Properties

Label 1280.1.p.a
Level 12801280
Weight 11
Character orbit 1280.p
Analytic conductor 0.6390.639
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1280,1,Mod(257,1280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1280, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1280.257"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1280.p (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6388032161700.638803216170
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 640)
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.32000.1
Artin image: C4C2C_4\wr C_2
Artin field: Galois closure of 8.0.2097152000.7

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qq5iq9+(i+1)q13+(i+1)q17+q252iq29+(i+1)q37+iq45+iq49+(i+1)q532q61+(i1)q65+(i+1)q73q81+(i1)q85++(i1)q97+O(q100) q - q^{5} - i q^{9} + (i + 1) q^{13} + ( - i + 1) q^{17} + q^{25} - 2 i q^{29} + ( - i + 1) q^{37} + i q^{45} + i q^{49} + (i + 1) q^{53} - 2 q^{61} + ( - i - 1) q^{65} + (i + 1) q^{73} - q^{81} + (i - 1) q^{85} + \cdots + (i - 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q5+2q13+2q17+2q25+2q37+2q534q612q65+2q732q812q852q97+O(q100) 2 q - 2 q^{5} + 2 q^{13} + 2 q^{17} + 2 q^{25} + 2 q^{37} + 2 q^{53} - 4 q^{61} - 2 q^{65} + 2 q^{73} - 2 q^{81} - 2 q^{85} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1280Z)×\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) i-i 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
257.1
1.00000i
1.00000i
0 0 0 −1.00000 0 0 0 1.00000i 0
513.1 0 0 0 −1.00000 0 0 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.1.p.a 2
4.b odd 2 1 CM 1280.1.p.a 2
5.c odd 4 1 inner 1280.1.p.a 2
8.b even 2 1 1280.1.p.b 2
8.d odd 2 1 1280.1.p.b 2
16.e even 4 1 640.1.m.a 2
16.e even 4 1 640.1.m.b yes 2
16.f odd 4 1 640.1.m.a 2
16.f odd 4 1 640.1.m.b yes 2
20.e even 4 1 inner 1280.1.p.a 2
40.i odd 4 1 1280.1.p.b 2
40.k even 4 1 1280.1.p.b 2
80.i odd 4 1 640.1.m.a 2
80.i odd 4 1 3200.1.m.a 2
80.j even 4 1 640.1.m.b yes 2
80.j even 4 1 3200.1.m.b 2
80.k odd 4 1 3200.1.m.a 2
80.k odd 4 1 3200.1.m.b 2
80.q even 4 1 3200.1.m.a 2
80.q even 4 1 3200.1.m.b 2
80.s even 4 1 640.1.m.a 2
80.s even 4 1 3200.1.m.a 2
80.t odd 4 1 640.1.m.b yes 2
80.t odd 4 1 3200.1.m.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.1.m.a 2 16.e even 4 1
640.1.m.a 2 16.f odd 4 1
640.1.m.a 2 80.i odd 4 1
640.1.m.a 2 80.s even 4 1
640.1.m.b yes 2 16.e even 4 1
640.1.m.b yes 2 16.f odd 4 1
640.1.m.b yes 2 80.j even 4 1
640.1.m.b yes 2 80.t odd 4 1
1280.1.p.a 2 1.a even 1 1 trivial
1280.1.p.a 2 4.b odd 2 1 CM
1280.1.p.a 2 5.c odd 4 1 inner
1280.1.p.a 2 20.e even 4 1 inner
1280.1.p.b 2 8.b even 2 1
1280.1.p.b 2 8.d odd 2 1
1280.1.p.b 2 40.i odd 4 1
1280.1.p.b 2 40.k even 4 1
3200.1.m.a 2 80.i odd 4 1
3200.1.m.a 2 80.k odd 4 1
3200.1.m.a 2 80.q even 4 1
3200.1.m.a 2 80.s even 4 1
3200.1.m.b 2 80.j even 4 1
3200.1.m.b 2 80.k odd 4 1
3200.1.m.b 2 80.q even 4 1
3200.1.m.b 2 80.t odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T1322T13+2 T_{13}^{2} - 2T_{13} + 2 acting on S1new(1280,[χ])S_{1}^{\mathrm{new}}(1280, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1717 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+4 T^{2} + 4 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
show more
show less