Properties

Label 640.1.m.b
Level 640640
Weight 11
Character orbit 640.m
Analytic conductor 0.3190.319
Analytic rank 00
Dimension 22
Projective image D4D_{4}
CM discriminant -4
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [640,1,Mod(193,640)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(640, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("640.193");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 640=275 640 = 2^{7} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 640.m (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3194016080850.319401608085
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D4D_{4}
Projective field: Galois closure of 4.0.32000.1
Artin image: C4C2C_4\wr C_2
Artin field: Galois closure of 8.0.131072000.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+iq5iq9+(i+1)q13+(i+1)q17q252q29+(i+1)q37+q45iq49+(i1)q532iq61+(i1)q65+(i1)q73q81+(i1)q85++(i1)q97+O(q100) q + i q^{5} - i q^{9} + (i + 1) q^{13} + (i + 1) q^{17} - q^{25} - 2 q^{29} + ( - i + 1) q^{37} + q^{45} - i q^{49} + ( - i - 1) q^{53} - 2 i q^{61} + (i - 1) q^{65} + (i - 1) q^{73} - q^{81} + (i - 1) q^{85} + \cdots + ( - i - 1) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q13+2q172q254q29+2q37+2q452q532q652q732q812q852q97+O(q100) 2 q + 2 q^{13} + 2 q^{17} - 2 q^{25} - 4 q^{29} + 2 q^{37} + 2 q^{45} - 2 q^{53} - 2 q^{65} - 2 q^{73} - 2 q^{81} - 2 q^{85} - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/640Z)×\left(\mathbb{Z}/640\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) ii 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
193.1
1.00000i
1.00000i
0 0 0 1.00000i 0 0 0 1.00000i 0
577.1 0 0 0 1.00000i 0 0 0 1.00000i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})
40.i odd 4 1 inner
40.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 640.1.m.b yes 2
4.b odd 2 1 CM 640.1.m.b yes 2
5.b even 2 1 3200.1.m.a 2
5.c odd 4 1 640.1.m.a 2
5.c odd 4 1 3200.1.m.b 2
8.b even 2 1 640.1.m.a 2
8.d odd 2 1 640.1.m.a 2
16.e even 4 1 1280.1.p.a 2
16.e even 4 1 1280.1.p.b 2
16.f odd 4 1 1280.1.p.a 2
16.f odd 4 1 1280.1.p.b 2
20.d odd 2 1 3200.1.m.a 2
20.e even 4 1 640.1.m.a 2
20.e even 4 1 3200.1.m.b 2
40.e odd 2 1 3200.1.m.b 2
40.f even 2 1 3200.1.m.b 2
40.i odd 4 1 inner 640.1.m.b yes 2
40.i odd 4 1 3200.1.m.a 2
40.k even 4 1 inner 640.1.m.b yes 2
40.k even 4 1 3200.1.m.a 2
80.i odd 4 1 1280.1.p.b 2
80.j even 4 1 1280.1.p.a 2
80.s even 4 1 1280.1.p.b 2
80.t odd 4 1 1280.1.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
640.1.m.a 2 5.c odd 4 1
640.1.m.a 2 8.b even 2 1
640.1.m.a 2 8.d odd 2 1
640.1.m.a 2 20.e even 4 1
640.1.m.b yes 2 1.a even 1 1 trivial
640.1.m.b yes 2 4.b odd 2 1 CM
640.1.m.b yes 2 40.i odd 4 1 inner
640.1.m.b yes 2 40.k even 4 1 inner
1280.1.p.a 2 16.e even 4 1
1280.1.p.a 2 16.f odd 4 1
1280.1.p.a 2 80.j even 4 1
1280.1.p.a 2 80.t odd 4 1
1280.1.p.b 2 16.e even 4 1
1280.1.p.b 2 16.f odd 4 1
1280.1.p.b 2 80.i odd 4 1
1280.1.p.b 2 80.s even 4 1
3200.1.m.a 2 5.b even 2 1
3200.1.m.a 2 20.d odd 2 1
3200.1.m.a 2 40.i odd 4 1
3200.1.m.a 2 40.k even 4 1
3200.1.m.b 2 5.c odd 4 1
3200.1.m.b 2 20.e even 4 1
3200.1.m.b 2 40.e odd 2 1
3200.1.m.b 2 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T1322T13+2 T_{13}^{2} - 2T_{13} + 2 acting on S1new(640,[χ])S_{1}^{\mathrm{new}}(640, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+1 T^{2} + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1717 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
show more
show less