Properties

Label 128.12.a.e
Level $128$
Weight $12$
Character orbit 128.a
Self dual yes
Analytic conductor $98.348$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [128,12,Mod(1,128)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(128, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("128.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.3479271116\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 4442x^{4} + 153566x^{3} - 1333532x^{2} - 4433532x + 49754286 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 3) q^{3} + (\beta_{2} - 4 \beta_1 - 299) q^{5} + ( - \beta_{3} + \beta_{2} + \cdots + 8233) q^{7} + (\beta_{4} - \beta_{3} + 4 \beta_{2} + \cdots + 52271) q^{9} + ( - \beta_{5} + \beta_{4} + \cdots - 114826) q^{11}+ \cdots + (35428 \beta_{5} + 63532 \beta_{4} + \cdots + 40042305135) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 20 q^{3} - 1804 q^{5} + 49368 q^{7} + 313814 q^{9} - 688460 q^{11} - 2290348 q^{13} + 4828264 q^{15} + 4127636 q^{17} + 9936364 q^{19} + 20325616 q^{21} + 9921320 q^{23} + 51633002 q^{25} - 132503384 q^{27}+ \cdots + 240482467988 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 4442x^{4} + 153566x^{3} - 1333532x^{2} - 4433532x + 49754286 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 22274044 \nu^{5} - 418462072 \nu^{4} + 87404493092 \nu^{3} - 1674466085912 \nu^{2} + \cdots + 36980862273615 ) / 112429558305 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 124903048 \nu^{5} + 4134146512 \nu^{4} - 460640866040 \nu^{3} + 1939774343120 \nu^{2} + \cdots - 90301388773827 ) / 112429558305 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1172219372 \nu^{5} + 17119693592 \nu^{4} - 4885995122548 \nu^{3} + 98676597031288 \nu^{2} + \cdots - 26\!\cdots\!09 ) / 37476519435 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 3310701220 \nu^{5} - 90663757192 \nu^{4} + 12727119015164 \nu^{3} - 120373678691624 \nu^{2} + \cdots + 38\!\cdots\!73 ) / 37476519435 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 39454874912 \nu^{5} + 547867641152 \nu^{4} - 165635503038688 \nu^{3} + \cdots - 20\!\cdots\!39 ) / 112429558305 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + \beta_{3} + 56\beta_{2} + 26\beta _1 + 4106 ) / 12288 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 37\beta_{5} - 93\beta_{4} - 551\beta_{3} - 4974\beta_{2} - 7876\beta _1 + 36406075 ) / 24576 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -3561\beta_{5} + 20459\beta_{4} + 55565\beta_{3} + 1049350\beta_{2} - 773528\beta _1 - 3555021155 ) / 49152 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 367135 \beta_{5} - 1449757 \beta_{4} - 5846283 \beta_{3} - 74555306 \beta_{2} - 44318904 \beta _1 + 357482673941 ) / 49152 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 26433905 \beta_{5} + 122446027 \beta_{4} + 411662141 \beta_{3} + 6319119158 \beta_{2} + \cdots - 26054324125227 ) / 49152 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
23.8940
6.34629
18.7879
−80.0003
−5.65189
38.6241
0 −795.850 0 −3925.84 0 13521.5 0 456230. 0
1.2 0 −219.634 0 4589.61 0 25262.2 0 −128908. 0
1.3 0 −181.938 0 4531.11 0 −62513.8 0 −144046. 0
1.4 0 28.4295 0 −13262.1 0 35677.5 0 −176339. 0
1.5 0 551.275 0 −3654.34 0 −40487.8 0 126757. 0
1.6 0 597.717 0 9917.53 0 77908.4 0 180119. 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 128.12.a.e 6
4.b odd 2 1 128.12.a.g yes 6
8.b even 2 1 128.12.a.h yes 6
8.d odd 2 1 128.12.a.f yes 6
16.e even 4 2 256.12.b.p 12
16.f odd 4 2 256.12.b.q 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.12.a.e 6 1.a even 1 1 trivial
128.12.a.f yes 6 8.d odd 2 1
128.12.a.g yes 6 4.b odd 2 1
128.12.a.h yes 6 8.b even 2 1
256.12.b.p 12 16.e even 4 2
256.12.b.q 12 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(128))\):

\( T_{3}^{6} + 20T_{3}^{5} - 688148T_{3}^{4} + 32764128T_{3}^{3} + 81557676144T_{3}^{2} + 8149590626112T_{3} - 297910794836160 \) Copy content Toggle raw display
\( T_{5}^{6} + 1804 T_{5}^{5} - 170673668 T_{5}^{4} + 115715684000 T_{5}^{3} + \cdots - 39\!\cdots\!00 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} + \cdots - 297910794836160 \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots - 39\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 24\!\cdots\!40 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 55\!\cdots\!28 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots - 31\!\cdots\!40 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 49\!\cdots\!40 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 21\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 21\!\cdots\!96 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 11\!\cdots\!28 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 20\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 15\!\cdots\!12 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 75\!\cdots\!92 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 91\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 19\!\cdots\!40 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 14\!\cdots\!80 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 71\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 22\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 10\!\cdots\!20 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots - 29\!\cdots\!80 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 13\!\cdots\!60 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 31\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 60\!\cdots\!84 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 23\!\cdots\!84 \) Copy content Toggle raw display
show more
show less