Properties

Label 1274.2.f.q.1145.1
Level $1274$
Weight $2$
Character 1274.1145
Analytic conductor $10.173$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(79,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1145.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1274.1145
Dual form 1274.2.f.q.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(-0.500000 + 0.866025i) q^{11} +1.00000 q^{13} +(-0.500000 - 0.866025i) q^{16} +(-0.500000 + 0.866025i) q^{17} +(-1.50000 + 2.59808i) q^{18} +(2.50000 + 4.33013i) q^{19} -1.00000 q^{22} +(-1.00000 - 1.73205i) q^{23} +(2.50000 - 4.33013i) q^{25} +(0.500000 + 0.866025i) q^{26} -5.00000 q^{29} +(-4.00000 + 6.92820i) q^{31} +(0.500000 - 0.866025i) q^{32} -1.00000 q^{34} -3.00000 q^{36} +(4.00000 + 6.92820i) q^{37} +(-2.50000 + 4.33013i) q^{38} -6.00000 q^{43} +(-0.500000 - 0.866025i) q^{44} +(1.00000 - 1.73205i) q^{46} +(5.50000 + 9.52628i) q^{47} +5.00000 q^{50} +(-0.500000 + 0.866025i) q^{52} +(-2.50000 + 4.33013i) q^{53} +(-2.50000 - 4.33013i) q^{58} +(-1.50000 + 2.59808i) q^{59} +(0.500000 + 0.866025i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(3.50000 - 6.06218i) q^{67} +(-0.500000 - 0.866025i) q^{68} -9.00000 q^{71} +(-1.50000 - 2.59808i) q^{72} +(-1.00000 + 1.73205i) q^{73} +(-4.00000 + 6.92820i) q^{74} -5.00000 q^{76} +(7.00000 + 12.1244i) q^{79} +(-4.50000 + 7.79423i) q^{81} +8.00000 q^{83} +(-3.00000 - 5.19615i) q^{86} +(0.500000 - 0.866025i) q^{88} +(-8.00000 - 13.8564i) q^{89} +2.00000 q^{92} +(-5.50000 + 9.52628i) q^{94} -2.00000 q^{97} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{8} + 3 q^{9} - q^{11} + 2 q^{13} - q^{16} - q^{17} - 3 q^{18} + 5 q^{19} - 2 q^{22} - 2 q^{23} + 5 q^{25} + q^{26} - 10 q^{29} - 8 q^{31} + q^{32} - 2 q^{34} - 6 q^{36}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i \(-0.881504\pi\)
0.780750 + 0.624844i \(0.214837\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(18\) −1.50000 + 2.59808i −0.353553 + 0.612372i
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −1.00000 1.73205i −0.208514 0.361158i 0.742732 0.669588i \(-0.233529\pi\)
−0.951247 + 0.308431i \(0.900196\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) 0.500000 + 0.866025i 0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 4.00000 + 6.92820i 0.657596 + 1.13899i 0.981236 + 0.192809i \(0.0617599\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(38\) −2.50000 + 4.33013i −0.405554 + 0.702439i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −6.00000 −0.914991 −0.457496 0.889212i \(-0.651253\pi\)
−0.457496 + 0.889212i \(0.651253\pi\)
\(44\) −0.500000 0.866025i −0.0753778 0.130558i
\(45\) 0 0
\(46\) 1.00000 1.73205i 0.147442 0.255377i
\(47\) 5.50000 + 9.52628i 0.802257 + 1.38955i 0.918127 + 0.396286i \(0.129701\pi\)
−0.115870 + 0.993264i \(0.536965\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 5.00000 0.707107
\(51\) 0 0
\(52\) −0.500000 + 0.866025i −0.0693375 + 0.120096i
\(53\) −2.50000 + 4.33013i −0.343401 + 0.594789i −0.985062 0.172200i \(-0.944912\pi\)
0.641661 + 0.766989i \(0.278246\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −2.50000 4.33013i −0.328266 0.568574i
\(59\) −1.50000 + 2.59808i −0.195283 + 0.338241i −0.946993 0.321253i \(-0.895896\pi\)
0.751710 + 0.659494i \(0.229229\pi\)
\(60\) 0 0
\(61\) 0.500000 + 0.866025i 0.0640184 + 0.110883i 0.896258 0.443533i \(-0.146275\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 3.50000 6.06218i 0.427593 0.740613i −0.569066 0.822292i \(-0.692695\pi\)
0.996659 + 0.0816792i \(0.0260283\pi\)
\(68\) −0.500000 0.866025i −0.0606339 0.105021i
\(69\) 0 0
\(70\) 0 0
\(71\) −9.00000 −1.06810 −0.534052 0.845452i \(-0.679331\pi\)
−0.534052 + 0.845452i \(0.679331\pi\)
\(72\) −1.50000 2.59808i −0.176777 0.306186i
\(73\) −1.00000 + 1.73205i −0.117041 + 0.202721i −0.918594 0.395203i \(-0.870674\pi\)
0.801553 + 0.597924i \(0.204008\pi\)
\(74\) −4.00000 + 6.92820i −0.464991 + 0.805387i
\(75\) 0 0
\(76\) −5.00000 −0.573539
\(77\) 0 0
\(78\) 0 0
\(79\) 7.00000 + 12.1244i 0.787562 + 1.36410i 0.927457 + 0.373930i \(0.121990\pi\)
−0.139895 + 0.990166i \(0.544677\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.00000 5.19615i −0.323498 0.560316i
\(87\) 0 0
\(88\) 0.500000 0.866025i 0.0533002 0.0923186i
\(89\) −8.00000 13.8564i −0.847998 1.46878i −0.882992 0.469389i \(-0.844474\pi\)
0.0349934 0.999388i \(-0.488859\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.00000 0.208514
\(93\) 0 0
\(94\) −5.50000 + 9.52628i −0.567282 + 0.982561i
\(95\) 0 0
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 2.50000 + 4.33013i 0.250000 + 0.433013i
\(101\) 9.00000 15.5885i 0.895533 1.55111i 0.0623905 0.998052i \(-0.480128\pi\)
0.833143 0.553058i \(-0.186539\pi\)
\(102\) 0 0
\(103\) 3.00000 + 5.19615i 0.295599 + 0.511992i 0.975124 0.221660i \(-0.0711475\pi\)
−0.679525 + 0.733652i \(0.737814\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −5.00000 −0.485643
\(107\) 4.00000 + 6.92820i 0.386695 + 0.669775i 0.992003 0.126217i \(-0.0402834\pi\)
−0.605308 + 0.795991i \(0.706950\pi\)
\(108\) 0 0
\(109\) 6.00000 10.3923i 0.574696 0.995402i −0.421379 0.906885i \(-0.638454\pi\)
0.996075 0.0885176i \(-0.0282129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.50000 4.33013i 0.232119 0.402042i
\(117\) 1.50000 + 2.59808i 0.138675 + 0.240192i
\(118\) −3.00000 −0.276172
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 + 8.66025i 0.454545 + 0.787296i
\(122\) −0.500000 + 0.866025i −0.0452679 + 0.0784063i
\(123\) 0 0
\(124\) −4.00000 6.92820i −0.359211 0.622171i
\(125\) 0 0
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) −5.00000 8.66025i −0.436852 0.756650i 0.560593 0.828092i \(-0.310573\pi\)
−0.997445 + 0.0714417i \(0.977240\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) 0.500000 0.866025i 0.0428746 0.0742611i
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.50000 7.79423i −0.377632 0.654077i
\(143\) −0.500000 + 0.866025i −0.0418121 + 0.0724207i
\(144\) 1.50000 2.59808i 0.125000 0.216506i
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 0 0
\(148\) −8.00000 −0.657596
\(149\) −5.00000 8.66025i −0.409616 0.709476i 0.585231 0.810867i \(-0.301004\pi\)
−0.994847 + 0.101391i \(0.967671\pi\)
\(150\) 0 0
\(151\) 7.50000 12.9904i 0.610341 1.05714i −0.380841 0.924640i \(-0.624366\pi\)
0.991183 0.132502i \(-0.0423010\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) −3.00000 −0.242536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3.50000 6.06218i 0.279330 0.483814i −0.691888 0.722005i \(-0.743221\pi\)
0.971219 + 0.238190i \(0.0765542\pi\)
\(158\) −7.00000 + 12.1244i −0.556890 + 0.964562i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −9.00000 −0.707107
\(163\) −3.50000 6.06218i −0.274141 0.474826i 0.695777 0.718258i \(-0.255060\pi\)
−0.969918 + 0.243432i \(0.921727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 4.00000 + 6.92820i 0.310460 + 0.537733i
\(167\) 19.0000 1.47026 0.735132 0.677924i \(-0.237120\pi\)
0.735132 + 0.677924i \(0.237120\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.50000 + 12.9904i −0.573539 + 0.993399i
\(172\) 3.00000 5.19615i 0.228748 0.396203i
\(173\) 7.50000 + 12.9904i 0.570214 + 0.987640i 0.996544 + 0.0830722i \(0.0264732\pi\)
−0.426329 + 0.904568i \(0.640193\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 0.0753778
\(177\) 0 0
\(178\) 8.00000 13.8564i 0.599625 1.03858i
\(179\) 1.00000 1.73205i 0.0747435 0.129460i −0.826231 0.563331i \(-0.809520\pi\)
0.900975 + 0.433872i \(0.142853\pi\)
\(180\) 0 0
\(181\) 23.0000 1.70958 0.854788 0.518977i \(-0.173687\pi\)
0.854788 + 0.518977i \(0.173687\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000 + 1.73205i 0.0737210 + 0.127688i
\(185\) 0 0
\(186\) 0 0
\(187\) −0.500000 0.866025i −0.0365636 0.0633300i
\(188\) −11.0000 −0.802257
\(189\) 0 0
\(190\) 0 0
\(191\) 2.00000 + 3.46410i 0.144715 + 0.250654i 0.929267 0.369410i \(-0.120440\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(192\) 0 0
\(193\) −2.00000 + 3.46410i −0.143963 + 0.249351i −0.928986 0.370116i \(-0.879318\pi\)
0.785022 + 0.619467i \(0.212651\pi\)
\(194\) −1.00000 1.73205i −0.0717958 0.124354i
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) −1.50000 2.59808i −0.106600 0.184637i
\(199\) 5.00000 8.66025i 0.354441 0.613909i −0.632581 0.774494i \(-0.718005\pi\)
0.987022 + 0.160585i \(0.0513380\pi\)
\(200\) −2.50000 + 4.33013i −0.176777 + 0.306186i
\(201\) 0 0
\(202\) 18.0000 1.26648
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −3.00000 + 5.19615i −0.209020 + 0.362033i
\(207\) 3.00000 5.19615i 0.208514 0.361158i
\(208\) −0.500000 0.866025i −0.0346688 0.0600481i
\(209\) −5.00000 −0.345857
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) −2.50000 4.33013i −0.171701 0.297394i
\(213\) 0 0
\(214\) −4.00000 + 6.92820i −0.273434 + 0.473602i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 12.0000 0.812743
\(219\) 0 0
\(220\) 0 0
\(221\) −0.500000 + 0.866025i −0.0336336 + 0.0582552i
\(222\) 0 0
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0.500000 + 0.866025i 0.0332595 + 0.0576072i
\(227\) 6.00000 10.3923i 0.398234 0.689761i −0.595274 0.803523i \(-0.702957\pi\)
0.993508 + 0.113761i \(0.0362899\pi\)
\(228\) 0 0
\(229\) −1.00000 1.73205i −0.0660819 0.114457i 0.831092 0.556136i \(-0.187717\pi\)
−0.897173 + 0.441679i \(0.854383\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.00000 0.328266
\(233\) −10.5000 18.1865i −0.687878 1.19144i −0.972523 0.232806i \(-0.925209\pi\)
0.284645 0.958633i \(-0.408124\pi\)
\(234\) −1.50000 + 2.59808i −0.0980581 + 0.169842i
\(235\) 0 0
\(236\) −1.50000 2.59808i −0.0976417 0.169120i
\(237\) 0 0
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) 6.00000 10.3923i 0.386494 0.669427i −0.605481 0.795860i \(-0.707019\pi\)
0.991975 + 0.126432i \(0.0403527\pi\)
\(242\) −5.00000 + 8.66025i −0.321412 + 0.556702i
\(243\) 0 0
\(244\) −1.00000 −0.0640184
\(245\) 0 0
\(246\) 0 0
\(247\) 2.50000 + 4.33013i 0.159071 + 0.275519i
\(248\) 4.00000 6.92820i 0.254000 0.439941i
\(249\) 0 0
\(250\) 0 0
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) −3.00000 5.19615i −0.188237 0.326036i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.00000 12.1244i −0.436648 0.756297i 0.560781 0.827964i \(-0.310501\pi\)
−0.997429 + 0.0716680i \(0.977168\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.50000 12.9904i −0.464238 0.804084i
\(262\) 5.00000 8.66025i 0.308901 0.535032i
\(263\) −12.0000 + 20.7846i −0.739952 + 1.28163i 0.212565 + 0.977147i \(0.431818\pi\)
−0.952517 + 0.304487i \(0.901515\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 3.50000 + 6.06218i 0.213797 + 0.370306i
\(269\) −2.50000 + 4.33013i −0.152428 + 0.264013i −0.932119 0.362151i \(-0.882042\pi\)
0.779692 + 0.626164i \(0.215376\pi\)
\(270\) 0 0
\(271\) −9.50000 16.4545i −0.577084 0.999539i −0.995812 0.0914269i \(-0.970857\pi\)
0.418728 0.908112i \(-0.362476\pi\)
\(272\) 1.00000 0.0606339
\(273\) 0 0
\(274\) 12.0000 0.724947
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) −11.5000 + 19.9186i −0.690968 + 1.19679i 0.280553 + 0.959839i \(0.409482\pi\)
−0.971521 + 0.236953i \(0.923851\pi\)
\(278\) −8.00000 13.8564i −0.479808 0.831052i
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −3.00000 + 5.19615i −0.178331 + 0.308879i −0.941309 0.337546i \(-0.890403\pi\)
0.762978 + 0.646425i \(0.223737\pi\)
\(284\) 4.50000 7.79423i 0.267026 0.462502i
\(285\) 0 0
\(286\) −1.00000 −0.0591312
\(287\) 0 0
\(288\) 3.00000 0.176777
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 1.73205i −0.0585206 0.101361i
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.00000 6.92820i −0.232495 0.402694i
\(297\) 0 0
\(298\) 5.00000 8.66025i 0.289642 0.501675i
\(299\) −1.00000 1.73205i −0.0578315 0.100167i
\(300\) 0 0
\(301\) 0 0
\(302\) 15.0000 0.863153
\(303\) 0 0
\(304\) 2.50000 4.33013i 0.143385 0.248350i
\(305\) 0 0
\(306\) −1.50000 2.59808i −0.0857493 0.148522i
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000 27.7128i 0.907277 1.57145i 0.0894452 0.995992i \(-0.471491\pi\)
0.817832 0.575458i \(-0.195176\pi\)
\(312\) 0 0
\(313\) 9.00000 + 15.5885i 0.508710 + 0.881112i 0.999949 + 0.0100869i \(0.00321082\pi\)
−0.491239 + 0.871025i \(0.663456\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −14.0000 −0.787562
\(317\) −13.0000 22.5167i −0.730153 1.26466i −0.956818 0.290689i \(-0.906116\pi\)
0.226665 0.973973i \(-0.427218\pi\)
\(318\) 0 0
\(319\) 2.50000 4.33013i 0.139973 0.242441i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) −4.50000 7.79423i −0.250000 0.433013i
\(325\) 2.50000 4.33013i 0.138675 0.240192i
\(326\) 3.50000 6.06218i 0.193847 0.335753i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.00000 + 10.3923i 0.329790 + 0.571213i 0.982470 0.186421i \(-0.0596888\pi\)
−0.652680 + 0.757634i \(0.726355\pi\)
\(332\) −4.00000 + 6.92820i −0.219529 + 0.380235i
\(333\) −12.0000 + 20.7846i −0.657596 + 1.13899i
\(334\) 9.50000 + 16.4545i 0.519817 + 0.900349i
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000 0.817102 0.408551 0.912735i \(-0.366034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(338\) 0.500000 + 0.866025i 0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 0 0
\(341\) −4.00000 6.92820i −0.216612 0.375183i
\(342\) −15.0000 −0.811107
\(343\) 0 0
\(344\) 6.00000 0.323498
\(345\) 0 0
\(346\) −7.50000 + 12.9904i −0.403202 + 0.698367i
\(347\) −2.00000 + 3.46410i −0.107366 + 0.185963i −0.914702 0.404128i \(-0.867575\pi\)
0.807337 + 0.590091i \(0.200908\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0.500000 + 0.866025i 0.0266501 + 0.0461593i
\(353\) −9.00000 + 15.5885i −0.479022 + 0.829690i −0.999711 0.0240566i \(-0.992342\pi\)
0.520689 + 0.853746i \(0.325675\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 16.0000 0.847998
\(357\) 0 0
\(358\) 2.00000 0.105703
\(359\) 8.00000 + 13.8564i 0.422224 + 0.731313i 0.996157 0.0875892i \(-0.0279163\pi\)
−0.573933 + 0.818902i \(0.694583\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 11.5000 + 19.9186i 0.604427 + 1.04690i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.00000 + 8.66025i −0.260998 + 0.452062i −0.966507 0.256639i \(-0.917385\pi\)
0.705509 + 0.708700i \(0.250718\pi\)
\(368\) −1.00000 + 1.73205i −0.0521286 + 0.0902894i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −15.5000 26.8468i −0.802560 1.39007i −0.917926 0.396751i \(-0.870138\pi\)
0.115367 0.993323i \(-0.463196\pi\)
\(374\) 0.500000 0.866025i 0.0258544 0.0447811i
\(375\) 0 0
\(376\) −5.50000 9.52628i −0.283641 0.491280i
\(377\) −5.00000 −0.257513
\(378\) 0 0
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.00000 + 3.46410i −0.102329 + 0.177239i
\(383\) 12.0000 + 20.7846i 0.613171 + 1.06204i 0.990702 + 0.136047i \(0.0434398\pi\)
−0.377531 + 0.925997i \(0.623227\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.00000 −0.203595
\(387\) −9.00000 15.5885i −0.457496 0.792406i
\(388\) 1.00000 1.73205i 0.0507673 0.0879316i
\(389\) 9.50000 16.4545i 0.481669 0.834275i −0.518110 0.855314i \(-0.673364\pi\)
0.999779 + 0.0210389i \(0.00669738\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 9.00000 + 15.5885i 0.453413 + 0.785335i
\(395\) 0 0
\(396\) 1.50000 2.59808i 0.0753778 0.130558i
\(397\) −9.00000 15.5885i −0.451697 0.782362i 0.546795 0.837267i \(-0.315848\pi\)
−0.998492 + 0.0549046i \(0.982515\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) −19.0000 32.9090i −0.948815 1.64340i −0.747927 0.663781i \(-0.768951\pi\)
−0.200888 0.979614i \(-0.564383\pi\)
\(402\) 0 0
\(403\) −4.00000 + 6.92820i −0.199254 + 0.345118i
\(404\) 9.00000 + 15.5885i 0.447767 + 0.775555i
\(405\) 0 0
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) 18.0000 31.1769i 0.890043 1.54160i 0.0502202 0.998738i \(-0.484008\pi\)
0.839823 0.542861i \(-0.182659\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −6.00000 −0.295599
\(413\) 0 0
\(414\) 6.00000 0.294884
\(415\) 0 0
\(416\) 0.500000 0.866025i 0.0245145 0.0424604i
\(417\) 0 0
\(418\) −2.50000 4.33013i −0.122279 0.211793i
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) −1.00000 1.73205i −0.0486792 0.0843149i
\(423\) −16.5000 + 28.5788i −0.802257 + 1.38955i
\(424\) 2.50000 4.33013i 0.121411 0.210290i
\(425\) 2.50000 + 4.33013i 0.121268 + 0.210042i
\(426\) 0 0
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(432\) 0 0
\(433\) −5.00000 −0.240285 −0.120142 0.992757i \(-0.538335\pi\)
−0.120142 + 0.992757i \(0.538335\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 6.00000 + 10.3923i 0.287348 + 0.497701i
\(437\) 5.00000 8.66025i 0.239182 0.414276i
\(438\) 0 0
\(439\) 11.0000 + 19.0526i 0.525001 + 0.909329i 0.999576 + 0.0291138i \(0.00926853\pi\)
−0.474575 + 0.880215i \(0.657398\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1.00000 −0.0475651
\(443\) −6.00000 10.3923i −0.285069 0.493753i 0.687557 0.726130i \(-0.258683\pi\)
−0.972626 + 0.232377i \(0.925350\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 7.50000 + 12.9904i 0.355135 + 0.615112i
\(447\) 0 0
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 7.50000 + 12.9904i 0.353553 + 0.612372i
\(451\) 0 0
\(452\) −0.500000 + 0.866025i −0.0235180 + 0.0407344i
\(453\) 0 0
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 + 19.0526i 0.514558 + 0.891241i 0.999857 + 0.0168929i \(0.00537742\pi\)
−0.485299 + 0.874348i \(0.661289\pi\)
\(458\) 1.00000 1.73205i 0.0467269 0.0809334i
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0000 −1.67669 −0.838344 0.545142i \(-0.816476\pi\)
−0.838344 + 0.545142i \(0.816476\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 2.50000 + 4.33013i 0.116060 + 0.201021i
\(465\) 0 0
\(466\) 10.5000 18.1865i 0.486403 0.842475i
\(467\) −21.0000 36.3731i −0.971764 1.68314i −0.690225 0.723595i \(-0.742488\pi\)
−0.281539 0.959550i \(-0.590845\pi\)
\(468\) −3.00000 −0.138675
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 1.50000 2.59808i 0.0690431 0.119586i
\(473\) 3.00000 5.19615i 0.137940 0.238919i
\(474\) 0 0
\(475\) 25.0000 1.14708
\(476\) 0 0
\(477\) −15.0000 −0.686803
\(478\) 4.50000 + 7.79423i 0.205825 + 0.356500i
\(479\) −18.5000 + 32.0429i −0.845287 + 1.46408i 0.0400855 + 0.999196i \(0.487237\pi\)
−0.885372 + 0.464883i \(0.846096\pi\)
\(480\) 0 0
\(481\) 4.00000 + 6.92820i 0.182384 + 0.315899i
\(482\) 12.0000 0.546585
\(483\) 0 0
\(484\) −10.0000 −0.454545
\(485\) 0 0
\(486\) 0 0
\(487\) −18.5000 + 32.0429i −0.838315 + 1.45200i 0.0529875 + 0.998595i \(0.483126\pi\)
−0.891303 + 0.453409i \(0.850208\pi\)
\(488\) −0.500000 0.866025i −0.0226339 0.0392031i
\(489\) 0 0
\(490\) 0 0
\(491\) −26.0000 −1.17336 −0.586682 0.809818i \(-0.699566\pi\)
−0.586682 + 0.809818i \(0.699566\pi\)
\(492\) 0 0
\(493\) 2.50000 4.33013i 0.112594 0.195019i
\(494\) −2.50000 + 4.33013i −0.112480 + 0.194822i
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) 0 0
\(498\) 0 0
\(499\) 16.0000 + 27.7128i 0.716258 + 1.24060i 0.962472 + 0.271380i \(0.0874801\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13.0000 22.5167i −0.580218 1.00497i
\(503\) −20.0000 −0.891756 −0.445878 0.895094i \(-0.647108\pi\)
−0.445878 + 0.895094i \(0.647108\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.00000 + 1.73205i 0.0444554 + 0.0769991i
\(507\) 0 0
\(508\) 3.00000 5.19615i 0.133103 0.230542i
\(509\) −6.00000 10.3923i −0.265945 0.460631i 0.701866 0.712309i \(-0.252351\pi\)
−0.967811 + 0.251679i \(0.919017\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 7.00000 12.1244i 0.308757 0.534782i
\(515\) 0 0
\(516\) 0 0
\(517\) −11.0000 −0.483779
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.00000 + 12.1244i −0.306676 + 0.531178i −0.977633 0.210318i \(-0.932550\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(522\) 7.50000 12.9904i 0.328266 0.568574i
\(523\) 13.0000 + 22.5167i 0.568450 + 0.984585i 0.996719 + 0.0809336i \(0.0257902\pi\)
−0.428269 + 0.903651i \(0.640876\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −4.00000 6.92820i −0.174243 0.301797i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −3.50000 + 6.06218i −0.151177 + 0.261846i
\(537\) 0 0
\(538\) −5.00000 −0.215565
\(539\) 0 0
\(540\) 0 0
\(541\) 12.0000 + 20.7846i 0.515920 + 0.893600i 0.999829 + 0.0184818i \(0.00588327\pi\)
−0.483909 + 0.875118i \(0.660783\pi\)
\(542\) 9.50000 16.4545i 0.408060 0.706781i
\(543\) 0 0
\(544\) 0.500000 + 0.866025i 0.0214373 + 0.0371305i
\(545\) 0 0
\(546\) 0 0
\(547\) −38.0000 −1.62476 −0.812381 0.583127i \(-0.801829\pi\)
−0.812381 + 0.583127i \(0.801829\pi\)
\(548\) 6.00000 + 10.3923i 0.256307 + 0.443937i
\(549\) −1.50000 + 2.59808i −0.0640184 + 0.110883i
\(550\) −2.50000 + 4.33013i −0.106600 + 0.184637i
\(551\) −12.5000 21.6506i −0.532518 0.922348i
\(552\) 0 0
\(553\) 0 0
\(554\) −23.0000 −0.977176
\(555\) 0 0
\(556\) 8.00000 13.8564i 0.339276 0.587643i
\(557\) 15.0000 25.9808i 0.635570 1.10084i −0.350824 0.936442i \(-0.614098\pi\)
0.986394 0.164399i \(-0.0525683\pi\)
\(558\) −12.0000 20.7846i −0.508001 0.879883i
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) 10.0000 + 17.3205i 0.421825 + 0.730622i
\(563\) −2.00000 + 3.46410i −0.0842900 + 0.145994i −0.905088 0.425223i \(-0.860196\pi\)
0.820798 + 0.571218i \(0.193529\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −6.00000 −0.252199
\(567\) 0 0
\(568\) 9.00000 0.377632
\(569\) 7.50000 + 12.9904i 0.314416 + 0.544585i 0.979313 0.202350i \(-0.0648579\pi\)
−0.664897 + 0.746935i \(0.731525\pi\)
\(570\) 0 0
\(571\) 22.0000 38.1051i 0.920671 1.59465i 0.122292 0.992494i \(-0.460975\pi\)
0.798379 0.602155i \(-0.205691\pi\)
\(572\) −0.500000 0.866025i −0.0209061 0.0362103i
\(573\) 0 0
\(574\) 0 0
\(575\) −10.0000 −0.417029
\(576\) 1.50000 + 2.59808i 0.0625000 + 0.108253i
\(577\) 7.00000 12.1244i 0.291414 0.504744i −0.682730 0.730670i \(-0.739208\pi\)
0.974144 + 0.225927i \(0.0725410\pi\)
\(578\) −8.00000 + 13.8564i −0.332756 + 0.576351i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.50000 4.33013i −0.103539 0.179336i
\(584\) 1.00000 1.73205i 0.0413803 0.0716728i
\(585\) 0 0
\(586\) 9.00000 + 15.5885i 0.371787 + 0.643953i
\(587\) −33.0000 −1.36206 −0.681028 0.732257i \(-0.738467\pi\)
−0.681028 + 0.732257i \(0.738467\pi\)
\(588\) 0 0
\(589\) −40.0000 −1.64817
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) −8.00000 13.8564i −0.328521 0.569014i 0.653698 0.756756i \(-0.273217\pi\)
−0.982219 + 0.187741i \(0.939883\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 10.0000 0.409616
\(597\) 0 0
\(598\) 1.00000 1.73205i 0.0408930 0.0708288i
\(599\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(600\) 0 0
\(601\) −17.0000 −0.693444 −0.346722 0.937968i \(-0.612705\pi\)
−0.346722 + 0.937968i \(0.612705\pi\)
\(602\) 0 0
\(603\) 21.0000 0.855186
\(604\) 7.50000 + 12.9904i 0.305171 + 0.528571i
\(605\) 0 0
\(606\) 0 0
\(607\) 11.0000 + 19.0526i 0.446476 + 0.773320i 0.998154 0.0607380i \(-0.0193454\pi\)
−0.551678 + 0.834058i \(0.686012\pi\)
\(608\) 5.00000 0.202777
\(609\) 0 0
\(610\) 0 0
\(611\) 5.50000 + 9.52628i 0.222506 + 0.385392i
\(612\) 1.50000 2.59808i 0.0606339 0.105021i
\(613\) −8.00000 + 13.8564i −0.323117 + 0.559655i −0.981129 0.193352i \(-0.938064\pi\)
0.658012 + 0.753007i \(0.271397\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −18.0000 + 31.1769i −0.723481 + 1.25311i 0.236115 + 0.971725i \(0.424126\pi\)
−0.959596 + 0.281381i \(0.909208\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 32.0000 1.28308
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) −9.00000 + 15.5885i −0.359712 + 0.623040i
\(627\) 0 0
\(628\) 3.50000 + 6.06218i 0.139665 + 0.241907i
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −7.00000 12.1244i −0.278445 0.482281i
\(633\) 0 0
\(634\) 13.0000 22.5167i 0.516296 0.894251i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 5.00000 0.197952
\(639\) −13.5000 23.3827i −0.534052 0.925005i
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −21.0000 −0.828159 −0.414080 0.910241i \(-0.635896\pi\)
−0.414080 + 0.910241i \(0.635896\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.50000 4.33013i −0.0983612 0.170367i
\(647\) −9.00000 + 15.5885i −0.353827 + 0.612845i −0.986916 0.161233i \(-0.948453\pi\)
0.633090 + 0.774078i \(0.281786\pi\)
\(648\) 4.50000 7.79423i 0.176777 0.306186i
\(649\) −1.50000 2.59808i −0.0588802 0.101983i
\(650\) 5.00000 0.196116
\(651\) 0 0
\(652\) 7.00000 0.274141
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −16.0000 + 27.7128i −0.622328 + 1.07790i 0.366723 + 0.930330i \(0.380480\pi\)
−0.989051 + 0.147573i \(0.952854\pi\)
\(662\) −6.00000 + 10.3923i −0.233197 + 0.403908i
\(663\) 0 0
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) −24.0000 −0.929981
\(667\) 5.00000 + 8.66025i 0.193601 + 0.335326i
\(668\) −9.50000 + 16.4545i −0.367566 + 0.636643i
\(669\) 0 0
\(670\) 0 0
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 7.50000 + 12.9904i 0.288889 + 0.500371i
\(675\) 0 0
\(676\) −0.500000 + 0.866025i −0.0192308 + 0.0333087i
\(677\) −13.5000 23.3827i −0.518847 0.898670i −0.999760 0.0219013i \(-0.993028\pi\)
0.480913 0.876768i \(-0.340305\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 4.00000 6.92820i 0.153168 0.265295i
\(683\) 24.0000 41.5692i 0.918334 1.59060i 0.116390 0.993204i \(-0.462868\pi\)
0.801945 0.597398i \(-0.203799\pi\)
\(684\) −7.50000 12.9904i −0.286770 0.496700i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 3.00000 + 5.19615i 0.114374 + 0.198101i
\(689\) −2.50000 + 4.33013i −0.0952424 + 0.164965i
\(690\) 0 0
\(691\) 7.50000 + 12.9904i 0.285313 + 0.494177i 0.972685 0.232128i \(-0.0745690\pi\)
−0.687372 + 0.726306i \(0.741236\pi\)
\(692\) −15.0000 −0.570214
\(693\) 0 0
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 17.0000 + 29.4449i 0.643459 + 1.11450i
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −20.0000 + 34.6410i −0.754314 + 1.30651i
\(704\) −0.500000 + 0.866025i −0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) 0 0
\(708\) 0 0
\(709\) −1.00000 1.73205i −0.0375558 0.0650485i 0.846637 0.532172i \(-0.178624\pi\)
−0.884192 + 0.467123i \(0.845291\pi\)
\(710\) 0 0
\(711\) −21.0000 + 36.3731i −0.787562 + 1.36410i
\(712\) 8.00000 + 13.8564i 0.299813 + 0.519291i
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 1.00000 + 1.73205i 0.0373718 + 0.0647298i
\(717\) 0 0
\(718\) −8.00000 + 13.8564i −0.298557 + 0.517116i
\(719\) 15.0000 + 25.9808i 0.559406 + 0.968919i 0.997546 + 0.0700124i \(0.0223039\pi\)
−0.438141 + 0.898906i \(0.644363\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.00000 −0.223297
\(723\) 0 0
\(724\) −11.5000 + 19.9186i −0.427394 + 0.740268i
\(725\) −12.5000 + 21.6506i −0.464238 + 0.804084i
\(726\) 0 0
\(727\) 4.00000 0.148352 0.0741759 0.997245i \(-0.476367\pi\)
0.0741759 + 0.997245i \(0.476367\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 3.00000 5.19615i 0.110959 0.192187i
\(732\) 0 0
\(733\) 13.0000 + 22.5167i 0.480166 + 0.831672i 0.999741 0.0227529i \(-0.00724310\pi\)
−0.519575 + 0.854425i \(0.673910\pi\)
\(734\) −10.0000 −0.369107
\(735\) 0 0
\(736\) −2.00000 −0.0737210
\(737\) 3.50000 + 6.06218i 0.128924 + 0.223303i
\(738\) 0 0
\(739\) 2.00000 3.46410i 0.0735712 0.127429i −0.826893 0.562360i \(-0.809894\pi\)
0.900464 + 0.434930i \(0.143227\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.0000 −0.990534 −0.495267 0.868741i \(-0.664930\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 15.5000 26.8468i 0.567495 0.982931i
\(747\) 12.0000 + 20.7846i 0.439057 + 0.760469i
\(748\) 1.00000 0.0365636
\(749\) 0 0
\(750\) 0 0
\(751\) −14.0000 24.2487i −0.510867 0.884848i −0.999921 0.0125942i \(-0.995991\pi\)
0.489053 0.872254i \(-0.337342\pi\)
\(752\) 5.50000 9.52628i 0.200564 0.347388i
\(753\) 0 0
\(754\) −2.50000 4.33013i −0.0910446 0.157694i
\(755\) 0 0
\(756\) 0 0
\(757\) 33.0000 1.19941 0.599703 0.800223i \(-0.295286\pi\)
0.599703 + 0.800223i \(0.295286\pi\)
\(758\) −2.00000 3.46410i −0.0726433 0.125822i
\(759\) 0 0
\(760\) 0 0
\(761\) −24.0000 41.5692i −0.869999 1.50688i −0.861996 0.506915i \(-0.830786\pi\)
−0.00800331 0.999968i \(-0.502548\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) −12.0000 + 20.7846i −0.433578 + 0.750978i
\(767\) −1.50000 + 2.59808i −0.0541619 + 0.0938111i
\(768\) 0 0
\(769\) 46.0000 1.65880 0.829401 0.558653i \(-0.188682\pi\)
0.829401 + 0.558653i \(0.188682\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.00000 3.46410i −0.0719816 0.124676i
\(773\) 5.00000 8.66025i 0.179838 0.311488i −0.761987 0.647592i \(-0.775776\pi\)
0.941825 + 0.336104i \(0.109109\pi\)
\(774\) 9.00000 15.5885i 0.323498 0.560316i
\(775\) 20.0000 + 34.6410i 0.718421 + 1.24434i
\(776\) 2.00000 0.0717958
\(777\) 0 0
\(778\) 19.0000 0.681183
\(779\) 0 0
\(780\) 0 0
\(781\) 4.50000 7.79423i 0.161023 0.278899i
\(782\) 1.00000 + 1.73205i 0.0357599 + 0.0619380i
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.50000 9.52628i 0.196054 0.339575i −0.751192 0.660084i \(-0.770521\pi\)
0.947245 + 0.320509i \(0.103854\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 3.00000 0.106600
\(793\) 0.500000 + 0.866025i 0.0177555 + 0.0307535i
\(794\) 9.00000 15.5885i 0.319398 0.553214i
\(795\) 0 0
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) −54.0000 −1.91278 −0.956389 0.292096i \(-0.905647\pi\)
−0.956389 + 0.292096i \(0.905647\pi\)
\(798\) 0 0
\(799\) −11.0000 −0.389152
\(800\) −2.50000 4.33013i −0.0883883 0.153093i
\(801\) 24.0000 41.5692i 0.847998 1.46878i
\(802\) 19.0000 32.9090i 0.670913 1.16206i
\(803\) −1.00000 1.73205i −0.0352892 0.0611227i
\(804\) 0 0
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) −9.00000 + 15.5885i −0.316619 + 0.548400i
\(809\) −4.50000 + 7.79423i −0.158212 + 0.274030i −0.934224 0.356687i \(-0.883906\pi\)
0.776012 + 0.630718i \(0.217239\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.00000 6.92820i −0.140200 0.242833i
\(815\) 0 0
\(816\) 0 0
\(817\) −15.0000 25.9808i −0.524784 0.908952i
\(818\) 36.0000 1.25871
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 + 10.3923i 0.209401 + 0.362694i 0.951526 0.307568i \(-0.0995151\pi\)
−0.742125 + 0.670262i \(0.766182\pi\)
\(822\) 0 0
\(823\) −18.0000 + 31.1769i −0.627441 + 1.08676i 0.360623 + 0.932712i \(0.382564\pi\)
−0.988063 + 0.154047i \(0.950769\pi\)
\(824\) −3.00000 5.19615i −0.104510 0.181017i
\(825\) 0 0
\(826\) 0 0
\(827\) −33.0000 −1.14752 −0.573761 0.819023i \(-0.694516\pi\)
−0.573761 + 0.819023i \(0.694516\pi\)
\(828\) 3.00000 + 5.19615i 0.104257 + 0.180579i
\(829\) 13.5000 23.3827i 0.468874 0.812114i −0.530493 0.847690i \(-0.677993\pi\)
0.999367 + 0.0355753i \(0.0113264\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.00000 0.0346688
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 2.50000 4.33013i 0.0864643 0.149761i
\(837\) 0 0
\(838\) −3.00000 5.19615i −0.103633 0.179498i
\(839\) 37.0000 1.27738 0.638691 0.769463i \(-0.279476\pi\)
0.638691 + 0.769463i \(0.279476\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) −1.00000 1.73205i −0.0344623 0.0596904i
\(843\) 0 0
\(844\) 1.00000 1.73205i 0.0344214 0.0596196i
\(845\) 0 0
\(846\) −33.0000 −1.13456
\(847\) 0 0
\(848\) 5.00000 0.171701
\(849\) 0 0
\(850\) −2.50000 + 4.33013i −0.0857493 + 0.148522i
\(851\) 8.00000 13.8564i 0.274236 0.474991i
\(852\) 0 0
\(853\) −38.0000 −1.30110 −0.650548 0.759465i \(-0.725461\pi\)
−0.650548 + 0.759465i \(0.725461\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.00000 6.92820i −0.136717 0.236801i
\(857\) −21.5000 + 37.2391i −0.734426 + 1.27206i 0.220549 + 0.975376i \(0.429215\pi\)
−0.954975 + 0.296687i \(0.904118\pi\)
\(858\) 0 0
\(859\) −20.0000 34.6410i −0.682391 1.18194i −0.974249 0.225475i \(-0.927607\pi\)
0.291858 0.956462i \(-0.405727\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.00000 + 10.3923i 0.204242 + 0.353758i 0.949891 0.312581i \(-0.101194\pi\)
−0.745649 + 0.666339i \(0.767860\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.50000 4.33013i −0.0849535 0.147144i
\(867\) 0 0
\(868\) 0 0
\(869\) −14.0000 −0.474917
\(870\) 0 0
\(871\) 3.50000 6.06218i 0.118593 0.205409i
\(872\) −6.00000 + 10.3923i −0.203186 + 0.351928i
\(873\) −3.00000 5.19615i −0.101535 0.175863i
\(874\) 10.0000 0.338255
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0000 + 27.7128i 0.540282 + 0.935795i 0.998888 + 0.0471555i \(0.0150156\pi\)
−0.458606 + 0.888640i \(0.651651\pi\)
\(878\) −11.0000 + 19.0526i −0.371232 + 0.642993i
\(879\) 0 0
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 0 0
\(883\) 24.0000 0.807664 0.403832 0.914833i \(-0.367678\pi\)
0.403832 + 0.914833i \(0.367678\pi\)
\(884\) −0.500000 0.866025i −0.0168168 0.0291276i
\(885\) 0 0
\(886\) 6.00000 10.3923i 0.201574 0.349136i
\(887\) 9.00000 + 15.5885i 0.302190 + 0.523409i 0.976632 0.214919i \(-0.0689488\pi\)
−0.674441 + 0.738328i \(0.735615\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.50000 7.79423i −0.150756 0.261116i
\(892\) −7.50000 + 12.9904i −0.251119 + 0.434950i
\(893\) −27.5000 + 47.6314i −0.920252 + 1.59392i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 + 31.1769i 0.600668 + 1.04039i
\(899\) 20.0000 34.6410i 0.667037 1.15534i
\(900\) −7.50000 + 12.9904i −0.250000 + 0.433013i
\(901\) −2.50000 4.33013i −0.0832871 0.144257i
\(902\) 0 0
\(903\) 0 0
\(904\) −1.00000 −0.0332595
\(905\) 0 0
\(906\) 0 0
\(907\) 23.0000 39.8372i 0.763702 1.32277i −0.177227 0.984170i \(-0.556713\pi\)
0.940930 0.338602i \(-0.109954\pi\)
\(908\) 6.00000 + 10.3923i 0.199117 + 0.344881i
\(909\) 54.0000 1.79107
\(910\) 0 0
\(911\) 34.0000 1.12647 0.563235 0.826297i \(-0.309557\pi\)
0.563235 + 0.826297i \(0.309557\pi\)
\(912\) 0 0
\(913\) −4.00000 + 6.92820i −0.132381 + 0.229290i
\(914\) −11.0000 + 19.0526i −0.363848 + 0.630203i
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 0 0
\(918\) 0 0
\(919\) 19.0000 + 32.9090i 0.626752 + 1.08557i 0.988199 + 0.153174i \(0.0489495\pi\)
−0.361447 + 0.932393i \(0.617717\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −18.0000 31.1769i −0.592798 1.02676i
\(923\) −9.00000 −0.296239
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) −9.00000 + 15.5885i −0.295599 + 0.511992i
\(928\) −2.50000 + 4.33013i −0.0820665 + 0.142143i
\(929\) 23.0000 + 39.8372i 0.754606 + 1.30702i 0.945570 + 0.325418i \(0.105505\pi\)
−0.190965 + 0.981597i \(0.561162\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 21.0000 0.687878
\(933\) 0 0
\(934\) 21.0000 36.3731i 0.687141 1.19016i
\(935\) 0 0
\(936\) −1.50000 2.59808i −0.0490290 0.0849208i
\(937\) 41.0000 1.33941 0.669706 0.742627i \(-0.266420\pi\)
0.669706 + 0.742627i \(0.266420\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 6.00000 10.3923i 0.195594 0.338779i −0.751501 0.659732i \(-0.770670\pi\)
0.947095 + 0.320953i \(0.104003\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 3.00000 0.0976417
\(945\) 0 0
\(946\) 6.00000 0.195077
\(947\) 3.50000 + 6.06218i 0.113735 + 0.196994i 0.917273 0.398258i \(-0.130385\pi\)
−0.803539 + 0.595253i \(0.797052\pi\)
\(948\) 0 0
\(949\) −1.00000 + 1.73205i −0.0324614 + 0.0562247i
\(950\) 12.5000 + 21.6506i 0.405554 + 0.702439i
\(951\) 0 0
\(952\) 0 0
\(953\) 9.00000 0.291539 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(954\) −7.50000 12.9904i −0.242821 0.420579i
\(955\) 0 0
\(956\) −4.50000 + 7.79423i −0.145540 + 0.252083i
\(957\) 0 0
\(958\) −37.0000 −1.19542
\(959\) 0 0
\(960\) 0 0
\(961\) −16.5000 28.5788i −0.532258 0.921898i
\(962\) −4.00000 + 6.92820i −0.128965 + 0.223374i
\(963\) −12.0000 + 20.7846i −0.386695 + 0.669775i
\(964\) 6.00000 + 10.3923i 0.193247 + 0.334714i
\(965\) 0 0
\(966\) 0 0
\(967\) 23.0000 0.739630 0.369815 0.929105i \(-0.379421\pi\)
0.369815 + 0.929105i \(0.379421\pi\)
\(968\) −5.00000 8.66025i −0.160706 0.278351i
\(969\) 0 0
\(970\) 0 0
\(971\) −30.0000 51.9615i −0.962746 1.66752i −0.715553 0.698558i \(-0.753825\pi\)
−0.247193 0.968966i \(-0.579508\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −37.0000 −1.18556
\(975\) 0 0
\(976\) 0.500000 0.866025i 0.0160046 0.0277208i
\(977\) −5.00000 + 8.66025i −0.159964 + 0.277066i −0.934856 0.355028i \(-0.884471\pi\)
0.774891 + 0.632094i \(0.217805\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) 36.0000 1.14939
\(982\) −13.0000 22.5167i −0.414847 0.718536i
\(983\) 6.50000 11.2583i 0.207318 0.359085i −0.743551 0.668679i \(-0.766860\pi\)
0.950869 + 0.309594i \(0.100193\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 5.00000 0.159232
\(987\) 0 0
\(988\) −5.00000 −0.159071
\(989\) 6.00000 + 10.3923i 0.190789 + 0.330456i
\(990\) 0 0
\(991\) 14.0000 24.2487i 0.444725 0.770286i −0.553308 0.832977i \(-0.686635\pi\)
0.998033 + 0.0626908i \(0.0199682\pi\)
\(992\) 4.00000 + 6.92820i 0.127000 + 0.219971i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −7.50000 + 12.9904i −0.237527 + 0.411409i −0.960004 0.279986i \(-0.909670\pi\)
0.722477 + 0.691395i \(0.243004\pi\)
\(998\) −16.0000 + 27.7128i −0.506471 + 0.877234i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.f.q.1145.1 2
7.2 even 3 inner 1274.2.f.q.79.1 2
7.3 odd 6 1274.2.a.e.1.1 1
7.4 even 3 1274.2.a.f.1.1 1
7.5 odd 6 182.2.f.a.79.1 yes 2
7.6 odd 2 182.2.f.a.53.1 2
21.5 even 6 1638.2.j.c.1171.1 2
21.20 even 2 1638.2.j.c.235.1 2
28.19 even 6 1456.2.r.f.625.1 2
28.27 even 2 1456.2.r.f.417.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.f.a.53.1 2 7.6 odd 2
182.2.f.a.79.1 yes 2 7.5 odd 6
1274.2.a.e.1.1 1 7.3 odd 6
1274.2.a.f.1.1 1 7.4 even 3
1274.2.f.q.79.1 2 7.2 even 3 inner
1274.2.f.q.1145.1 2 1.1 even 1 trivial
1456.2.r.f.417.1 2 28.27 even 2
1456.2.r.f.625.1 2 28.19 even 6
1638.2.j.c.235.1 2 21.20 even 2
1638.2.j.c.1171.1 2 21.5 even 6