Properties

Label 1456.2.r.f.625.1
Level $1456$
Weight $2$
Character 1456.625
Analytic conductor $11.626$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1456,2,Mod(417,1456)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1456, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1456.417");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1456.625
Dual form 1456.2.r.f.417.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 + 0.866025i) q^{7} +(1.50000 - 2.59808i) q^{9} +(0.500000 + 0.866025i) q^{11} -1.00000 q^{13} +(0.500000 + 0.866025i) q^{17} +(2.50000 - 4.33013i) q^{19} +(1.00000 - 1.73205i) q^{23} +(2.50000 + 4.33013i) q^{25} -5.00000 q^{29} +(-4.00000 - 6.92820i) q^{31} +(4.00000 - 6.92820i) q^{37} +6.00000 q^{43} +(5.50000 - 9.52628i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-2.50000 - 4.33013i) q^{53} +(-1.50000 - 2.59808i) q^{59} +(-0.500000 + 0.866025i) q^{61} +(-1.50000 + 7.79423i) q^{63} +(-3.50000 - 6.06218i) q^{67} +9.00000 q^{71} +(1.00000 + 1.73205i) q^{73} +(-2.00000 - 1.73205i) q^{77} +(-7.00000 + 12.1244i) q^{79} +(-4.50000 - 7.79423i) q^{81} +8.00000 q^{83} +(8.00000 - 13.8564i) q^{89} +(2.50000 - 0.866025i) q^{91} +2.00000 q^{97} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 5 q^{7} + 3 q^{9} + q^{11} - 2 q^{13} + q^{17} + 5 q^{19} + 2 q^{23} + 5 q^{25} - 10 q^{29} - 8 q^{31} + 8 q^{37} + 12 q^{43} + 11 q^{47} + 11 q^{49} - 5 q^{53} - 3 q^{59} - q^{61} - 3 q^{63} - 7 q^{67}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.500000 + 0.866025i 0.121268 + 0.210042i 0.920268 0.391289i \(-0.127971\pi\)
−0.799000 + 0.601331i \(0.794637\pi\)
\(18\) 0 0
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 1.73205i 0.208514 0.361158i −0.742732 0.669588i \(-0.766471\pi\)
0.951247 + 0.308431i \(0.0998038\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i \(-0.911532\pi\)
0.243204 0.969975i \(-0.421802\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.00000 6.92820i 0.657596 1.13899i −0.323640 0.946180i \(-0.604907\pi\)
0.981236 0.192809i \(-0.0617599\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.50000 9.52628i 0.802257 1.38955i −0.115870 0.993264i \(-0.536965\pi\)
0.918127 0.396286i \(-0.129701\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.50000 4.33013i −0.343401 0.594789i 0.641661 0.766989i \(-0.278246\pi\)
−0.985062 + 0.172200i \(0.944912\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.50000 2.59808i −0.195283 0.338241i 0.751710 0.659494i \(-0.229229\pi\)
−0.946993 + 0.321253i \(0.895896\pi\)
\(60\) 0 0
\(61\) −0.500000 + 0.866025i −0.0640184 + 0.110883i −0.896258 0.443533i \(-0.853725\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) −1.50000 + 7.79423i −0.188982 + 0.981981i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.50000 6.06218i −0.427593 0.740613i 0.569066 0.822292i \(-0.307305\pi\)
−0.996659 + 0.0816792i \(0.973972\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 0 0
\(73\) 1.00000 + 1.73205i 0.117041 + 0.202721i 0.918594 0.395203i \(-0.129326\pi\)
−0.801553 + 0.597924i \(0.795992\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00000 1.73205i −0.227921 0.197386i
\(78\) 0 0
\(79\) −7.00000 + 12.1244i −0.787562 + 1.36410i 0.139895 + 0.990166i \(0.455323\pi\)
−0.927457 + 0.373930i \(0.878010\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.00000 13.8564i 0.847998 1.46878i −0.0349934 0.999388i \(-0.511141\pi\)
0.882992 0.469389i \(-0.155526\pi\)
\(90\) 0 0
\(91\) 2.50000 0.866025i 0.262071 0.0907841i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) 3.00000 5.19615i 0.295599 0.511992i −0.679525 0.733652i \(-0.737814\pi\)
0.975124 + 0.221660i \(0.0711475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) 0 0
\(109\) 6.00000 + 10.3923i 0.574696 + 0.995402i 0.996075 + 0.0885176i \(0.0282129\pi\)
−0.421379 + 0.906885i \(0.638454\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.50000 + 2.59808i −0.138675 + 0.240192i
\(118\) 0 0
\(119\) −2.00000 1.73205i −0.183340 0.158777i
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.00000 0.532414 0.266207 0.963916i \(-0.414230\pi\)
0.266207 + 0.963916i \(0.414230\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.00000 + 8.66025i −0.436852 + 0.756650i −0.997445 0.0714417i \(-0.977240\pi\)
0.560593 + 0.828092i \(0.310573\pi\)
\(132\) 0 0
\(133\) −2.50000 + 12.9904i −0.216777 + 1.12641i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.500000 0.866025i −0.0418121 0.0724207i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) −7.50000 12.9904i −0.610341 1.05714i −0.991183 0.132502i \(-0.957699\pi\)
0.380841 0.924640i \(-0.375634\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.50000 6.06218i −0.279330 0.483814i 0.691888 0.722005i \(-0.256779\pi\)
−0.971219 + 0.238190i \(0.923446\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 + 5.19615i −0.0788110 + 0.409514i
\(162\) 0 0
\(163\) 3.50000 6.06218i 0.274141 0.474826i −0.695777 0.718258i \(-0.744940\pi\)
0.969918 + 0.243432i \(0.0782731\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.0000 1.47026 0.735132 0.677924i \(-0.237120\pi\)
0.735132 + 0.677924i \(0.237120\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −7.50000 12.9904i −0.573539 0.993399i
\(172\) 0 0
\(173\) −7.50000 + 12.9904i −0.570214 + 0.987640i 0.426329 + 0.904568i \(0.359807\pi\)
−0.996544 + 0.0830722i \(0.973527\pi\)
\(174\) 0 0
\(175\) −10.0000 8.66025i −0.755929 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.00000 1.73205i −0.0747435 0.129460i 0.826231 0.563331i \(-0.190480\pi\)
−0.900975 + 0.433872i \(0.857147\pi\)
\(180\) 0 0
\(181\) −23.0000 −1.70958 −0.854788 0.518977i \(-0.826313\pi\)
−0.854788 + 0.518977i \(0.826313\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.500000 + 0.866025i −0.0365636 + 0.0633300i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.00000 + 3.46410i −0.144715 + 0.250654i −0.929267 0.369410i \(-0.879560\pi\)
0.784552 + 0.620063i \(0.212893\pi\)
\(192\) 0 0
\(193\) −2.00000 3.46410i −0.143963 0.249351i 0.785022 0.619467i \(-0.212651\pi\)
−0.928986 + 0.370116i \(0.879318\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 5.00000 + 8.66025i 0.354441 + 0.613909i 0.987022 0.160585i \(-0.0513380\pi\)
−0.632581 + 0.774494i \(0.718005\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 12.5000 4.33013i 0.877328 0.303915i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −3.00000 5.19615i −0.208514 0.361158i
\(208\) 0 0
\(209\) 5.00000 0.345857
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 + 13.8564i 1.08615 + 0.940634i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.500000 0.866025i −0.0336336 0.0582552i
\(222\) 0 0
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 0 0
\(225\) 15.0000 1.00000
\(226\) 0 0
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) 1.00000 1.73205i 0.0660819 0.114457i −0.831092 0.556136i \(-0.812283\pi\)
0.897173 + 0.441679i \(0.145617\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5000 + 18.1865i −0.687878 + 1.19144i 0.284645 + 0.958633i \(0.408124\pi\)
−0.972523 + 0.232806i \(0.925209\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) −6.00000 10.3923i −0.386494 0.669427i 0.605481 0.795860i \(-0.292981\pi\)
−0.991975 + 0.126432i \(0.959647\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −2.50000 + 4.33013i −0.159071 + 0.275519i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 7.00000 12.1244i 0.436648 0.756297i −0.560781 0.827964i \(-0.689499\pi\)
0.997429 + 0.0716680i \(0.0228322\pi\)
\(258\) 0 0
\(259\) −4.00000 + 20.7846i −0.248548 + 1.29149i
\(260\) 0 0
\(261\) −7.50000 + 12.9904i −0.464238 + 0.804084i
\(262\) 0 0
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 2.50000 + 4.33013i 0.152428 + 0.264013i 0.932119 0.362151i \(-0.117958\pi\)
−0.779692 + 0.626164i \(0.784624\pi\)
\(270\) 0 0
\(271\) −9.50000 + 16.4545i −0.577084 + 0.999539i 0.418728 + 0.908112i \(0.362476\pi\)
−0.995812 + 0.0914269i \(0.970857\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.50000 + 4.33013i −0.150756 + 0.261116i
\(276\) 0 0
\(277\) −11.5000 19.9186i −0.690968 1.19679i −0.971521 0.236953i \(-0.923851\pi\)
0.280553 0.959839i \(-0.409482\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) −3.00000 5.19615i −0.178331 0.308879i 0.762978 0.646425i \(-0.223737\pi\)
−0.941309 + 0.337546i \(0.890403\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.00000 13.8564i 0.470588 0.815083i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −18.0000 −1.05157 −0.525786 0.850617i \(-0.676229\pi\)
−0.525786 + 0.850617i \(0.676229\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.00000 + 1.73205i −0.0578315 + 0.100167i
\(300\) 0 0
\(301\) −15.0000 + 5.19615i −0.864586 + 0.299501i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000 + 27.7128i 0.907277 + 1.57145i 0.817832 + 0.575458i \(0.195176\pi\)
0.0894452 + 0.995992i \(0.471491\pi\)
\(312\) 0 0
\(313\) −9.00000 + 15.5885i −0.508710 + 0.881112i 0.491239 + 0.871025i \(0.336544\pi\)
−0.999949 + 0.0100869i \(0.996789\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −13.0000 + 22.5167i −0.730153 + 1.26466i 0.226665 + 0.973973i \(0.427218\pi\)
−0.956818 + 0.290689i \(0.906116\pi\)
\(318\) 0 0
\(319\) −2.50000 4.33013i −0.139973 0.242441i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.00000 0.278207
\(324\) 0 0
\(325\) −2.50000 4.33013i −0.138675 0.240192i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −5.50000 + 28.5788i −0.303225 + 1.57560i
\(330\) 0 0
\(331\) −6.00000 + 10.3923i −0.329790 + 0.571213i −0.982470 0.186421i \(-0.940311\pi\)
0.652680 + 0.757634i \(0.273645\pi\)
\(332\) 0 0
\(333\) −12.0000 20.7846i −0.657596 1.13899i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 15.0000 0.817102 0.408551 0.912735i \(-0.366034\pi\)
0.408551 + 0.912735i \(0.366034\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.00000 6.92820i 0.216612 0.375183i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 + 3.46410i 0.107366 + 0.185963i 0.914702 0.404128i \(-0.132425\pi\)
−0.807337 + 0.590091i \(0.799092\pi\)
\(348\) 0 0
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.00000 + 15.5885i 0.479022 + 0.829690i 0.999711 0.0240566i \(-0.00765819\pi\)
−0.520689 + 0.853746i \(0.674325\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.00000 + 13.8564i −0.422224 + 0.731313i −0.996157 0.0875892i \(-0.972084\pi\)
0.573933 + 0.818902i \(0.305417\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −5.00000 8.66025i −0.260998 0.452062i 0.705509 0.708700i \(-0.250718\pi\)
−0.966507 + 0.256639i \(0.917385\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.0000 + 8.66025i 0.519174 + 0.449618i
\(372\) 0 0
\(373\) −15.5000 + 26.8468i −0.802560 + 1.39007i 0.115367 + 0.993323i \(0.463196\pi\)
−0.917926 + 0.396751i \(0.870138\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.00000 0.257513
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 12.0000 20.7846i 0.613171 1.06204i −0.377531 0.925997i \(-0.623227\pi\)
0.990702 0.136047i \(-0.0434398\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.00000 15.5885i 0.457496 0.792406i
\(388\) 0 0
\(389\) 9.50000 + 16.4545i 0.481669 + 0.834275i 0.999779 0.0210389i \(-0.00669738\pi\)
−0.518110 + 0.855314i \(0.673364\pi\)
\(390\) 0 0
\(391\) 2.00000 0.101144
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.00000 15.5885i 0.451697 0.782362i −0.546795 0.837267i \(-0.684152\pi\)
0.998492 + 0.0549046i \(0.0174855\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.0000 + 32.9090i −0.948815 + 1.64340i −0.200888 + 0.979614i \(0.564383\pi\)
−0.747927 + 0.663781i \(0.768951\pi\)
\(402\) 0 0
\(403\) 4.00000 + 6.92820i 0.199254 + 0.345118i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −18.0000 31.1769i −0.890043 1.54160i −0.839823 0.542861i \(-0.817341\pi\)
−0.0502202 0.998738i \(-0.515992\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.00000 + 5.19615i 0.295241 + 0.255686i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) −16.5000 28.5788i −0.802257 1.38955i
\(424\) 0 0
\(425\) −2.50000 + 4.33013i −0.121268 + 0.210042i
\(426\) 0 0
\(427\) 0.500000 2.59808i 0.0241967 0.125730i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.00000 8.66025i −0.239182 0.414276i
\(438\) 0 0
\(439\) 11.0000 19.0526i 0.525001 0.909329i −0.474575 0.880215i \(-0.657398\pi\)
0.999576 0.0291138i \(-0.00926853\pi\)
\(440\) 0 0
\(441\) −3.00000 20.7846i −0.142857 0.989743i
\(442\) 0 0
\(443\) 6.00000 10.3923i 0.285069 0.493753i −0.687557 0.726130i \(-0.741317\pi\)
0.972626 + 0.232377i \(0.0746503\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i \(-0.661289\pi\)
0.999857 0.0168929i \(-0.00537742\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.0000 1.67669 0.838344 0.545142i \(-0.183524\pi\)
0.838344 + 0.545142i \(0.183524\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −21.0000 + 36.3731i −0.971764 + 1.68314i −0.281539 + 0.959550i \(0.590845\pi\)
−0.690225 + 0.723595i \(0.742488\pi\)
\(468\) 0 0
\(469\) 14.0000 + 12.1244i 0.646460 + 0.559851i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) 25.0000 1.14708
\(476\) 0 0
\(477\) −15.0000 −0.686803
\(478\) 0 0
\(479\) −18.5000 32.0429i −0.845287 1.46408i −0.885372 0.464883i \(-0.846096\pi\)
0.0400855 0.999196i \(-0.487237\pi\)
\(480\) 0 0
\(481\) −4.00000 + 6.92820i −0.182384 + 0.315899i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.5000 + 32.0429i 0.838315 + 1.45200i 0.891303 + 0.453409i \(0.149792\pi\)
−0.0529875 + 0.998595i \(0.516874\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.0000 1.17336 0.586682 0.809818i \(-0.300434\pi\)
0.586682 + 0.809818i \(0.300434\pi\)
\(492\) 0 0
\(493\) −2.50000 4.33013i −0.112594 0.195019i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.5000 + 7.79423i −1.00926 + 0.349619i
\(498\) 0 0
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −20.0000 −0.891756 −0.445878 0.895094i \(-0.647108\pi\)
−0.445878 + 0.895094i \(0.647108\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6.00000 10.3923i 0.265945 0.460631i −0.701866 0.712309i \(-0.747649\pi\)
0.967811 + 0.251679i \(0.0809826\pi\)
\(510\) 0 0
\(511\) −4.00000 3.46410i −0.176950 0.153243i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 11.0000 0.483779
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.00000 + 12.1244i 0.306676 + 0.531178i 0.977633 0.210318i \(-0.0674500\pi\)
−0.670957 + 0.741496i \(0.734117\pi\)
\(522\) 0 0
\(523\) 13.0000 22.5167i 0.568450 0.984585i −0.428269 0.903651i \(-0.640876\pi\)
0.996719 0.0809336i \(-0.0257902\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.00000 6.92820i 0.174243 0.301797i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.50000 + 2.59808i 0.279975 + 0.111907i
\(540\) 0 0
\(541\) 12.0000 20.7846i 0.515920 0.893600i −0.483909 0.875118i \(-0.660783\pi\)
0.999829 0.0184818i \(-0.00588327\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 38.0000 1.62476 0.812381 0.583127i \(-0.198171\pi\)
0.812381 + 0.583127i \(0.198171\pi\)
\(548\) 0 0
\(549\) 1.50000 + 2.59808i 0.0640184 + 0.110883i
\(550\) 0 0
\(551\) −12.5000 + 21.6506i −0.532518 + 0.922348i
\(552\) 0 0
\(553\) 7.00000 36.3731i 0.297670 1.54674i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.0000 + 25.9808i 0.635570 + 1.10084i 0.986394 + 0.164399i \(0.0525683\pi\)
−0.350824 + 0.936442i \(0.614098\pi\)
\(558\) 0 0
\(559\) −6.00000 −0.253773
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 18.0000 + 15.5885i 0.755929 + 0.654654i
\(568\) 0 0
\(569\) 7.50000 12.9904i 0.314416 0.544585i −0.664897 0.746935i \(-0.731525\pi\)
0.979313 + 0.202350i \(0.0648579\pi\)
\(570\) 0 0
\(571\) −22.0000 38.1051i −0.920671 1.59465i −0.798379 0.602155i \(-0.794309\pi\)
−0.122292 0.992494i \(-0.539025\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.0000 0.417029
\(576\) 0 0
\(577\) −7.00000 12.1244i −0.291414 0.504744i 0.682730 0.730670i \(-0.260792\pi\)
−0.974144 + 0.225927i \(0.927459\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −20.0000 + 6.92820i −0.829740 + 0.287430i
\(582\) 0 0
\(583\) 2.50000 4.33013i 0.103539 0.179336i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −33.0000 −1.36206 −0.681028 0.732257i \(-0.738467\pi\)
−0.681028 + 0.732257i \(0.738467\pi\)
\(588\) 0 0
\(589\) −40.0000 −1.64817
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.00000 13.8564i 0.328521 0.569014i −0.653698 0.756756i \(-0.726783\pi\)
0.982219 + 0.187741i \(0.0601166\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) 17.0000 0.693444 0.346722 0.937968i \(-0.387295\pi\)
0.346722 + 0.937968i \(0.387295\pi\)
\(602\) 0 0
\(603\) −21.0000 −0.855186
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 11.0000 19.0526i 0.446476 0.773320i −0.551678 0.834058i \(-0.686012\pi\)
0.998154 + 0.0607380i \(0.0193454\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.50000 + 9.52628i −0.222506 + 0.385392i
\(612\) 0 0
\(613\) −8.00000 13.8564i −0.323117 0.559655i 0.658012 0.753007i \(-0.271397\pi\)
−0.981129 + 0.193352i \(0.938064\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) −18.0000 31.1769i −0.723481 1.25311i −0.959596 0.281381i \(-0.909208\pi\)
0.236115 0.971725i \(-0.424126\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.00000 + 41.5692i −0.320513 + 1.66544i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5.50000 + 4.33013i −0.217918 + 0.171566i
\(638\) 0 0
\(639\) 13.5000 23.3827i 0.534052 0.925005i
\(640\) 0 0
\(641\) −9.00000 15.5885i −0.355479 0.615707i 0.631721 0.775196i \(-0.282349\pi\)
−0.987200 + 0.159489i \(0.949015\pi\)
\(642\) 0 0
\(643\) −21.0000 −0.828159 −0.414080 0.910241i \(-0.635896\pi\)
−0.414080 + 0.910241i \(0.635896\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.00000 15.5885i −0.353827 0.612845i 0.633090 0.774078i \(-0.281786\pi\)
−0.986916 + 0.161233i \(0.948453\pi\)
\(648\) 0 0
\(649\) 1.50000 2.59808i 0.0588802 0.101983i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) 40.0000 1.55818 0.779089 0.626913i \(-0.215682\pi\)
0.779089 + 0.626913i \(0.215682\pi\)
\(660\) 0 0
\(661\) 16.0000 + 27.7128i 0.622328 + 1.07790i 0.989051 + 0.147573i \(0.0471463\pi\)
−0.366723 + 0.930330i \(0.619520\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.00000 + 8.66025i −0.193601 + 0.335326i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5000 23.3827i 0.518847 0.898670i −0.480913 0.876768i \(-0.659695\pi\)
0.999760 0.0219013i \(-0.00697196\pi\)
\(678\) 0 0
\(679\) −5.00000 + 1.73205i −0.191882 + 0.0664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 41.5692i −0.918334 1.59060i −0.801945 0.597398i \(-0.796201\pi\)
−0.116390 0.993204i \(-0.537132\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.50000 + 4.33013i 0.0952424 + 0.164965i
\(690\) 0 0
\(691\) 7.50000 12.9904i 0.285313 0.494177i −0.687372 0.726306i \(-0.741236\pi\)
0.972685 + 0.232128i \(0.0745690\pi\)
\(692\) 0 0
\(693\) −7.50000 + 2.59808i −0.284901 + 0.0986928i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) −20.0000 34.6410i −0.754314 1.30651i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000 + 31.1769i 1.35392 + 1.17253i
\(708\) 0 0
\(709\) −1.00000 + 1.73205i −0.0375558 + 0.0650485i −0.884192 0.467123i \(-0.845291\pi\)
0.846637 + 0.532172i \(0.178624\pi\)
\(710\) 0 0
\(711\) 21.0000 + 36.3731i 0.787562 + 1.36410i
\(712\) 0 0
\(713\) −16.0000 −0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.0000 25.9808i 0.559406 0.968919i −0.438141 0.898906i \(-0.644363\pi\)
0.997546 0.0700124i \(-0.0223039\pi\)
\(720\) 0 0
\(721\) −3.00000 + 15.5885i −0.111726 + 0.580544i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.5000 21.6506i −0.464238 0.804084i
\(726\) 0 0
\(727\) 4.00000 0.148352 0.0741759 0.997245i \(-0.476367\pi\)
0.0741759 + 0.997245i \(0.476367\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 3.00000 + 5.19615i 0.110959 + 0.192187i
\(732\) 0 0
\(733\) −13.0000 + 22.5167i −0.480166 + 0.831672i −0.999741 0.0227529i \(-0.992757\pi\)
0.519575 + 0.854425i \(0.326090\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.50000 6.06218i 0.128924 0.223303i
\(738\) 0 0
\(739\) −2.00000 3.46410i −0.0735712 0.127429i 0.826893 0.562360i \(-0.190106\pi\)
−0.900464 + 0.434930i \(0.856773\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.0000 0.990534 0.495267 0.868741i \(-0.335070\pi\)
0.495267 + 0.868741i \(0.335070\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000 20.7846i 0.439057 0.760469i
\(748\) 0 0
\(749\) 4.00000 20.7846i 0.146157 0.759453i
\(750\) 0 0
\(751\) 14.0000 24.2487i 0.510867 0.884848i −0.489053 0.872254i \(-0.662658\pi\)
0.999921 0.0125942i \(-0.00400897\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 33.0000 1.19941 0.599703 0.800223i \(-0.295286\pi\)
0.599703 + 0.800223i \(0.295286\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 41.5692i 0.869999 1.50688i 0.00800331 0.999968i \(-0.497452\pi\)
0.861996 0.506915i \(-0.169214\pi\)
\(762\) 0 0
\(763\) −24.0000 20.7846i −0.868858 0.752453i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.50000 + 2.59808i 0.0541619 + 0.0938111i
\(768\) 0 0
\(769\) −46.0000 −1.65880 −0.829401 0.558653i \(-0.811318\pi\)
−0.829401 + 0.558653i \(0.811318\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −5.00000 8.66025i −0.179838 0.311488i 0.761987 0.647592i \(-0.224224\pi\)
−0.941825 + 0.336104i \(0.890891\pi\)
\(774\) 0 0
\(775\) 20.0000 34.6410i 0.718421 1.24434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 4.50000 + 7.79423i 0.161023 + 0.278899i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 5.50000 + 9.52628i 0.196054 + 0.339575i 0.947245 0.320509i \(-0.103854\pi\)
−0.751192 + 0.660084i \(0.770521\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.50000 + 0.866025i −0.0888898 + 0.0307923i
\(792\) 0 0
\(793\) 0.500000 0.866025i 0.0177555 0.0307535i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 54.0000 1.91278 0.956389 0.292096i \(-0.0943526\pi\)
0.956389 + 0.292096i \(0.0943526\pi\)
\(798\) 0 0
\(799\) 11.0000 0.389152
\(800\) 0 0
\(801\) −24.0000 41.5692i −0.847998 1.46878i
\(802\) 0 0
\(803\) −1.00000 + 1.73205i −0.0352892 + 0.0611227i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −4.50000 7.79423i −0.158212 0.274030i 0.776012 0.630718i \(-0.217239\pi\)
−0.934224 + 0.356687i \(0.883906\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.0000 25.9808i 0.524784 0.908952i
\(818\) 0 0
\(819\) 1.50000 7.79423i 0.0524142 0.272352i
\(820\) 0 0
\(821\) 6.00000 10.3923i 0.209401 0.362694i −0.742125 0.670262i \(-0.766182\pi\)
0.951526 + 0.307568i \(0.0995151\pi\)
\(822\) 0 0
\(823\) 18.0000 + 31.1769i 0.627441 + 1.08676i 0.988063 + 0.154047i \(0.0492308\pi\)
−0.360623 + 0.932712i \(0.617436\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.0000 1.14752 0.573761 0.819023i \(-0.305484\pi\)
0.573761 + 0.819023i \(0.305484\pi\)
\(828\) 0 0
\(829\) −13.5000 23.3827i −0.468874 0.812114i 0.530493 0.847690i \(-0.322007\pi\)
−0.999367 + 0.0355753i \(0.988674\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 6.50000 + 2.59808i 0.225212 + 0.0900180i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 37.0000 1.27738 0.638691 0.769463i \(-0.279476\pi\)
0.638691 + 0.769463i \(0.279476\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.00000 + 25.9808i −0.171802 + 0.892710i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.00000 13.8564i −0.274236 0.474991i
\(852\) 0 0
\(853\) 38.0000 1.30110 0.650548 0.759465i \(-0.274539\pi\)
0.650548 + 0.759465i \(0.274539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.5000 + 37.2391i 0.734426 + 1.27206i 0.954975 + 0.296687i \(0.0958819\pi\)
−0.220549 + 0.975376i \(0.570785\pi\)
\(858\) 0 0
\(859\) −20.0000 + 34.6410i −0.682391 + 1.18194i 0.291858 + 0.956462i \(0.405727\pi\)
−0.974249 + 0.225475i \(0.927607\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.00000 + 10.3923i −0.204242 + 0.353758i −0.949891 0.312581i \(-0.898806\pi\)
0.745649 + 0.666339i \(0.232140\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −14.0000 −0.474917
\(870\) 0 0
\(871\) 3.50000 + 6.06218i 0.118593 + 0.205409i
\(872\) 0 0
\(873\) 3.00000 5.19615i 0.101535 0.175863i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 16.0000 27.7128i 0.540282 0.935795i −0.458606 0.888640i \(-0.651651\pi\)
0.998888 0.0471555i \(-0.0150156\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) 0 0
\(883\) −24.0000 −0.807664 −0.403832 0.914833i \(-0.632322\pi\)
−0.403832 + 0.914833i \(0.632322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.00000 15.5885i 0.302190 0.523409i −0.674441 0.738328i \(-0.735615\pi\)
0.976632 + 0.214919i \(0.0689488\pi\)
\(888\) 0 0
\(889\) −15.0000 + 5.19615i −0.503084 + 0.174273i
\(890\) 0 0
\(891\) 4.50000 7.79423i 0.150756 0.261116i
\(892\) 0 0
\(893\) −27.5000 47.6314i −0.920252 1.59392i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 20.0000 + 34.6410i 0.667037 + 1.15534i
\(900\) 0 0
\(901\) 2.50000 4.33013i 0.0832871 0.144257i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −23.0000 39.8372i −0.763702 1.32277i −0.940930 0.338602i \(-0.890046\pi\)
0.177227 0.984170i \(-0.443287\pi\)
\(908\) 0 0
\(909\) −54.0000 −1.79107
\(910\) 0 0
\(911\) −34.0000 −1.12647 −0.563235 0.826297i \(-0.690443\pi\)
−0.563235 + 0.826297i \(0.690443\pi\)
\(912\) 0 0
\(913\) 4.00000 + 6.92820i 0.132381 + 0.229290i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5.00000 25.9808i 0.165115 0.857960i
\(918\) 0 0
\(919\) −19.0000 + 32.9090i −0.626752 + 1.08557i 0.361447 + 0.932393i \(0.382283\pi\)
−0.988199 + 0.153174i \(0.951051\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.00000 −0.296239
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) 0 0
\(927\) −9.00000 15.5885i −0.295599 0.511992i
\(928\) 0 0
\(929\) −23.0000 + 39.8372i −0.754606 + 1.30702i 0.190965 + 0.981597i \(0.438838\pi\)
−0.945570 + 0.325418i \(0.894495\pi\)
\(930\) 0 0
\(931\) −5.00000 34.6410i −0.163868 1.13531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −41.0000 −1.33941 −0.669706 0.742627i \(-0.733580\pi\)
−0.669706 + 0.742627i \(0.733580\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 10.3923i −0.195594 0.338779i 0.751501 0.659732i \(-0.229330\pi\)
−0.947095 + 0.320953i \(0.895997\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.50000 + 6.06218i −0.113735 + 0.196994i −0.917273 0.398258i \(-0.869615\pi\)
0.803539 + 0.595253i \(0.202948\pi\)
\(948\) 0 0
\(949\) −1.00000 1.73205i −0.0324614 0.0562247i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.00000 0.291539 0.145769 0.989319i \(-0.453434\pi\)
0.145769 + 0.989319i \(0.453434\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −24.0000 20.7846i −0.775000 0.671170i
\(960\) 0 0
\(961\) −16.5000 + 28.5788i −0.532258 + 0.921898i
\(962\) 0 0
\(963\) 12.0000 + 20.7846i 0.386695 + 0.669775i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −23.0000 −0.739630 −0.369815 0.929105i \(-0.620579\pi\)
−0.369815 + 0.929105i \(0.620579\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −30.0000 + 51.9615i −0.962746 + 1.66752i −0.247193 + 0.968966i \(0.579508\pi\)
−0.715553 + 0.698558i \(0.753825\pi\)
\(972\) 0 0
\(973\) 40.0000 13.8564i 1.28234 0.444216i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.00000 8.66025i −0.159964 0.277066i 0.774891 0.632094i \(-0.217805\pi\)
−0.934856 + 0.355028i \(0.884471\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) 36.0000 1.14939
\(982\) 0 0
\(983\) 6.50000 + 11.2583i 0.207318 + 0.359085i 0.950869 0.309594i \(-0.100193\pi\)
−0.743551 + 0.668679i \(0.766860\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 6.00000 10.3923i 0.190789 0.330456i
\(990\) 0 0
\(991\) −14.0000 24.2487i −0.444725 0.770286i 0.553308 0.832977i \(-0.313365\pi\)
−0.998033 + 0.0626908i \(0.980032\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 7.50000 + 12.9904i 0.237527 + 0.411409i 0.960004 0.279986i \(-0.0903297\pi\)
−0.722477 + 0.691395i \(0.756996\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.r.f.625.1 2
4.3 odd 2 182.2.f.a.79.1 yes 2
7.4 even 3 inner 1456.2.r.f.417.1 2
12.11 even 2 1638.2.j.c.1171.1 2
28.3 even 6 1274.2.f.q.1145.1 2
28.11 odd 6 182.2.f.a.53.1 2
28.19 even 6 1274.2.a.f.1.1 1
28.23 odd 6 1274.2.a.e.1.1 1
28.27 even 2 1274.2.f.q.79.1 2
84.11 even 6 1638.2.j.c.235.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.f.a.53.1 2 28.11 odd 6
182.2.f.a.79.1 yes 2 4.3 odd 2
1274.2.a.e.1.1 1 28.23 odd 6
1274.2.a.f.1.1 1 28.19 even 6
1274.2.f.q.79.1 2 28.27 even 2
1274.2.f.q.1145.1 2 28.3 even 6
1456.2.r.f.417.1 2 7.4 even 3 inner
1456.2.r.f.625.1 2 1.1 even 1 trivial
1638.2.j.c.235.1 2 84.11 even 6
1638.2.j.c.1171.1 2 12.11 even 2