Properties

Label 1274.2.e.n
Level $1274$
Weight $2$
Character orbit 1274.e
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(165,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.165");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + \zeta_{6} q^{5} + q^{8} + ( - 3 \zeta_{6} + 3) q^{9} + \zeta_{6} q^{10} - 4 \zeta_{6} q^{11} + (\zeta_{6} + 3) q^{13} + q^{16} + 3 q^{17} + ( - 3 \zeta_{6} + 3) q^{18} + \zeta_{6} q^{20} + \cdots - 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + q^{5} + 2 q^{8} + 3 q^{9} + q^{10} - 4 q^{11} + 7 q^{13} + 2 q^{16} + 6 q^{17} + 3 q^{18} + q^{20} - 4 q^{22} - 8 q^{23} + 4 q^{25} + 7 q^{26} + q^{29} - 4 q^{31} + 2 q^{32}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(-\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
165.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 0 1.00000 0.500000 + 0.866025i 0 0 1.00000 1.50000 2.59808i 0.500000 + 0.866025i
471.1 1.00000 0 1.00000 0.500000 0.866025i 0 0 1.00000 1.50000 + 2.59808i 0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1274.2.e.n 2
7.b odd 2 1 1274.2.e.m 2
7.c even 3 1 26.2.c.a 2
7.c even 3 1 1274.2.h.b 2
7.d odd 6 1 1274.2.g.a 2
7.d odd 6 1 1274.2.h.a 2
13.c even 3 1 1274.2.h.b 2
21.h odd 6 1 234.2.h.c 2
28.g odd 6 1 208.2.i.b 2
35.j even 6 1 650.2.e.c 2
35.l odd 12 2 650.2.o.c 4
56.k odd 6 1 832.2.i.f 2
56.p even 6 1 832.2.i.e 2
84.n even 6 1 1872.2.t.k 2
91.g even 3 1 26.2.c.a 2
91.h even 3 1 338.2.a.e 1
91.h even 3 1 inner 1274.2.e.n 2
91.k even 6 1 338.2.a.c 1
91.m odd 6 1 1274.2.g.a 2
91.n odd 6 1 1274.2.h.a 2
91.r even 6 1 338.2.c.e 2
91.u even 6 1 338.2.c.e 2
91.v odd 6 1 1274.2.e.m 2
91.x odd 12 2 338.2.b.b 2
91.z odd 12 2 338.2.e.b 4
91.bd odd 12 2 338.2.e.b 4
273.s odd 6 1 3042.2.a.e 1
273.bm odd 6 1 234.2.h.c 2
273.bp odd 6 1 3042.2.a.k 1
273.bv even 12 2 3042.2.b.e 2
364.q odd 6 1 208.2.i.b 2
364.bi odd 6 1 2704.2.a.h 1
364.bk odd 6 1 2704.2.a.i 1
364.ca even 12 2 2704.2.f.g 2
455.ba even 6 1 8450.2.a.f 1
455.bm even 6 1 650.2.e.c 2
455.bz even 6 1 8450.2.a.s 1
455.cx odd 12 2 650.2.o.c 4
728.bg even 6 1 832.2.i.e 2
728.di odd 6 1 832.2.i.f 2
1092.dc even 6 1 1872.2.t.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 7.c even 3 1
26.2.c.a 2 91.g even 3 1
208.2.i.b 2 28.g odd 6 1
208.2.i.b 2 364.q odd 6 1
234.2.h.c 2 21.h odd 6 1
234.2.h.c 2 273.bm odd 6 1
338.2.a.c 1 91.k even 6 1
338.2.a.e 1 91.h even 3 1
338.2.b.b 2 91.x odd 12 2
338.2.c.e 2 91.r even 6 1
338.2.c.e 2 91.u even 6 1
338.2.e.b 4 91.z odd 12 2
338.2.e.b 4 91.bd odd 12 2
650.2.e.c 2 35.j even 6 1
650.2.e.c 2 455.bm even 6 1
650.2.o.c 4 35.l odd 12 2
650.2.o.c 4 455.cx odd 12 2
832.2.i.e 2 56.p even 6 1
832.2.i.e 2 728.bg even 6 1
832.2.i.f 2 56.k odd 6 1
832.2.i.f 2 728.di odd 6 1
1274.2.e.m 2 7.b odd 2 1
1274.2.e.m 2 91.v odd 6 1
1274.2.e.n 2 1.a even 1 1 trivial
1274.2.e.n 2 91.h even 3 1 inner
1274.2.g.a 2 7.d odd 6 1
1274.2.g.a 2 91.m odd 6 1
1274.2.h.a 2 7.d odd 6 1
1274.2.h.a 2 91.n odd 6 1
1274.2.h.b 2 7.c even 3 1
1274.2.h.b 2 13.c even 3 1
1872.2.t.k 2 84.n even 6 1
1872.2.t.k 2 1092.dc even 6 1
2704.2.a.h 1 364.bi odd 6 1
2704.2.a.i 1 364.bk odd 6 1
2704.2.f.g 2 364.ca even 12 2
3042.2.a.e 1 273.s odd 6 1
3042.2.a.k 1 273.bp odd 6 1
3042.2.b.e 2 273.bv even 12 2
8450.2.a.f 1 455.ba even 6 1
8450.2.a.s 1 455.bz even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1274, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{2} - T_{5} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} + 4T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$13$ \( T^{2} - 7T + 13 \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$37$ \( (T - 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$47$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$79$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less