Properties

Label 182.2.h.d.9.5
Level $182$
Weight $2$
Character 182.9
Analytic conductor $1.453$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [182,2,Mod(9,182)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(182, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("182.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 182 = 2 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 182.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.45327731679\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.23207289578928.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 3x^{8} + 13x^{7} + x^{6} - 39x^{5} + 3x^{4} + 117x^{3} - 81x^{2} - 162x + 243 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 9.5
Root \(-1.73100 - 0.0603688i\) of defining polynomial
Character \(\chi\) \(=\) 182.9
Dual form 182.2.h.d.81.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +2.62644 q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.917780 + 1.58964i) q^{5} +(-1.31322 - 2.27456i) q^{6} +(1.05365 - 2.42690i) q^{7} +1.00000 q^{8} +3.89817 q^{9} +1.83556 q^{10} -0.0872528 q^{11} +(-1.31322 + 2.27456i) q^{12} +(3.59786 - 0.235328i) q^{13} +(-2.62858 + 0.300964i) q^{14} +(-2.41049 + 4.17509i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.40546 + 2.43433i) q^{17} +(-1.94908 - 3.37591i) q^{18} -6.97084 q^{19} +(-0.917780 - 1.58964i) q^{20} +(2.76734 - 6.37409i) q^{21} +(0.0436264 + 0.0755631i) q^{22} +(-0.813218 - 1.40854i) q^{23} +2.62644 q^{24} +(0.815359 + 1.41224i) q^{25} +(-2.00273 - 2.99818i) q^{26} +2.35899 q^{27} +(1.57493 + 2.12593i) q^{28} +(-1.05151 + 1.82126i) q^{29} +4.82098 q^{30} +(-3.71080 - 6.42729i) q^{31} +(-0.500000 + 0.866025i) q^{32} -0.229164 q^{33} +2.81092 q^{34} +(2.89088 + 3.90228i) q^{35} +(-1.94908 + 3.37591i) q^{36} +(-4.41108 - 7.64022i) q^{37} +(3.48542 + 6.03693i) q^{38} +(9.44956 - 0.618073i) q^{39} +(-0.917780 + 1.58964i) q^{40} +(-5.21139 + 9.02639i) q^{41} +(-6.90379 + 0.790462i) q^{42} +(2.99057 + 5.17982i) q^{43} +(0.0436264 - 0.0755631i) q^{44} +(-3.57766 + 6.19669i) q^{45} +(-0.813218 + 1.40854i) q^{46} +(-4.00059 + 6.92923i) q^{47} +(-1.31322 - 2.27456i) q^{48} +(-4.77966 - 5.11418i) q^{49} +(0.815359 - 1.41224i) q^{50} +(-3.69135 + 6.39360i) q^{51} +(-1.59513 + 3.23350i) q^{52} +(-0.447411 - 0.774938i) q^{53} +(-1.17949 - 2.04294i) q^{54} +(0.0800789 - 0.138701i) q^{55} +(1.05365 - 2.42690i) q^{56} -18.3085 q^{57} +2.10301 q^{58} +(3.41945 - 5.92267i) q^{59} +(-2.41049 - 4.17509i) q^{60} +8.86567 q^{61} +(-3.71080 + 6.42729i) q^{62} +(4.10729 - 9.46046i) q^{63} +1.00000 q^{64} +(-2.92796 + 5.93529i) q^{65} +(0.114582 + 0.198462i) q^{66} +6.60969 q^{67} +(-1.40546 - 2.43433i) q^{68} +(-2.13587 - 3.69943i) q^{69} +(1.93403 - 4.45472i) q^{70} +(-3.79147 - 6.56701i) q^{71} +3.89817 q^{72} +(5.45471 + 9.44783i) q^{73} +(-4.41108 + 7.64022i) q^{74} +(2.14149 + 3.70917i) q^{75} +(3.48542 - 6.03693i) q^{76} +(-0.0919336 + 0.211754i) q^{77} +(-5.26005 - 7.87452i) q^{78} +(4.60897 - 7.98297i) q^{79} +1.83556 q^{80} -5.49878 q^{81} +10.4228 q^{82} +16.8793 q^{83} +(4.13646 + 5.58363i) q^{84} +(-2.57980 - 4.46835i) q^{85} +(2.99057 - 5.17982i) q^{86} +(-2.76171 + 4.78343i) q^{87} -0.0872528 q^{88} +(4.95471 + 8.58181i) q^{89} +7.15533 q^{90} +(3.21976 - 8.97960i) q^{91} +1.62644 q^{92} +(-9.74617 - 16.8809i) q^{93} +8.00118 q^{94} +(6.39770 - 11.0811i) q^{95} +(-1.31322 + 2.27456i) q^{96} +(1.42051 + 2.46040i) q^{97} +(-2.03918 + 6.69640i) q^{98} -0.340126 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 5 q^{2} + 2 q^{3} - 5 q^{4} - 2 q^{5} - q^{6} + 10 q^{8} + 8 q^{9} + 4 q^{10} + 8 q^{11} - q^{12} - 6 q^{13} - 3 q^{14} + 3 q^{15} - 5 q^{16} - 3 q^{17} - 4 q^{18} + 10 q^{19} - 2 q^{20} - 16 q^{21}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/182\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(157\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 2.62644 1.51637 0.758187 0.652037i \(-0.226085\pi\)
0.758187 + 0.652037i \(0.226085\pi\)
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.917780 + 1.58964i −0.410444 + 0.710909i −0.994938 0.100488i \(-0.967960\pi\)
0.584495 + 0.811398i \(0.301293\pi\)
\(6\) −1.31322 2.27456i −0.536119 0.928586i
\(7\) 1.05365 2.42690i 0.398241 0.917281i
\(8\) 1.00000 0.353553
\(9\) 3.89817 1.29939
\(10\) 1.83556 0.580455
\(11\) −0.0872528 −0.0263077 −0.0131539 0.999913i \(-0.504187\pi\)
−0.0131539 + 0.999913i \(0.504187\pi\)
\(12\) −1.31322 + 2.27456i −0.379093 + 0.656609i
\(13\) 3.59786 0.235328i 0.997868 0.0652682i
\(14\) −2.62858 + 0.300964i −0.702517 + 0.0804359i
\(15\) −2.41049 + 4.17509i −0.622386 + 1.07800i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.40546 + 2.43433i −0.340874 + 0.590411i −0.984595 0.174849i \(-0.944056\pi\)
0.643721 + 0.765260i \(0.277390\pi\)
\(18\) −1.94908 3.37591i −0.459404 0.795711i
\(19\) −6.97084 −1.59922 −0.799611 0.600519i \(-0.794961\pi\)
−0.799611 + 0.600519i \(0.794961\pi\)
\(20\) −0.917780 1.58964i −0.205222 0.355455i
\(21\) 2.76734 6.37409i 0.603882 1.39094i
\(22\) 0.0436264 + 0.0755631i 0.00930118 + 0.0161101i
\(23\) −0.813218 1.40854i −0.169568 0.293700i 0.768700 0.639609i \(-0.220904\pi\)
−0.938268 + 0.345909i \(0.887570\pi\)
\(24\) 2.62644 0.536119
\(25\) 0.815359 + 1.41224i 0.163072 + 0.282449i
\(26\) −2.00273 2.99818i −0.392768 0.587991i
\(27\) 2.35899 0.453987
\(28\) 1.57493 + 2.12593i 0.297634 + 0.401764i
\(29\) −1.05151 + 1.82126i −0.195260 + 0.338200i −0.946986 0.321276i \(-0.895888\pi\)
0.751726 + 0.659476i \(0.229222\pi\)
\(30\) 4.82098 0.880187
\(31\) −3.71080 6.42729i −0.666479 1.15438i −0.978882 0.204426i \(-0.934467\pi\)
0.312403 0.949950i \(-0.398866\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.229164 −0.0398923
\(34\) 2.81092 0.482068
\(35\) 2.89088 + 3.90228i 0.488648 + 0.659605i
\(36\) −1.94908 + 3.37591i −0.324847 + 0.562652i
\(37\) −4.41108 7.64022i −0.725177 1.25604i −0.958901 0.283741i \(-0.908424\pi\)
0.233724 0.972303i \(-0.424909\pi\)
\(38\) 3.48542 + 6.03693i 0.565410 + 0.979319i
\(39\) 9.44956 0.618073i 1.51314 0.0989709i
\(40\) −0.917780 + 1.58964i −0.145114 + 0.251344i
\(41\) −5.21139 + 9.02639i −0.813882 + 1.40969i 0.0962458 + 0.995358i \(0.469317\pi\)
−0.910128 + 0.414327i \(0.864017\pi\)
\(42\) −6.90379 + 0.790462i −1.06528 + 0.121971i
\(43\) 2.99057 + 5.17982i 0.456058 + 0.789915i 0.998748 0.0500176i \(-0.0159277\pi\)
−0.542691 + 0.839933i \(0.682594\pi\)
\(44\) 0.0436264 0.0755631i 0.00657693 0.0113916i
\(45\) −3.57766 + 6.19669i −0.533326 + 0.923748i
\(46\) −0.813218 + 1.40854i −0.119903 + 0.207677i
\(47\) −4.00059 + 6.92923i −0.583546 + 1.01073i 0.411509 + 0.911406i \(0.365002\pi\)
−0.995055 + 0.0993257i \(0.968331\pi\)
\(48\) −1.31322 2.27456i −0.189547 0.328305i
\(49\) −4.77966 5.11418i −0.682808 0.730598i
\(50\) 0.815359 1.41224i 0.115309 0.199721i
\(51\) −3.69135 + 6.39360i −0.516892 + 0.895283i
\(52\) −1.59513 + 3.23350i −0.221205 + 0.448406i
\(53\) −0.447411 0.774938i −0.0614566 0.106446i 0.833660 0.552278i \(-0.186241\pi\)
−0.895117 + 0.445832i \(0.852908\pi\)
\(54\) −1.17949 2.04294i −0.160509 0.278009i
\(55\) 0.0800789 0.138701i 0.0107978 0.0187024i
\(56\) 1.05365 2.42690i 0.140799 0.324308i
\(57\) −18.3085 −2.42502
\(58\) 2.10301 0.276139
\(59\) 3.41945 5.92267i 0.445175 0.771066i −0.552889 0.833255i \(-0.686475\pi\)
0.998064 + 0.0621889i \(0.0198081\pi\)
\(60\) −2.41049 4.17509i −0.311193 0.539002i
\(61\) 8.86567 1.13513 0.567566 0.823328i \(-0.307885\pi\)
0.567566 + 0.823328i \(0.307885\pi\)
\(62\) −3.71080 + 6.42729i −0.471272 + 0.816267i
\(63\) 4.10729 9.46046i 0.517470 1.19191i
\(64\) 1.00000 0.125000
\(65\) −2.92796 + 5.93529i −0.363169 + 0.736182i
\(66\) 0.114582 + 0.198462i 0.0141041 + 0.0244290i
\(67\) 6.60969 0.807502 0.403751 0.914869i \(-0.367706\pi\)
0.403751 + 0.914869i \(0.367706\pi\)
\(68\) −1.40546 2.43433i −0.170437 0.295205i
\(69\) −2.13587 3.69943i −0.257128 0.445359i
\(70\) 1.93403 4.45472i 0.231161 0.532440i
\(71\) −3.79147 6.56701i −0.449964 0.779361i 0.548419 0.836204i \(-0.315230\pi\)
−0.998383 + 0.0568427i \(0.981897\pi\)
\(72\) 3.89817 0.459404
\(73\) 5.45471 + 9.44783i 0.638425 + 1.10579i 0.985778 + 0.168051i \(0.0537472\pi\)
−0.347353 + 0.937734i \(0.612919\pi\)
\(74\) −4.41108 + 7.64022i −0.512778 + 0.888157i
\(75\) 2.14149 + 3.70917i 0.247278 + 0.428298i
\(76\) 3.48542 6.03693i 0.399805 0.692483i
\(77\) −0.0919336 + 0.211754i −0.0104768 + 0.0241316i
\(78\) −5.26005 7.87452i −0.595583 0.891614i
\(79\) 4.60897 7.98297i 0.518549 0.898154i −0.481218 0.876601i \(-0.659806\pi\)
0.999768 0.0215530i \(-0.00686108\pi\)
\(80\) 1.83556 0.205222
\(81\) −5.49878 −0.610976
\(82\) 10.4228 1.15100
\(83\) 16.8793 1.85274 0.926372 0.376609i \(-0.122910\pi\)
0.926372 + 0.376609i \(0.122910\pi\)
\(84\) 4.13646 + 5.58363i 0.451324 + 0.609224i
\(85\) −2.57980 4.46835i −0.279819 0.484661i
\(86\) 2.99057 5.17982i 0.322481 0.558554i
\(87\) −2.76171 + 4.78343i −0.296087 + 0.512837i
\(88\) −0.0872528 −0.00930118
\(89\) 4.95471 + 8.58181i 0.525198 + 0.909670i 0.999569 + 0.0293448i \(0.00934208\pi\)
−0.474371 + 0.880325i \(0.657325\pi\)
\(90\) 7.15533 0.754237
\(91\) 3.21976 8.97960i 0.337523 0.941317i
\(92\) 1.62644 0.169568
\(93\) −9.74617 16.8809i −1.01063 1.75046i
\(94\) 8.00118 0.825259
\(95\) 6.39770 11.0811i 0.656390 1.13690i
\(96\) −1.31322 + 2.27456i −0.134030 + 0.232146i
\(97\) 1.42051 + 2.46040i 0.144231 + 0.249816i 0.929086 0.369864i \(-0.120596\pi\)
−0.784855 + 0.619680i \(0.787262\pi\)
\(98\) −2.03918 + 6.69640i −0.205989 + 0.676438i
\(99\) −0.340126 −0.0341840
\(100\) −1.63072 −0.163072
\(101\) −3.76600 −0.374731 −0.187366 0.982290i \(-0.559995\pi\)
−0.187366 + 0.982290i \(0.559995\pi\)
\(102\) 7.38270 0.730996
\(103\) 4.72886 8.19062i 0.465948 0.807046i −0.533296 0.845929i \(-0.679047\pi\)
0.999244 + 0.0388831i \(0.0123800\pi\)
\(104\) 3.59786 0.235328i 0.352800 0.0230758i
\(105\) 7.59272 + 10.2491i 0.740973 + 1.00021i
\(106\) −0.447411 + 0.774938i −0.0434564 + 0.0752686i
\(107\) −3.67949 6.37307i −0.355710 0.616108i 0.631529 0.775352i \(-0.282428\pi\)
−0.987239 + 0.159244i \(0.949094\pi\)
\(108\) −1.17949 + 2.04294i −0.113497 + 0.196582i
\(109\) −1.96249 3.39913i −0.187972 0.325578i 0.756602 0.653876i \(-0.226858\pi\)
−0.944574 + 0.328298i \(0.893525\pi\)
\(110\) −0.160158 −0.0152704
\(111\) −11.5854 20.0665i −1.09964 1.90463i
\(112\) −2.62858 + 0.300964i −0.248377 + 0.0284384i
\(113\) −7.47705 12.9506i −0.703382 1.21829i −0.967272 0.253740i \(-0.918339\pi\)
0.263891 0.964553i \(-0.414994\pi\)
\(114\) 9.15424 + 15.8556i 0.857373 + 1.48501i
\(115\) 2.98542 0.278392
\(116\) −1.05151 1.82126i −0.0976298 0.169100i
\(117\) 14.0251 0.917347i 1.29662 0.0848088i
\(118\) −6.83891 −0.629573
\(119\) 4.42700 + 5.97582i 0.405822 + 0.547803i
\(120\) −2.41049 + 4.17509i −0.220047 + 0.381132i
\(121\) −10.9924 −0.999308
\(122\) −4.43283 7.67789i −0.401330 0.695124i
\(123\) −13.6874 + 23.7072i −1.23415 + 2.13761i
\(124\) 7.42160 0.666479
\(125\) −12.1711 −1.08861
\(126\) −10.2466 + 1.17321i −0.912843 + 0.104518i
\(127\) −0.323239 + 0.559866i −0.0286828 + 0.0496800i −0.880010 0.474954i \(-0.842465\pi\)
0.851328 + 0.524634i \(0.175798\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 7.85454 + 13.6045i 0.691554 + 1.19781i
\(130\) 6.60409 0.431958i 0.579217 0.0378852i
\(131\) 1.39817 2.42170i 0.122159 0.211585i −0.798460 0.602048i \(-0.794352\pi\)
0.920619 + 0.390463i \(0.127685\pi\)
\(132\) 0.114582 0.198462i 0.00997308 0.0172739i
\(133\) −7.34481 + 16.9175i −0.636876 + 1.46694i
\(134\) −3.30485 5.72416i −0.285495 0.494492i
\(135\) −2.16503 + 3.74994i −0.186336 + 0.322744i
\(136\) −1.40546 + 2.43433i −0.120517 + 0.208742i
\(137\) 5.20854 9.02146i 0.444996 0.770755i −0.553056 0.833144i \(-0.686539\pi\)
0.998052 + 0.0623887i \(0.0198719\pi\)
\(138\) −2.13587 + 3.69943i −0.181817 + 0.314916i
\(139\) 6.12235 + 10.6042i 0.519291 + 0.899438i 0.999749 + 0.0224200i \(0.00713711\pi\)
−0.480458 + 0.877018i \(0.659530\pi\)
\(140\) −4.82491 + 0.552437i −0.407780 + 0.0466895i
\(141\) −10.5073 + 18.1992i −0.884874 + 1.53265i
\(142\) −3.79147 + 6.56701i −0.318173 + 0.551092i
\(143\) −0.313924 + 0.0205330i −0.0262516 + 0.00171706i
\(144\) −1.94908 3.37591i −0.162424 0.281326i
\(145\) −1.93010 3.34303i −0.160286 0.277624i
\(146\) 5.45471 9.44783i 0.451435 0.781908i
\(147\) −12.5535 13.4321i −1.03539 1.10786i
\(148\) 8.82216 0.725177
\(149\) 22.0024 1.80251 0.901253 0.433294i \(-0.142649\pi\)
0.901253 + 0.433294i \(0.142649\pi\)
\(150\) 2.14149 3.70917i 0.174852 0.302852i
\(151\) 5.94347 + 10.2944i 0.483673 + 0.837746i 0.999824 0.0187516i \(-0.00596916\pi\)
−0.516151 + 0.856497i \(0.672636\pi\)
\(152\) −6.97084 −0.565410
\(153\) −5.47872 + 9.48941i −0.442928 + 0.767174i
\(154\) 0.229351 0.0262599i 0.0184816 0.00211609i
\(155\) 13.6228 1.09421
\(156\) −4.18951 + 8.49260i −0.335429 + 0.679952i
\(157\) 0.800191 + 1.38597i 0.0638622 + 0.110613i 0.896189 0.443673i \(-0.146325\pi\)
−0.832326 + 0.554286i \(0.812992\pi\)
\(158\) −9.21793 −0.733339
\(159\) −1.17510 2.03533i −0.0931912 0.161412i
\(160\) −0.917780 1.58964i −0.0725569 0.125672i
\(161\) −4.27522 + 0.489499i −0.336934 + 0.0385779i
\(162\) 2.74939 + 4.76209i 0.216013 + 0.374145i
\(163\) −4.60937 −0.361034 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(164\) −5.21139 9.02639i −0.406941 0.704843i
\(165\) 0.210322 0.364289i 0.0163736 0.0283598i
\(166\) −8.43966 14.6179i −0.655044 1.13457i
\(167\) −9.67113 + 16.7509i −0.748374 + 1.29622i 0.200227 + 0.979750i \(0.435832\pi\)
−0.948602 + 0.316473i \(0.897501\pi\)
\(168\) 2.76734 6.37409i 0.213505 0.491772i
\(169\) 12.8892 1.69335i 0.991480 0.130258i
\(170\) −2.57980 + 4.46835i −0.197862 + 0.342707i
\(171\) −27.1735 −2.07801
\(172\) −5.98114 −0.456058
\(173\) −14.2034 −1.07986 −0.539931 0.841710i \(-0.681550\pi\)
−0.539931 + 0.841710i \(0.681550\pi\)
\(174\) 5.52343 0.418730
\(175\) 4.28647 0.490787i 0.324027 0.0371000i
\(176\) 0.0436264 + 0.0755631i 0.00328846 + 0.00569579i
\(177\) 8.98098 15.5555i 0.675052 1.16922i
\(178\) 4.95471 8.58181i 0.371371 0.643234i
\(179\) −10.5355 −0.787463 −0.393731 0.919226i \(-0.628816\pi\)
−0.393731 + 0.919226i \(0.628816\pi\)
\(180\) −3.57766 6.19669i −0.266663 0.461874i
\(181\) 18.5808 1.38110 0.690549 0.723285i \(-0.257369\pi\)
0.690549 + 0.723285i \(0.257369\pi\)
\(182\) −9.38644 + 1.70140i −0.695769 + 0.126116i
\(183\) 23.2851 1.72128
\(184\) −0.813218 1.40854i −0.0599513 0.103839i
\(185\) 16.1936 1.19058
\(186\) −9.74617 + 16.8809i −0.714624 + 1.23777i
\(187\) 0.122630 0.212402i 0.00896761 0.0155323i
\(188\) −4.00059 6.92923i −0.291773 0.505366i
\(189\) 2.48554 5.72502i 0.180796 0.416434i
\(190\) −12.7954 −0.928276
\(191\) 22.8279 1.65177 0.825886 0.563837i \(-0.190675\pi\)
0.825886 + 0.563837i \(0.190675\pi\)
\(192\) 2.62644 0.189547
\(193\) −2.92304 −0.210405 −0.105203 0.994451i \(-0.533549\pi\)
−0.105203 + 0.994451i \(0.533549\pi\)
\(194\) 1.42051 2.46040i 0.101987 0.176646i
\(195\) −7.69010 + 15.5887i −0.550700 + 1.11633i
\(196\) 6.81884 1.58221i 0.487060 0.113015i
\(197\) 2.37415 4.11215i 0.169151 0.292979i −0.768970 0.639284i \(-0.779231\pi\)
0.938122 + 0.346306i \(0.112564\pi\)
\(198\) 0.170063 + 0.294558i 0.0120859 + 0.0209333i
\(199\) 4.92265 8.52628i 0.348958 0.604412i −0.637107 0.770775i \(-0.719869\pi\)
0.986065 + 0.166363i \(0.0532024\pi\)
\(200\) 0.815359 + 1.41224i 0.0576546 + 0.0998607i
\(201\) 17.3599 1.22448
\(202\) 1.88300 + 3.26145i 0.132488 + 0.229475i
\(203\) 3.31210 + 4.47086i 0.232464 + 0.313793i
\(204\) −3.69135 6.39360i −0.258446 0.447642i
\(205\) −9.56582 16.5685i −0.668106 1.15719i
\(206\) −9.45771 −0.658950
\(207\) −3.17006 5.49071i −0.220335 0.381631i
\(208\) −2.00273 2.99818i −0.138864 0.207886i
\(209\) 0.608226 0.0420718
\(210\) 5.07961 11.7000i 0.350527 0.807379i
\(211\) 2.18356 3.78203i 0.150322 0.260366i −0.781024 0.624501i \(-0.785302\pi\)
0.931346 + 0.364136i \(0.118636\pi\)
\(212\) 0.894821 0.0614566
\(213\) −9.95805 17.2478i −0.682314 1.18180i
\(214\) −3.67949 + 6.37307i −0.251525 + 0.435654i
\(215\) −10.9787 −0.748744
\(216\) 2.35899 0.160509
\(217\) −19.5082 + 2.23363i −1.32431 + 0.151629i
\(218\) −1.96249 + 3.39913i −0.132917 + 0.230218i
\(219\) 14.3264 + 24.8141i 0.968091 + 1.67678i
\(220\) 0.0800789 + 0.138701i 0.00539892 + 0.00935120i
\(221\) −4.48378 + 9.08911i −0.301612 + 0.611400i
\(222\) −11.5854 + 20.0665i −0.777563 + 1.34678i
\(223\) −14.0542 + 24.3427i −0.941142 + 1.63011i −0.177844 + 0.984059i \(0.556912\pi\)
−0.763298 + 0.646047i \(0.776421\pi\)
\(224\) 1.57493 + 2.12593i 0.105230 + 0.142045i
\(225\) 3.17841 + 5.50517i 0.211894 + 0.367011i
\(226\) −7.47705 + 12.9506i −0.497366 + 0.861463i
\(227\) 13.3454 23.1150i 0.885767 1.53419i 0.0409354 0.999162i \(-0.486966\pi\)
0.844832 0.535032i \(-0.179700\pi\)
\(228\) 9.15424 15.8556i 0.606254 1.05006i
\(229\) −4.70473 + 8.14883i −0.310897 + 0.538490i −0.978557 0.205977i \(-0.933963\pi\)
0.667660 + 0.744467i \(0.267296\pi\)
\(230\) −1.49271 2.58545i −0.0984265 0.170480i
\(231\) −0.241458 + 0.556157i −0.0158868 + 0.0365925i
\(232\) −1.05151 + 1.82126i −0.0690347 + 0.119572i
\(233\) −11.5107 + 19.9372i −0.754093 + 1.30613i 0.191731 + 0.981448i \(0.438590\pi\)
−0.945824 + 0.324680i \(0.894743\pi\)
\(234\) −7.80699 11.6874i −0.510359 0.764029i
\(235\) −7.34332 12.7190i −0.479026 0.829697i
\(236\) 3.41945 + 5.92267i 0.222588 + 0.385533i
\(237\) 12.1052 20.9668i 0.786315 1.36194i
\(238\) 2.96171 6.82181i 0.191979 0.442192i
\(239\) 11.0321 0.713610 0.356805 0.934179i \(-0.383866\pi\)
0.356805 + 0.934179i \(0.383866\pi\)
\(240\) 4.82098 0.311193
\(241\) −3.69969 + 6.40806i −0.238318 + 0.412779i −0.960232 0.279204i \(-0.909929\pi\)
0.721914 + 0.691983i \(0.243263\pi\)
\(242\) 5.49619 + 9.51969i 0.353309 + 0.611949i
\(243\) −21.5192 −1.38045
\(244\) −4.43283 + 7.67789i −0.283783 + 0.491527i
\(245\) 12.5164 2.90425i 0.799643 0.185546i
\(246\) 27.3748 1.74535
\(247\) −25.0801 + 1.64043i −1.59581 + 0.104378i
\(248\) −3.71080 6.42729i −0.235636 0.408133i
\(249\) 44.3324 2.80945
\(250\) 6.08554 + 10.5405i 0.384883 + 0.666638i
\(251\) −1.94394 3.36700i −0.122700 0.212523i 0.798131 0.602483i \(-0.205822\pi\)
−0.920832 + 0.389960i \(0.872489\pi\)
\(252\) 6.13935 + 8.28725i 0.386743 + 0.522048i
\(253\) 0.0709556 + 0.122899i 0.00446094 + 0.00772657i
\(254\) 0.646477 0.0405636
\(255\) −6.77569 11.7358i −0.424310 0.734927i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.86569 13.6238i −0.490648 0.849828i 0.509294 0.860593i \(-0.329907\pi\)
−0.999942 + 0.0107648i \(0.996573\pi\)
\(258\) 7.85454 13.6045i 0.489003 0.846977i
\(259\) −23.1897 + 2.65515i −1.44094 + 0.164983i
\(260\) −3.67613 5.50333i −0.227984 0.341302i
\(261\) −4.09895 + 7.09958i −0.253718 + 0.439453i
\(262\) −2.79634 −0.172758
\(263\) −12.7599 −0.786808 −0.393404 0.919366i \(-0.628703\pi\)
−0.393404 + 0.919366i \(0.628703\pi\)
\(264\) −0.229164 −0.0141041
\(265\) 1.64250 0.100898
\(266\) 18.3234 2.09797i 1.12348 0.128635i
\(267\) 13.0132 + 22.5396i 0.796397 + 1.37940i
\(268\) −3.30485 + 5.72416i −0.201876 + 0.349659i
\(269\) −6.51291 + 11.2807i −0.397099 + 0.687796i −0.993367 0.114990i \(-0.963316\pi\)
0.596267 + 0.802786i \(0.296650\pi\)
\(270\) 4.33006 0.263519
\(271\) 4.68905 + 8.12167i 0.284839 + 0.493356i 0.972570 0.232610i \(-0.0747264\pi\)
−0.687731 + 0.725966i \(0.741393\pi\)
\(272\) 2.81092 0.170437
\(273\) 8.45650 23.5843i 0.511810 1.42739i
\(274\) −10.4171 −0.629319
\(275\) −0.0711424 0.123222i −0.00429005 0.00743058i
\(276\) 4.27173 0.257128
\(277\) 8.79375 15.2312i 0.528365 0.915155i −0.471088 0.882086i \(-0.656139\pi\)
0.999453 0.0330692i \(-0.0105282\pi\)
\(278\) 6.12235 10.6042i 0.367194 0.635999i
\(279\) −14.4653 25.0547i −0.866016 1.49998i
\(280\) 2.89088 + 3.90228i 0.172763 + 0.233206i
\(281\) 13.5973 0.811146 0.405573 0.914063i \(-0.367072\pi\)
0.405573 + 0.914063i \(0.367072\pi\)
\(282\) 21.0146 1.25140
\(283\) 6.44841 0.383318 0.191659 0.981462i \(-0.438613\pi\)
0.191659 + 0.981462i \(0.438613\pi\)
\(284\) 7.58293 0.449964
\(285\) 16.8032 29.1039i 0.995333 1.72397i
\(286\) 0.174744 + 0.261599i 0.0103328 + 0.0154687i
\(287\) 16.4152 + 22.1581i 0.968956 + 1.30795i
\(288\) −1.94908 + 3.37591i −0.114851 + 0.198928i
\(289\) 4.54937 + 7.87975i 0.267610 + 0.463514i
\(290\) −1.93010 + 3.34303i −0.113339 + 0.196310i
\(291\) 3.73088 + 6.46208i 0.218708 + 0.378814i
\(292\) −10.9094 −0.638425
\(293\) −0.972625 1.68464i −0.0568214 0.0984175i 0.836216 0.548401i \(-0.184763\pi\)
−0.893037 + 0.449983i \(0.851430\pi\)
\(294\) −5.35579 + 17.5877i −0.312356 + 1.02573i
\(295\) 6.27661 + 10.8714i 0.365439 + 0.632958i
\(296\) −4.41108 7.64022i −0.256389 0.444079i
\(297\) −0.205828 −0.0119434
\(298\) −11.0012 19.0546i −0.637282 1.10380i
\(299\) −3.25732 4.87635i −0.188375 0.282006i
\(300\) −4.28298 −0.247278
\(301\) 15.7219 1.80011i 0.906195 0.103756i
\(302\) 5.94347 10.2944i 0.342008 0.592376i
\(303\) −9.89117 −0.568233
\(304\) 3.48542 + 6.03693i 0.199903 + 0.346242i
\(305\) −8.13673 + 14.0932i −0.465908 + 0.806976i
\(306\) 10.9574 0.626395
\(307\) 6.07696 0.346830 0.173415 0.984849i \(-0.444520\pi\)
0.173415 + 0.984849i \(0.444520\pi\)
\(308\) −0.137417 0.185494i −0.00783007 0.0105695i
\(309\) 12.4200 21.5121i 0.706552 1.22378i
\(310\) −6.81139 11.7977i −0.386861 0.670063i
\(311\) 6.12086 + 10.6016i 0.347082 + 0.601164i 0.985730 0.168335i \(-0.0538392\pi\)
−0.638648 + 0.769499i \(0.720506\pi\)
\(312\) 9.44956 0.618073i 0.534976 0.0349915i
\(313\) −4.69419 + 8.13058i −0.265332 + 0.459568i −0.967650 0.252295i \(-0.918815\pi\)
0.702319 + 0.711862i \(0.252148\pi\)
\(314\) 0.800191 1.38597i 0.0451574 0.0782149i
\(315\) 11.2691 + 15.2117i 0.634944 + 0.857085i
\(316\) 4.60897 + 7.98297i 0.259275 + 0.449077i
\(317\) 1.39828 2.42190i 0.0785355 0.136027i −0.824083 0.566469i \(-0.808309\pi\)
0.902618 + 0.430442i \(0.141642\pi\)
\(318\) −1.17510 + 2.03533i −0.0658961 + 0.114135i
\(319\) 0.0917468 0.158910i 0.00513683 0.00889726i
\(320\) −0.917780 + 1.58964i −0.0513055 + 0.0888637i
\(321\) −9.66396 16.7385i −0.539389 0.934250i
\(322\) 2.56153 + 3.45770i 0.142748 + 0.192690i
\(323\) 9.79723 16.9693i 0.545133 0.944197i
\(324\) 2.74939 4.76209i 0.152744 0.264560i
\(325\) 3.26589 + 4.88918i 0.181159 + 0.271203i
\(326\) 2.30469 + 3.99183i 0.127645 + 0.221087i
\(327\) −5.15436 8.92761i −0.285037 0.493698i
\(328\) −5.21139 + 9.02639i −0.287751 + 0.498399i
\(329\) 12.6013 + 17.0100i 0.694733 + 0.937790i
\(330\) −0.420644 −0.0231557
\(331\) −25.7164 −1.41350 −0.706752 0.707462i \(-0.749840\pi\)
−0.706752 + 0.707462i \(0.749840\pi\)
\(332\) −8.43966 + 14.6179i −0.463186 + 0.802262i
\(333\) −17.1951 29.7829i −0.942288 1.63209i
\(334\) 19.3423 1.05836
\(335\) −6.06624 + 10.5070i −0.331434 + 0.574061i
\(336\) −6.90379 + 0.790462i −0.376633 + 0.0431233i
\(337\) −34.3496 −1.87114 −0.935570 0.353141i \(-0.885114\pi\)
−0.935570 + 0.353141i \(0.885114\pi\)
\(338\) −7.91111 10.3157i −0.430308 0.561102i
\(339\) −19.6380 34.0140i −1.06659 1.84739i
\(340\) 5.15961 0.279819
\(341\) 0.323777 + 0.560799i 0.0175335 + 0.0303690i
\(342\) 13.5868 + 23.5330i 0.734688 + 1.27252i
\(343\) −17.4477 + 6.21119i −0.942085 + 0.335373i
\(344\) 2.99057 + 5.17982i 0.161241 + 0.279277i
\(345\) 7.84102 0.422146
\(346\) 7.10168 + 12.3005i 0.381789 + 0.661277i
\(347\) 6.46296 11.1942i 0.346950 0.600935i −0.638756 0.769409i \(-0.720551\pi\)
0.985706 + 0.168475i \(0.0538841\pi\)
\(348\) −2.76171 4.78343i −0.148043 0.256419i
\(349\) 4.74593 8.22019i 0.254044 0.440017i −0.710592 0.703605i \(-0.751573\pi\)
0.964635 + 0.263588i \(0.0849060\pi\)
\(350\) −2.56827 3.46680i −0.137280 0.185308i
\(351\) 8.48731 0.555135i 0.453019 0.0296309i
\(352\) 0.0436264 0.0755631i 0.00232529 0.00402753i
\(353\) −9.16562 −0.487837 −0.243918 0.969796i \(-0.578433\pi\)
−0.243918 + 0.969796i \(0.578433\pi\)
\(354\) −17.9620 −0.954667
\(355\) 13.9189 0.738740
\(356\) −9.90942 −0.525198
\(357\) 11.6272 + 15.6951i 0.615379 + 0.830674i
\(358\) 5.26777 + 9.12404i 0.278410 + 0.482220i
\(359\) 4.07401 7.05639i 0.215018 0.372422i −0.738260 0.674516i \(-0.764352\pi\)
0.953278 + 0.302094i \(0.0976857\pi\)
\(360\) −3.57766 + 6.19669i −0.188559 + 0.326594i
\(361\) 29.5927 1.55751
\(362\) −9.29039 16.0914i −0.488292 0.845747i
\(363\) −28.8708 −1.51532
\(364\) 6.16668 + 7.27819i 0.323222 + 0.381481i
\(365\) −20.0249 −1.04815
\(366\) −11.6426 20.1655i −0.608566 1.05407i
\(367\) −25.5076 −1.33148 −0.665742 0.746182i \(-0.731885\pi\)
−0.665742 + 0.746182i \(0.731885\pi\)
\(368\) −0.813218 + 1.40854i −0.0423919 + 0.0734250i
\(369\) −20.3149 + 35.1864i −1.05755 + 1.83173i
\(370\) −8.09681 14.0241i −0.420933 0.729077i
\(371\) −2.35211 + 0.269309i −0.122115 + 0.0139818i
\(372\) 19.4923 1.01063
\(373\) 2.83889 0.146992 0.0734961 0.997296i \(-0.476584\pi\)
0.0734961 + 0.997296i \(0.476584\pi\)
\(374\) −0.245260 −0.0126821
\(375\) −31.9666 −1.65075
\(376\) −4.00059 + 6.92923i −0.206315 + 0.357348i
\(377\) −3.35458 + 6.80010i −0.172770 + 0.350223i
\(378\) −6.20078 + 0.709969i −0.318934 + 0.0365169i
\(379\) 0.804301 1.39309i 0.0413142 0.0715582i −0.844629 0.535352i \(-0.820179\pi\)
0.885943 + 0.463794i \(0.153512\pi\)
\(380\) 6.39770 + 11.0811i 0.328195 + 0.568451i
\(381\) −0.848966 + 1.47045i −0.0434938 + 0.0753335i
\(382\) −11.4140 19.7696i −0.583990 1.01150i
\(383\) 15.9499 0.814999 0.407500 0.913205i \(-0.366401\pi\)
0.407500 + 0.913205i \(0.366401\pi\)
\(384\) −1.31322 2.27456i −0.0670149 0.116073i
\(385\) −0.252237 0.340485i −0.0128552 0.0173527i
\(386\) 1.46152 + 2.53143i 0.0743895 + 0.128846i
\(387\) 11.6578 + 20.1918i 0.592597 + 1.02641i
\(388\) −2.84102 −0.144231
\(389\) −2.12674 3.68363i −0.107830 0.186767i 0.807061 0.590468i \(-0.201057\pi\)
−0.914891 + 0.403701i \(0.867724\pi\)
\(390\) 17.3452 1.13451i 0.878310 0.0574482i
\(391\) 4.57178 0.231205
\(392\) −4.77966 5.11418i −0.241409 0.258305i
\(393\) 3.67220 6.36044i 0.185238 0.320842i
\(394\) −4.74831 −0.239216
\(395\) 8.46004 + 14.6532i 0.425671 + 0.737283i
\(396\) 0.170063 0.294558i 0.00854599 0.0148021i
\(397\) −1.66111 −0.0833686 −0.0416843 0.999131i \(-0.513272\pi\)
−0.0416843 + 0.999131i \(0.513272\pi\)
\(398\) −9.84531 −0.493501
\(399\) −19.2907 + 44.4328i −0.965741 + 2.22442i
\(400\) 0.815359 1.41224i 0.0407680 0.0706122i
\(401\) 1.30242 + 2.25586i 0.0650398 + 0.112652i 0.896712 0.442615i \(-0.145949\pi\)
−0.831672 + 0.555267i \(0.812616\pi\)
\(402\) −8.67997 15.0341i −0.432917 0.749835i
\(403\) −14.8635 22.2513i −0.740402 1.10841i
\(404\) 1.88300 3.26145i 0.0936828 0.162263i
\(405\) 5.04667 8.74109i 0.250771 0.434348i
\(406\) 2.21583 5.10379i 0.109970 0.253297i
\(407\) 0.384879 + 0.666630i 0.0190778 + 0.0330436i
\(408\) −3.69135 + 6.39360i −0.182749 + 0.316530i
\(409\) 3.17978 5.50753i 0.157230 0.272330i −0.776639 0.629946i \(-0.783077\pi\)
0.933869 + 0.357616i \(0.116410\pi\)
\(410\) −9.56582 + 16.5685i −0.472422 + 0.818259i
\(411\) 13.6799 23.6943i 0.674780 1.16875i
\(412\) 4.72886 + 8.19062i 0.232974 + 0.403523i
\(413\) −10.7708 14.5391i −0.529997 0.715420i
\(414\) −3.17006 + 5.49071i −0.155800 + 0.269854i
\(415\) −15.4915 + 26.8321i −0.760448 + 1.31713i
\(416\) −1.59513 + 3.23350i −0.0782078 + 0.158536i
\(417\) 16.0800 + 27.8513i 0.787439 + 1.36388i
\(418\) −0.304113 0.526739i −0.0148746 0.0257636i
\(419\) 4.71852 8.17271i 0.230515 0.399263i −0.727445 0.686166i \(-0.759292\pi\)
0.957960 + 0.286903i \(0.0926257\pi\)
\(420\) −12.6723 + 1.45094i −0.618346 + 0.0707987i
\(421\) −30.3009 −1.47677 −0.738387 0.674377i \(-0.764412\pi\)
−0.738387 + 0.674377i \(0.764412\pi\)
\(422\) −4.36711 −0.212588
\(423\) −15.5950 + 27.0113i −0.758254 + 1.31333i
\(424\) −0.447411 0.774938i −0.0217282 0.0376343i
\(425\) −4.58381 −0.222348
\(426\) −9.95805 + 17.2478i −0.482469 + 0.835661i
\(427\) 9.34128 21.5161i 0.452056 1.04124i
\(428\) 7.35899 0.355710
\(429\) −0.824500 + 0.0539286i −0.0398073 + 0.00260370i
\(430\) 5.48937 + 9.50787i 0.264721 + 0.458510i
\(431\) −4.78839 −0.230649 −0.115324 0.993328i \(-0.536791\pi\)
−0.115324 + 0.993328i \(0.536791\pi\)
\(432\) −1.17949 2.04294i −0.0567484 0.0982911i
\(433\) 20.1875 + 34.9658i 0.970151 + 1.68035i 0.695088 + 0.718925i \(0.255365\pi\)
0.275063 + 0.961426i \(0.411301\pi\)
\(434\) 11.6885 + 15.7778i 0.561066 + 0.757359i
\(435\) −5.06929 8.78027i −0.243054 0.420982i
\(436\) 3.92498 0.187972
\(437\) 5.66882 + 9.81868i 0.271176 + 0.469691i
\(438\) 14.3264 24.8141i 0.684544 1.18567i
\(439\) −0.509403 0.882313i −0.0243125 0.0421105i 0.853613 0.520907i \(-0.174406\pi\)
−0.877926 + 0.478797i \(0.841073\pi\)
\(440\) 0.0800789 0.138701i 0.00381761 0.00661229i
\(441\) −18.6319 19.9360i −0.887234 0.949331i
\(442\) 10.1133 0.661487i 0.481040 0.0314637i
\(443\) 13.4582 23.3103i 0.639419 1.10751i −0.346141 0.938182i \(-0.612508\pi\)
0.985560 0.169324i \(-0.0541585\pi\)
\(444\) 23.1709 1.09964
\(445\) −18.1893 −0.862257
\(446\) 28.1085 1.33098
\(447\) 57.7879 2.73327
\(448\) 1.05365 2.42690i 0.0497801 0.114660i
\(449\) −4.41776 7.65179i −0.208487 0.361110i 0.742751 0.669568i \(-0.233521\pi\)
−0.951238 + 0.308457i \(0.900187\pi\)
\(450\) 3.17841 5.50517i 0.149832 0.259516i
\(451\) 0.454708 0.787578i 0.0214114 0.0370856i
\(452\) 14.9541 0.703382
\(453\) 15.6101 + 27.0376i 0.733429 + 1.27034i
\(454\) −26.6909 −1.25266
\(455\) 11.3193 + 13.3596i 0.530657 + 0.626306i
\(456\) −18.3085 −0.857373
\(457\) 17.9361 + 31.0662i 0.839014 + 1.45321i 0.890720 + 0.454552i \(0.150201\pi\)
−0.0517063 + 0.998662i \(0.516466\pi\)
\(458\) 9.40945 0.439675
\(459\) −3.31546 + 5.74254i −0.154752 + 0.268039i
\(460\) −1.49271 + 2.58545i −0.0695980 + 0.120547i
\(461\) −20.6169 35.7095i −0.960224 1.66316i −0.721932 0.691964i \(-0.756746\pi\)
−0.238292 0.971193i \(-0.576588\pi\)
\(462\) 0.602375 0.0689700i 0.0280250 0.00320878i
\(463\) 21.0313 0.977408 0.488704 0.872450i \(-0.337470\pi\)
0.488704 + 0.872450i \(0.337470\pi\)
\(464\) 2.10301 0.0976298
\(465\) 35.7794 1.65923
\(466\) 23.0215 1.06645
\(467\) 10.2160 17.6946i 0.472740 0.818809i −0.526774 0.850006i \(-0.676598\pi\)
0.999513 + 0.0311965i \(0.00993176\pi\)
\(468\) −6.21809 + 12.6048i −0.287432 + 0.582655i
\(469\) 6.96428 16.0410i 0.321581 0.740706i
\(470\) −7.34332 + 12.7190i −0.338722 + 0.586684i
\(471\) 2.10165 + 3.64017i 0.0968390 + 0.167730i
\(472\) 3.41945 5.92267i 0.157393 0.272613i
\(473\) −0.260936 0.451954i −0.0119978 0.0207809i
\(474\) −24.2103 −1.11202
\(475\) −5.68374 9.84453i −0.260788 0.451698i
\(476\) −7.38871 + 0.845984i −0.338661 + 0.0387756i
\(477\) −1.74408 3.02084i −0.0798561 0.138315i
\(478\) −5.51607 9.55412i −0.252299 0.436995i
\(479\) −39.2000 −1.79109 −0.895547 0.444966i \(-0.853216\pi\)
−0.895547 + 0.444966i \(0.853216\pi\)
\(480\) −2.41049 4.17509i −0.110023 0.190566i
\(481\) −17.6684 26.4504i −0.805611 1.20603i
\(482\) 7.39939 0.337033
\(483\) −11.2286 + 1.28564i −0.510918 + 0.0584985i
\(484\) 5.49619 9.51969i 0.249827 0.432713i
\(485\) −5.21487 −0.236795
\(486\) 10.7596 + 18.6361i 0.488064 + 0.845352i
\(487\) 5.80410 10.0530i 0.263009 0.455545i −0.704031 0.710169i \(-0.748618\pi\)
0.967040 + 0.254624i \(0.0819518\pi\)
\(488\) 8.86567 0.401330
\(489\) −12.1062 −0.547462
\(490\) −8.77335 9.38739i −0.396340 0.424079i
\(491\) 11.9193 20.6448i 0.537910 0.931688i −0.461106 0.887345i \(-0.652547\pi\)
0.999016 0.0443428i \(-0.0141194\pi\)
\(492\) −13.6874 23.7072i −0.617075 1.06880i
\(493\) −2.95569 5.11941i −0.133118 0.230567i
\(494\) 13.9607 + 20.8998i 0.628123 + 0.940328i
\(495\) 0.312161 0.540679i 0.0140306 0.0243017i
\(496\) −3.71080 + 6.42729i −0.166620 + 0.288594i
\(497\) −19.9323 + 2.28219i −0.894087 + 0.102370i
\(498\) −22.1662 38.3930i −0.993292 1.72043i
\(499\) −4.09131 + 7.08635i −0.183152 + 0.317229i −0.942952 0.332928i \(-0.891963\pi\)
0.759800 + 0.650157i \(0.225297\pi\)
\(500\) 6.08554 10.5405i 0.272154 0.471384i
\(501\) −25.4006 + 43.9951i −1.13482 + 1.96556i
\(502\) −1.94394 + 3.36700i −0.0867622 + 0.150276i
\(503\) −4.28341 7.41908i −0.190988 0.330801i 0.754590 0.656196i \(-0.227836\pi\)
−0.945578 + 0.325396i \(0.894502\pi\)
\(504\) 4.10729 9.46046i 0.182953 0.421402i
\(505\) 3.45636 5.98660i 0.153806 0.266400i
\(506\) 0.0709556 0.122899i 0.00315436 0.00546351i
\(507\) 33.8528 4.44749i 1.50345 0.197520i
\(508\) −0.323239 0.559866i −0.0143414 0.0248400i
\(509\) 7.42352 + 12.8579i 0.329042 + 0.569917i 0.982322 0.187199i \(-0.0599410\pi\)
−0.653280 + 0.757116i \(0.726608\pi\)
\(510\) −6.77569 + 11.7358i −0.300033 + 0.519672i
\(511\) 28.6762 3.28334i 1.26856 0.145246i
\(512\) 1.00000 0.0441942
\(513\) −16.4441 −0.726026
\(514\) −7.86569 + 13.6238i −0.346941 + 0.600919i
\(515\) 8.68010 + 15.0344i 0.382491 + 0.662494i
\(516\) −15.7091 −0.691554
\(517\) 0.349063 0.604594i 0.0153518 0.0265900i
\(518\) 13.8943 + 18.7553i 0.610480 + 0.824062i
\(519\) −37.3042 −1.63747
\(520\) −2.92796 + 5.93529i −0.128400 + 0.260280i
\(521\) −9.55852 16.5558i −0.418766 0.725325i 0.577049 0.816709i \(-0.304204\pi\)
−0.995816 + 0.0913847i \(0.970871\pi\)
\(522\) 8.19789 0.358812
\(523\) 4.84605 + 8.39360i 0.211903 + 0.367027i 0.952310 0.305132i \(-0.0987006\pi\)
−0.740407 + 0.672159i \(0.765367\pi\)
\(524\) 1.39817 + 2.42170i 0.0610793 + 0.105792i
\(525\) 11.2581 1.28902i 0.491346 0.0562575i
\(526\) 6.37994 + 11.0504i 0.278178 + 0.481819i
\(527\) 20.8615 0.908741
\(528\) 0.114582 + 0.198462i 0.00498654 + 0.00863694i
\(529\) 10.1774 17.6277i 0.442494 0.766421i
\(530\) −0.821249 1.42245i −0.0356728 0.0617871i
\(531\) 13.3296 23.0876i 0.578456 1.00192i
\(532\) −10.9786 14.8196i −0.475983 0.642509i
\(533\) −16.6257 + 33.7021i −0.720139 + 1.45980i
\(534\) 13.0132 22.5396i 0.563137 0.975383i
\(535\) 13.5079 0.583996
\(536\) 6.60969 0.285495
\(537\) −27.6709 −1.19409
\(538\) 13.0258 0.561583
\(539\) 0.417038 + 0.446227i 0.0179631 + 0.0192203i
\(540\) −2.16503 3.74994i −0.0931681 0.161372i
\(541\) 2.80233 4.85378i 0.120482 0.208680i −0.799476 0.600698i \(-0.794889\pi\)
0.919958 + 0.392018i \(0.128223\pi\)
\(542\) 4.68905 8.12167i 0.201412 0.348855i
\(543\) 48.8013 2.09426
\(544\) −1.40546 2.43433i −0.0602585 0.104371i
\(545\) 7.20454 0.308608
\(546\) −24.6529 + 4.46863i −1.05505 + 0.191240i
\(547\) −37.1487 −1.58836 −0.794181 0.607681i \(-0.792100\pi\)
−0.794181 + 0.607681i \(0.792100\pi\)
\(548\) 5.20854 + 9.02146i 0.222498 + 0.385378i
\(549\) 34.5599 1.47498
\(550\) −0.0711424 + 0.123222i −0.00303352 + 0.00525421i
\(551\) 7.32988 12.6957i 0.312263 0.540856i
\(552\) −2.13587 3.69943i −0.0909085 0.157458i
\(553\) −14.5176 19.5967i −0.617352 0.833337i
\(554\) −17.5875 −0.747221
\(555\) 42.5315 1.80536
\(556\) −12.2447 −0.519291
\(557\) −29.7435 −1.26027 −0.630136 0.776485i \(-0.717001\pi\)
−0.630136 + 0.776485i \(0.717001\pi\)
\(558\) −14.4653 + 25.0547i −0.612366 + 1.06065i
\(559\) 11.9786 + 17.9325i 0.506642 + 0.758465i
\(560\) 1.93403 4.45472i 0.0817278 0.188246i
\(561\) 0.322080 0.557860i 0.0135982 0.0235528i
\(562\) −6.79864 11.7756i −0.286783 0.496723i
\(563\) −4.48827 + 7.77391i −0.189158 + 0.327631i −0.944970 0.327158i \(-0.893909\pi\)
0.755812 + 0.654789i \(0.227242\pi\)
\(564\) −10.5073 18.1992i −0.442437 0.766323i
\(565\) 27.4492 1.15479
\(566\) −3.22420 5.58448i −0.135523 0.234733i
\(567\) −5.79377 + 13.3450i −0.243316 + 0.560436i
\(568\) −3.79147 6.56701i −0.159086 0.275546i
\(569\) 6.68319 + 11.5756i 0.280174 + 0.485276i 0.971427 0.237337i \(-0.0762745\pi\)
−0.691253 + 0.722612i \(0.742941\pi\)
\(570\) −33.6063 −1.40761
\(571\) 16.2327 + 28.1159i 0.679319 + 1.17662i 0.975186 + 0.221386i \(0.0710581\pi\)
−0.295867 + 0.955229i \(0.595609\pi\)
\(572\) 0.139180 0.282132i 0.00581940 0.0117965i
\(573\) 59.9562 2.50470
\(574\) 10.9819 25.2950i 0.458377 1.05579i
\(575\) 1.32613 2.29693i 0.0553035 0.0957884i
\(576\) 3.89817 0.162424
\(577\) −6.60186 11.4348i −0.274839 0.476035i 0.695256 0.718763i \(-0.255291\pi\)
−0.970094 + 0.242728i \(0.921958\pi\)
\(578\) 4.54937 7.87975i 0.189229 0.327754i
\(579\) −7.67719 −0.319053
\(580\) 3.86020 0.160286
\(581\) 17.7848 40.9643i 0.737839 1.69949i
\(582\) 3.73088 6.46208i 0.154650 0.267862i
\(583\) 0.0390378 + 0.0676155i 0.00161678 + 0.00280035i
\(584\) 5.45471 + 9.44783i 0.225717 + 0.390954i
\(585\) −11.4137 + 23.1368i −0.471898 + 0.956588i
\(586\) −0.972625 + 1.68464i −0.0401788 + 0.0695917i
\(587\) 5.18691 8.98398i 0.214086 0.370809i −0.738903 0.673812i \(-0.764656\pi\)
0.952990 + 0.303003i \(0.0979892\pi\)
\(588\) 17.9093 4.15558i 0.738565 0.171373i
\(589\) 25.8674 + 44.8036i 1.06585 + 1.84610i
\(590\) 6.27661 10.8714i 0.258404 0.447569i
\(591\) 6.23556 10.8003i 0.256497 0.444266i
\(592\) −4.41108 + 7.64022i −0.181294 + 0.314011i
\(593\) −18.3275 + 31.7441i −0.752619 + 1.30357i 0.193931 + 0.981015i \(0.437876\pi\)
−0.946549 + 0.322559i \(0.895457\pi\)
\(594\) 0.102914 + 0.178252i 0.00422261 + 0.00731378i
\(595\) −13.5624 + 1.55285i −0.556005 + 0.0636608i
\(596\) −11.0012 + 19.0546i −0.450626 + 0.780508i
\(597\) 12.9290 22.3937i 0.529150 0.916515i
\(598\) −2.59438 + 5.25909i −0.106092 + 0.215060i
\(599\) −18.7178 32.4202i −0.764789 1.32465i −0.940358 0.340187i \(-0.889510\pi\)
0.175568 0.984467i \(-0.443824\pi\)
\(600\) 2.14149 + 3.70917i 0.0874260 + 0.151426i
\(601\) −0.994692 + 1.72286i −0.0405743 + 0.0702768i −0.885599 0.464450i \(-0.846252\pi\)
0.845025 + 0.534727i \(0.179585\pi\)
\(602\) −9.41988 12.7155i −0.383926 0.518245i
\(603\) 25.7657 1.04926
\(604\) −11.8869 −0.483673
\(605\) 10.0886 17.4740i 0.410160 0.710417i
\(606\) 4.94558 + 8.56600i 0.200901 + 0.347970i
\(607\) −5.39853 −0.219119 −0.109560 0.993980i \(-0.534944\pi\)
−0.109560 + 0.993980i \(0.534944\pi\)
\(608\) 3.48542 6.03693i 0.141353 0.244830i
\(609\) 8.69901 + 11.7424i 0.352502 + 0.475827i
\(610\) 16.2735 0.658893
\(611\) −12.7629 + 25.8719i −0.516333 + 1.04666i
\(612\) −5.47872 9.48941i −0.221464 0.383587i
\(613\) −4.04069 −0.163202 −0.0816009 0.996665i \(-0.526003\pi\)
−0.0816009 + 0.996665i \(0.526003\pi\)
\(614\) −3.03848 5.26280i −0.122623 0.212389i
\(615\) −25.1240 43.5161i −1.01310 1.75474i
\(616\) −0.0919336 + 0.211754i −0.00370411 + 0.00853179i
\(617\) 12.1383 + 21.0241i 0.488669 + 0.846400i 0.999915 0.0130346i \(-0.00414917\pi\)
−0.511246 + 0.859435i \(0.670816\pi\)
\(618\) −24.8401 −0.999215
\(619\) −7.27576 12.6020i −0.292437 0.506517i 0.681948 0.731401i \(-0.261133\pi\)
−0.974386 + 0.224884i \(0.927800\pi\)
\(620\) −6.81139 + 11.7977i −0.273552 + 0.473806i
\(621\) −1.91837 3.32272i −0.0769816 0.133336i
\(622\) 6.12086 10.6016i 0.245424 0.425087i
\(623\) 26.0477 2.98238i 1.04358 0.119486i
\(624\) −5.26005 7.87452i −0.210570 0.315233i
\(625\) 7.09358 12.2864i 0.283743 0.491458i
\(626\) 9.38839 0.375235
\(627\) 1.59747 0.0637967
\(628\) −1.60038 −0.0638622
\(629\) 24.7984 0.988776
\(630\) 7.53918 17.3652i 0.300368 0.691848i
\(631\) 4.19668 + 7.26886i 0.167067 + 0.289369i 0.937387 0.348288i \(-0.113237\pi\)
−0.770320 + 0.637657i \(0.779904\pi\)
\(632\) 4.60897 7.98297i 0.183335 0.317545i
\(633\) 5.73497 9.93327i 0.227945 0.394812i
\(634\) −2.79657 −0.111066
\(635\) −0.593324 1.02767i −0.0235453 0.0407817i
\(636\) 2.35019 0.0931912
\(637\) −18.4001 17.2753i −0.729037 0.684474i
\(638\) −0.183494 −0.00726458
\(639\) −14.7798 25.5993i −0.584679 1.01269i
\(640\) 1.83556 0.0725569
\(641\) −0.194764 + 0.337341i −0.00769272 + 0.0133242i −0.869846 0.493323i \(-0.835782\pi\)
0.862153 + 0.506647i \(0.169115\pi\)
\(642\) −9.66396 + 16.7385i −0.381406 + 0.660614i
\(643\) −5.93499 10.2797i −0.234053 0.405392i 0.724944 0.688808i \(-0.241866\pi\)
−0.958997 + 0.283416i \(0.908532\pi\)
\(644\) 1.71369 3.94719i 0.0675288 0.155541i
\(645\) −28.8350 −1.13538
\(646\) −19.5945 −0.770934
\(647\) 19.8084 0.778750 0.389375 0.921079i \(-0.372691\pi\)
0.389375 + 0.921079i \(0.372691\pi\)
\(648\) −5.49878 −0.216013
\(649\) −0.298357 + 0.516769i −0.0117115 + 0.0202850i
\(650\) 2.60121 5.27294i 0.102028 0.206822i
\(651\) −51.2372 + 5.86649i −2.00814 + 0.229926i
\(652\) 2.30469 3.99183i 0.0902584 0.156332i
\(653\) 2.79653 + 4.84373i 0.109437 + 0.189550i 0.915542 0.402222i \(-0.131762\pi\)
−0.806106 + 0.591772i \(0.798429\pi\)
\(654\) −5.15436 + 8.92761i −0.201551 + 0.349097i
\(655\) 2.56642 + 4.44518i 0.100279 + 0.173687i
\(656\) 10.4228 0.406941
\(657\) 21.2634 + 36.8293i 0.829563 + 1.43685i
\(658\) 8.43042 19.4180i 0.328652 0.756994i
\(659\) −5.58265 9.66943i −0.217469 0.376668i 0.736564 0.676367i \(-0.236447\pi\)
−0.954034 + 0.299700i \(0.903113\pi\)
\(660\) 0.210322 + 0.364289i 0.00818678 + 0.0141799i
\(661\) 8.22042 0.319737 0.159869 0.987138i \(-0.448893\pi\)
0.159869 + 0.987138i \(0.448893\pi\)
\(662\) 12.8582 + 22.2711i 0.499749 + 0.865590i
\(663\) −11.7764 + 23.8720i −0.457356 + 0.927111i
\(664\) 16.8793 0.655044
\(665\) −20.1519 27.2022i −0.781456 1.05486i
\(666\) −17.1951 + 29.7829i −0.666298 + 1.15406i
\(667\) 3.42041 0.132439
\(668\) −9.67113 16.7509i −0.374187 0.648111i
\(669\) −36.9126 + 63.9345i −1.42712 + 2.47185i
\(670\) 12.1325 0.468719
\(671\) −0.773554 −0.0298627
\(672\) 4.13646 + 5.58363i 0.159567 + 0.215393i
\(673\) −1.98340 + 3.43536i −0.0764546 + 0.132423i −0.901718 0.432325i \(-0.857693\pi\)
0.825263 + 0.564748i \(0.191027\pi\)
\(674\) 17.1748 + 29.7476i 0.661548 + 1.14583i
\(675\) 1.92342 + 3.33146i 0.0740325 + 0.128228i
\(676\) −4.97813 + 12.0091i −0.191467 + 0.461888i
\(677\) −12.4424 + 21.5509i −0.478201 + 0.828268i −0.999688 0.0249913i \(-0.992044\pi\)
0.521487 + 0.853259i \(0.325378\pi\)
\(678\) −19.6380 + 34.0140i −0.754193 + 1.30630i
\(679\) 7.46785 0.855045i 0.286590 0.0328136i
\(680\) −2.57980 4.46835i −0.0989310 0.171353i
\(681\) 35.0509 60.7100i 1.34315 2.32641i
\(682\) 0.323777 0.560799i 0.0123981 0.0214741i
\(683\) −25.3588 + 43.9227i −0.970327 + 1.68066i −0.275761 + 0.961226i \(0.588930\pi\)
−0.694566 + 0.719429i \(0.744403\pi\)
\(684\) 13.5868 23.5330i 0.519503 0.899806i
\(685\) 9.56059 + 16.5594i 0.365291 + 0.632703i
\(686\) 14.1029 + 12.0045i 0.538451 + 0.458335i
\(687\) −12.3567 + 21.4024i −0.471436 + 0.816552i
\(688\) 2.99057 5.17982i 0.114014 0.197479i
\(689\) −1.79209 2.68283i −0.0682731 0.102208i
\(690\) −3.92051 6.79053i −0.149251 0.258511i
\(691\) 6.05622 + 10.4897i 0.230389 + 0.399046i 0.957923 0.287026i \(-0.0926667\pi\)
−0.727533 + 0.686072i \(0.759333\pi\)
\(692\) 7.10168 12.3005i 0.269965 0.467594i
\(693\) −0.358373 + 0.825451i −0.0136135 + 0.0313563i
\(694\) −12.9259 −0.490661
\(695\) −22.4759 −0.852558
\(696\) −2.76171 + 4.78343i −0.104682 + 0.181315i
\(697\) −14.6488 25.3724i −0.554862 0.961049i
\(698\) −9.49186 −0.359272
\(699\) −30.2322 + 52.3637i −1.14349 + 1.98058i
\(700\) −1.71820 + 3.95759i −0.0649419 + 0.149583i
\(701\) 2.45486 0.0927186 0.0463593 0.998925i \(-0.485238\pi\)
0.0463593 + 0.998925i \(0.485238\pi\)
\(702\) −4.72441 7.07266i −0.178312 0.266940i
\(703\) 30.7490 + 53.2588i 1.15972 + 2.00869i
\(704\) −0.0872528 −0.00328846
\(705\) −19.2868 33.4057i −0.726382 1.25813i
\(706\) 4.58281 + 7.93766i 0.172476 + 0.298738i
\(707\) −3.96804 + 9.13970i −0.149233 + 0.343734i
\(708\) 8.98098 + 15.5555i 0.337526 + 0.584612i
\(709\) 3.63735 0.136603 0.0683017 0.997665i \(-0.478242\pi\)
0.0683017 + 0.997665i \(0.478242\pi\)
\(710\) −6.95947 12.0541i −0.261184 0.452384i
\(711\) 17.9665 31.1190i 0.673798 1.16705i
\(712\) 4.95471 + 8.58181i 0.185686 + 0.321617i
\(713\) −6.03538 + 10.4536i −0.226027 + 0.391490i
\(714\) 7.77875 17.9170i 0.291112 0.670528i
\(715\) 0.255473 0.517871i 0.00955414 0.0193673i
\(716\) 5.26777 9.12404i 0.196866 0.340981i
\(717\) 28.9752 1.08210
\(718\) −8.14802 −0.304081
\(719\) −41.2047 −1.53668 −0.768339 0.640043i \(-0.778916\pi\)
−0.768339 + 0.640043i \(0.778916\pi\)
\(720\) 7.15533 0.266663
\(721\) −14.8952 20.1065i −0.554728 0.748804i
\(722\) −14.7963 25.6280i −0.550663 0.953776i
\(723\) −9.71701 + 16.8304i −0.361380 + 0.625928i
\(724\) −9.29039 + 16.0914i −0.345275 + 0.598033i
\(725\) −3.42942 −0.127365
\(726\) 14.4354 + 25.0029i 0.535748 + 0.927943i
\(727\) −24.1162 −0.894422 −0.447211 0.894428i \(-0.647583\pi\)
−0.447211 + 0.894428i \(0.647583\pi\)
\(728\) 3.21976 8.97960i 0.119332 0.332806i
\(729\) −40.0224 −1.48231
\(730\) 10.0124 + 17.3421i 0.370577 + 0.641859i
\(731\) −16.8125 −0.621832
\(732\) −11.6426 + 20.1655i −0.430321 + 0.745338i
\(733\) −9.37448 + 16.2371i −0.346254 + 0.599730i −0.985581 0.169205i \(-0.945880\pi\)
0.639327 + 0.768935i \(0.279213\pi\)
\(734\) 12.7538 + 22.0902i 0.470751 + 0.815364i
\(735\) 32.8735 7.62782i 1.21256 0.281356i
\(736\) 1.62644 0.0599513
\(737\) −0.576714 −0.0212435
\(738\) 40.6297 1.49560
\(739\) 0.931468 0.0342646 0.0171323 0.999853i \(-0.494546\pi\)
0.0171323 + 0.999853i \(0.494546\pi\)
\(740\) −8.09681 + 14.0241i −0.297645 + 0.515535i
\(741\) −65.8714 + 4.30849i −2.41985 + 0.158276i
\(742\) 1.40928 + 1.90233i 0.0517364 + 0.0698368i
\(743\) 14.8945 25.7980i 0.546425 0.946437i −0.452090 0.891972i \(-0.649322\pi\)
0.998516 0.0544644i \(-0.0173451\pi\)
\(744\) −9.74617 16.8809i −0.357312 0.618883i
\(745\) −20.1933 + 34.9759i −0.739827 + 1.28142i
\(746\) −1.41945 2.45855i −0.0519696 0.0900140i
\(747\) 65.7984 2.40744
\(748\) 0.122630 + 0.212402i 0.00448380 + 0.00776617i
\(749\) −19.3437 + 2.21479i −0.706802 + 0.0809266i
\(750\) 15.9833 + 27.6839i 0.583627 + 1.01087i
\(751\) 6.49099 + 11.2427i 0.236860 + 0.410253i 0.959812 0.280645i \(-0.0905485\pi\)
−0.722952 + 0.690898i \(0.757215\pi\)
\(752\) 8.00118 0.291773
\(753\) −5.10563 8.84321i −0.186059 0.322264i
\(754\) 7.56635 0.494897i 0.275550 0.0180231i
\(755\) −21.8192 −0.794082
\(756\) 3.71524 + 5.01505i 0.135122 + 0.182395i
\(757\) 13.6228 23.5954i 0.495129 0.857589i −0.504855 0.863204i \(-0.668454\pi\)
0.999984 + 0.00561523i \(0.00178739\pi\)
\(758\) −1.60860 −0.0584271
\(759\) 0.186360 + 0.322786i 0.00676445 + 0.0117164i
\(760\) 6.39770 11.0811i 0.232069 0.401955i
\(761\) 5.78873 0.209841 0.104921 0.994481i \(-0.466541\pi\)
0.104921 + 0.994481i \(0.466541\pi\)
\(762\) 1.69793 0.0615096
\(763\) −10.3171 + 1.18128i −0.373505 + 0.0427651i
\(764\) −11.4140 + 19.7696i −0.412943 + 0.715238i
\(765\) −10.0565 17.4184i −0.363594 0.629763i
\(766\) −7.97493 13.8130i −0.288146 0.499083i
\(767\) 10.9090 22.1136i 0.393900 0.798477i
\(768\) −1.31322 + 2.27456i −0.0473867 + 0.0820761i
\(769\) 13.8054 23.9117i 0.497836 0.862277i −0.502161 0.864774i \(-0.667462\pi\)
0.999997 + 0.00249727i \(0.000794907\pi\)
\(770\) −0.168750 + 0.388686i −0.00608132 + 0.0140073i
\(771\) −20.6587 35.7820i −0.744006 1.28866i
\(772\) 1.46152 2.53143i 0.0526013 0.0911081i
\(773\) −15.7900 + 27.3490i −0.567926 + 0.983676i 0.428845 + 0.903378i \(0.358921\pi\)
−0.996771 + 0.0802984i \(0.974413\pi\)
\(774\) 11.6578 20.1918i 0.419029 0.725780i
\(775\) 6.05127 10.4811i 0.217368 0.376492i
\(776\) 1.42051 + 2.46040i 0.0509934 + 0.0883231i
\(777\) −60.9064 + 6.97359i −2.18500 + 0.250176i
\(778\) −2.12674 + 3.68363i −0.0762474 + 0.132064i
\(779\) 36.3278 62.9216i 1.30158 2.25440i
\(780\) −9.65513 14.4542i −0.345709 0.517542i
\(781\) 0.330816 + 0.572990i 0.0118375 + 0.0205032i
\(782\) −2.28589 3.95928i −0.0817432 0.141583i
\(783\) −2.48049 + 4.29633i −0.0886454 + 0.153538i
\(784\) −2.03918 + 6.69640i −0.0728280 + 0.239157i
\(785\) −2.93760 −0.104847
\(786\) −7.34441 −0.261966
\(787\) −10.8572 + 18.8052i −0.387017 + 0.670333i −0.992047 0.125870i \(-0.959828\pi\)
0.605030 + 0.796203i \(0.293161\pi\)
\(788\) 2.37415 + 4.11215i 0.0845757 + 0.146489i
\(789\) −33.5130 −1.19309
\(790\) 8.46004 14.6532i 0.300995 0.521338i
\(791\) −39.3080 + 4.50064i −1.39763 + 0.160024i
\(792\) −0.340126 −0.0120859
\(793\) 31.8975 2.08634i 1.13271 0.0740880i
\(794\) 0.830554 + 1.43856i 0.0294752 + 0.0510526i
\(795\) 4.31392 0.152999
\(796\) 4.92265 + 8.52628i 0.174479 + 0.302206i
\(797\) −22.9458 39.7433i −0.812783 1.40778i −0.910909 0.412608i \(-0.864618\pi\)
0.0981258 0.995174i \(-0.468715\pi\)
\(798\) 48.1253 5.51019i 1.70362 0.195059i
\(799\) −11.2453 19.4775i −0.397831 0.689064i
\(800\) −1.63072 −0.0576546
\(801\) 19.3143 + 33.4533i 0.682437 + 1.18202i
\(802\) 1.30242 2.25586i 0.0459901 0.0796572i
\(803\) −0.475938 0.824350i −0.0167955 0.0290907i
\(804\) −8.67997 + 15.0341i −0.306119 + 0.530213i
\(805\) 3.14558 7.24531i 0.110867 0.255364i
\(806\) −11.8384 + 23.9978i −0.416991 + 0.845285i
\(807\) −17.1058 + 29.6280i −0.602151 + 1.04296i
\(808\) −3.76600 −0.132488
\(809\) 35.7521 1.25698 0.628489 0.777818i \(-0.283674\pi\)
0.628489 + 0.777818i \(0.283674\pi\)
\(810\) −10.0933 −0.354644
\(811\) 38.5968 1.35532 0.677658 0.735377i \(-0.262995\pi\)
0.677658 + 0.735377i \(0.262995\pi\)
\(812\) −5.52793 + 0.632930i −0.193992 + 0.0222115i
\(813\) 12.3155 + 21.3310i 0.431923 + 0.748112i
\(814\) 0.384879 0.666630i 0.0134900 0.0233654i
\(815\) 4.23039 7.32725i 0.148184 0.256662i
\(816\) 7.38270 0.258446
\(817\) −20.8468 36.1077i −0.729337 1.26325i
\(818\) −6.35955 −0.222357
\(819\) 12.5512 35.0040i 0.438573 1.22314i
\(820\) 19.1316 0.668106
\(821\) −11.3932 19.7336i −0.397626 0.688708i 0.595807 0.803128i \(-0.296832\pi\)
−0.993433 + 0.114420i \(0.963499\pi\)
\(822\) −27.3598 −0.954283
\(823\) 17.7822 30.7996i 0.619848 1.07361i −0.369666 0.929165i \(-0.620528\pi\)
0.989513 0.144443i \(-0.0461389\pi\)
\(824\) 4.72886 8.19062i 0.164738 0.285334i
\(825\) −0.186851 0.323635i −0.00650531 0.0112675i
\(826\) −7.20579 + 16.5973i −0.250722 + 0.577495i
\(827\) −29.9739 −1.04229 −0.521147 0.853467i \(-0.674496\pi\)
−0.521147 + 0.853467i \(0.674496\pi\)
\(828\) 6.34013 0.220335
\(829\) −24.2760 −0.843141 −0.421571 0.906796i \(-0.638521\pi\)
−0.421571 + 0.906796i \(0.638521\pi\)
\(830\) 30.9830 1.07544
\(831\) 23.0962 40.0038i 0.801199 1.38772i
\(832\) 3.59786 0.235328i 0.124733 0.00815852i
\(833\) 19.1672 4.44747i 0.664104 0.154096i
\(834\) 16.0800 27.8513i 0.556803 0.964412i
\(835\) −17.7519 30.7473i −0.614331 1.06405i
\(836\) −0.304113 + 0.526739i −0.0105180 + 0.0182176i
\(837\) −8.75372 15.1619i −0.302573 0.524071i
\(838\) −9.43703 −0.325997
\(839\) −11.0416 19.1246i −0.381197 0.660253i 0.610037 0.792373i \(-0.291155\pi\)
−0.991234 + 0.132120i \(0.957821\pi\)
\(840\) 7.59272 + 10.2491i 0.261974 + 0.353627i
\(841\) 12.2887 + 21.2846i 0.423747 + 0.733952i
\(842\) 15.1504 + 26.2413i 0.522118 + 0.904336i
\(843\) 35.7124 1.23000
\(844\) 2.18356 + 3.78203i 0.0751611 + 0.130183i
\(845\) −9.13766 + 22.0434i −0.314345 + 0.758316i
\(846\) 31.1900 1.07233
\(847\) −11.5821 + 26.6774i −0.397965 + 0.916646i
\(848\) −0.447411 + 0.774938i −0.0153641 + 0.0266115i
\(849\) 16.9363 0.581253
\(850\) 2.29191 + 3.96970i 0.0786118 + 0.136160i
\(851\) −7.17435 + 12.4263i −0.245933 + 0.425969i
\(852\) 19.9161 0.682314
\(853\) 42.8773 1.46809 0.734045 0.679100i \(-0.237630\pi\)
0.734045 + 0.679100i \(0.237630\pi\)
\(854\) −23.3041 + 2.66824i −0.797450 + 0.0913054i
\(855\) 24.9393 43.1962i 0.852907 1.47728i
\(856\) −3.67949 6.37307i −0.125762 0.217827i
\(857\) 7.91204 + 13.7041i 0.270270 + 0.468122i 0.968931 0.247331i \(-0.0795536\pi\)
−0.698661 + 0.715453i \(0.746220\pi\)
\(858\) 0.458954 + 0.687074i 0.0156684 + 0.0234563i
\(859\) 15.7121 27.2141i 0.536090 0.928535i −0.463020 0.886348i \(-0.653234\pi\)
0.999110 0.0421868i \(-0.0134325\pi\)
\(860\) 5.48937 9.50787i 0.187186 0.324216i
\(861\) 43.1134 + 58.1969i 1.46930 + 1.98335i
\(862\) 2.39419 + 4.14687i 0.0815466 + 0.141243i
\(863\) −25.1722 + 43.5995i −0.856872 + 1.48415i 0.0180258 + 0.999838i \(0.494262\pi\)
−0.874898 + 0.484308i \(0.839071\pi\)
\(864\) −1.17949 + 2.04294i −0.0401272 + 0.0695023i
\(865\) 13.0356 22.5782i 0.443222 0.767684i
\(866\) 20.1875 34.9658i 0.686000 1.18819i
\(867\) 11.9486 + 20.6957i 0.405797 + 0.702861i
\(868\) 7.81974 18.0114i 0.265419 0.611348i
\(869\) −0.402145 + 0.696536i −0.0136418 + 0.0236284i
\(870\) −5.06929 + 8.78027i −0.171865 + 0.297679i
\(871\) 23.7808 1.55544i 0.805781 0.0527042i
\(872\) −1.96249 3.39913i −0.0664583 0.115109i
\(873\) 5.53739 + 9.59105i 0.187412 + 0.324608i
\(874\) 5.66882 9.81868i 0.191751 0.332122i
\(875\) −12.8240 + 29.5380i −0.433531 + 0.998565i
\(876\) −28.6529 −0.968091
\(877\) 2.37518 0.0802041 0.0401021 0.999196i \(-0.487232\pi\)
0.0401021 + 0.999196i \(0.487232\pi\)
\(878\) −0.509403 + 0.882313i −0.0171915 + 0.0297766i
\(879\) −2.55454 4.42459i −0.0861625 0.149238i
\(880\) −0.160158 −0.00539892
\(881\) −9.38846 + 16.2613i −0.316305 + 0.547857i −0.979714 0.200400i \(-0.935776\pi\)
0.663409 + 0.748257i \(0.269109\pi\)
\(882\) −7.94908 + 26.1037i −0.267660 + 0.878957i
\(883\) 16.9385 0.570026 0.285013 0.958524i \(-0.408002\pi\)
0.285013 + 0.958524i \(0.408002\pi\)
\(884\) −5.62951 8.42763i −0.189341 0.283452i
\(885\) 16.4851 + 28.5531i 0.554142 + 0.959801i
\(886\) −26.9164 −0.904275
\(887\) 9.68429 + 16.7737i 0.325167 + 0.563205i 0.981546 0.191226i \(-0.0612463\pi\)
−0.656379 + 0.754431i \(0.727913\pi\)
\(888\) −11.5854 20.0665i −0.388781 0.673389i
\(889\) 1.01816 + 1.37437i 0.0341479 + 0.0460948i
\(890\) 9.09467 + 15.7524i 0.304854 + 0.528022i
\(891\) 0.479784 0.0160734
\(892\) −14.0542 24.3427i −0.470571 0.815053i
\(893\) 27.8875 48.3026i 0.933219 1.61638i
\(894\) −28.8939 50.0458i −0.966357 1.67378i
\(895\) 9.66930 16.7477i 0.323209 0.559815i
\(896\) −2.62858 + 0.300964i −0.0878146 + 0.0100545i
\(897\) −8.55513 12.8074i −0.285648 0.427627i
\(898\) −4.41776 + 7.65179i −0.147423 + 0.255343i
\(899\) 15.6077 0.520546
\(900\) −6.35682 −0.211894
\(901\) 2.51527 0.0837958
\(902\) −0.909416 −0.0302802
\(903\) 41.2926 4.72787i 1.37413 0.157334i
\(904\) −7.47705 12.9506i −0.248683 0.430732i
\(905\) −17.0531 + 29.5368i −0.566863 + 0.981836i
\(906\) 15.6101 27.0376i 0.518612 0.898263i
\(907\) 26.8091 0.890181 0.445090 0.895486i \(-0.353172\pi\)
0.445090 + 0.895486i \(0.353172\pi\)
\(908\) 13.3454 + 23.1150i 0.442884 + 0.767097i
\(909\) −14.6805 −0.486922
\(910\) 5.91006 16.4826i 0.195917 0.546392i
\(911\) 0.383210 0.0126963 0.00634816 0.999980i \(-0.497979\pi\)
0.00634816 + 0.999980i \(0.497979\pi\)
\(912\) 9.15424 + 15.8556i 0.303127 + 0.525032i
\(913\) −1.47277 −0.0487415
\(914\) 17.9361 31.0662i 0.593272 1.02758i
\(915\) −21.3706 + 37.0150i −0.706491 + 1.22368i
\(916\) −4.70473 8.14883i −0.155449 0.269245i
\(917\) −4.40404 5.94483i −0.145434 0.196316i
\(918\) 6.63091 0.218853
\(919\) −37.5792 −1.23962 −0.619812 0.784750i \(-0.712791\pi\)
−0.619812 + 0.784750i \(0.712791\pi\)
\(920\) 2.98542 0.0984265
\(921\) 15.9607 0.525924
\(922\) −20.6169 + 35.7095i −0.678981 + 1.17603i
\(923\) −15.1866 22.7350i −0.499872 0.748331i
\(924\) −0.360917 0.487187i −0.0118733 0.0160273i
\(925\) 7.19323 12.4590i 0.236512 0.409651i
\(926\) −10.5157 18.2136i −0.345566 0.598537i
\(927\) 18.4339 31.9284i 0.605448 1.04867i
\(928\) −1.05151 1.82126i −0.0345174 0.0597858i
\(929\) 11.3793 0.373344 0.186672 0.982422i \(-0.440230\pi\)
0.186672 + 0.982422i \(0.440230\pi\)
\(930\) −17.8897 30.9859i −0.586626 1.01607i
\(931\) 33.3183 + 35.6502i 1.09196 + 1.16839i
\(932\) −11.5107 19.9372i −0.377047 0.653064i
\(933\) 16.0760 + 27.8445i 0.526306 + 0.911589i
\(934\) −20.4320 −0.668555
\(935\) 0.225095 + 0.389876i 0.00736140 + 0.0127503i
\(936\) 14.0251 0.917347i 0.458424 0.0299844i
\(937\) −3.70274 −0.120963 −0.0604817 0.998169i \(-0.519264\pi\)
−0.0604817 + 0.998169i \(0.519264\pi\)
\(938\) −17.3741 + 1.98928i −0.567284 + 0.0649522i
\(939\) −12.3290 + 21.3545i −0.402342 + 0.696876i
\(940\) 14.6866 0.479026
\(941\) −26.6167 46.1015i −0.867680 1.50287i −0.864361 0.502872i \(-0.832277\pi\)
−0.00331944 0.999994i \(-0.501057\pi\)
\(942\) 2.10165 3.64017i 0.0684755 0.118603i
\(943\) 16.9520 0.552033
\(944\) −6.83891 −0.222588
\(945\) 6.81955 + 9.20542i 0.221840 + 0.299452i
\(946\) −0.260936 + 0.451954i −0.00848375 + 0.0146943i
\(947\) 11.3032 + 19.5778i 0.367306 + 0.636193i 0.989143 0.146953i \(-0.0469468\pi\)
−0.621837 + 0.783147i \(0.713613\pi\)
\(948\) 12.1052 + 20.9668i 0.393157 + 0.680968i
\(949\) 21.8486 + 32.7084i 0.709237 + 1.06176i
\(950\) −5.68374 + 9.84453i −0.184405 + 0.319399i
\(951\) 3.67251 6.36097i 0.119089 0.206268i
\(952\) 4.42700 + 5.97582i 0.143480 + 0.193677i
\(953\) 7.94844 + 13.7671i 0.257475 + 0.445960i 0.965565 0.260162i \(-0.0837761\pi\)
−0.708090 + 0.706123i \(0.750443\pi\)
\(954\) −1.74408 + 3.02084i −0.0564668 + 0.0978033i
\(955\) −20.9510 + 36.2883i −0.677960 + 1.17426i
\(956\) −5.51607 + 9.55412i −0.178403 + 0.309002i
\(957\) 0.240967 0.417367i 0.00778936 0.0134916i
\(958\) 19.6000 + 33.9482i 0.633248 + 1.09682i
\(959\) −16.4062 22.1460i −0.529783 0.715132i
\(960\) −2.41049 + 4.17509i −0.0777983 + 0.134751i
\(961\) −12.0400 + 20.8540i −0.388388 + 0.672708i
\(962\) −14.0725 + 28.5265i −0.453716 + 0.919732i
\(963\) −14.3433 24.8433i −0.462206 0.800564i
\(964\) −3.69969 6.40806i −0.119159 0.206390i
\(965\) 2.68271 4.64659i 0.0863595 0.149579i
\(966\) 6.72769 + 9.08142i 0.216460 + 0.292190i
\(967\) −26.3252 −0.846560 −0.423280 0.905999i \(-0.639121\pi\)
−0.423280 + 0.905999i \(0.639121\pi\)
\(968\) −10.9924 −0.353309
\(969\) 25.7318 44.5688i 0.826625 1.43176i
\(970\) 2.60743 + 4.51621i 0.0837197 + 0.145007i
\(971\) −18.7368 −0.601294 −0.300647 0.953736i \(-0.597203\pi\)
−0.300647 + 0.953736i \(0.597203\pi\)
\(972\) 10.7596 18.6361i 0.345114 0.597754i
\(973\) 32.1861 3.68521i 1.03184 0.118142i
\(974\) −11.6082 −0.371951
\(975\) 8.57766 + 12.8411i 0.274705 + 0.411245i
\(976\) −4.43283 7.67789i −0.141892 0.245763i
\(977\) −32.6941 −1.04598 −0.522989 0.852340i \(-0.675183\pi\)
−0.522989 + 0.852340i \(0.675183\pi\)
\(978\) 6.05311 + 10.4843i 0.193557 + 0.335251i
\(979\) −0.432312 0.748786i −0.0138168 0.0239313i
\(980\) −3.74304 + 12.2916i −0.119567 + 0.392642i
\(981\) −7.65012 13.2504i −0.244250 0.423053i
\(982\) −23.8386 −0.760720
\(983\) 8.06918 + 13.9762i 0.257367 + 0.445772i 0.965536 0.260271i \(-0.0838118\pi\)
−0.708169 + 0.706043i \(0.750479\pi\)
\(984\) −13.6874 + 23.7072i −0.436338 + 0.755759i
\(985\) 4.35790 + 7.54811i 0.138854 + 0.240503i
\(986\) −2.95569 + 5.11941i −0.0941285 + 0.163035i
\(987\) 33.0965 + 44.6756i 1.05347 + 1.42204i
\(988\) 11.1194 22.5403i 0.353756 0.717101i
\(989\) 4.86397 8.42465i 0.154665 0.267888i
\(990\) −0.624322 −0.0198423
\(991\) −29.1059 −0.924579 −0.462289 0.886729i \(-0.652972\pi\)
−0.462289 + 0.886729i \(0.652972\pi\)
\(992\) 7.42160 0.235636
\(993\) −67.5426 −2.14340
\(994\) 11.9426 + 16.1208i 0.378796 + 0.511321i
\(995\) 9.03583 + 15.6505i 0.286455 + 0.496154i
\(996\) −22.1662 + 38.3930i −0.702364 + 1.21653i
\(997\) −13.6617 + 23.6627i −0.432670 + 0.749406i −0.997102 0.0760733i \(-0.975762\pi\)
0.564432 + 0.825479i \(0.309095\pi\)
\(998\) 8.18261 0.259016
\(999\) −10.4057 18.0232i −0.329221 0.570228i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 182.2.h.d.9.5 yes 10
3.2 odd 2 1638.2.p.k.919.4 10
7.2 even 3 1274.2.g.p.295.1 10
7.3 odd 6 1274.2.e.s.165.5 10
7.4 even 3 182.2.e.d.165.1 yes 10
7.5 odd 6 1274.2.g.q.295.5 10
7.6 odd 2 1274.2.h.s.373.1 10
13.3 even 3 182.2.e.d.107.1 10
21.11 odd 6 1638.2.m.j.1621.4 10
39.29 odd 6 1638.2.m.j.289.4 10
91.3 odd 6 1274.2.h.s.263.1 10
91.16 even 3 1274.2.g.p.393.1 10
91.55 odd 6 1274.2.e.s.471.5 10
91.68 odd 6 1274.2.g.q.393.5 10
91.81 even 3 inner 182.2.h.d.81.5 yes 10
273.263 odd 6 1638.2.p.k.991.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
182.2.e.d.107.1 10 13.3 even 3
182.2.e.d.165.1 yes 10 7.4 even 3
182.2.h.d.9.5 yes 10 1.1 even 1 trivial
182.2.h.d.81.5 yes 10 91.81 even 3 inner
1274.2.e.s.165.5 10 7.3 odd 6
1274.2.e.s.471.5 10 91.55 odd 6
1274.2.g.p.295.1 10 7.2 even 3
1274.2.g.p.393.1 10 91.16 even 3
1274.2.g.q.295.5 10 7.5 odd 6
1274.2.g.q.393.5 10 91.68 odd 6
1274.2.h.s.263.1 10 91.3 odd 6
1274.2.h.s.373.1 10 7.6 odd 2
1638.2.m.j.289.4 10 39.29 odd 6
1638.2.m.j.1621.4 10 21.11 odd 6
1638.2.p.k.919.4 10 3.2 odd 2
1638.2.p.k.991.4 10 273.263 odd 6