Properties

Label 1275.2.a.m.1.1
Level $1275$
Weight $2$
Character 1275.1
Self dual yes
Analytic conductor $10.181$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1275,2,Mod(1,1275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1275, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1275.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.1809262577\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 255)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1275.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.618034 q^{2} -1.00000 q^{3} -1.61803 q^{4} +0.618034 q^{6} +1.00000 q^{7} +2.23607 q^{8} +1.00000 q^{9} -3.00000 q^{11} +1.61803 q^{12} -2.00000 q^{13} -0.618034 q^{14} +1.85410 q^{16} +1.00000 q^{17} -0.618034 q^{18} +0.236068 q^{19} -1.00000 q^{21} +1.85410 q^{22} +8.47214 q^{23} -2.23607 q^{24} +1.23607 q^{26} -1.00000 q^{27} -1.61803 q^{28} -1.76393 q^{29} -6.47214 q^{31} -5.61803 q^{32} +3.00000 q^{33} -0.618034 q^{34} -1.61803 q^{36} +8.70820 q^{37} -0.145898 q^{38} +2.00000 q^{39} -8.23607 q^{41} +0.618034 q^{42} +0.472136 q^{43} +4.85410 q^{44} -5.23607 q^{46} -0.708204 q^{47} -1.85410 q^{48} -6.00000 q^{49} -1.00000 q^{51} +3.23607 q^{52} +3.00000 q^{53} +0.618034 q^{54} +2.23607 q^{56} -0.236068 q^{57} +1.09017 q^{58} +8.94427 q^{59} -10.0000 q^{61} +4.00000 q^{62} +1.00000 q^{63} -0.236068 q^{64} -1.85410 q^{66} -14.4721 q^{67} -1.61803 q^{68} -8.47214 q^{69} -4.94427 q^{71} +2.23607 q^{72} -6.23607 q^{73} -5.38197 q^{74} -0.381966 q^{76} -3.00000 q^{77} -1.23607 q^{78} +2.00000 q^{79} +1.00000 q^{81} +5.09017 q^{82} -12.9443 q^{83} +1.61803 q^{84} -0.291796 q^{86} +1.76393 q^{87} -6.70820 q^{88} -12.0000 q^{89} -2.00000 q^{91} -13.7082 q^{92} +6.47214 q^{93} +0.437694 q^{94} +5.61803 q^{96} -13.4164 q^{97} +3.70820 q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 2 q^{3} - q^{4} - q^{6} + 2 q^{7} + 2 q^{9} - 6 q^{11} + q^{12} - 4 q^{13} + q^{14} - 3 q^{16} + 2 q^{17} + q^{18} - 4 q^{19} - 2 q^{21} - 3 q^{22} + 8 q^{23} - 2 q^{26} - 2 q^{27} - q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.618034 −0.437016 −0.218508 0.975835i \(-0.570119\pi\)
−0.218508 + 0.975835i \(0.570119\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.61803 −0.809017
\(5\) 0 0
\(6\) 0.618034 0.252311
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 2.23607 0.790569
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 1.61803 0.467086
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −0.618034 −0.165177
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 1.00000 0.242536
\(18\) −0.618034 −0.145672
\(19\) 0.236068 0.0541577 0.0270789 0.999633i \(-0.491379\pi\)
0.0270789 + 0.999633i \(0.491379\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 1.85410 0.395296
\(23\) 8.47214 1.76656 0.883281 0.468844i \(-0.155329\pi\)
0.883281 + 0.468844i \(0.155329\pi\)
\(24\) −2.23607 −0.456435
\(25\) 0 0
\(26\) 1.23607 0.242413
\(27\) −1.00000 −0.192450
\(28\) −1.61803 −0.305780
\(29\) −1.76393 −0.327554 −0.163777 0.986497i \(-0.552368\pi\)
−0.163777 + 0.986497i \(0.552368\pi\)
\(30\) 0 0
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) −5.61803 −0.993137
\(33\) 3.00000 0.522233
\(34\) −0.618034 −0.105992
\(35\) 0 0
\(36\) −1.61803 −0.269672
\(37\) 8.70820 1.43162 0.715810 0.698295i \(-0.246058\pi\)
0.715810 + 0.698295i \(0.246058\pi\)
\(38\) −0.145898 −0.0236678
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −8.23607 −1.28626 −0.643129 0.765758i \(-0.722364\pi\)
−0.643129 + 0.765758i \(0.722364\pi\)
\(42\) 0.618034 0.0953647
\(43\) 0.472136 0.0720001 0.0360000 0.999352i \(-0.488538\pi\)
0.0360000 + 0.999352i \(0.488538\pi\)
\(44\) 4.85410 0.731783
\(45\) 0 0
\(46\) −5.23607 −0.772016
\(47\) −0.708204 −0.103302 −0.0516511 0.998665i \(-0.516448\pi\)
−0.0516511 + 0.998665i \(0.516448\pi\)
\(48\) −1.85410 −0.267617
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −1.00000 −0.140028
\(52\) 3.23607 0.448762
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0.618034 0.0841038
\(55\) 0 0
\(56\) 2.23607 0.298807
\(57\) −0.236068 −0.0312680
\(58\) 1.09017 0.143146
\(59\) 8.94427 1.16445 0.582223 0.813029i \(-0.302183\pi\)
0.582223 + 0.813029i \(0.302183\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 1.00000 0.125988
\(64\) −0.236068 −0.0295085
\(65\) 0 0
\(66\) −1.85410 −0.228224
\(67\) −14.4721 −1.76805 −0.884026 0.467437i \(-0.845177\pi\)
−0.884026 + 0.467437i \(0.845177\pi\)
\(68\) −1.61803 −0.196215
\(69\) −8.47214 −1.01993
\(70\) 0 0
\(71\) −4.94427 −0.586777 −0.293389 0.955993i \(-0.594783\pi\)
−0.293389 + 0.955993i \(0.594783\pi\)
\(72\) 2.23607 0.263523
\(73\) −6.23607 −0.729877 −0.364938 0.931032i \(-0.618910\pi\)
−0.364938 + 0.931032i \(0.618910\pi\)
\(74\) −5.38197 −0.625641
\(75\) 0 0
\(76\) −0.381966 −0.0438145
\(77\) −3.00000 −0.341882
\(78\) −1.23607 −0.139957
\(79\) 2.00000 0.225018 0.112509 0.993651i \(-0.464111\pi\)
0.112509 + 0.993651i \(0.464111\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 5.09017 0.562115
\(83\) −12.9443 −1.42082 −0.710409 0.703789i \(-0.751490\pi\)
−0.710409 + 0.703789i \(0.751490\pi\)
\(84\) 1.61803 0.176542
\(85\) 0 0
\(86\) −0.291796 −0.0314652
\(87\) 1.76393 0.189113
\(88\) −6.70820 −0.715097
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) −13.7082 −1.42918
\(93\) 6.47214 0.671129
\(94\) 0.437694 0.0451447
\(95\) 0 0
\(96\) 5.61803 0.573388
\(97\) −13.4164 −1.36223 −0.681115 0.732177i \(-0.738505\pi\)
−0.681115 + 0.732177i \(0.738505\pi\)
\(98\) 3.70820 0.374585
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −5.52786 −0.550043 −0.275022 0.961438i \(-0.588685\pi\)
−0.275022 + 0.961438i \(0.588685\pi\)
\(102\) 0.618034 0.0611945
\(103\) −6.94427 −0.684239 −0.342120 0.939656i \(-0.611145\pi\)
−0.342120 + 0.939656i \(0.611145\pi\)
\(104\) −4.47214 −0.438529
\(105\) 0 0
\(106\) −1.85410 −0.180086
\(107\) 2.47214 0.238990 0.119495 0.992835i \(-0.461872\pi\)
0.119495 + 0.992835i \(0.461872\pi\)
\(108\) 1.61803 0.155695
\(109\) −6.47214 −0.619918 −0.309959 0.950750i \(-0.600315\pi\)
−0.309959 + 0.950750i \(0.600315\pi\)
\(110\) 0 0
\(111\) −8.70820 −0.826546
\(112\) 1.85410 0.175196
\(113\) 1.05573 0.0993145 0.0496573 0.998766i \(-0.484187\pi\)
0.0496573 + 0.998766i \(0.484187\pi\)
\(114\) 0.145898 0.0136646
\(115\) 0 0
\(116\) 2.85410 0.264997
\(117\) −2.00000 −0.184900
\(118\) −5.52786 −0.508881
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 6.18034 0.559542
\(123\) 8.23607 0.742621
\(124\) 10.4721 0.940426
\(125\) 0 0
\(126\) −0.618034 −0.0550588
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 11.3820 1.00603
\(129\) −0.472136 −0.0415693
\(130\) 0 0
\(131\) 16.9443 1.48043 0.740214 0.672371i \(-0.234724\pi\)
0.740214 + 0.672371i \(0.234724\pi\)
\(132\) −4.85410 −0.422495
\(133\) 0.236068 0.0204697
\(134\) 8.94427 0.772667
\(135\) 0 0
\(136\) 2.23607 0.191741
\(137\) 16.4164 1.40255 0.701274 0.712892i \(-0.252615\pi\)
0.701274 + 0.712892i \(0.252615\pi\)
\(138\) 5.23607 0.445724
\(139\) −12.9443 −1.09792 −0.548959 0.835849i \(-0.684976\pi\)
−0.548959 + 0.835849i \(0.684976\pi\)
\(140\) 0 0
\(141\) 0.708204 0.0596415
\(142\) 3.05573 0.256431
\(143\) 6.00000 0.501745
\(144\) 1.85410 0.154508
\(145\) 0 0
\(146\) 3.85410 0.318968
\(147\) 6.00000 0.494872
\(148\) −14.0902 −1.15820
\(149\) 1.52786 0.125167 0.0625837 0.998040i \(-0.480066\pi\)
0.0625837 + 0.998040i \(0.480066\pi\)
\(150\) 0 0
\(151\) 13.7639 1.12009 0.560046 0.828461i \(-0.310783\pi\)
0.560046 + 0.828461i \(0.310783\pi\)
\(152\) 0.527864 0.0428154
\(153\) 1.00000 0.0808452
\(154\) 1.85410 0.149408
\(155\) 0 0
\(156\) −3.23607 −0.259093
\(157\) −19.4164 −1.54960 −0.774799 0.632208i \(-0.782149\pi\)
−0.774799 + 0.632208i \(0.782149\pi\)
\(158\) −1.23607 −0.0983363
\(159\) −3.00000 −0.237915
\(160\) 0 0
\(161\) 8.47214 0.667698
\(162\) −0.618034 −0.0485573
\(163\) −16.4164 −1.28583 −0.642916 0.765937i \(-0.722276\pi\)
−0.642916 + 0.765937i \(0.722276\pi\)
\(164\) 13.3262 1.04060
\(165\) 0 0
\(166\) 8.00000 0.620920
\(167\) 18.4721 1.42942 0.714708 0.699423i \(-0.246559\pi\)
0.714708 + 0.699423i \(0.246559\pi\)
\(168\) −2.23607 −0.172516
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0.236068 0.0180526
\(172\) −0.763932 −0.0582493
\(173\) −20.3607 −1.54799 −0.773997 0.633189i \(-0.781745\pi\)
−0.773997 + 0.633189i \(0.781745\pi\)
\(174\) −1.09017 −0.0826456
\(175\) 0 0
\(176\) −5.56231 −0.419275
\(177\) −8.94427 −0.672293
\(178\) 7.41641 0.555883
\(179\) −1.52786 −0.114198 −0.0570990 0.998369i \(-0.518185\pi\)
−0.0570990 + 0.998369i \(0.518185\pi\)
\(180\) 0 0
\(181\) 13.8885 1.03233 0.516164 0.856490i \(-0.327360\pi\)
0.516164 + 0.856490i \(0.327360\pi\)
\(182\) 1.23607 0.0916235
\(183\) 10.0000 0.739221
\(184\) 18.9443 1.39659
\(185\) 0 0
\(186\) −4.00000 −0.293294
\(187\) −3.00000 −0.219382
\(188\) 1.14590 0.0835732
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 4.47214 0.323592 0.161796 0.986824i \(-0.448271\pi\)
0.161796 + 0.986824i \(0.448271\pi\)
\(192\) 0.236068 0.0170367
\(193\) 9.41641 0.677808 0.338904 0.940821i \(-0.389944\pi\)
0.338904 + 0.940821i \(0.389944\pi\)
\(194\) 8.29180 0.595316
\(195\) 0 0
\(196\) 9.70820 0.693443
\(197\) 22.4721 1.60107 0.800537 0.599284i \(-0.204548\pi\)
0.800537 + 0.599284i \(0.204548\pi\)
\(198\) 1.85410 0.131765
\(199\) 13.4164 0.951064 0.475532 0.879698i \(-0.342256\pi\)
0.475532 + 0.879698i \(0.342256\pi\)
\(200\) 0 0
\(201\) 14.4721 1.02079
\(202\) 3.41641 0.240378
\(203\) −1.76393 −0.123804
\(204\) 1.61803 0.113285
\(205\) 0 0
\(206\) 4.29180 0.299024
\(207\) 8.47214 0.588854
\(208\) −3.70820 −0.257118
\(209\) −0.708204 −0.0489875
\(210\) 0 0
\(211\) −18.3607 −1.26400 −0.632001 0.774968i \(-0.717766\pi\)
−0.632001 + 0.774968i \(0.717766\pi\)
\(212\) −4.85410 −0.333381
\(213\) 4.94427 0.338776
\(214\) −1.52786 −0.104443
\(215\) 0 0
\(216\) −2.23607 −0.152145
\(217\) −6.47214 −0.439357
\(218\) 4.00000 0.270914
\(219\) 6.23607 0.421394
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 5.38197 0.361214
\(223\) 1.41641 0.0948497 0.0474248 0.998875i \(-0.484899\pi\)
0.0474248 + 0.998875i \(0.484899\pi\)
\(224\) −5.61803 −0.375371
\(225\) 0 0
\(226\) −0.652476 −0.0434020
\(227\) 3.05573 0.202816 0.101408 0.994845i \(-0.467665\pi\)
0.101408 + 0.994845i \(0.467665\pi\)
\(228\) 0.381966 0.0252963
\(229\) −16.4164 −1.08483 −0.542413 0.840112i \(-0.682489\pi\)
−0.542413 + 0.840112i \(0.682489\pi\)
\(230\) 0 0
\(231\) 3.00000 0.197386
\(232\) −3.94427 −0.258954
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 1.23607 0.0808043
\(235\) 0 0
\(236\) −14.4721 −0.942056
\(237\) −2.00000 −0.129914
\(238\) −0.618034 −0.0400612
\(239\) 0.472136 0.0305399 0.0152700 0.999883i \(-0.495139\pi\)
0.0152700 + 0.999883i \(0.495139\pi\)
\(240\) 0 0
\(241\) 4.94427 0.318489 0.159244 0.987239i \(-0.449094\pi\)
0.159244 + 0.987239i \(0.449094\pi\)
\(242\) 1.23607 0.0794575
\(243\) −1.00000 −0.0641500
\(244\) 16.1803 1.03584
\(245\) 0 0
\(246\) −5.09017 −0.324537
\(247\) −0.472136 −0.0300413
\(248\) −14.4721 −0.918982
\(249\) 12.9443 0.820310
\(250\) 0 0
\(251\) −11.8885 −0.750398 −0.375199 0.926944i \(-0.622426\pi\)
−0.375199 + 0.926944i \(0.622426\pi\)
\(252\) −1.61803 −0.101927
\(253\) −25.4164 −1.59792
\(254\) 3.70820 0.232673
\(255\) 0 0
\(256\) −6.56231 −0.410144
\(257\) −13.0557 −0.814394 −0.407197 0.913340i \(-0.633494\pi\)
−0.407197 + 0.913340i \(0.633494\pi\)
\(258\) 0.291796 0.0181664
\(259\) 8.70820 0.541101
\(260\) 0 0
\(261\) −1.76393 −0.109185
\(262\) −10.4721 −0.646971
\(263\) 21.6525 1.33515 0.667574 0.744543i \(-0.267333\pi\)
0.667574 + 0.744543i \(0.267333\pi\)
\(264\) 6.70820 0.412861
\(265\) 0 0
\(266\) −0.145898 −0.00894558
\(267\) 12.0000 0.734388
\(268\) 23.4164 1.43038
\(269\) −7.18034 −0.437793 −0.218897 0.975748i \(-0.570246\pi\)
−0.218897 + 0.975748i \(0.570246\pi\)
\(270\) 0 0
\(271\) 21.8885 1.32963 0.664817 0.747006i \(-0.268509\pi\)
0.664817 + 0.747006i \(0.268509\pi\)
\(272\) 1.85410 0.112421
\(273\) 2.00000 0.121046
\(274\) −10.1459 −0.612936
\(275\) 0 0
\(276\) 13.7082 0.825137
\(277\) −29.4164 −1.76746 −0.883730 0.467996i \(-0.844976\pi\)
−0.883730 + 0.467996i \(0.844976\pi\)
\(278\) 8.00000 0.479808
\(279\) −6.47214 −0.387477
\(280\) 0 0
\(281\) −14.3607 −0.856686 −0.428343 0.903616i \(-0.640903\pi\)
−0.428343 + 0.903616i \(0.640903\pi\)
\(282\) −0.437694 −0.0260643
\(283\) −17.4721 −1.03861 −0.519305 0.854589i \(-0.673809\pi\)
−0.519305 + 0.854589i \(0.673809\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −3.70820 −0.219271
\(287\) −8.23607 −0.486160
\(288\) −5.61803 −0.331046
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 13.4164 0.786484
\(292\) 10.0902 0.590483
\(293\) 8.88854 0.519274 0.259637 0.965706i \(-0.416397\pi\)
0.259637 + 0.965706i \(0.416397\pi\)
\(294\) −3.70820 −0.216267
\(295\) 0 0
\(296\) 19.4721 1.13179
\(297\) 3.00000 0.174078
\(298\) −0.944272 −0.0547002
\(299\) −16.9443 −0.979913
\(300\) 0 0
\(301\) 0.472136 0.0272135
\(302\) −8.50658 −0.489499
\(303\) 5.52786 0.317567
\(304\) 0.437694 0.0251035
\(305\) 0 0
\(306\) −0.618034 −0.0353307
\(307\) 34.8328 1.98801 0.994007 0.109317i \(-0.0348665\pi\)
0.994007 + 0.109317i \(0.0348665\pi\)
\(308\) 4.85410 0.276588
\(309\) 6.94427 0.395046
\(310\) 0 0
\(311\) 10.5279 0.596980 0.298490 0.954413i \(-0.403517\pi\)
0.298490 + 0.954413i \(0.403517\pi\)
\(312\) 4.47214 0.253185
\(313\) 6.70820 0.379170 0.189585 0.981864i \(-0.439286\pi\)
0.189585 + 0.981864i \(0.439286\pi\)
\(314\) 12.0000 0.677199
\(315\) 0 0
\(316\) −3.23607 −0.182043
\(317\) −11.5279 −0.647469 −0.323735 0.946148i \(-0.604939\pi\)
−0.323735 + 0.946148i \(0.604939\pi\)
\(318\) 1.85410 0.103973
\(319\) 5.29180 0.296284
\(320\) 0 0
\(321\) −2.47214 −0.137981
\(322\) −5.23607 −0.291795
\(323\) 0.236068 0.0131352
\(324\) −1.61803 −0.0898908
\(325\) 0 0
\(326\) 10.1459 0.561929
\(327\) 6.47214 0.357910
\(328\) −18.4164 −1.01688
\(329\) −0.708204 −0.0390445
\(330\) 0 0
\(331\) 10.1246 0.556499 0.278249 0.960509i \(-0.410246\pi\)
0.278249 + 0.960509i \(0.410246\pi\)
\(332\) 20.9443 1.14947
\(333\) 8.70820 0.477207
\(334\) −11.4164 −0.624678
\(335\) 0 0
\(336\) −1.85410 −0.101150
\(337\) 31.6525 1.72422 0.862110 0.506721i \(-0.169143\pi\)
0.862110 + 0.506721i \(0.169143\pi\)
\(338\) 5.56231 0.302550
\(339\) −1.05573 −0.0573393
\(340\) 0 0
\(341\) 19.4164 1.05146
\(342\) −0.145898 −0.00788926
\(343\) −13.0000 −0.701934
\(344\) 1.05573 0.0569210
\(345\) 0 0
\(346\) 12.5836 0.676498
\(347\) −10.4721 −0.562174 −0.281087 0.959682i \(-0.590695\pi\)
−0.281087 + 0.959682i \(0.590695\pi\)
\(348\) −2.85410 −0.152996
\(349\) −32.4164 −1.73521 −0.867605 0.497254i \(-0.834342\pi\)
−0.867605 + 0.497254i \(0.834342\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 16.8541 0.898327
\(353\) −16.5279 −0.879689 −0.439845 0.898074i \(-0.644967\pi\)
−0.439845 + 0.898074i \(0.644967\pi\)
\(354\) 5.52786 0.293803
\(355\) 0 0
\(356\) 19.4164 1.02907
\(357\) −1.00000 −0.0529256
\(358\) 0.944272 0.0499063
\(359\) −11.8885 −0.627453 −0.313727 0.949513i \(-0.601578\pi\)
−0.313727 + 0.949513i \(0.601578\pi\)
\(360\) 0 0
\(361\) −18.9443 −0.997067
\(362\) −8.58359 −0.451144
\(363\) 2.00000 0.104973
\(364\) 3.23607 0.169616
\(365\) 0 0
\(366\) −6.18034 −0.323052
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) 15.7082 0.818847
\(369\) −8.23607 −0.428753
\(370\) 0 0
\(371\) 3.00000 0.155752
\(372\) −10.4721 −0.542955
\(373\) 0.472136 0.0244463 0.0122231 0.999925i \(-0.496109\pi\)
0.0122231 + 0.999925i \(0.496109\pi\)
\(374\) 1.85410 0.0958733
\(375\) 0 0
\(376\) −1.58359 −0.0816675
\(377\) 3.52786 0.181694
\(378\) 0.618034 0.0317882
\(379\) 36.3607 1.86772 0.933861 0.357635i \(-0.116417\pi\)
0.933861 + 0.357635i \(0.116417\pi\)
\(380\) 0 0
\(381\) 6.00000 0.307389
\(382\) −2.76393 −0.141415
\(383\) 5.65248 0.288828 0.144414 0.989517i \(-0.453870\pi\)
0.144414 + 0.989517i \(0.453870\pi\)
\(384\) −11.3820 −0.580834
\(385\) 0 0
\(386\) −5.81966 −0.296213
\(387\) 0.472136 0.0240000
\(388\) 21.7082 1.10207
\(389\) −28.3607 −1.43794 −0.718972 0.695039i \(-0.755387\pi\)
−0.718972 + 0.695039i \(0.755387\pi\)
\(390\) 0 0
\(391\) 8.47214 0.428454
\(392\) −13.4164 −0.677631
\(393\) −16.9443 −0.854725
\(394\) −13.8885 −0.699695
\(395\) 0 0
\(396\) 4.85410 0.243928
\(397\) −16.2361 −0.814865 −0.407432 0.913235i \(-0.633576\pi\)
−0.407432 + 0.913235i \(0.633576\pi\)
\(398\) −8.29180 −0.415630
\(399\) −0.236068 −0.0118182
\(400\) 0 0
\(401\) 11.2918 0.563885 0.281943 0.959431i \(-0.409021\pi\)
0.281943 + 0.959431i \(0.409021\pi\)
\(402\) −8.94427 −0.446100
\(403\) 12.9443 0.644800
\(404\) 8.94427 0.444994
\(405\) 0 0
\(406\) 1.09017 0.0541042
\(407\) −26.1246 −1.29495
\(408\) −2.23607 −0.110702
\(409\) 35.8328 1.77182 0.885909 0.463858i \(-0.153535\pi\)
0.885909 + 0.463858i \(0.153535\pi\)
\(410\) 0 0
\(411\) −16.4164 −0.809762
\(412\) 11.2361 0.553561
\(413\) 8.94427 0.440119
\(414\) −5.23607 −0.257339
\(415\) 0 0
\(416\) 11.2361 0.550894
\(417\) 12.9443 0.633884
\(418\) 0.437694 0.0214083
\(419\) −21.0000 −1.02592 −0.512959 0.858413i \(-0.671451\pi\)
−0.512959 + 0.858413i \(0.671451\pi\)
\(420\) 0 0
\(421\) 4.41641 0.215243 0.107621 0.994192i \(-0.465677\pi\)
0.107621 + 0.994192i \(0.465677\pi\)
\(422\) 11.3475 0.552389
\(423\) −0.708204 −0.0344341
\(424\) 6.70820 0.325779
\(425\) 0 0
\(426\) −3.05573 −0.148051
\(427\) −10.0000 −0.483934
\(428\) −4.00000 −0.193347
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) −27.4721 −1.32329 −0.661643 0.749819i \(-0.730141\pi\)
−0.661643 + 0.749819i \(0.730141\pi\)
\(432\) −1.85410 −0.0892055
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) 10.4721 0.501524
\(437\) 2.00000 0.0956730
\(438\) −3.85410 −0.184156
\(439\) 1.41641 0.0676015 0.0338007 0.999429i \(-0.489239\pi\)
0.0338007 + 0.999429i \(0.489239\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 1.23607 0.0587938
\(443\) −4.94427 −0.234909 −0.117455 0.993078i \(-0.537474\pi\)
−0.117455 + 0.993078i \(0.537474\pi\)
\(444\) 14.0902 0.668690
\(445\) 0 0
\(446\) −0.875388 −0.0414508
\(447\) −1.52786 −0.0722655
\(448\) −0.236068 −0.0111532
\(449\) 1.41641 0.0668444 0.0334222 0.999441i \(-0.489359\pi\)
0.0334222 + 0.999441i \(0.489359\pi\)
\(450\) 0 0
\(451\) 24.7082 1.16346
\(452\) −1.70820 −0.0803472
\(453\) −13.7639 −0.646686
\(454\) −1.88854 −0.0886338
\(455\) 0 0
\(456\) −0.527864 −0.0247195
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 10.1459 0.474087
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) 2.94427 0.137128 0.0685642 0.997647i \(-0.478158\pi\)
0.0685642 + 0.997647i \(0.478158\pi\)
\(462\) −1.85410 −0.0862606
\(463\) −3.41641 −0.158774 −0.0793870 0.996844i \(-0.525296\pi\)
−0.0793870 + 0.996844i \(0.525296\pi\)
\(464\) −3.27051 −0.151830
\(465\) 0 0
\(466\) −7.41641 −0.343558
\(467\) −5.76393 −0.266723 −0.133361 0.991067i \(-0.542577\pi\)
−0.133361 + 0.991067i \(0.542577\pi\)
\(468\) 3.23607 0.149587
\(469\) −14.4721 −0.668261
\(470\) 0 0
\(471\) 19.4164 0.894661
\(472\) 20.0000 0.920575
\(473\) −1.41641 −0.0651265
\(474\) 1.23607 0.0567745
\(475\) 0 0
\(476\) −1.61803 −0.0741625
\(477\) 3.00000 0.137361
\(478\) −0.291796 −0.0133464
\(479\) 41.8885 1.91394 0.956968 0.290193i \(-0.0937194\pi\)
0.956968 + 0.290193i \(0.0937194\pi\)
\(480\) 0 0
\(481\) −17.4164 −0.794120
\(482\) −3.05573 −0.139185
\(483\) −8.47214 −0.385496
\(484\) 3.23607 0.147094
\(485\) 0 0
\(486\) 0.618034 0.0280346
\(487\) 38.8328 1.75968 0.879841 0.475267i \(-0.157649\pi\)
0.879841 + 0.475267i \(0.157649\pi\)
\(488\) −22.3607 −1.01222
\(489\) 16.4164 0.742376
\(490\) 0 0
\(491\) −32.8328 −1.48172 −0.740862 0.671657i \(-0.765583\pi\)
−0.740862 + 0.671657i \(0.765583\pi\)
\(492\) −13.3262 −0.600793
\(493\) −1.76393 −0.0794435
\(494\) 0.291796 0.0131285
\(495\) 0 0
\(496\) −12.0000 −0.538816
\(497\) −4.94427 −0.221781
\(498\) −8.00000 −0.358489
\(499\) −38.3607 −1.71726 −0.858630 0.512596i \(-0.828684\pi\)
−0.858630 + 0.512596i \(0.828684\pi\)
\(500\) 0 0
\(501\) −18.4721 −0.825274
\(502\) 7.34752 0.327936
\(503\) 33.8885 1.51102 0.755508 0.655140i \(-0.227390\pi\)
0.755508 + 0.655140i \(0.227390\pi\)
\(504\) 2.23607 0.0996024
\(505\) 0 0
\(506\) 15.7082 0.698315
\(507\) 9.00000 0.399704
\(508\) 9.70820 0.430732
\(509\) −19.0557 −0.844630 −0.422315 0.906449i \(-0.638782\pi\)
−0.422315 + 0.906449i \(0.638782\pi\)
\(510\) 0 0
\(511\) −6.23607 −0.275867
\(512\) −18.7082 −0.826794
\(513\) −0.236068 −0.0104227
\(514\) 8.06888 0.355903
\(515\) 0 0
\(516\) 0.763932 0.0336302
\(517\) 2.12461 0.0934403
\(518\) −5.38197 −0.236470
\(519\) 20.3607 0.893735
\(520\) 0 0
\(521\) −15.7639 −0.690630 −0.345315 0.938487i \(-0.612228\pi\)
−0.345315 + 0.938487i \(0.612228\pi\)
\(522\) 1.09017 0.0477154
\(523\) −12.8328 −0.561140 −0.280570 0.959834i \(-0.590523\pi\)
−0.280570 + 0.959834i \(0.590523\pi\)
\(524\) −27.4164 −1.19769
\(525\) 0 0
\(526\) −13.3820 −0.583481
\(527\) −6.47214 −0.281931
\(528\) 5.56231 0.242068
\(529\) 48.7771 2.12074
\(530\) 0 0
\(531\) 8.94427 0.388148
\(532\) −0.381966 −0.0165603
\(533\) 16.4721 0.713487
\(534\) −7.41641 −0.320939
\(535\) 0 0
\(536\) −32.3607 −1.39777
\(537\) 1.52786 0.0659322
\(538\) 4.43769 0.191323
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) −3.41641 −0.146883 −0.0734414 0.997300i \(-0.523398\pi\)
−0.0734414 + 0.997300i \(0.523398\pi\)
\(542\) −13.5279 −0.581072
\(543\) −13.8885 −0.596014
\(544\) −5.61803 −0.240871
\(545\) 0 0
\(546\) −1.23607 −0.0528988
\(547\) −26.4164 −1.12948 −0.564742 0.825268i \(-0.691024\pi\)
−0.564742 + 0.825268i \(0.691024\pi\)
\(548\) −26.5623 −1.13469
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) −0.416408 −0.0177396
\(552\) −18.9443 −0.806322
\(553\) 2.00000 0.0850487
\(554\) 18.1803 0.772409
\(555\) 0 0
\(556\) 20.9443 0.888235
\(557\) 43.8885 1.85962 0.929809 0.368043i \(-0.119972\pi\)
0.929809 + 0.368043i \(0.119972\pi\)
\(558\) 4.00000 0.169334
\(559\) −0.944272 −0.0399384
\(560\) 0 0
\(561\) 3.00000 0.126660
\(562\) 8.87539 0.374386
\(563\) −20.1246 −0.848151 −0.424076 0.905627i \(-0.639401\pi\)
−0.424076 + 0.905627i \(0.639401\pi\)
\(564\) −1.14590 −0.0482510
\(565\) 0 0
\(566\) 10.7984 0.453890
\(567\) 1.00000 0.0419961
\(568\) −11.0557 −0.463888
\(569\) 43.8885 1.83990 0.919952 0.392032i \(-0.128228\pi\)
0.919952 + 0.392032i \(0.128228\pi\)
\(570\) 0 0
\(571\) −12.8328 −0.537037 −0.268518 0.963275i \(-0.586534\pi\)
−0.268518 + 0.963275i \(0.586534\pi\)
\(572\) −9.70820 −0.405920
\(573\) −4.47214 −0.186826
\(574\) 5.09017 0.212460
\(575\) 0 0
\(576\) −0.236068 −0.00983617
\(577\) 29.3050 1.21998 0.609991 0.792409i \(-0.291173\pi\)
0.609991 + 0.792409i \(0.291173\pi\)
\(578\) −0.618034 −0.0257068
\(579\) −9.41641 −0.391333
\(580\) 0 0
\(581\) −12.9443 −0.537019
\(582\) −8.29180 −0.343706
\(583\) −9.00000 −0.372742
\(584\) −13.9443 −0.577018
\(585\) 0 0
\(586\) −5.49342 −0.226931
\(587\) 2.23607 0.0922924 0.0461462 0.998935i \(-0.485306\pi\)
0.0461462 + 0.998935i \(0.485306\pi\)
\(588\) −9.70820 −0.400360
\(589\) −1.52786 −0.0629545
\(590\) 0 0
\(591\) −22.4721 −0.924380
\(592\) 16.1459 0.663592
\(593\) −8.52786 −0.350197 −0.175099 0.984551i \(-0.556024\pi\)
−0.175099 + 0.984551i \(0.556024\pi\)
\(594\) −1.85410 −0.0760747
\(595\) 0 0
\(596\) −2.47214 −0.101263
\(597\) −13.4164 −0.549097
\(598\) 10.4721 0.428237
\(599\) −4.47214 −0.182727 −0.0913633 0.995818i \(-0.529122\pi\)
−0.0913633 + 0.995818i \(0.529122\pi\)
\(600\) 0 0
\(601\) −27.4164 −1.11834 −0.559169 0.829053i \(-0.688880\pi\)
−0.559169 + 0.829053i \(0.688880\pi\)
\(602\) −0.291796 −0.0118927
\(603\) −14.4721 −0.589351
\(604\) −22.2705 −0.906174
\(605\) 0 0
\(606\) −3.41641 −0.138782
\(607\) 11.1115 0.451000 0.225500 0.974243i \(-0.427598\pi\)
0.225500 + 0.974243i \(0.427598\pi\)
\(608\) −1.32624 −0.0537861
\(609\) 1.76393 0.0714781
\(610\) 0 0
\(611\) 1.41641 0.0573017
\(612\) −1.61803 −0.0654051
\(613\) 25.0557 1.01199 0.505996 0.862536i \(-0.331125\pi\)
0.505996 + 0.862536i \(0.331125\pi\)
\(614\) −21.5279 −0.868794
\(615\) 0 0
\(616\) −6.70820 −0.270281
\(617\) −23.8885 −0.961717 −0.480858 0.876798i \(-0.659675\pi\)
−0.480858 + 0.876798i \(0.659675\pi\)
\(618\) −4.29180 −0.172641
\(619\) 27.8885 1.12094 0.560468 0.828176i \(-0.310621\pi\)
0.560468 + 0.828176i \(0.310621\pi\)
\(620\) 0 0
\(621\) −8.47214 −0.339975
\(622\) −6.50658 −0.260890
\(623\) −12.0000 −0.480770
\(624\) 3.70820 0.148447
\(625\) 0 0
\(626\) −4.14590 −0.165703
\(627\) 0.708204 0.0282829
\(628\) 31.4164 1.25365
\(629\) 8.70820 0.347219
\(630\) 0 0
\(631\) −32.1246 −1.27886 −0.639430 0.768849i \(-0.720830\pi\)
−0.639430 + 0.768849i \(0.720830\pi\)
\(632\) 4.47214 0.177892
\(633\) 18.3607 0.729772
\(634\) 7.12461 0.282954
\(635\) 0 0
\(636\) 4.85410 0.192478
\(637\) 12.0000 0.475457
\(638\) −3.27051 −0.129481
\(639\) −4.94427 −0.195592
\(640\) 0 0
\(641\) −36.7082 −1.44989 −0.724943 0.688808i \(-0.758134\pi\)
−0.724943 + 0.688808i \(0.758134\pi\)
\(642\) 1.52786 0.0603000
\(643\) 31.2492 1.23235 0.616175 0.787610i \(-0.288682\pi\)
0.616175 + 0.787610i \(0.288682\pi\)
\(644\) −13.7082 −0.540179
\(645\) 0 0
\(646\) −0.145898 −0.00574028
\(647\) 19.0557 0.749158 0.374579 0.927195i \(-0.377787\pi\)
0.374579 + 0.927195i \(0.377787\pi\)
\(648\) 2.23607 0.0878410
\(649\) −26.8328 −1.05328
\(650\) 0 0
\(651\) 6.47214 0.253663
\(652\) 26.5623 1.04026
\(653\) −29.3050 −1.14679 −0.573396 0.819279i \(-0.694374\pi\)
−0.573396 + 0.819279i \(0.694374\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) −15.2705 −0.596213
\(657\) −6.23607 −0.243292
\(658\) 0.437694 0.0170631
\(659\) −26.8328 −1.04526 −0.522629 0.852560i \(-0.675049\pi\)
−0.522629 + 0.852560i \(0.675049\pi\)
\(660\) 0 0
\(661\) −28.4164 −1.10527 −0.552635 0.833423i \(-0.686378\pi\)
−0.552635 + 0.833423i \(0.686378\pi\)
\(662\) −6.25735 −0.243199
\(663\) 2.00000 0.0776736
\(664\) −28.9443 −1.12326
\(665\) 0 0
\(666\) −5.38197 −0.208547
\(667\) −14.9443 −0.578645
\(668\) −29.8885 −1.15642
\(669\) −1.41641 −0.0547615
\(670\) 0 0
\(671\) 30.0000 1.15814
\(672\) 5.61803 0.216720
\(673\) 12.4721 0.480766 0.240383 0.970678i \(-0.422727\pi\)
0.240383 + 0.970678i \(0.422727\pi\)
\(674\) −19.5623 −0.753512
\(675\) 0 0
\(676\) 14.5623 0.560089
\(677\) 30.9443 1.18928 0.594642 0.803990i \(-0.297294\pi\)
0.594642 + 0.803990i \(0.297294\pi\)
\(678\) 0.652476 0.0250582
\(679\) −13.4164 −0.514874
\(680\) 0 0
\(681\) −3.05573 −0.117096
\(682\) −12.0000 −0.459504
\(683\) 41.7771 1.59856 0.799278 0.600962i \(-0.205216\pi\)
0.799278 + 0.600962i \(0.205216\pi\)
\(684\) −0.381966 −0.0146048
\(685\) 0 0
\(686\) 8.03444 0.306756
\(687\) 16.4164 0.626325
\(688\) 0.875388 0.0333739
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 34.2492 1.30290 0.651451 0.758691i \(-0.274161\pi\)
0.651451 + 0.758691i \(0.274161\pi\)
\(692\) 32.9443 1.25235
\(693\) −3.00000 −0.113961
\(694\) 6.47214 0.245679
\(695\) 0 0
\(696\) 3.94427 0.149507
\(697\) −8.23607 −0.311963
\(698\) 20.0344 0.758315
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) −1.23607 −0.0466524
\(703\) 2.05573 0.0775333
\(704\) 0.708204 0.0266914
\(705\) 0 0
\(706\) 10.2148 0.384438
\(707\) −5.52786 −0.207897
\(708\) 14.4721 0.543896
\(709\) −10.5836 −0.397475 −0.198738 0.980053i \(-0.563684\pi\)
−0.198738 + 0.980053i \(0.563684\pi\)
\(710\) 0 0
\(711\) 2.00000 0.0750059
\(712\) −26.8328 −1.00560
\(713\) −54.8328 −2.05351
\(714\) 0.618034 0.0231293
\(715\) 0 0
\(716\) 2.47214 0.0923881
\(717\) −0.472136 −0.0176322
\(718\) 7.34752 0.274207
\(719\) −34.3050 −1.27936 −0.639679 0.768642i \(-0.720933\pi\)
−0.639679 + 0.768642i \(0.720933\pi\)
\(720\) 0 0
\(721\) −6.94427 −0.258618
\(722\) 11.7082 0.435734
\(723\) −4.94427 −0.183879
\(724\) −22.4721 −0.835170
\(725\) 0 0
\(726\) −1.23607 −0.0458748
\(727\) 35.3050 1.30939 0.654694 0.755894i \(-0.272797\pi\)
0.654694 + 0.755894i \(0.272797\pi\)
\(728\) −4.47214 −0.165748
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.472136 0.0174626
\(732\) −16.1803 −0.598043
\(733\) 5.52786 0.204176 0.102088 0.994775i \(-0.467448\pi\)
0.102088 + 0.994775i \(0.467448\pi\)
\(734\) 7.41641 0.273745
\(735\) 0 0
\(736\) −47.5967 −1.75444
\(737\) 43.4164 1.59926
\(738\) 5.09017 0.187372
\(739\) −38.8328 −1.42849 −0.714244 0.699897i \(-0.753229\pi\)
−0.714244 + 0.699897i \(0.753229\pi\)
\(740\) 0 0
\(741\) 0.472136 0.0173443
\(742\) −1.85410 −0.0680662
\(743\) 15.8885 0.582894 0.291447 0.956587i \(-0.405863\pi\)
0.291447 + 0.956587i \(0.405863\pi\)
\(744\) 14.4721 0.530574
\(745\) 0 0
\(746\) −0.291796 −0.0106834
\(747\) −12.9443 −0.473606
\(748\) 4.85410 0.177484
\(749\) 2.47214 0.0903299
\(750\) 0 0
\(751\) 39.8885 1.45555 0.727777 0.685814i \(-0.240554\pi\)
0.727777 + 0.685814i \(0.240554\pi\)
\(752\) −1.31308 −0.0478832
\(753\) 11.8885 0.433243
\(754\) −2.18034 −0.0794033
\(755\) 0 0
\(756\) 1.61803 0.0588473
\(757\) −31.4164 −1.14185 −0.570924 0.821003i \(-0.693415\pi\)
−0.570924 + 0.821003i \(0.693415\pi\)
\(758\) −22.4721 −0.816225
\(759\) 25.4164 0.922557
\(760\) 0 0
\(761\) −22.9443 −0.831729 −0.415865 0.909427i \(-0.636521\pi\)
−0.415865 + 0.909427i \(0.636521\pi\)
\(762\) −3.70820 −0.134334
\(763\) −6.47214 −0.234307
\(764\) −7.23607 −0.261792
\(765\) 0 0
\(766\) −3.49342 −0.126222
\(767\) −17.8885 −0.645918
\(768\) 6.56231 0.236797
\(769\) 31.9443 1.15194 0.575970 0.817471i \(-0.304625\pi\)
0.575970 + 0.817471i \(0.304625\pi\)
\(770\) 0 0
\(771\) 13.0557 0.470191
\(772\) −15.2361 −0.548358
\(773\) −50.7771 −1.82632 −0.913162 0.407596i \(-0.866367\pi\)
−0.913162 + 0.407596i \(0.866367\pi\)
\(774\) −0.291796 −0.0104884
\(775\) 0 0
\(776\) −30.0000 −1.07694
\(777\) −8.70820 −0.312405
\(778\) 17.5279 0.628404
\(779\) −1.94427 −0.0696608
\(780\) 0 0
\(781\) 14.8328 0.530760
\(782\) −5.23607 −0.187241
\(783\) 1.76393 0.0630378
\(784\) −11.1246 −0.397308
\(785\) 0 0
\(786\) 10.4721 0.373529
\(787\) −46.4164 −1.65457 −0.827283 0.561785i \(-0.810115\pi\)
−0.827283 + 0.561785i \(0.810115\pi\)
\(788\) −36.3607 −1.29530
\(789\) −21.6525 −0.770849
\(790\) 0 0
\(791\) 1.05573 0.0375374
\(792\) −6.70820 −0.238366
\(793\) 20.0000 0.710221
\(794\) 10.0344 0.356109
\(795\) 0 0
\(796\) −21.7082 −0.769427
\(797\) −39.0000 −1.38145 −0.690725 0.723117i \(-0.742709\pi\)
−0.690725 + 0.723117i \(0.742709\pi\)
\(798\) 0.145898 0.00516473
\(799\) −0.708204 −0.0250545
\(800\) 0 0
\(801\) −12.0000 −0.423999
\(802\) −6.97871 −0.246427
\(803\) 18.7082 0.660198
\(804\) −23.4164 −0.825833
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 7.18034 0.252760
\(808\) −12.3607 −0.434847
\(809\) 16.4721 0.579129 0.289565 0.957158i \(-0.406489\pi\)
0.289565 + 0.957158i \(0.406489\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 2.85410 0.100159
\(813\) −21.8885 −0.767665
\(814\) 16.1459 0.565913
\(815\) 0 0
\(816\) −1.85410 −0.0649066
\(817\) 0.111456 0.00389936
\(818\) −22.1459 −0.774313
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 16.4721 0.574882 0.287441 0.957798i \(-0.407196\pi\)
0.287441 + 0.957798i \(0.407196\pi\)
\(822\) 10.1459 0.353879
\(823\) 7.00000 0.244005 0.122002 0.992530i \(-0.461068\pi\)
0.122002 + 0.992530i \(0.461068\pi\)
\(824\) −15.5279 −0.540939
\(825\) 0 0
\(826\) −5.52786 −0.192339
\(827\) 35.8885 1.24797 0.623983 0.781438i \(-0.285513\pi\)
0.623983 + 0.781438i \(0.285513\pi\)
\(828\) −13.7082 −0.476393
\(829\) −23.3607 −0.811350 −0.405675 0.914017i \(-0.632964\pi\)
−0.405675 + 0.914017i \(0.632964\pi\)
\(830\) 0 0
\(831\) 29.4164 1.02044
\(832\) 0.472136 0.0163684
\(833\) −6.00000 −0.207888
\(834\) −8.00000 −0.277017
\(835\) 0 0
\(836\) 1.14590 0.0396317
\(837\) 6.47214 0.223710
\(838\) 12.9787 0.448342
\(839\) 10.4164 0.359614 0.179807 0.983702i \(-0.442453\pi\)
0.179807 + 0.983702i \(0.442453\pi\)
\(840\) 0 0
\(841\) −25.8885 −0.892708
\(842\) −2.72949 −0.0940644
\(843\) 14.3607 0.494608
\(844\) 29.7082 1.02260
\(845\) 0 0
\(846\) 0.437694 0.0150482
\(847\) −2.00000 −0.0687208
\(848\) 5.56231 0.191010
\(849\) 17.4721 0.599642
\(850\) 0 0
\(851\) 73.7771 2.52905
\(852\) −8.00000 −0.274075
\(853\) 56.2492 1.92594 0.962968 0.269614i \(-0.0868962\pi\)
0.962968 + 0.269614i \(0.0868962\pi\)
\(854\) 6.18034 0.211487
\(855\) 0 0
\(856\) 5.52786 0.188939
\(857\) −9.63932 −0.329273 −0.164636 0.986354i \(-0.552645\pi\)
−0.164636 + 0.986354i \(0.552645\pi\)
\(858\) 3.70820 0.126596
\(859\) 14.8197 0.505640 0.252820 0.967513i \(-0.418642\pi\)
0.252820 + 0.967513i \(0.418642\pi\)
\(860\) 0 0
\(861\) 8.23607 0.280684
\(862\) 16.9787 0.578297
\(863\) 27.7639 0.945095 0.472548 0.881305i \(-0.343334\pi\)
0.472548 + 0.881305i \(0.343334\pi\)
\(864\) 5.61803 0.191129
\(865\) 0 0
\(866\) −3.70820 −0.126010
\(867\) −1.00000 −0.0339618
\(868\) 10.4721 0.355447
\(869\) −6.00000 −0.203536
\(870\) 0 0
\(871\) 28.9443 0.980739
\(872\) −14.4721 −0.490088
\(873\) −13.4164 −0.454077
\(874\) −1.23607 −0.0418106
\(875\) 0 0
\(876\) −10.0902 −0.340915
\(877\) 13.8754 0.468539 0.234269 0.972172i \(-0.424730\pi\)
0.234269 + 0.972172i \(0.424730\pi\)
\(878\) −0.875388 −0.0295429
\(879\) −8.88854 −0.299803
\(880\) 0 0
\(881\) −51.0689 −1.72055 −0.860277 0.509827i \(-0.829710\pi\)
−0.860277 + 0.509827i \(0.829710\pi\)
\(882\) 3.70820 0.124862
\(883\) −3.16718 −0.106584 −0.0532921 0.998579i \(-0.516971\pi\)
−0.0532921 + 0.998579i \(0.516971\pi\)
\(884\) 3.23607 0.108841
\(885\) 0 0
\(886\) 3.05573 0.102659
\(887\) −31.3050 −1.05112 −0.525559 0.850757i \(-0.676144\pi\)
−0.525559 + 0.850757i \(0.676144\pi\)
\(888\) −19.4721 −0.653442
\(889\) −6.00000 −0.201234
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) −2.29180 −0.0767350
\(893\) −0.167184 −0.00559461
\(894\) 0.944272 0.0315812
\(895\) 0 0
\(896\) 11.3820 0.380245
\(897\) 16.9443 0.565753
\(898\) −0.875388 −0.0292121
\(899\) 11.4164 0.380759
\(900\) 0 0
\(901\) 3.00000 0.0999445
\(902\) −15.2705 −0.508452
\(903\) −0.472136 −0.0157117
\(904\) 2.36068 0.0785150
\(905\) 0 0
\(906\) 8.50658 0.282612
\(907\) 40.4164 1.34200 0.671002 0.741455i \(-0.265864\pi\)
0.671002 + 0.741455i \(0.265864\pi\)
\(908\) −4.94427 −0.164081
\(909\) −5.52786 −0.183348
\(910\) 0 0
\(911\) 31.2492 1.03533 0.517666 0.855582i \(-0.326801\pi\)
0.517666 + 0.855582i \(0.326801\pi\)
\(912\) −0.437694 −0.0144935
\(913\) 38.8328 1.28518
\(914\) 21.0132 0.695053
\(915\) 0 0
\(916\) 26.5623 0.877643
\(917\) 16.9443 0.559549
\(918\) 0.618034 0.0203982
\(919\) −5.29180 −0.174560 −0.0872801 0.996184i \(-0.527818\pi\)
−0.0872801 + 0.996184i \(0.527818\pi\)
\(920\) 0 0
\(921\) −34.8328 −1.14778
\(922\) −1.81966 −0.0599273
\(923\) 9.88854 0.325485
\(924\) −4.85410 −0.159688
\(925\) 0 0
\(926\) 2.11146 0.0693868
\(927\) −6.94427 −0.228080
\(928\) 9.90983 0.325306
\(929\) 52.4853 1.72199 0.860993 0.508616i \(-0.169843\pi\)
0.860993 + 0.508616i \(0.169843\pi\)
\(930\) 0 0
\(931\) −1.41641 −0.0464209
\(932\) −19.4164 −0.636006
\(933\) −10.5279 −0.344667
\(934\) 3.56231 0.116562
\(935\) 0 0
\(936\) −4.47214 −0.146176
\(937\) 9.88854 0.323045 0.161522 0.986869i \(-0.448360\pi\)
0.161522 + 0.986869i \(0.448360\pi\)
\(938\) 8.94427 0.292041
\(939\) −6.70820 −0.218914
\(940\) 0 0
\(941\) −3.52786 −0.115005 −0.0575025 0.998345i \(-0.518314\pi\)
−0.0575025 + 0.998345i \(0.518314\pi\)
\(942\) −12.0000 −0.390981
\(943\) −69.7771 −2.27225
\(944\) 16.5836 0.539750
\(945\) 0 0
\(946\) 0.875388 0.0284613
\(947\) 19.5279 0.634570 0.317285 0.948330i \(-0.397229\pi\)
0.317285 + 0.948330i \(0.397229\pi\)
\(948\) 3.23607 0.105103
\(949\) 12.4721 0.404863
\(950\) 0 0
\(951\) 11.5279 0.373817
\(952\) 2.23607 0.0724714
\(953\) 5.36068 0.173649 0.0868247 0.996224i \(-0.472328\pi\)
0.0868247 + 0.996224i \(0.472328\pi\)
\(954\) −1.85410 −0.0600288
\(955\) 0 0
\(956\) −0.763932 −0.0247073
\(957\) −5.29180 −0.171059
\(958\) −25.8885 −0.836421
\(959\) 16.4164 0.530113
\(960\) 0 0
\(961\) 10.8885 0.351243
\(962\) 10.7639 0.347043
\(963\) 2.47214 0.0796635
\(964\) −8.00000 −0.257663
\(965\) 0 0
\(966\) 5.23607 0.168468
\(967\) −46.0000 −1.47926 −0.739630 0.673014i \(-0.765000\pi\)
−0.739630 + 0.673014i \(0.765000\pi\)
\(968\) −4.47214 −0.143740
\(969\) −0.236068 −0.00758360
\(970\) 0 0
\(971\) 41.3050 1.32554 0.662769 0.748823i \(-0.269381\pi\)
0.662769 + 0.748823i \(0.269381\pi\)
\(972\) 1.61803 0.0518985
\(973\) −12.9443 −0.414974
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) −18.5410 −0.593484
\(977\) −30.9443 −0.989995 −0.494997 0.868894i \(-0.664831\pi\)
−0.494997 + 0.868894i \(0.664831\pi\)
\(978\) −10.1459 −0.324430
\(979\) 36.0000 1.15056
\(980\) 0 0
\(981\) −6.47214 −0.206639
\(982\) 20.2918 0.647537
\(983\) 42.4721 1.35465 0.677325 0.735684i \(-0.263139\pi\)
0.677325 + 0.735684i \(0.263139\pi\)
\(984\) 18.4164 0.587094
\(985\) 0 0
\(986\) 1.09017 0.0347181
\(987\) 0.708204 0.0225424
\(988\) 0.763932 0.0243039
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) −24.0000 −0.762385 −0.381193 0.924496i \(-0.624487\pi\)
−0.381193 + 0.924496i \(0.624487\pi\)
\(992\) 36.3607 1.15445
\(993\) −10.1246 −0.321295
\(994\) 3.05573 0.0969218
\(995\) 0 0
\(996\) −20.9443 −0.663645
\(997\) −14.5967 −0.462284 −0.231142 0.972920i \(-0.574246\pi\)
−0.231142 + 0.972920i \(0.574246\pi\)
\(998\) 23.7082 0.750470
\(999\) −8.70820 −0.275515
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.a.m.1.1 2
3.2 odd 2 3825.2.a.q.1.2 2
5.2 odd 4 255.2.b.b.154.2 4
5.3 odd 4 255.2.b.b.154.3 yes 4
5.4 even 2 1275.2.a.i.1.2 2
15.2 even 4 765.2.b.b.154.3 4
15.8 even 4 765.2.b.b.154.2 4
15.14 odd 2 3825.2.a.w.1.1 2
20.3 even 4 4080.2.m.n.2449.4 4
20.7 even 4 4080.2.m.n.2449.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
255.2.b.b.154.2 4 5.2 odd 4
255.2.b.b.154.3 yes 4 5.3 odd 4
765.2.b.b.154.2 4 15.8 even 4
765.2.b.b.154.3 4 15.2 even 4
1275.2.a.i.1.2 2 5.4 even 2
1275.2.a.m.1.1 2 1.1 even 1 trivial
3825.2.a.q.1.2 2 3.2 odd 2
3825.2.a.w.1.1 2 15.14 odd 2
4080.2.m.n.2449.2 4 20.7 even 4
4080.2.m.n.2449.4 4 20.3 even 4