Properties

Label 1274.2.g.p.393.1
Level $1274$
Weight $2$
Character 1274.393
Analytic conductor $10.173$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1274,2,Mod(295,1274)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1274, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1274.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1274 = 2 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1274.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1729412175\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.23207289578928.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 3x^{8} + 13x^{7} + x^{6} - 39x^{5} + 3x^{4} + 117x^{3} - 81x^{2} - 162x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 393.1
Root \(-1.73100 - 0.0603688i\) of defining polynomial
Character \(\chi\) \(=\) 1274.393
Dual form 1274.2.g.p.295.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.31322 - 2.27456i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.83556 q^{5} +(-1.31322 + 2.27456i) q^{6} +1.00000 q^{8} +(-1.94908 + 3.37591i) q^{9} +(-0.917780 - 1.58964i) q^{10} +(0.0436264 + 0.0755631i) q^{11} +2.62644 q^{12} +(3.59786 + 0.235328i) q^{13} +(-2.41049 - 4.17509i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.40546 + 2.43433i) q^{17} +3.89817 q^{18} +(3.48542 - 6.03693i) q^{19} +(-0.917780 + 1.58964i) q^{20} +(0.0436264 - 0.0755631i) q^{22} +(-0.813218 - 1.40854i) q^{23} +(-1.31322 - 2.27456i) q^{24} -1.63072 q^{25} +(-1.59513 - 3.23350i) q^{26} +2.35899 q^{27} +(-1.05151 - 1.82126i) q^{29} +(-2.41049 + 4.17509i) q^{30} +7.42160 q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.114582 - 0.198462i) q^{33} +2.81092 q^{34} +(-1.94908 - 3.37591i) q^{36} +(-4.41108 - 7.64022i) q^{37} -6.97084 q^{38} +(-4.18951 - 8.49260i) q^{39} +1.83556 q^{40} +(-5.21139 - 9.02639i) q^{41} +(2.99057 - 5.17982i) q^{43} -0.0872528 q^{44} +(-3.57766 + 6.19669i) q^{45} +(-0.813218 + 1.40854i) q^{46} +8.00118 q^{47} +(-1.31322 + 2.27456i) q^{48} +(0.815359 + 1.41224i) q^{50} +7.38270 q^{51} +(-2.00273 + 2.99818i) q^{52} +0.894821 q^{53} +(-1.17949 - 2.04294i) q^{54} +(0.0800789 + 0.138701i) q^{55} -18.3085 q^{57} +(-1.05151 + 1.82126i) q^{58} +(3.41945 - 5.92267i) q^{59} +4.82098 q^{60} +(-4.43283 + 7.67789i) q^{61} +(-3.71080 - 6.42729i) q^{62} +1.00000 q^{64} +(6.60409 + 0.431958i) q^{65} -0.229164 q^{66} +(-3.30485 - 5.72416i) q^{67} +(-1.40546 - 2.43433i) q^{68} +(-2.13587 + 3.69943i) q^{69} +(-3.79147 + 6.56701i) q^{71} +(-1.94908 + 3.37591i) q^{72} -10.9094 q^{73} +(-4.41108 + 7.64022i) q^{74} +(2.14149 + 3.70917i) q^{75} +(3.48542 + 6.03693i) q^{76} +(-5.26005 + 7.87452i) q^{78} -9.21793 q^{79} +(-0.917780 - 1.58964i) q^{80} +(2.74939 + 4.76209i) q^{81} +(-5.21139 + 9.02639i) q^{82} +16.8793 q^{83} +(-2.57980 + 4.46835i) q^{85} -5.98114 q^{86} +(-2.76171 + 4.78343i) q^{87} +(0.0436264 + 0.0755631i) q^{88} +(4.95471 + 8.58181i) q^{89} +7.15533 q^{90} +1.62644 q^{92} +(-9.74617 - 16.8809i) q^{93} +(-4.00059 - 6.92923i) q^{94} +(6.39770 - 11.0811i) q^{95} +2.62644 q^{96} +(1.42051 - 2.46040i) q^{97} -0.340126 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 5 q^{2} - q^{3} - 5 q^{4} + 4 q^{5} - q^{6} + 10 q^{8} - 4 q^{9} - 2 q^{10} - 4 q^{11} + 2 q^{12} - 6 q^{13} + 3 q^{15} - 5 q^{16} - 3 q^{17} + 8 q^{18} - 5 q^{19} - 2 q^{20} - 4 q^{22} + 4 q^{23}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1274\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.31322 2.27456i −0.758187 1.31322i −0.943774 0.330591i \(-0.892752\pi\)
0.185587 0.982628i \(-0.440581\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.83556 0.820887 0.410444 0.911886i \(-0.365374\pi\)
0.410444 + 0.911886i \(0.365374\pi\)
\(6\) −1.31322 + 2.27456i −0.536119 + 0.928586i
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) −1.94908 + 3.37591i −0.649695 + 1.12530i
\(10\) −0.917780 1.58964i −0.290228 0.502689i
\(11\) 0.0436264 + 0.0755631i 0.0131539 + 0.0227831i 0.872527 0.488565i \(-0.162480\pi\)
−0.859374 + 0.511348i \(0.829146\pi\)
\(12\) 2.62644 0.758187
\(13\) 3.59786 + 0.235328i 0.997868 + 0.0652682i
\(14\) 0 0
\(15\) −2.41049 4.17509i −0.622386 1.07800i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.40546 + 2.43433i −0.340874 + 0.590411i −0.984595 0.174849i \(-0.944056\pi\)
0.643721 + 0.765260i \(0.277390\pi\)
\(18\) 3.89817 0.918807
\(19\) 3.48542 6.03693i 0.799611 1.38497i −0.120259 0.992743i \(-0.538373\pi\)
0.919870 0.392224i \(-0.128294\pi\)
\(20\) −0.917780 + 1.58964i −0.205222 + 0.355455i
\(21\) 0 0
\(22\) 0.0436264 0.0755631i 0.00930118 0.0161101i
\(23\) −0.813218 1.40854i −0.169568 0.293700i 0.768700 0.639609i \(-0.220904\pi\)
−0.938268 + 0.345909i \(0.887570\pi\)
\(24\) −1.31322 2.27456i −0.268060 0.464293i
\(25\) −1.63072 −0.326144
\(26\) −1.59513 3.23350i −0.312831 0.634142i
\(27\) 2.35899 0.453987
\(28\) 0 0
\(29\) −1.05151 1.82126i −0.195260 0.338200i 0.751726 0.659476i \(-0.229222\pi\)
−0.946986 + 0.321276i \(0.895888\pi\)
\(30\) −2.41049 + 4.17509i −0.440093 + 0.762264i
\(31\) 7.42160 1.33296 0.666479 0.745524i \(-0.267801\pi\)
0.666479 + 0.745524i \(0.267801\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.114582 0.198462i 0.0199462 0.0345478i
\(34\) 2.81092 0.482068
\(35\) 0 0
\(36\) −1.94908 3.37591i −0.324847 0.562652i
\(37\) −4.41108 7.64022i −0.725177 1.25604i −0.958901 0.283741i \(-0.908424\pi\)
0.233724 0.972303i \(-0.424909\pi\)
\(38\) −6.97084 −1.13082
\(39\) −4.18951 8.49260i −0.670859 1.35990i
\(40\) 1.83556 0.290228
\(41\) −5.21139 9.02639i −0.813882 1.40969i −0.910128 0.414327i \(-0.864017\pi\)
0.0962458 0.995358i \(-0.469317\pi\)
\(42\) 0 0
\(43\) 2.99057 5.17982i 0.456058 0.789915i −0.542691 0.839933i \(-0.682594\pi\)
0.998748 + 0.0500176i \(0.0159277\pi\)
\(44\) −0.0872528 −0.0131539
\(45\) −3.57766 + 6.19669i −0.533326 + 0.923748i
\(46\) −0.813218 + 1.40854i −0.119903 + 0.207677i
\(47\) 8.00118 1.16709 0.583546 0.812080i \(-0.301665\pi\)
0.583546 + 0.812080i \(0.301665\pi\)
\(48\) −1.31322 + 2.27456i −0.189547 + 0.328305i
\(49\) 0 0
\(50\) 0.815359 + 1.41224i 0.115309 + 0.199721i
\(51\) 7.38270 1.03378
\(52\) −2.00273 + 2.99818i −0.277729 + 0.415772i
\(53\) 0.894821 0.122913 0.0614566 0.998110i \(-0.480425\pi\)
0.0614566 + 0.998110i \(0.480425\pi\)
\(54\) −1.17949 2.04294i −0.160509 0.278009i
\(55\) 0.0800789 + 0.138701i 0.0107978 + 0.0187024i
\(56\) 0 0
\(57\) −18.3085 −2.42502
\(58\) −1.05151 + 1.82126i −0.138069 + 0.239143i
\(59\) 3.41945 5.92267i 0.445175 0.771066i −0.552889 0.833255i \(-0.686475\pi\)
0.998064 + 0.0621889i \(0.0198081\pi\)
\(60\) 4.82098 0.622386
\(61\) −4.43283 + 7.67789i −0.567566 + 0.983053i 0.429240 + 0.903191i \(0.358782\pi\)
−0.996806 + 0.0798628i \(0.974552\pi\)
\(62\) −3.71080 6.42729i −0.471272 0.816267i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.60409 + 0.431958i 0.819137 + 0.0535778i
\(66\) −0.229164 −0.0282081
\(67\) −3.30485 5.72416i −0.403751 0.699318i 0.590424 0.807093i \(-0.298961\pi\)
−0.994175 + 0.107776i \(0.965627\pi\)
\(68\) −1.40546 2.43433i −0.170437 0.295205i
\(69\) −2.13587 + 3.69943i −0.257128 + 0.445359i
\(70\) 0 0
\(71\) −3.79147 + 6.56701i −0.449964 + 0.779361i −0.998383 0.0568427i \(-0.981897\pi\)
0.548419 + 0.836204i \(0.315230\pi\)
\(72\) −1.94908 + 3.37591i −0.229702 + 0.397855i
\(73\) −10.9094 −1.27685 −0.638425 0.769684i \(-0.720414\pi\)
−0.638425 + 0.769684i \(0.720414\pi\)
\(74\) −4.41108 + 7.64022i −0.512778 + 0.888157i
\(75\) 2.14149 + 3.70917i 0.247278 + 0.428298i
\(76\) 3.48542 + 6.03693i 0.399805 + 0.692483i
\(77\) 0 0
\(78\) −5.26005 + 7.87452i −0.595583 + 0.891614i
\(79\) −9.21793 −1.03710 −0.518549 0.855048i \(-0.673528\pi\)
−0.518549 + 0.855048i \(0.673528\pi\)
\(80\) −0.917780 1.58964i −0.102611 0.177727i
\(81\) 2.74939 + 4.76209i 0.305488 + 0.529121i
\(82\) −5.21139 + 9.02639i −0.575502 + 0.996798i
\(83\) 16.8793 1.85274 0.926372 0.376609i \(-0.122910\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(84\) 0 0
\(85\) −2.57980 + 4.46835i −0.279819 + 0.484661i
\(86\) −5.98114 −0.644963
\(87\) −2.76171 + 4.78343i −0.296087 + 0.512837i
\(88\) 0.0436264 + 0.0755631i 0.00465059 + 0.00805506i
\(89\) 4.95471 + 8.58181i 0.525198 + 0.909670i 0.999569 + 0.0293448i \(0.00934208\pi\)
−0.474371 + 0.880325i \(0.657325\pi\)
\(90\) 7.15533 0.754237
\(91\) 0 0
\(92\) 1.62644 0.169568
\(93\) −9.74617 16.8809i −1.01063 1.75046i
\(94\) −4.00059 6.92923i −0.412629 0.714695i
\(95\) 6.39770 11.0811i 0.656390 1.13690i
\(96\) 2.62644 0.268060
\(97\) 1.42051 2.46040i 0.144231 0.249816i −0.784855 0.619680i \(-0.787262\pi\)
0.929086 + 0.369864i \(0.120596\pi\)
\(98\) 0 0
\(99\) −0.340126 −0.0341840
\(100\) 0.815359 1.41224i 0.0815359 0.141224i
\(101\) 1.88300 + 3.26145i 0.187366 + 0.324527i 0.944371 0.328882i \(-0.106672\pi\)
−0.757005 + 0.653409i \(0.773338\pi\)
\(102\) −3.69135 6.39360i −0.365498 0.633061i
\(103\) −9.45771 −0.931896 −0.465948 0.884812i \(-0.654287\pi\)
−0.465948 + 0.884812i \(0.654287\pi\)
\(104\) 3.59786 + 0.235328i 0.352800 + 0.0230758i
\(105\) 0 0
\(106\) −0.447411 0.774938i −0.0434564 0.0752686i
\(107\) −3.67949 6.37307i −0.355710 0.616108i 0.631529 0.775352i \(-0.282428\pi\)
−0.987239 + 0.159244i \(0.949094\pi\)
\(108\) −1.17949 + 2.04294i −0.113497 + 0.196582i
\(109\) 3.92498 0.375945 0.187972 0.982174i \(-0.439808\pi\)
0.187972 + 0.982174i \(0.439808\pi\)
\(110\) 0.0800789 0.138701i 0.00763522 0.0132246i
\(111\) −11.5854 + 20.0665i −1.09964 + 1.90463i
\(112\) 0 0
\(113\) −7.47705 + 12.9506i −0.703382 + 1.21829i 0.263891 + 0.964553i \(0.414994\pi\)
−0.967272 + 0.253740i \(0.918339\pi\)
\(114\) 9.15424 + 15.8556i 0.857373 + 1.48501i
\(115\) −1.49271 2.58545i −0.139196 0.241095i
\(116\) 2.10301 0.195260
\(117\) −7.80699 + 11.6874i −0.721756 + 1.08050i
\(118\) −6.83891 −0.629573
\(119\) 0 0
\(120\) −2.41049 4.17509i −0.220047 0.381132i
\(121\) 5.49619 9.51969i 0.499654 0.865426i
\(122\) 8.86567 0.802660
\(123\) −13.6874 + 23.7072i −1.23415 + 2.13761i
\(124\) −3.71080 + 6.42729i −0.333239 + 0.577188i
\(125\) −12.1711 −1.08861
\(126\) 0 0
\(127\) −0.323239 0.559866i −0.0286828 0.0496800i 0.851328 0.524634i \(-0.175798\pi\)
−0.880010 + 0.474954i \(0.842465\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −15.7091 −1.38311
\(130\) −2.92796 5.93529i −0.256799 0.520560i
\(131\) −2.79634 −0.244317 −0.122159 0.992511i \(-0.538982\pi\)
−0.122159 + 0.992511i \(0.538982\pi\)
\(132\) 0.114582 + 0.198462i 0.00997308 + 0.0172739i
\(133\) 0 0
\(134\) −3.30485 + 5.72416i −0.285495 + 0.494492i
\(135\) 4.33006 0.372672
\(136\) −1.40546 + 2.43433i −0.120517 + 0.208742i
\(137\) 5.20854 9.02146i 0.444996 0.770755i −0.553056 0.833144i \(-0.686539\pi\)
0.998052 + 0.0623887i \(0.0198719\pi\)
\(138\) 4.27173 0.363634
\(139\) 6.12235 10.6042i 0.519291 0.899438i −0.480458 0.877018i \(-0.659530\pi\)
0.999749 0.0224200i \(-0.00713711\pi\)
\(140\) 0 0
\(141\) −10.5073 18.1992i −0.884874 1.53265i
\(142\) 7.58293 0.636346
\(143\) 0.139180 + 0.282132i 0.0116388 + 0.0235931i
\(144\) 3.89817 0.324847
\(145\) −1.93010 3.34303i −0.160286 0.277624i
\(146\) 5.45471 + 9.44783i 0.451435 + 0.781908i
\(147\) 0 0
\(148\) 8.82216 0.725177
\(149\) −11.0012 + 19.0546i −0.901253 + 1.56102i −0.0753825 + 0.997155i \(0.524018\pi\)
−0.825870 + 0.563861i \(0.809316\pi\)
\(150\) 2.14149 3.70917i 0.174852 0.302852i
\(151\) −11.8869 −0.967345 −0.483673 0.875249i \(-0.660698\pi\)
−0.483673 + 0.875249i \(0.660698\pi\)
\(152\) 3.48542 6.03693i 0.282705 0.489660i
\(153\) −5.47872 9.48941i −0.442928 0.767174i
\(154\) 0 0
\(155\) 13.6228 1.09421
\(156\) 9.44956 + 0.618073i 0.756570 + 0.0494855i
\(157\) −1.60038 −0.127724 −0.0638622 0.997959i \(-0.520342\pi\)
−0.0638622 + 0.997959i \(0.520342\pi\)
\(158\) 4.60897 + 7.98297i 0.366670 + 0.635091i
\(159\) −1.17510 2.03533i −0.0931912 0.161412i
\(160\) −0.917780 + 1.58964i −0.0725569 + 0.125672i
\(161\) 0 0
\(162\) 2.74939 4.76209i 0.216013 0.374145i
\(163\) 2.30469 3.99183i 0.180517 0.312664i −0.761540 0.648118i \(-0.775556\pi\)
0.942057 + 0.335454i \(0.108890\pi\)
\(164\) 10.4228 0.813882
\(165\) 0.210322 0.364289i 0.0163736 0.0283598i
\(166\) −8.43966 14.6179i −0.655044 1.13457i
\(167\) −9.67113 16.7509i −0.748374 1.29622i −0.948602 0.316473i \(-0.897501\pi\)
0.200227 0.979750i \(-0.435832\pi\)
\(168\) 0 0
\(169\) 12.8892 + 1.69335i 0.991480 + 0.130258i
\(170\) 5.15961 0.395724
\(171\) 13.5868 + 23.5330i 1.03901 + 1.79961i
\(172\) 2.99057 + 5.17982i 0.228029 + 0.394958i
\(173\) 7.10168 12.3005i 0.539931 0.935187i −0.458977 0.888448i \(-0.651784\pi\)
0.998907 0.0467389i \(-0.0148829\pi\)
\(174\) 5.52343 0.418730
\(175\) 0 0
\(176\) 0.0436264 0.0755631i 0.00328846 0.00569579i
\(177\) −17.9620 −1.35010
\(178\) 4.95471 8.58181i 0.371371 0.643234i
\(179\) 5.26777 + 9.12404i 0.393731 + 0.681963i 0.992938 0.118631i \(-0.0378507\pi\)
−0.599207 + 0.800594i \(0.704517\pi\)
\(180\) −3.57766 6.19669i −0.266663 0.461874i
\(181\) 18.5808 1.38110 0.690549 0.723285i \(-0.257369\pi\)
0.690549 + 0.723285i \(0.257369\pi\)
\(182\) 0 0
\(183\) 23.2851 1.72128
\(184\) −0.813218 1.40854i −0.0599513 0.103839i
\(185\) −8.09681 14.0241i −0.595289 1.03107i
\(186\) −9.74617 + 16.8809i −0.714624 + 1.23777i
\(187\) −0.245260 −0.0179352
\(188\) −4.00059 + 6.92923i −0.291773 + 0.505366i
\(189\) 0 0
\(190\) −12.7954 −0.928276
\(191\) −11.4140 + 19.7696i −0.825886 + 1.43048i 0.0753540 + 0.997157i \(0.475991\pi\)
−0.901240 + 0.433320i \(0.857342\pi\)
\(192\) −1.31322 2.27456i −0.0947734 0.164152i
\(193\) 1.46152 + 2.53143i 0.105203 + 0.182216i 0.913821 0.406117i \(-0.133118\pi\)
−0.808618 + 0.588334i \(0.799784\pi\)
\(194\) −2.84102 −0.203974
\(195\) −7.69010 15.5887i −0.550700 1.11633i
\(196\) 0 0
\(197\) 2.37415 + 4.11215i 0.169151 + 0.292979i 0.938122 0.346306i \(-0.112564\pi\)
−0.768970 + 0.639284i \(0.779231\pi\)
\(198\) 0.170063 + 0.294558i 0.0120859 + 0.0209333i
\(199\) 4.92265 8.52628i 0.348958 0.604412i −0.637107 0.770775i \(-0.719869\pi\)
0.986065 + 0.166363i \(0.0532024\pi\)
\(200\) −1.63072 −0.115309
\(201\) −8.67997 + 15.0341i −0.612238 + 1.06043i
\(202\) 1.88300 3.26145i 0.132488 0.229475i
\(203\) 0 0
\(204\) −3.69135 + 6.39360i −0.258446 + 0.447642i
\(205\) −9.56582 16.5685i −0.668106 1.15719i
\(206\) 4.72886 + 8.19062i 0.329475 + 0.570668i
\(207\) 6.34013 0.440669
\(208\) −1.59513 3.23350i −0.110603 0.224203i
\(209\) 0.608226 0.0420718
\(210\) 0 0
\(211\) 2.18356 + 3.78203i 0.150322 + 0.260366i 0.931346 0.364136i \(-0.118636\pi\)
−0.781024 + 0.624501i \(0.785302\pi\)
\(212\) −0.447411 + 0.774938i −0.0307283 + 0.0532230i
\(213\) 19.9161 1.36463
\(214\) −3.67949 + 6.37307i −0.251525 + 0.435654i
\(215\) 5.48937 9.50787i 0.374372 0.648431i
\(216\) 2.35899 0.160509
\(217\) 0 0
\(218\) −1.96249 3.39913i −0.132917 0.230218i
\(219\) 14.3264 + 24.8141i 0.968091 + 1.67678i
\(220\) −0.160158 −0.0107978
\(221\) −5.62951 + 8.42763i −0.378682 + 0.566904i
\(222\) 23.1709 1.55513
\(223\) −14.0542 24.3427i −0.941142 1.63011i −0.763298 0.646047i \(-0.776421\pi\)
−0.177844 0.984059i \(-0.556912\pi\)
\(224\) 0 0
\(225\) 3.17841 5.50517i 0.211894 0.367011i
\(226\) 14.9541 0.994732
\(227\) 13.3454 23.1150i 0.885767 1.53419i 0.0409354 0.999162i \(-0.486966\pi\)
0.844832 0.535032i \(-0.179700\pi\)
\(228\) 9.15424 15.8556i 0.606254 1.05006i
\(229\) 9.40945 0.621794 0.310897 0.950444i \(-0.399371\pi\)
0.310897 + 0.950444i \(0.399371\pi\)
\(230\) −1.49271 + 2.58545i −0.0984265 + 0.170480i
\(231\) 0 0
\(232\) −1.05151 1.82126i −0.0690347 0.119572i
\(233\) 23.0215 1.50819 0.754093 0.656767i \(-0.228077\pi\)
0.754093 + 0.656767i \(0.228077\pi\)
\(234\) 14.0251 + 0.917347i 0.916848 + 0.0599689i
\(235\) 14.6866 0.958051
\(236\) 3.41945 + 5.92267i 0.222588 + 0.385533i
\(237\) 12.1052 + 20.9668i 0.786315 + 1.36194i
\(238\) 0 0
\(239\) 11.0321 0.713610 0.356805 0.934179i \(-0.383866\pi\)
0.356805 + 0.934179i \(0.383866\pi\)
\(240\) −2.41049 + 4.17509i −0.155597 + 0.269501i
\(241\) −3.69969 + 6.40806i −0.238318 + 0.412779i −0.960232 0.279204i \(-0.909929\pi\)
0.721914 + 0.691983i \(0.243263\pi\)
\(242\) −10.9924 −0.706617
\(243\) 10.7596 18.6361i 0.690227 1.19551i
\(244\) −4.43283 7.67789i −0.283783 0.491527i
\(245\) 0 0
\(246\) 27.3748 1.74535
\(247\) 13.9607 20.8998i 0.888300 1.32982i
\(248\) 7.42160 0.471272
\(249\) −22.1662 38.3930i −1.40473 2.43306i
\(250\) 6.08554 + 10.5405i 0.384883 + 0.666638i
\(251\) −1.94394 + 3.36700i −0.122700 + 0.212523i −0.920832 0.389960i \(-0.872489\pi\)
0.798131 + 0.602483i \(0.205822\pi\)
\(252\) 0 0
\(253\) 0.0709556 0.122899i 0.00446094 0.00772657i
\(254\) −0.323239 + 0.559866i −0.0202818 + 0.0351291i
\(255\) 13.5514 0.848620
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.86569 13.6238i −0.490648 0.849828i 0.509294 0.860593i \(-0.329907\pi\)
−0.999942 + 0.0107648i \(0.996573\pi\)
\(258\) 7.85454 + 13.6045i 0.489003 + 0.846977i
\(259\) 0 0
\(260\) −3.67613 + 5.50333i −0.227984 + 0.341302i
\(261\) 8.19789 0.507437
\(262\) 1.39817 + 2.42170i 0.0863792 + 0.149613i
\(263\) 6.37994 + 11.0504i 0.393404 + 0.681395i 0.992896 0.118985i \(-0.0379641\pi\)
−0.599492 + 0.800381i \(0.704631\pi\)
\(264\) 0.114582 0.198462i 0.00705203 0.0122145i
\(265\) 1.64250 0.100898
\(266\) 0 0
\(267\) 13.0132 22.5396i 0.796397 1.37940i
\(268\) 6.60969 0.403751
\(269\) −6.51291 + 11.2807i −0.397099 + 0.687796i −0.993367 0.114990i \(-0.963316\pi\)
0.596267 + 0.802786i \(0.296650\pi\)
\(270\) −2.16503 3.74994i −0.131760 0.228214i
\(271\) 4.68905 + 8.12167i 0.284839 + 0.493356i 0.972570 0.232610i \(-0.0747264\pi\)
−0.687731 + 0.725966i \(0.741393\pi\)
\(272\) 2.81092 0.170437
\(273\) 0 0
\(274\) −10.4171 −0.629319
\(275\) −0.0711424 0.123222i −0.00429005 0.00743058i
\(276\) −2.13587 3.69943i −0.128564 0.222679i
\(277\) 8.79375 15.2312i 0.528365 0.915155i −0.471088 0.882086i \(-0.656139\pi\)
0.999453 0.0330692i \(-0.0105282\pi\)
\(278\) −12.2447 −0.734388
\(279\) −14.4653 + 25.0547i −0.866016 + 1.49998i
\(280\) 0 0
\(281\) 13.5973 0.811146 0.405573 0.914063i \(-0.367072\pi\)
0.405573 + 0.914063i \(0.367072\pi\)
\(282\) −10.5073 + 18.1992i −0.625700 + 1.08374i
\(283\) −3.22420 5.58448i −0.191659 0.331963i 0.754141 0.656712i \(-0.228053\pi\)
−0.945800 + 0.324749i \(0.894720\pi\)
\(284\) −3.79147 6.56701i −0.224982 0.389681i
\(285\) −33.6063 −1.99067
\(286\) 0.174744 0.261599i 0.0103328 0.0154687i
\(287\) 0 0
\(288\) −1.94908 3.37591i −0.114851 0.198928i
\(289\) 4.54937 + 7.87975i 0.267610 + 0.463514i
\(290\) −1.93010 + 3.34303i −0.113339 + 0.196310i
\(291\) −7.46177 −0.437417
\(292\) 5.45471 9.44783i 0.319213 0.552893i
\(293\) −0.972625 + 1.68464i −0.0568214 + 0.0984175i −0.893037 0.449983i \(-0.851430\pi\)
0.836216 + 0.548401i \(0.184763\pi\)
\(294\) 0 0
\(295\) 6.27661 10.8714i 0.365439 0.632958i
\(296\) −4.41108 7.64022i −0.256389 0.444079i
\(297\) 0.102914 + 0.178252i 0.00597168 + 0.0103432i
\(298\) 22.0024 1.27456
\(299\) −2.59438 5.25909i −0.150037 0.304141i
\(300\) −4.28298 −0.247278
\(301\) 0 0
\(302\) 5.94347 + 10.2944i 0.342008 + 0.592376i
\(303\) 4.94558 8.56600i 0.284116 0.492104i
\(304\) −6.97084 −0.399805
\(305\) −8.13673 + 14.0932i −0.465908 + 0.806976i
\(306\) −5.47872 + 9.48941i −0.313197 + 0.542474i
\(307\) 6.07696 0.346830 0.173415 0.984849i \(-0.444520\pi\)
0.173415 + 0.984849i \(0.444520\pi\)
\(308\) 0 0
\(309\) 12.4200 + 21.5121i 0.706552 + 1.22378i
\(310\) −6.81139 11.7977i −0.386861 0.670063i
\(311\) −12.2417 −0.694164 −0.347082 0.937835i \(-0.612827\pi\)
−0.347082 + 0.937835i \(0.612827\pi\)
\(312\) −4.18951 8.49260i −0.237184 0.480799i
\(313\) 9.38839 0.530663 0.265332 0.964157i \(-0.414519\pi\)
0.265332 + 0.964157i \(0.414519\pi\)
\(314\) 0.800191 + 1.38597i 0.0451574 + 0.0782149i
\(315\) 0 0
\(316\) 4.60897 7.98297i 0.259275 0.449077i
\(317\) −2.79657 −0.157071 −0.0785355 0.996911i \(-0.525024\pi\)
−0.0785355 + 0.996911i \(0.525024\pi\)
\(318\) −1.17510 + 2.03533i −0.0658961 + 0.114135i
\(319\) 0.0917468 0.158910i 0.00513683 0.00889726i
\(320\) 1.83556 0.102611
\(321\) −9.66396 + 16.7385i −0.539389 + 0.934250i
\(322\) 0 0
\(323\) 9.79723 + 16.9693i 0.545133 + 0.944197i
\(324\) −5.49878 −0.305488
\(325\) −5.86710 0.383753i −0.325448 0.0212868i
\(326\) −4.60937 −0.255289
\(327\) −5.15436 8.92761i −0.285037 0.493698i
\(328\) −5.21139 9.02639i −0.287751 0.498399i
\(329\) 0 0
\(330\) −0.420644 −0.0231557
\(331\) 12.8582 22.2711i 0.706752 1.22413i −0.259304 0.965796i \(-0.583493\pi\)
0.966056 0.258334i \(-0.0831735\pi\)
\(332\) −8.43966 + 14.6179i −0.463186 + 0.802262i
\(333\) 34.3903 1.88458
\(334\) −9.67113 + 16.7509i −0.529181 + 0.916568i
\(335\) −6.06624 10.5070i −0.331434 0.574061i
\(336\) 0 0
\(337\) −34.3496 −1.87114 −0.935570 0.353141i \(-0.885114\pi\)
−0.935570 + 0.353141i \(0.885114\pi\)
\(338\) −4.97813 12.0091i −0.270775 0.653208i
\(339\) 39.2760 2.13318
\(340\) −2.57980 4.46835i −0.139909 0.242330i
\(341\) 0.323777 + 0.560799i 0.0175335 + 0.0303690i
\(342\) 13.5868 23.5330i 0.734688 1.27252i
\(343\) 0 0
\(344\) 2.99057 5.17982i 0.161241 0.279277i
\(345\) −3.92051 + 6.79053i −0.211073 + 0.365590i
\(346\) −14.2034 −0.763577
\(347\) 6.46296 11.1942i 0.346950 0.600935i −0.638756 0.769409i \(-0.720551\pi\)
0.985706 + 0.168475i \(0.0538841\pi\)
\(348\) −2.76171 4.78343i −0.148043 0.256419i
\(349\) 4.74593 + 8.22019i 0.254044 + 0.440017i 0.964635 0.263588i \(-0.0849060\pi\)
−0.710592 + 0.703605i \(0.751573\pi\)
\(350\) 0 0
\(351\) 8.48731 + 0.555135i 0.453019 + 0.0296309i
\(352\) −0.0872528 −0.00465059
\(353\) 4.58281 + 7.93766i 0.243918 + 0.422479i 0.961827 0.273658i \(-0.0882338\pi\)
−0.717909 + 0.696137i \(0.754900\pi\)
\(354\) 8.98098 + 15.5555i 0.477334 + 0.826766i
\(355\) −6.95947 + 12.0541i −0.369370 + 0.639768i
\(356\) −9.90942 −0.525198
\(357\) 0 0
\(358\) 5.26777 9.12404i 0.278410 0.482220i
\(359\) −8.14802 −0.430036 −0.215018 0.976610i \(-0.568981\pi\)
−0.215018 + 0.976610i \(0.568981\pi\)
\(360\) −3.57766 + 6.19669i −0.188559 + 0.326594i
\(361\) −14.7963 25.6280i −0.778755 1.34884i
\(362\) −9.29039 16.0914i −0.488292 0.845747i
\(363\) −28.8708 −1.51532
\(364\) 0 0
\(365\) −20.0249 −1.04815
\(366\) −11.6426 20.1655i −0.608566 1.05407i
\(367\) 12.7538 + 22.0902i 0.665742 + 1.15310i 0.979084 + 0.203458i \(0.0652181\pi\)
−0.313342 + 0.949640i \(0.601449\pi\)
\(368\) −0.813218 + 1.40854i −0.0423919 + 0.0734250i
\(369\) 40.6297 2.11510
\(370\) −8.09681 + 14.0241i −0.420933 + 0.729077i
\(371\) 0 0
\(372\) 19.4923 1.01063
\(373\) −1.41945 + 2.45855i −0.0734961 + 0.127299i −0.900431 0.434998i \(-0.856749\pi\)
0.826935 + 0.562297i \(0.190082\pi\)
\(374\) 0.122630 + 0.212402i 0.00634105 + 0.0109830i
\(375\) 15.9833 + 27.6839i 0.825374 + 1.42959i
\(376\) 8.00118 0.412629
\(377\) −3.35458 6.80010i −0.172770 0.350223i
\(378\) 0 0
\(379\) 0.804301 + 1.39309i 0.0413142 + 0.0715582i 0.885943 0.463794i \(-0.153512\pi\)
−0.844629 + 0.535352i \(0.820179\pi\)
\(380\) 6.39770 + 11.0811i 0.328195 + 0.568451i
\(381\) −0.848966 + 1.47045i −0.0434938 + 0.0753335i
\(382\) 22.8279 1.16798
\(383\) −7.97493 + 13.8130i −0.407500 + 0.705810i −0.994609 0.103698i \(-0.966933\pi\)
0.587109 + 0.809508i \(0.300266\pi\)
\(384\) −1.31322 + 2.27456i −0.0670149 + 0.116073i
\(385\) 0 0
\(386\) 1.46152 2.53143i 0.0743895 0.128846i
\(387\) 11.6578 + 20.1918i 0.592597 + 1.02641i
\(388\) 1.42051 + 2.46040i 0.0721155 + 0.124908i
\(389\) 4.25349 0.215660 0.107830 0.994169i \(-0.465610\pi\)
0.107830 + 0.994169i \(0.465610\pi\)
\(390\) −9.65513 + 14.4542i −0.488907 + 0.731915i
\(391\) 4.57178 0.231205
\(392\) 0 0
\(393\) 3.67220 + 6.36044i 0.185238 + 0.320842i
\(394\) 2.37415 4.11215i 0.119608 0.207167i
\(395\) −16.9201 −0.851341
\(396\) 0.170063 0.294558i 0.00854599 0.0148021i
\(397\) 0.830554 1.43856i 0.0416843 0.0721993i −0.844431 0.535665i \(-0.820061\pi\)
0.886115 + 0.463466i \(0.153394\pi\)
\(398\) −9.84531 −0.493501
\(399\) 0 0
\(400\) 0.815359 + 1.41224i 0.0407680 + 0.0706122i
\(401\) 1.30242 + 2.25586i 0.0650398 + 0.112652i 0.896712 0.442615i \(-0.145949\pi\)
−0.831672 + 0.555267i \(0.812616\pi\)
\(402\) 17.3599 0.865835
\(403\) 26.7019 + 1.74651i 1.33012 + 0.0869997i
\(404\) −3.76600 −0.187366
\(405\) 5.04667 + 8.74109i 0.250771 + 0.434348i
\(406\) 0 0
\(407\) 0.384879 0.666630i 0.0190778 0.0330436i
\(408\) 7.38270 0.365498
\(409\) 3.17978 5.50753i 0.157230 0.272330i −0.776639 0.629946i \(-0.783077\pi\)
0.933869 + 0.357616i \(0.116410\pi\)
\(410\) −9.56582 + 16.5685i −0.472422 + 0.818259i
\(411\) −27.3598 −1.34956
\(412\) 4.72886 8.19062i 0.232974 0.403523i
\(413\) 0 0
\(414\) −3.17006 5.49071i −0.155800 0.269854i
\(415\) 30.9830 1.52090
\(416\) −2.00273 + 2.99818i −0.0981920 + 0.146998i
\(417\) −32.1599 −1.57488
\(418\) −0.304113 0.526739i −0.0148746 0.0257636i
\(419\) 4.71852 + 8.17271i 0.230515 + 0.399263i 0.957960 0.286903i \(-0.0926257\pi\)
−0.727445 + 0.686166i \(0.759292\pi\)
\(420\) 0 0
\(421\) −30.3009 −1.47677 −0.738387 0.674377i \(-0.764412\pi\)
−0.738387 + 0.674377i \(0.764412\pi\)
\(422\) 2.18356 3.78203i 0.106294 0.184106i
\(423\) −15.5950 + 27.0113i −0.758254 + 1.31333i
\(424\) 0.894821 0.0434564
\(425\) 2.29191 3.96970i 0.111174 0.192559i
\(426\) −9.95805 17.2478i −0.482469 0.835661i
\(427\) 0 0
\(428\) 7.35899 0.355710
\(429\) 0.458954 0.687074i 0.0221585 0.0331722i
\(430\) −10.9787 −0.529442
\(431\) 2.39419 + 4.14687i 0.115324 + 0.199747i 0.917909 0.396790i \(-0.129876\pi\)
−0.802585 + 0.596538i \(0.796543\pi\)
\(432\) −1.17949 2.04294i −0.0567484 0.0982911i
\(433\) 20.1875 34.9658i 0.970151 1.68035i 0.275063 0.961426i \(-0.411301\pi\)
0.695088 0.718925i \(-0.255365\pi\)
\(434\) 0 0
\(435\) −5.06929 + 8.78027i −0.243054 + 0.420982i
\(436\) −1.96249 + 3.39913i −0.0939862 + 0.162789i
\(437\) −11.3376 −0.542353
\(438\) 14.3264 24.8141i 0.684544 1.18567i
\(439\) −0.509403 0.882313i −0.0243125 0.0421105i 0.853613 0.520907i \(-0.174406\pi\)
−0.877926 + 0.478797i \(0.841073\pi\)
\(440\) 0.0800789 + 0.138701i 0.00381761 + 0.00661229i
\(441\) 0 0
\(442\) 10.1133 + 0.661487i 0.481040 + 0.0314637i
\(443\) −26.9164 −1.27884 −0.639419 0.768858i \(-0.720825\pi\)
−0.639419 + 0.768858i \(0.720825\pi\)
\(444\) −11.5854 20.0665i −0.549820 0.952316i
\(445\) 9.09467 + 15.7524i 0.431128 + 0.746736i
\(446\) −14.0542 + 24.3427i −0.665488 + 1.15266i
\(447\) 57.7879 2.73327
\(448\) 0 0
\(449\) −4.41776 + 7.65179i −0.208487 + 0.361110i −0.951238 0.308457i \(-0.900187\pi\)
0.742751 + 0.669568i \(0.233521\pi\)
\(450\) −6.35682 −0.299663
\(451\) 0.454708 0.787578i 0.0214114 0.0370856i
\(452\) −7.47705 12.9506i −0.351691 0.609146i
\(453\) 15.6101 + 27.0376i 0.733429 + 1.27034i
\(454\) −26.6909 −1.25266
\(455\) 0 0
\(456\) −18.3085 −0.857373
\(457\) 17.9361 + 31.0662i 0.839014 + 1.45321i 0.890720 + 0.454552i \(0.150201\pi\)
−0.0517063 + 0.998662i \(0.516466\pi\)
\(458\) −4.70473 8.14883i −0.219837 0.380770i
\(459\) −3.31546 + 5.74254i −0.154752 + 0.268039i
\(460\) 2.98542 0.139196
\(461\) −20.6169 + 35.7095i −0.960224 + 1.66316i −0.238292 + 0.971193i \(0.576588\pi\)
−0.721932 + 0.691964i \(0.756746\pi\)
\(462\) 0 0
\(463\) 21.0313 0.977408 0.488704 0.872450i \(-0.337470\pi\)
0.488704 + 0.872450i \(0.337470\pi\)
\(464\) −1.05151 + 1.82126i −0.0488149 + 0.0845499i
\(465\) −17.8897 30.9859i −0.829615 1.43693i
\(466\) −11.5107 19.9372i −0.533224 0.923572i
\(467\) −20.4320 −0.945479 −0.472740 0.881202i \(-0.656735\pi\)
−0.472740 + 0.881202i \(0.656735\pi\)
\(468\) −6.21809 12.6048i −0.287432 0.582655i
\(469\) 0 0
\(470\) −7.34332 12.7190i −0.338722 0.586684i
\(471\) 2.10165 + 3.64017i 0.0968390 + 0.167730i
\(472\) 3.41945 5.92267i 0.157393 0.272613i
\(473\) 0.521871 0.0239957
\(474\) 12.1052 20.9668i 0.556008 0.963035i
\(475\) −5.68374 + 9.84453i −0.260788 + 0.451698i
\(476\) 0 0
\(477\) −1.74408 + 3.02084i −0.0798561 + 0.138315i
\(478\) −5.51607 9.55412i −0.252299 0.436995i
\(479\) 19.6000 + 33.9482i 0.895547 + 1.55113i 0.833126 + 0.553084i \(0.186549\pi\)
0.0624218 + 0.998050i \(0.480118\pi\)
\(480\) 4.82098 0.220047
\(481\) −14.0725 28.5265i −0.641651 1.30070i
\(482\) 7.39939 0.337033
\(483\) 0 0
\(484\) 5.49619 + 9.51969i 0.249827 + 0.432713i
\(485\) 2.60743 4.51621i 0.118397 0.205070i
\(486\) −21.5192 −0.976129
\(487\) 5.80410 10.0530i 0.263009 0.455545i −0.704031 0.710169i \(-0.748618\pi\)
0.967040 + 0.254624i \(0.0819518\pi\)
\(488\) −4.43283 + 7.67789i −0.200665 + 0.347562i
\(489\) −12.1062 −0.547462
\(490\) 0 0
\(491\) 11.9193 + 20.6448i 0.537910 + 0.931688i 0.999016 + 0.0443428i \(0.0141194\pi\)
−0.461106 + 0.887345i \(0.652547\pi\)
\(492\) −13.6874 23.7072i −0.617075 1.06880i
\(493\) 5.91139 0.266236
\(494\) −25.0801 1.64043i −1.12841 0.0738066i
\(495\) −0.624322 −0.0280612
\(496\) −3.71080 6.42729i −0.166620 0.288594i
\(497\) 0 0
\(498\) −22.1662 + 38.3930i −0.993292 + 1.72043i
\(499\) 8.18261 0.366304 0.183152 0.983085i \(-0.441370\pi\)
0.183152 + 0.983085i \(0.441370\pi\)
\(500\) 6.08554 10.5405i 0.272154 0.471384i
\(501\) −25.4006 + 43.9951i −1.13482 + 1.96556i
\(502\) 3.88787 0.173524
\(503\) −4.28341 + 7.41908i −0.190988 + 0.330801i −0.945578 0.325396i \(-0.894502\pi\)
0.754590 + 0.656196i \(0.227836\pi\)
\(504\) 0 0
\(505\) 3.45636 + 5.98660i 0.153806 + 0.266400i
\(506\) −0.141911 −0.00630872
\(507\) −13.0748 31.5411i −0.580670 1.40079i
\(508\) 0.646477 0.0286828
\(509\) 7.42352 + 12.8579i 0.329042 + 0.569917i 0.982322 0.187199i \(-0.0599410\pi\)
−0.653280 + 0.757116i \(0.726608\pi\)
\(510\) −6.77569 11.7358i −0.300033 0.519672i
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 8.22206 14.2410i 0.363013 0.628757i
\(514\) −7.86569 + 13.6238i −0.346941 + 0.600919i
\(515\) −17.3602 −0.764982
\(516\) 7.85454 13.6045i 0.345777 0.598903i
\(517\) 0.349063 + 0.604594i 0.0153518 + 0.0265900i
\(518\) 0 0
\(519\) −37.3042 −1.63747
\(520\) 6.60409 + 0.431958i 0.289609 + 0.0189426i
\(521\) 19.1170 0.837533 0.418766 0.908094i \(-0.362463\pi\)
0.418766 + 0.908094i \(0.362463\pi\)
\(522\) −4.09895 7.09958i −0.179406 0.310740i
\(523\) 4.84605 + 8.39360i 0.211903 + 0.367027i 0.952310 0.305132i \(-0.0987006\pi\)
−0.740407 + 0.672159i \(0.765367\pi\)
\(524\) 1.39817 2.42170i 0.0610793 0.105792i
\(525\) 0 0
\(526\) 6.37994 11.0504i 0.278178 0.481819i
\(527\) −10.4307 + 18.0666i −0.454370 + 0.786992i
\(528\) −0.229164 −0.00997308
\(529\) 10.1774 17.6277i 0.442494 0.766421i
\(530\) −0.821249 1.42245i −0.0356728 0.0617871i
\(531\) 13.3296 + 23.0876i 0.578456 + 1.00192i
\(532\) 0 0
\(533\) −16.6257 33.7021i −0.720139 1.45980i
\(534\) −26.0265 −1.12627
\(535\) −6.75393 11.6982i −0.291998 0.505755i
\(536\) −3.30485 5.72416i −0.142748 0.247246i
\(537\) 13.8355 23.9637i 0.597044 1.03411i
\(538\) 13.0258 0.561583
\(539\) 0 0
\(540\) −2.16503 + 3.74994i −0.0931681 + 0.161372i
\(541\) −5.60466 −0.240963 −0.120482 0.992716i \(-0.538444\pi\)
−0.120482 + 0.992716i \(0.538444\pi\)
\(542\) 4.68905 8.12167i 0.201412 0.348855i
\(543\) −24.4006 42.2631i −1.04713 1.81368i
\(544\) −1.40546 2.43433i −0.0602585 0.104371i
\(545\) 7.20454 0.308608
\(546\) 0 0
\(547\) −37.1487 −1.58836 −0.794181 0.607681i \(-0.792100\pi\)
−0.794181 + 0.607681i \(0.792100\pi\)
\(548\) 5.20854 + 9.02146i 0.222498 + 0.385378i
\(549\) −17.2799 29.9297i −0.737490 1.27737i
\(550\) −0.0711424 + 0.123222i −0.00303352 + 0.00525421i
\(551\) −14.6598 −0.624527
\(552\) −2.13587 + 3.69943i −0.0909085 + 0.157458i
\(553\) 0 0
\(554\) −17.5875 −0.747221
\(555\) −21.2657 + 36.8334i −0.902681 + 1.56349i
\(556\) 6.12235 + 10.6042i 0.259645 + 0.449719i
\(557\) 14.8717 + 25.7586i 0.630136 + 1.09143i 0.987524 + 0.157472i \(0.0503342\pi\)
−0.357387 + 0.933956i \(0.616332\pi\)
\(558\) 28.9306 1.22473
\(559\) 11.9786 17.9325i 0.506642 0.758465i
\(560\) 0 0
\(561\) 0.322080 + 0.557860i 0.0135982 + 0.0235528i
\(562\) −6.79864 11.7756i −0.286783 0.496723i
\(563\) −4.48827 + 7.77391i −0.189158 + 0.327631i −0.944970 0.327158i \(-0.893909\pi\)
0.755812 + 0.654789i \(0.227242\pi\)
\(564\) 21.0146 0.884874
\(565\) −13.7246 + 23.7717i −0.577397 + 1.00008i
\(566\) −3.22420 + 5.58448i −0.135523 + 0.234733i
\(567\) 0 0
\(568\) −3.79147 + 6.56701i −0.159086 + 0.275546i
\(569\) 6.68319 + 11.5756i 0.280174 + 0.485276i 0.971427 0.237337i \(-0.0762745\pi\)
−0.691253 + 0.722612i \(0.742941\pi\)
\(570\) 16.8032 + 29.1039i 0.703807 + 1.21903i
\(571\) −32.4655 −1.35864 −0.679319 0.733843i \(-0.737725\pi\)
−0.679319 + 0.733843i \(0.737725\pi\)
\(572\) −0.313924 0.0205330i −0.0131258 0.000858528i
\(573\) 59.9562 2.50470
\(574\) 0 0
\(575\) 1.32613 + 2.29693i 0.0553035 + 0.0957884i
\(576\) −1.94908 + 3.37591i −0.0812119 + 0.140663i
\(577\) 13.2037 0.549678 0.274839 0.961490i \(-0.411375\pi\)
0.274839 + 0.961490i \(0.411375\pi\)
\(578\) 4.54937 7.87975i 0.189229 0.327754i
\(579\) 3.83859 6.64864i 0.159526 0.276308i
\(580\) 3.86020 0.160286
\(581\) 0 0
\(582\) 3.73088 + 6.46208i 0.154650 + 0.267862i
\(583\) 0.0390378 + 0.0676155i 0.00161678 + 0.00280035i
\(584\) −10.9094 −0.451435
\(585\) −14.3302 + 21.4529i −0.592481 + 0.886970i
\(586\) 1.94525 0.0803576
\(587\) 5.18691 + 8.98398i 0.214086 + 0.370809i 0.952990 0.303003i \(-0.0979892\pi\)
−0.738903 + 0.673812i \(0.764656\pi\)
\(588\) 0 0
\(589\) 25.8674 44.8036i 1.06585 1.84610i
\(590\) −12.5532 −0.516808
\(591\) 6.23556 10.8003i 0.256497 0.444266i
\(592\) −4.41108 + 7.64022i −0.181294 + 0.314011i
\(593\) 36.6549 1.50524 0.752619 0.658456i \(-0.228790\pi\)
0.752619 + 0.658456i \(0.228790\pi\)
\(594\) 0.102914 0.178252i 0.00422261 0.00731378i
\(595\) 0 0
\(596\) −11.0012 19.0546i −0.450626 0.780508i
\(597\) −25.8581 −1.05830
\(598\) −3.25732 + 4.87635i −0.133202 + 0.199409i
\(599\) 37.4356 1.52958 0.764789 0.644280i \(-0.222843\pi\)
0.764789 + 0.644280i \(0.222843\pi\)
\(600\) 2.14149 + 3.70917i 0.0874260 + 0.151426i
\(601\) −0.994692 1.72286i −0.0405743 0.0702768i 0.845025 0.534727i \(-0.179585\pi\)
−0.885599 + 0.464450i \(0.846252\pi\)
\(602\) 0 0
\(603\) 25.7657 1.04926
\(604\) 5.94347 10.2944i 0.241836 0.418873i
\(605\) 10.0886 17.4740i 0.410160 0.710417i
\(606\) −9.89117 −0.401801
\(607\) 2.69926 4.67526i 0.109560 0.189763i −0.806032 0.591872i \(-0.798389\pi\)
0.915592 + 0.402109i \(0.131723\pi\)
\(608\) 3.48542 + 6.03693i 0.141353 + 0.244830i
\(609\) 0 0
\(610\) 16.2735 0.658893
\(611\) 28.7872 + 1.88290i 1.16460 + 0.0761739i
\(612\) 10.9574 0.442928
\(613\) 2.02034 + 3.49934i 0.0816009 + 0.141337i 0.903938 0.427664i \(-0.140663\pi\)
−0.822337 + 0.569001i \(0.807330\pi\)
\(614\) −3.03848 5.26280i −0.122623 0.212389i
\(615\) −25.1240 + 43.5161i −1.01310 + 1.75474i
\(616\) 0 0
\(617\) 12.1383 21.0241i 0.488669 0.846400i −0.511246 0.859435i \(-0.670816\pi\)
0.999915 + 0.0130346i \(0.00414917\pi\)
\(618\) 12.4200 21.5121i 0.499607 0.865346i
\(619\) 14.5515 0.584875 0.292437 0.956285i \(-0.405534\pi\)
0.292437 + 0.956285i \(0.405534\pi\)
\(620\) −6.81139 + 11.7977i −0.273552 + 0.473806i
\(621\) −1.91837 3.32272i −0.0769816 0.133336i
\(622\) 6.12086 + 10.6016i 0.245424 + 0.425087i
\(623\) 0 0
\(624\) −5.26005 + 7.87452i −0.210570 + 0.315233i
\(625\) −14.1872 −0.567487
\(626\) −4.69419 8.13058i −0.187618 0.324963i
\(627\) −0.798733 1.38345i −0.0318983 0.0552495i
\(628\) 0.800191 1.38597i 0.0319311 0.0553063i
\(629\) 24.7984 0.988776
\(630\) 0 0
\(631\) 4.19668 7.26886i 0.167067 0.289369i −0.770320 0.637657i \(-0.779904\pi\)
0.937387 + 0.348288i \(0.113237\pi\)
\(632\) −9.21793 −0.366670
\(633\) 5.73497 9.93327i 0.227945 0.394812i
\(634\) 1.39828 + 2.42190i 0.0555330 + 0.0961859i
\(635\) −0.593324 1.02767i −0.0235453 0.0407817i
\(636\) 2.35019 0.0931912
\(637\) 0 0
\(638\) −0.183494 −0.00726458
\(639\) −14.7798 25.5993i −0.584679 1.01269i
\(640\) −0.917780 1.58964i −0.0362784 0.0628361i
\(641\) −0.194764 + 0.337341i −0.00769272 + 0.0133242i −0.869846 0.493323i \(-0.835782\pi\)
0.862153 + 0.506647i \(0.169115\pi\)
\(642\) 19.3279 0.762812
\(643\) −5.93499 + 10.2797i −0.234053 + 0.405392i −0.958997 0.283416i \(-0.908532\pi\)
0.724944 + 0.688808i \(0.241866\pi\)
\(644\) 0 0
\(645\) −28.8350 −1.13538
\(646\) 9.79723 16.9693i 0.385467 0.667648i
\(647\) −9.90422 17.1546i −0.389375 0.674418i 0.602990 0.797748i \(-0.293976\pi\)
−0.992366 + 0.123331i \(0.960642\pi\)
\(648\) 2.74939 + 4.76209i 0.108006 + 0.187072i
\(649\) 0.596714 0.0234231
\(650\) 2.60121 + 5.27294i 0.102028 + 0.206822i
\(651\) 0 0
\(652\) 2.30469 + 3.99183i 0.0902584 + 0.156332i
\(653\) 2.79653 + 4.84373i 0.109437 + 0.189550i 0.915542 0.402222i \(-0.131762\pi\)
−0.806106 + 0.591772i \(0.798429\pi\)
\(654\) −5.15436 + 8.92761i −0.201551 + 0.349097i
\(655\) −5.13285 −0.200557
\(656\) −5.21139 + 9.02639i −0.203471 + 0.352421i
\(657\) 21.2634 36.8293i 0.829563 1.43685i
\(658\) 0 0
\(659\) −5.58265 + 9.66943i −0.217469 + 0.376668i −0.954034 0.299700i \(-0.903113\pi\)
0.736564 + 0.676367i \(0.236447\pi\)
\(660\) 0.210322 + 0.364289i 0.00818678 + 0.0141799i
\(661\) −4.11021 7.11910i −0.159869 0.276901i 0.774952 0.632019i \(-0.217774\pi\)
−0.934821 + 0.355119i \(0.884440\pi\)
\(662\) −25.7164 −0.999498
\(663\) 26.5619 + 1.73735i 1.03158 + 0.0674732i
\(664\) 16.8793 0.655044
\(665\) 0 0
\(666\) −17.1951 29.7829i −0.666298 1.15406i
\(667\) −1.71021 + 2.96217i −0.0662195 + 0.114696i
\(668\) 19.3423 0.748374
\(669\) −36.9126 + 63.9345i −1.42712 + 2.47185i
\(670\) −6.06624 + 10.5070i −0.234359 + 0.405922i
\(671\) −0.773554 −0.0298627
\(672\) 0 0
\(673\) −1.98340 3.43536i −0.0764546 0.132423i 0.825263 0.564748i \(-0.191027\pi\)
−0.901718 + 0.432325i \(0.857693\pi\)
\(674\) 17.1748 + 29.7476i 0.661548 + 1.14583i
\(675\) −3.84684 −0.148065
\(676\) −7.91111 + 10.3157i −0.304273 + 0.396759i
\(677\) 24.8848 0.956402 0.478201 0.878251i \(-0.341289\pi\)
0.478201 + 0.878251i \(0.341289\pi\)
\(678\) −19.6380 34.0140i −0.754193 1.30630i
\(679\) 0 0
\(680\) −2.57980 + 4.46835i −0.0989310 + 0.171353i
\(681\) −70.1018 −2.68631
\(682\) 0.323777 0.560799i 0.0123981 0.0214741i
\(683\) −25.3588 + 43.9227i −0.970327 + 1.68066i −0.275761 + 0.961226i \(0.588930\pi\)
−0.694566 + 0.719429i \(0.744403\pi\)
\(684\) −27.1735 −1.03901
\(685\) 9.56059 16.5594i 0.365291 0.632703i
\(686\) 0 0
\(687\) −12.3567 21.4024i −0.471436 0.816552i
\(688\) −5.98114 −0.228029
\(689\) 3.21945 + 0.210576i 0.122651 + 0.00802232i
\(690\) 7.84102 0.298503
\(691\) 6.05622 + 10.4897i 0.230389 + 0.399046i 0.957923 0.287026i \(-0.0926667\pi\)
−0.727533 + 0.686072i \(0.759333\pi\)
\(692\) 7.10168 + 12.3005i 0.269965 + 0.467594i
\(693\) 0 0
\(694\) −12.9259 −0.490661
\(695\) 11.2379 19.4647i 0.426279 0.738337i
\(696\) −2.76171 + 4.78343i −0.104682 + 0.181315i
\(697\) 29.2976 1.10972
\(698\) 4.74593 8.22019i 0.179636 0.311139i
\(699\) −30.2322 52.3637i −1.14349 1.98058i
\(700\) 0 0
\(701\) 2.45486 0.0927186 0.0463593 0.998925i \(-0.485238\pi\)
0.0463593 + 0.998925i \(0.485238\pi\)
\(702\) −3.76289 7.62779i −0.142021 0.287892i
\(703\) −61.4979 −2.31944
\(704\) 0.0436264 + 0.0755631i 0.00164423 + 0.00284789i
\(705\) −19.2868 33.4057i −0.726382 1.25813i
\(706\) 4.58281 7.93766i 0.172476 0.298738i
\(707\) 0 0
\(708\) 8.98098 15.5555i 0.337526 0.584612i
\(709\) −1.81867 + 3.15003i −0.0683017 + 0.118302i −0.898154 0.439681i \(-0.855091\pi\)
0.829852 + 0.557983i \(0.188425\pi\)
\(710\) 13.9189 0.522368
\(711\) 17.9665 31.1190i 0.673798 1.16705i
\(712\) 4.95471 + 8.58181i 0.185686 + 0.321617i
\(713\) −6.03538 10.4536i −0.226027 0.391490i
\(714\) 0 0
\(715\) 0.255473 + 0.517871i 0.00955414 + 0.0193673i
\(716\) −10.5355 −0.393731
\(717\) −14.4876 25.0933i −0.541050 0.937126i
\(718\) 4.07401 + 7.05639i 0.152041 + 0.263342i
\(719\) 20.6024 35.6844i 0.768339 1.33080i −0.170124 0.985423i \(-0.554417\pi\)
0.938463 0.345379i \(-0.112250\pi\)
\(720\) 7.15533 0.266663
\(721\) 0 0
\(722\) −14.7963 + 25.6280i −0.550663 + 0.953776i
\(723\) 19.4340 0.722759
\(724\) −9.29039 + 16.0914i −0.345275 + 0.598033i
\(725\) 1.71471 + 2.96996i 0.0636827 + 0.110302i
\(726\) 14.4354 + 25.0029i 0.535748 + 0.927943i
\(727\) −24.1162 −0.894422 −0.447211 0.894428i \(-0.647583\pi\)
−0.447211 + 0.894428i \(0.647583\pi\)
\(728\) 0 0
\(729\) −40.0224 −1.48231
\(730\) 10.0124 + 17.3421i 0.370577 + 0.641859i
\(731\) 8.40624 + 14.5600i 0.310916 + 0.538523i
\(732\) −11.6426 + 20.1655i −0.430321 + 0.745338i
\(733\) 18.7490 0.692509 0.346254 0.938141i \(-0.387453\pi\)
0.346254 + 0.938141i \(0.387453\pi\)
\(734\) 12.7538 22.0902i 0.470751 0.815364i
\(735\) 0 0
\(736\) 1.62644 0.0599513
\(737\) 0.288357 0.499449i 0.0106218 0.0183974i
\(738\) −20.3149 35.1864i −0.747801 1.29523i
\(739\) −0.465734 0.806675i −0.0171323 0.0296740i 0.857332 0.514764i \(-0.172120\pi\)
−0.874464 + 0.485090i \(0.838787\pi\)
\(740\) 16.1936 0.595289
\(741\) −65.8714 4.30849i −2.41985 0.158276i
\(742\) 0 0
\(743\) 14.8945 + 25.7980i 0.546425 + 0.946437i 0.998516 + 0.0544644i \(0.0173451\pi\)
−0.452090 + 0.891972i \(0.649322\pi\)
\(744\) −9.74617 16.8809i −0.357312 0.618883i
\(745\) −20.1933 + 34.9759i −0.739827 + 1.28142i
\(746\) 2.83889 0.103939
\(747\) −32.8992 + 56.9831i −1.20372 + 2.08490i
\(748\) 0.122630 0.212402i 0.00448380 0.00776617i
\(749\) 0 0
\(750\) 15.9833 27.6839i 0.583627 1.01087i
\(751\) 6.49099 + 11.2427i 0.236860 + 0.410253i 0.959812 0.280645i \(-0.0905485\pi\)
−0.722952 + 0.690898i \(0.757215\pi\)
\(752\) −4.00059 6.92923i −0.145887 0.252683i
\(753\) 10.2113 0.372119
\(754\) −4.21177 + 6.30520i −0.153383 + 0.229622i
\(755\) −21.8192 −0.794082
\(756\) 0 0
\(757\) 13.6228 + 23.5954i 0.495129 + 0.857589i 0.999984 0.00561523i \(-0.00178739\pi\)
−0.504855 + 0.863204i \(0.668454\pi\)
\(758\) 0.804301 1.39309i 0.0292135 0.0505993i
\(759\) −0.372721 −0.0135289
\(760\) 6.39770 11.0811i 0.232069 0.401955i
\(761\) −2.89436 + 5.01318i −0.104921 + 0.181728i −0.913706 0.406376i \(-0.866792\pi\)
0.808785 + 0.588104i \(0.200126\pi\)
\(762\) 1.69793 0.0615096
\(763\) 0 0
\(764\) −11.4140 19.7696i −0.412943 0.715238i
\(765\) −10.0565 17.4184i −0.363594 0.629763i
\(766\) 15.9499 0.576292
\(767\) 13.6965 20.5043i 0.494552 0.740366i
\(768\) 2.62644 0.0947734
\(769\) 13.8054 + 23.9117i 0.497836 + 0.862277i 0.999997 0.00249727i \(-0.000794907\pi\)
−0.502161 + 0.864774i \(0.667462\pi\)
\(770\) 0 0
\(771\) −20.6587 + 35.7820i −0.744006 + 1.28866i
\(772\) −2.92304 −0.105203
\(773\) −15.7900 + 27.3490i −0.567926 + 0.983676i 0.428845 + 0.903378i \(0.358921\pi\)
−0.996771 + 0.0802984i \(0.974413\pi\)
\(774\) 11.6578 20.1918i 0.419029 0.725780i
\(775\) −12.1025 −0.434736
\(776\) 1.42051 2.46040i 0.0509934 0.0883231i
\(777\) 0 0
\(778\) −2.12674 3.68363i −0.0762474 0.132064i
\(779\) −72.6556 −2.60316
\(780\) 17.3452 + 1.13451i 0.621059 + 0.0406220i
\(781\) −0.661632 −0.0236751
\(782\) −2.28589 3.95928i −0.0817432 0.141583i
\(783\) −2.48049 4.29633i −0.0886454 0.153538i
\(784\) 0 0
\(785\) −2.93760 −0.104847
\(786\) 3.67220 6.36044i 0.130983 0.226870i
\(787\) −10.8572 + 18.8052i −0.387017 + 0.670333i −0.992047 0.125870i \(-0.959828\pi\)
0.605030 + 0.796203i \(0.293161\pi\)
\(788\) −4.74831 −0.169151
\(789\) 16.7565 29.0231i 0.596547 1.03325i
\(790\) 8.46004 + 14.6532i 0.300995 + 0.521338i
\(791\) 0 0
\(792\) −0.340126 −0.0120859
\(793\) −17.7555 + 26.5808i −0.630518 + 0.943913i
\(794\) −1.66111 −0.0589505
\(795\) −2.15696 3.73596i −0.0764995 0.132501i
\(796\) 4.92265 + 8.52628i 0.174479 + 0.302206i
\(797\) −22.9458 + 39.7433i −0.812783 + 1.40778i 0.0981258 + 0.995174i \(0.468715\pi\)
−0.910909 + 0.412608i \(0.864618\pi\)
\(798\) 0 0
\(799\) −11.2453 + 19.4775i −0.397831 + 0.689064i
\(800\) 0.815359 1.41224i 0.0288273 0.0499304i
\(801\) −38.6286 −1.36487
\(802\) 1.30242 2.25586i 0.0459901 0.0796572i
\(803\) −0.475938 0.824350i −0.0167955 0.0290907i
\(804\) −8.67997 15.0341i −0.306119 0.530213i
\(805\) 0 0
\(806\) −11.8384 23.9978i −0.416991 0.845285i
\(807\) 34.2115 1.20430
\(808\) 1.88300 + 3.26145i 0.0662438 + 0.114738i
\(809\) −17.8761 30.9623i −0.628489 1.08858i −0.987855 0.155379i \(-0.950340\pi\)
0.359366 0.933197i \(-0.382993\pi\)
\(810\) 5.04667 8.74109i 0.177322 0.307131i
\(811\) 38.5968 1.35532 0.677658 0.735377i \(-0.262995\pi\)
0.677658 + 0.735377i \(0.262995\pi\)
\(812\) 0 0
\(813\) 12.3155 21.3310i 0.431923 0.748112i
\(814\) −0.769758 −0.0269800
\(815\) 4.23039 7.32725i 0.148184 0.256662i
\(816\) −3.69135 6.39360i −0.129223 0.223821i
\(817\) −20.8468 36.1077i −0.729337 1.26325i
\(818\) −6.35955 −0.222357
\(819\) 0 0
\(820\) 19.1316 0.668106
\(821\) −11.3932 19.7336i −0.397626 0.688708i 0.595807 0.803128i \(-0.296832\pi\)
−0.993433 + 0.114420i \(0.963499\pi\)
\(822\) 13.6799 + 23.6943i 0.477141 + 0.826433i
\(823\) 17.7822 30.7996i 0.619848 1.07361i −0.369666 0.929165i \(-0.620528\pi\)
0.989513 0.144443i \(-0.0461389\pi\)
\(824\) −9.45771 −0.329475
\(825\) −0.186851 + 0.323635i −0.00650531 + 0.0112675i
\(826\) 0 0
\(827\) −29.9739 −1.04229 −0.521147 0.853467i \(-0.674496\pi\)
−0.521147 + 0.853467i \(0.674496\pi\)
\(828\) −3.17006 + 5.49071i −0.110167 + 0.190815i
\(829\) 12.1380 + 21.0237i 0.421571 + 0.730182i 0.996093 0.0883068i \(-0.0281456\pi\)
−0.574523 + 0.818489i \(0.694812\pi\)
\(830\) −15.4915 26.8321i −0.537718 0.931354i
\(831\) −46.1925 −1.60240
\(832\) 3.59786 + 0.235328i 0.124733 + 0.00815852i
\(833\) 0 0
\(834\) 16.0800 + 27.8513i 0.556803 + 0.964412i
\(835\) −17.7519 30.7473i −0.614331 1.06405i
\(836\) −0.304113 + 0.526739i −0.0105180 + 0.0182176i
\(837\) 17.5074 0.605146
\(838\) 4.71852 8.17271i 0.162998 0.282322i
\(839\) −11.0416 + 19.1246i −0.381197 + 0.660253i −0.991234 0.132120i \(-0.957821\pi\)
0.610037 + 0.792373i \(0.291155\pi\)
\(840\) 0 0
\(841\) 12.2887 21.2846i 0.423747 0.733952i
\(842\) 15.1504 + 26.2413i 0.522118 + 0.904336i
\(843\) −17.8562 30.9278i −0.615000 1.06521i
\(844\) −4.36711 −0.150322
\(845\) 23.6590 + 3.10825i 0.813894 + 0.106927i
\(846\) 31.1900 1.07233
\(847\) 0 0
\(848\) −0.447411 0.774938i −0.0153641 0.0266115i
\(849\) −8.46816 + 14.6673i −0.290627 + 0.503380i
\(850\) −4.58381 −0.157224
\(851\) −7.17435 + 12.4263i −0.245933 + 0.425969i
\(852\) −9.95805 + 17.2478i −0.341157 + 0.590901i
\(853\) 42.8773 1.46809 0.734045 0.679100i \(-0.237630\pi\)
0.734045 + 0.679100i \(0.237630\pi\)
\(854\) 0 0
\(855\) 24.9393 + 43.1962i 0.852907 + 1.47728i
\(856\) −3.67949 6.37307i −0.125762 0.217827i
\(857\) −15.8241 −0.540540 −0.270270 0.962785i \(-0.587113\pi\)
−0.270270 + 0.962785i \(0.587113\pi\)
\(858\) −0.824500 0.0539286i −0.0281480 0.00184109i
\(859\) −31.4242 −1.07218 −0.536090 0.844161i \(-0.680099\pi\)
−0.536090 + 0.844161i \(0.680099\pi\)
\(860\) 5.48937 + 9.50787i 0.187186 + 0.324216i
\(861\) 0 0
\(862\) 2.39419 4.14687i 0.0815466 0.141243i
\(863\) 50.3444 1.71374 0.856872 0.515530i \(-0.172405\pi\)
0.856872 + 0.515530i \(0.172405\pi\)
\(864\) −1.17949 + 2.04294i −0.0401272 + 0.0695023i
\(865\) 13.0356 22.5782i 0.443222 0.767684i
\(866\) −40.3751 −1.37200
\(867\) 11.9486 20.6957i 0.405797 0.702861i
\(868\) 0 0
\(869\) −0.402145 0.696536i −0.0136418 0.0236284i
\(870\) 10.1386 0.343730
\(871\) −10.5433 21.3725i −0.357247 0.724179i
\(872\) 3.92498 0.132917
\(873\) 5.53739 + 9.59105i 0.187412 + 0.324608i
\(874\) 5.66882 + 9.81868i 0.191751 + 0.332122i
\(875\) 0 0
\(876\) −28.6529 −0.968091
\(877\) −1.18759 + 2.05697i −0.0401021 + 0.0694588i −0.885380 0.464868i \(-0.846102\pi\)
0.845278 + 0.534327i \(0.179435\pi\)
\(878\) −0.509403 + 0.882313i −0.0171915 + 0.0297766i
\(879\) 5.10908 0.172325
\(880\) 0.0800789 0.138701i 0.00269946 0.00467560i
\(881\) −9.38846 16.2613i −0.316305 0.547857i 0.663409 0.748257i \(-0.269109\pi\)
−0.979714 + 0.200400i \(0.935776\pi\)
\(882\) 0 0
\(883\) 16.9385 0.570026 0.285013 0.958524i \(-0.408002\pi\)
0.285013 + 0.958524i \(0.408002\pi\)
\(884\) −4.48378 9.08911i −0.150806 0.305700i
\(885\) −32.9703 −1.10828
\(886\) 13.4582 + 23.3103i 0.452138 + 0.783125i
\(887\) 9.68429 + 16.7737i 0.325167 + 0.563205i 0.981546 0.191226i \(-0.0612463\pi\)
−0.656379 + 0.754431i \(0.727913\pi\)
\(888\) −11.5854 + 20.0665i −0.388781 + 0.673389i
\(889\) 0 0
\(890\) 9.09467 15.7524i 0.304854 0.528022i
\(891\) −0.239892 + 0.415505i −0.00803669 + 0.0139199i
\(892\) 28.1085 0.941142
\(893\) 27.8875 48.3026i 0.933219 1.61638i
\(894\) −28.8939 50.0458i −0.966357 1.67378i
\(895\) 9.66930 + 16.7477i 0.323209 + 0.559815i
\(896\) 0 0
\(897\) −8.55513 + 12.8074i −0.285648 + 0.427627i
\(898\) 8.83552 0.294845
\(899\) −7.80385 13.5167i −0.260273 0.450806i
\(900\) 3.17841 + 5.50517i 0.105947 + 0.183506i
\(901\) −1.25763 + 2.17829i −0.0418979 + 0.0725692i
\(902\) −0.909416 −0.0302802
\(903\) 0 0
\(904\) −7.47705 + 12.9506i −0.248683 + 0.430732i
\(905\) 34.1061 1.13373
\(906\) 15.6101 27.0376i 0.518612 0.898263i
\(907\) −13.4045 23.2173i −0.445090 0.770919i 0.552968 0.833202i \(-0.313495\pi\)
−0.998059 + 0.0622834i \(0.980162\pi\)
\(908\) 13.3454 + 23.1150i 0.442884 + 0.767097i
\(909\) −14.6805 −0.486922
\(910\) 0 0
\(911\) 0.383210 0.0126963 0.00634816 0.999980i \(-0.497979\pi\)
0.00634816 + 0.999980i \(0.497979\pi\)
\(912\) 9.15424 + 15.8556i 0.303127 + 0.525032i
\(913\) 0.736383 + 1.27545i 0.0243707 + 0.0422113i
\(914\) 17.9361 31.0662i 0.593272 1.02758i
\(915\) 42.7412 1.41298
\(916\) −4.70473 + 8.14883i −0.155449 + 0.269245i
\(917\) 0 0
\(918\) 6.63091 0.218853
\(919\) 18.7896 32.5445i 0.619812 1.07355i −0.369708 0.929148i \(-0.620542\pi\)
0.989520 0.144398i \(-0.0461244\pi\)
\(920\) −1.49271 2.58545i −0.0492132 0.0852398i
\(921\) −7.98037 13.8224i −0.262962 0.455464i
\(922\) 41.2338 1.35796
\(923\) −15.1866 + 22.7350i −0.499872 + 0.748331i
\(924\) 0 0
\(925\) 7.19323 + 12.4590i 0.236512 + 0.409651i
\(926\) −10.5157 18.2136i −0.345566 0.598537i
\(927\) 18.4339 31.9284i 0.605448 1.04867i
\(928\) 2.10301 0.0690347
\(929\) −5.68966 + 9.85479i −0.186672 + 0.323325i −0.944139 0.329549i \(-0.893103\pi\)
0.757467 + 0.652874i \(0.226437\pi\)
\(930\) −17.8897 + 30.9859i −0.586626 + 1.01607i
\(931\) 0 0
\(932\) −11.5107 + 19.9372i −0.377047 + 0.653064i
\(933\) 16.0760 + 27.8445i 0.526306 + 0.911589i
\(934\) 10.2160 + 17.6946i 0.334277 + 0.578986i
\(935\) −0.450190 −0.0147228
\(936\) −7.80699 + 11.6874i −0.255179 + 0.382015i
\(937\) −3.70274 −0.120963 −0.0604817 0.998169i \(-0.519264\pi\)
−0.0604817 + 0.998169i \(0.519264\pi\)
\(938\) 0 0
\(939\) −12.3290 21.3545i −0.402342 0.696876i
\(940\) −7.34332 + 12.7190i −0.239513 + 0.414848i
\(941\) 53.2334 1.73536 0.867680 0.497123i \(-0.165610\pi\)
0.867680 + 0.497123i \(0.165610\pi\)
\(942\) 2.10165 3.64017i 0.0684755 0.118603i
\(943\) −8.47599 + 14.6808i −0.276016 + 0.478074i
\(944\) −6.83891 −0.222588
\(945\) 0 0
\(946\) −0.260936 0.451954i −0.00848375 0.0146943i
\(947\) 11.3032 + 19.5778i 0.367306 + 0.636193i 0.989143 0.146953i \(-0.0469468\pi\)
−0.621837 + 0.783147i \(0.713613\pi\)
\(948\) −24.2103 −0.786315
\(949\) −39.2506 2.56729i −1.27413 0.0833377i
\(950\) 11.3675 0.368810
\(951\) 3.67251 + 6.36097i 0.119089 + 0.206268i
\(952\) 0 0
\(953\) 7.94844 13.7671i 0.257475 0.445960i −0.708090 0.706123i \(-0.750443\pi\)
0.965565 + 0.260162i \(0.0837761\pi\)
\(954\) 3.48817 0.112934
\(955\) −20.9510 + 36.2883i −0.677960 + 1.17426i
\(956\) −5.51607 + 9.55412i −0.178403 + 0.309002i
\(957\) −0.481934 −0.0155787
\(958\) 19.6000 33.9482i 0.633248 1.09682i
\(959\) 0 0
\(960\) −2.41049 4.17509i −0.0777983 0.134751i
\(961\) 24.0801 0.776777
\(962\) −17.6684 + 26.4504i −0.569653 + 0.852795i
\(963\) 28.6866 0.924412
\(964\) −3.69969 6.40806i −0.119159 0.206390i
\(965\) 2.68271 + 4.64659i 0.0863595 + 0.149579i
\(966\) 0 0
\(967\) −26.3252 −0.846560 −0.423280 0.905999i \(-0.639121\pi\)
−0.423280 + 0.905999i \(0.639121\pi\)
\(968\) 5.49619 9.51969i 0.176654 0.305974i
\(969\) 25.7318 44.5688i 0.826625 1.43176i
\(970\) −5.21487 −0.167439
\(971\) 9.36842 16.2266i 0.300647 0.520735i −0.675636 0.737236i \(-0.736131\pi\)
0.976283 + 0.216500i \(0.0694641\pi\)
\(972\) 10.7596 + 18.6361i 0.345114 + 0.597754i
\(973\) 0 0
\(974\) −11.6082 −0.371951
\(975\) 6.83192 + 13.8490i 0.218796 + 0.443524i
\(976\) 8.86567 0.283783
\(977\) 16.3471 + 28.3139i 0.522989 + 0.905843i 0.999642 + 0.0267516i \(0.00851630\pi\)
−0.476654 + 0.879091i \(0.658150\pi\)
\(978\) 6.05311 + 10.4843i 0.193557 + 0.335251i
\(979\) −0.432312 + 0.748786i −0.0138168 + 0.0239313i
\(980\) 0 0
\(981\) −7.65012 + 13.2504i −0.244250 + 0.423053i
\(982\) 11.9193 20.6448i 0.380360 0.658803i
\(983\) −16.1384 −0.514733 −0.257367 0.966314i \(-0.582855\pi\)
−0.257367 + 0.966314i \(0.582855\pi\)
\(984\) −13.6874 + 23.7072i −0.436338 + 0.755759i
\(985\) 4.35790 + 7.54811i 0.138854 + 0.240503i
\(986\) −2.95569 5.11941i −0.0941285 0.163035i
\(987\) 0 0
\(988\) 11.1194 + 22.5403i 0.353756 + 0.717101i
\(989\) −9.72795 −0.309331
\(990\) 0.312161 + 0.540679i 0.00992113 + 0.0171839i
\(991\) 14.5529 + 25.2064i 0.462289 + 0.800709i 0.999075 0.0430102i \(-0.0136948\pi\)
−0.536785 + 0.843719i \(0.680361\pi\)
\(992\) −3.71080 + 6.42729i −0.117818 + 0.204067i
\(993\) −67.5426 −2.14340
\(994\) 0 0
\(995\) 9.03583 15.6505i 0.286455 0.496154i
\(996\) 44.3324 1.40473
\(997\) −13.6617 + 23.6627i −0.432670 + 0.749406i −0.997102 0.0760733i \(-0.975762\pi\)
0.564432 + 0.825479i \(0.309095\pi\)
\(998\) −4.09131 7.08635i −0.129508 0.224314i
\(999\) −10.4057 18.0232i −0.329221 0.570228i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1274.2.g.p.393.1 10
7.2 even 3 182.2.h.d.81.5 yes 10
7.3 odd 6 1274.2.e.s.471.5 10
7.4 even 3 182.2.e.d.107.1 10
7.5 odd 6 1274.2.h.s.263.1 10
7.6 odd 2 1274.2.g.q.393.5 10
13.9 even 3 inner 1274.2.g.p.295.1 10
21.2 odd 6 1638.2.p.k.991.4 10
21.11 odd 6 1638.2.m.j.289.4 10
91.9 even 3 182.2.e.d.165.1 yes 10
91.48 odd 6 1274.2.g.q.295.5 10
91.61 odd 6 1274.2.e.s.165.5 10
91.74 even 3 182.2.h.d.9.5 yes 10
91.87 odd 6 1274.2.h.s.373.1 10
273.74 odd 6 1638.2.p.k.919.4 10
273.191 odd 6 1638.2.m.j.1621.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.e.d.107.1 10 7.4 even 3
182.2.e.d.165.1 yes 10 91.9 even 3
182.2.h.d.9.5 yes 10 91.74 even 3
182.2.h.d.81.5 yes 10 7.2 even 3
1274.2.e.s.165.5 10 91.61 odd 6
1274.2.e.s.471.5 10 7.3 odd 6
1274.2.g.p.295.1 10 13.9 even 3 inner
1274.2.g.p.393.1 10 1.1 even 1 trivial
1274.2.g.q.295.5 10 91.48 odd 6
1274.2.g.q.393.5 10 7.6 odd 2
1274.2.h.s.263.1 10 7.5 odd 6
1274.2.h.s.373.1 10 91.87 odd 6
1638.2.m.j.289.4 10 21.11 odd 6
1638.2.m.j.1621.4 10 273.191 odd 6
1638.2.p.k.919.4 10 273.74 odd 6
1638.2.p.k.991.4 10 21.2 odd 6