) 0 0
\(883\) 23828.0 0.908127 0.454063 0.890969i \(-0.349974\pi\)
0.454063 + 0.890969i \(0.349974\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22616.0 −0.856112 −0.428056 0.903752i \(-0.640801\pi\)
−0.428056 + 0.903752i \(0.640801\pi\)
\(888\) 0 0
\(889\) 14392.0 0.542961
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 2046.00 0.0766705
\(894\) 0 0
\(895\) −18380.0 −0.686453
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −348.000 −0.0129104
\(900\) 0 0
\(901\) −11300.0 −0.417822
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3900.00 0.143249
\(906\) 0 0
\(907\) −40406.0 −1.47923 −0.739614 0.673032i \(-0.764992\pi\)
−0.739614 + 0.673032i \(0.764992\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6368.00 −0.231593 −0.115797 0.993273i \(-0.536942\pi\)
−0.115797 + 0.993273i \(0.536942\pi\)
\(912\) 0 0
\(913\) 4452.00 0.161380
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 10094.0 0.363504
\(918\) 0 0
\(919\) −42305.0 −1.51851 −0.759256 0.650792i \(-0.774437\pi\)
−0.759256 + 0.650792i \(0.774437\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11960.0 0.426509
\(924\) 0 0
\(925\) −3750.00 −0.133296
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −38668.0 −1.36561 −0.682807 0.730599i \(-0.739241\pi\)
−0.682807 + 0.730599i \(0.739241\pi\)
\(930\) 0 0
\(931\) −3038.00 −0.106946
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 875.000 0.0306049
\(936\) 0 0
\(937\) 16171.0 0.563803 0.281902 0.959443i \(-0.409035\pi\)
0.281902 + 0.959443i \(0.409035\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 18240.0 0.631888 0.315944 0.948778i \(-0.397679\pi\)
0.315944 + 0.948778i \(0.397679\pi\)
\(942\) 0 0
\(943\) −17544.0 −0.605844
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −45928.0 −1.57599 −0.787993 0.615684i \(-0.788880\pi\)
−0.787993 + 0.615684i \(0.788880\pi\)
\(948\) 0 0
\(949\) −8510.00 −0.291092
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14104.0 0.479405 0.239703 0.970846i \(-0.422950\pi\)
0.239703 + 0.970846i \(0.422950\pi\)
\(954\) 0 0
\(955\) 1415.00 0.0479459
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6356.00 −0.214021
\(960\) 0 0
\(961\) −29647.0 −0.995166
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2420.00 −0.0807280
\(966\) 0 0
\(967\) 26914.0 0.895032 0.447516 0.894276i \(-0.352309\pi\)
0.447516 + 0.894276i \(0.352309\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −10408.0 −0.343984 −0.171992 0.985098i \(-0.555020\pi\)
−0.171992 + 0.985098i \(0.555020\pi\)
\(972\) 0 0
\(973\) 11830.0 0.389776
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39510.0 −1.29379 −0.646897 0.762577i \(-0.723934\pi\)
−0.646897 + 0.762577i \(0.723934\pi\)
\(978\) 0 0
\(979\) −2044.00 −0.0667278
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −52131.0 −1.69148 −0.845738 0.533599i \(-0.820839\pi\)
−0.845738 + 0.533599i \(0.820839\pi\)
\(984\) 0 0
\(985\) 1800.00 0.0582262
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −15308.0 −0.492180
\(990\) 0 0
\(991\) −48512.0 −1.55503 −0.777515 0.628865i \(-0.783520\pi\)
−0.777515 + 0.628865i \(0.783520\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5160.00 0.164405
\(996\) 0 0
\(997\) 40951.0 1.30083 0.650417 0.759577i \(-0.274594\pi\)
0.650417 + 0.759577i \(0.274594\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1260.4.a.i.1.1 1
3.2 odd 2 140.4.a.d.1.1 1
12.11 even 2 560.4.a.h.1.1 1
15.2 even 4 700.4.e.i.449.1 2
15.8 even 4 700.4.e.i.449.2 2
15.14 odd 2 700.4.a.g.1.1 1
21.2 odd 6 980.4.i.i.361.1 2
21.5 even 6 980.4.i.k.361.1 2
21.11 odd 6 980.4.i.i.961.1 2
21.17 even 6 980.4.i.k.961.1 2
21.20 even 2 980.4.a.g.1.1 1
24.5 odd 2 2240.4.a.s.1.1 1
24.11 even 2 2240.4.a.u.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.4.a.d.1.1 1 3.2 odd 2
560.4.a.h.1.1 1 12.11 even 2
700.4.a.g.1.1 1 15.14 odd 2
700.4.e.i.449.1 2 15.2 even 4
700.4.e.i.449.2 2 15.8 even 4
980.4.a.g.1.1 1 21.20 even 2
980.4.i.i.361.1 2 21.2 odd 6
980.4.i.i.961.1 2 21.11 odd 6
980.4.i.k.361.1 2 21.5 even 6
980.4.i.k.961.1 2 21.17 even 6
1260.4.a.i.1.1 1 1.1 even 1 trivial
2240.4.a.s.1.1 1 24.5 odd 2
2240.4.a.u.1.1 1 24.11 even 2