Properties

Label 338.2.b.b
Level $338$
Weight $2$
Character orbit 338.b
Analytic conductor $2.699$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [338,2,Mod(337,338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("338.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 338 = 2 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 338.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.69894358832\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} - i q^{5} - 4 i q^{7} - i q^{8} - 3 q^{9} + q^{10} - 4 i q^{11} + 4 q^{14} + q^{16} - 3 q^{17} - 3 i q^{18} + i q^{20} + 4 q^{22} + 4 q^{23} + 4 q^{25} + 4 i q^{28} - q^{29} + 4 i q^{31} + \cdots + 12 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 6 q^{9} + 2 q^{10} + 8 q^{14} + 2 q^{16} - 6 q^{17} + 8 q^{22} + 8 q^{23} + 8 q^{25} - 2 q^{29} - 8 q^{35} + 6 q^{36} - 2 q^{40} + 16 q^{43} - 18 q^{49} - 18 q^{53} - 8 q^{55} - 8 q^{56}+ \cdots - 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/338\mathbb{Z}\right)^\times\).

\(n\) \(171\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.00000i
1.00000i
1.00000i 0 −1.00000 1.00000i 0 4.00000i 1.00000i −3.00000 1.00000
337.2 1.00000i 0 −1.00000 1.00000i 0 4.00000i 1.00000i −3.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 338.2.b.b 2
3.b odd 2 1 3042.2.b.e 2
4.b odd 2 1 2704.2.f.g 2
13.b even 2 1 inner 338.2.b.b 2
13.c even 3 2 338.2.e.b 4
13.d odd 4 1 338.2.a.c 1
13.d odd 4 1 338.2.a.e 1
13.e even 6 2 338.2.e.b 4
13.f odd 12 2 26.2.c.a 2
13.f odd 12 2 338.2.c.e 2
39.d odd 2 1 3042.2.b.e 2
39.f even 4 1 3042.2.a.e 1
39.f even 4 1 3042.2.a.k 1
39.k even 12 2 234.2.h.c 2
52.b odd 2 1 2704.2.f.g 2
52.f even 4 1 2704.2.a.h 1
52.f even 4 1 2704.2.a.i 1
52.l even 12 2 208.2.i.b 2
65.g odd 4 1 8450.2.a.f 1
65.g odd 4 1 8450.2.a.s 1
65.o even 12 2 650.2.o.c 4
65.s odd 12 2 650.2.e.c 2
65.t even 12 2 650.2.o.c 4
91.w even 12 2 1274.2.h.a 2
91.x odd 12 2 1274.2.e.n 2
91.ba even 12 2 1274.2.e.m 2
91.bc even 12 2 1274.2.g.a 2
91.bd odd 12 2 1274.2.h.b 2
104.u even 12 2 832.2.i.f 2
104.x odd 12 2 832.2.i.e 2
156.v odd 12 2 1872.2.t.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 13.f odd 12 2
208.2.i.b 2 52.l even 12 2
234.2.h.c 2 39.k even 12 2
338.2.a.c 1 13.d odd 4 1
338.2.a.e 1 13.d odd 4 1
338.2.b.b 2 1.a even 1 1 trivial
338.2.b.b 2 13.b even 2 1 inner
338.2.c.e 2 13.f odd 12 2
338.2.e.b 4 13.c even 3 2
338.2.e.b 4 13.e even 6 2
650.2.e.c 2 65.s odd 12 2
650.2.o.c 4 65.o even 12 2
650.2.o.c 4 65.t even 12 2
832.2.i.e 2 104.x odd 12 2
832.2.i.f 2 104.u even 12 2
1274.2.e.m 2 91.ba even 12 2
1274.2.e.n 2 91.x odd 12 2
1274.2.g.a 2 91.bc even 12 2
1274.2.h.a 2 91.w even 12 2
1274.2.h.b 2 91.bd odd 12 2
1872.2.t.k 2 156.v odd 12 2
2704.2.a.h 1 52.f even 4 1
2704.2.a.i 1 52.f even 4 1
2704.2.f.g 2 4.b odd 2 1
2704.2.f.g 2 52.b odd 2 1
3042.2.a.e 1 39.f even 4 1
3042.2.a.k 1 39.f even 4 1
3042.2.b.e 2 3.b odd 2 1
3042.2.b.e 2 39.d odd 2 1
8450.2.a.f 1 65.g odd 4 1
8450.2.a.s 1 65.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(338, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( (T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 9 \) Copy content Toggle raw display
$41$ \( T^{2} + 81 \) Copy content Toggle raw display
$43$ \( (T - 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( (T - 7)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( T^{2} + 64 \) Copy content Toggle raw display
$73$ \( T^{2} + 121 \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 36 \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less