Properties

Label 1280.2.l.c.961.3
Level $1280$
Weight $2$
Character 1280.961
Analytic conductor $10.221$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(321,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.321");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.349241344.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 18x^{6} - 40x^{5} + 81x^{4} - 100x^{3} + 96x^{2} - 52x + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 961.3
Root \(0.500000 + 0.535026i\) of defining polynomial
Character \(\chi\) \(=\) 1280.961
Dual form 1280.2.l.c.321.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.742133 - 0.742133i) q^{3} +(-0.707107 - 0.707107i) q^{5} -0.463747i q^{7} +1.89848i q^{9} +(2.04953 + 2.04953i) q^{11} +(-3.94801 + 3.94801i) q^{13} -1.04953 q^{15} +1.34416 q^{17} +(-4.94801 + 4.94801i) q^{19} +(-0.344162 - 0.344162i) q^{21} +3.84894i q^{23} +1.00000i q^{25} +(3.63532 + 3.63532i) q^{27} +(1.09907 - 1.09907i) q^{29} +3.17157 q^{31} +3.04205 q^{33} +(-0.327919 + 0.327919i) q^{35} +(-6.89848 - 6.89848i) q^{37} +5.85990i q^{39} +2.89848i q^{41} +(1.62255 + 1.62255i) q^{43} +(1.34243 - 1.34243i) q^{45} +3.29217 q^{47} +6.78494 q^{49} +(0.997546 - 0.997546i) q^{51} +(-3.29217 - 3.29217i) q^{53} -2.89848i q^{55} +7.34416i q^{57} +(6.84894 + 6.84894i) q^{59} +(-3.44323 + 3.44323i) q^{61} +0.880415 q^{63} +5.58333 q^{65} +(5.93524 - 5.93524i) q^{67} +(2.85643 + 2.85643i) q^{69} +15.8960i q^{71} -0.556770i q^{73} +(0.742133 + 0.742133i) q^{75} +(0.950466 - 0.950466i) q^{77} +4.23917 q^{79} -0.299657 q^{81} +(-7.06578 + 7.06578i) q^{83} +(-0.950466 - 0.950466i) q^{85} -1.63131i q^{87} -17.3068i q^{89} +(1.83088 + 1.83088i) q^{91} +(2.35373 - 2.35373i) q^{93} +6.99755 q^{95} +9.04205 q^{97} +(-3.89100 + 3.89100i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{11} + 8 q^{13} + 8 q^{17} + 32 q^{27} - 8 q^{29} + 48 q^{31} - 24 q^{33} - 4 q^{35} - 24 q^{37} + 20 q^{43} + 8 q^{45} - 16 q^{47} - 16 q^{49} - 40 q^{51} + 16 q^{53} + 32 q^{59} - 8 q^{61}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.742133 0.742133i 0.428470 0.428470i −0.459637 0.888107i \(-0.652020\pi\)
0.888107 + 0.459637i \(0.152020\pi\)
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) 0.463747i 0.175280i −0.996152 0.0876400i \(-0.972067\pi\)
0.996152 0.0876400i \(-0.0279325\pi\)
\(8\) 0 0
\(9\) 1.89848i 0.632826i
\(10\) 0 0
\(11\) 2.04953 + 2.04953i 0.617958 + 0.617958i 0.945007 0.327049i \(-0.106054\pi\)
−0.327049 + 0.945007i \(0.606054\pi\)
\(12\) 0 0
\(13\) −3.94801 + 3.94801i −1.09498 + 1.09498i −0.0999936 + 0.994988i \(0.531882\pi\)
−0.994988 + 0.0999936i \(0.968118\pi\)
\(14\) 0 0
\(15\) −1.04953 −0.270988
\(16\) 0 0
\(17\) 1.34416 0.326007 0.163004 0.986625i \(-0.447882\pi\)
0.163004 + 0.986625i \(0.447882\pi\)
\(18\) 0 0
\(19\) −4.94801 + 4.94801i −1.13515 + 1.13515i −0.145844 + 0.989308i \(0.546590\pi\)
−0.989308 + 0.145844i \(0.953410\pi\)
\(20\) 0 0
\(21\) −0.344162 0.344162i −0.0751023 0.0751023i
\(22\) 0 0
\(23\) 3.84894i 0.802560i 0.915955 + 0.401280i \(0.131435\pi\)
−0.915955 + 0.401280i \(0.868565\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 3.63532 + 3.63532i 0.699618 + 0.699618i
\(28\) 0 0
\(29\) 1.09907 1.09907i 0.204092 0.204092i −0.597659 0.801751i \(-0.703902\pi\)
0.801751 + 0.597659i \(0.203902\pi\)
\(30\) 0 0
\(31\) 3.17157 0.569631 0.284816 0.958582i \(-0.408068\pi\)
0.284816 + 0.958582i \(0.408068\pi\)
\(32\) 0 0
\(33\) 3.04205 0.529553
\(34\) 0 0
\(35\) −0.327919 + 0.327919i −0.0554284 + 0.0554284i
\(36\) 0 0
\(37\) −6.89848 6.89848i −1.13410 1.13410i −0.989488 0.144615i \(-0.953806\pi\)
−0.144615 0.989488i \(-0.546194\pi\)
\(38\) 0 0
\(39\) 5.85990i 0.938334i
\(40\) 0 0
\(41\) 2.89848i 0.452666i 0.974050 + 0.226333i \(0.0726738\pi\)
−0.974050 + 0.226333i \(0.927326\pi\)
\(42\) 0 0
\(43\) 1.62255 + 1.62255i 0.247436 + 0.247436i 0.819918 0.572482i \(-0.194019\pi\)
−0.572482 + 0.819918i \(0.694019\pi\)
\(44\) 0 0
\(45\) 1.34243 1.34243i 0.200117 0.200117i
\(46\) 0 0
\(47\) 3.29217 0.480213 0.240107 0.970747i \(-0.422818\pi\)
0.240107 + 0.970747i \(0.422818\pi\)
\(48\) 0 0
\(49\) 6.78494 0.969277
\(50\) 0 0
\(51\) 0.997546 0.997546i 0.139684 0.139684i
\(52\) 0 0
\(53\) −3.29217 3.29217i −0.452215 0.452215i 0.443874 0.896089i \(-0.353604\pi\)
−0.896089 + 0.443874i \(0.853604\pi\)
\(54\) 0 0
\(55\) 2.89848i 0.390831i
\(56\) 0 0
\(57\) 7.34416i 0.972758i
\(58\) 0 0
\(59\) 6.84894 + 6.84894i 0.891657 + 0.891657i 0.994679 0.103022i \(-0.0328513\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(60\) 0 0
\(61\) −3.44323 + 3.44323i −0.440860 + 0.440860i −0.892301 0.451441i \(-0.850910\pi\)
0.451441 + 0.892301i \(0.350910\pi\)
\(62\) 0 0
\(63\) 0.880415 0.110922
\(64\) 0 0
\(65\) 5.58333 0.692527
\(66\) 0 0
\(67\) 5.93524 5.93524i 0.725105 0.725105i −0.244535 0.969640i \(-0.578635\pi\)
0.969640 + 0.244535i \(0.0786355\pi\)
\(68\) 0 0
\(69\) 2.85643 + 2.85643i 0.343873 + 0.343873i
\(70\) 0 0
\(71\) 15.8960i 1.88651i 0.332068 + 0.943256i \(0.392254\pi\)
−0.332068 + 0.943256i \(0.607746\pi\)
\(72\) 0 0
\(73\) 0.556770i 0.0651650i −0.999469 0.0325825i \(-0.989627\pi\)
0.999469 0.0325825i \(-0.0103732\pi\)
\(74\) 0 0
\(75\) 0.742133 + 0.742133i 0.0856941 + 0.0856941i
\(76\) 0 0
\(77\) 0.950466 0.950466i 0.108316 0.108316i
\(78\) 0 0
\(79\) 4.23917 0.476944 0.238472 0.971149i \(-0.423353\pi\)
0.238472 + 0.971149i \(0.423353\pi\)
\(80\) 0 0
\(81\) −0.299657 −0.0332952
\(82\) 0 0
\(83\) −7.06578 + 7.06578i −0.775570 + 0.775570i −0.979074 0.203504i \(-0.934767\pi\)
0.203504 + 0.979074i \(0.434767\pi\)
\(84\) 0 0
\(85\) −0.950466 0.950466i −0.103093 0.103093i
\(86\) 0 0
\(87\) 1.63131i 0.174895i
\(88\) 0 0
\(89\) 17.3068i 1.83451i −0.398296 0.917257i \(-0.630398\pi\)
0.398296 0.917257i \(-0.369602\pi\)
\(90\) 0 0
\(91\) 1.83088 + 1.83088i 0.191928 + 0.191928i
\(92\) 0 0
\(93\) 2.35373 2.35373i 0.244070 0.244070i
\(94\) 0 0
\(95\) 6.99755 0.717933
\(96\) 0 0
\(97\) 9.04205 0.918081 0.459041 0.888415i \(-0.348193\pi\)
0.459041 + 0.888415i \(0.348193\pi\)
\(98\) 0 0
\(99\) −3.89100 + 3.89100i −0.391060 + 0.391060i
\(100\) 0 0
\(101\) −6.89603 6.89603i −0.686180 0.686180i 0.275205 0.961385i \(-0.411254\pi\)
−0.961385 + 0.275205i \(0.911254\pi\)
\(102\) 0 0
\(103\) 15.0156i 1.47953i 0.672864 + 0.739766i \(0.265064\pi\)
−0.672864 + 0.739766i \(0.734936\pi\)
\(104\) 0 0
\(105\) 0.486719i 0.0474989i
\(106\) 0 0
\(107\) −11.7687 11.7687i −1.13772 1.13772i −0.988857 0.148865i \(-0.952438\pi\)
−0.148865 0.988857i \(-0.547562\pi\)
\(108\) 0 0
\(109\) −4.14357 + 4.14357i −0.396882 + 0.396882i −0.877132 0.480250i \(-0.840546\pi\)
0.480250 + 0.877132i \(0.340546\pi\)
\(110\) 0 0
\(111\) −10.2392 −0.971859
\(112\) 0 0
\(113\) −7.99509 −0.752115 −0.376058 0.926596i \(-0.622720\pi\)
−0.376058 + 0.926596i \(0.622720\pi\)
\(114\) 0 0
\(115\) 2.72161 2.72161i 0.253792 0.253792i
\(116\) 0 0
\(117\) −7.49522 7.49522i −0.692933 0.692933i
\(118\) 0 0
\(119\) 0.623352i 0.0571426i
\(120\) 0 0
\(121\) 2.59882i 0.236257i
\(122\) 0 0
\(123\) 2.15106 + 2.15106i 0.193954 + 0.193954i
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) 10.9795 0.974272 0.487136 0.873326i \(-0.338042\pi\)
0.487136 + 0.873326i \(0.338042\pi\)
\(128\) 0 0
\(129\) 2.40829 0.212038
\(130\) 0 0
\(131\) −4.39124 + 4.39124i −0.383665 + 0.383665i −0.872421 0.488756i \(-0.837451\pi\)
0.488756 + 0.872421i \(0.337451\pi\)
\(132\) 0 0
\(133\) 2.29463 + 2.29463i 0.198969 + 0.198969i
\(134\) 0 0
\(135\) 5.14112i 0.442477i
\(136\) 0 0
\(137\) 21.8960i 1.87070i 0.353719 + 0.935352i \(0.384917\pi\)
−0.353719 + 0.935352i \(0.615083\pi\)
\(138\) 0 0
\(139\) 4.46129 + 4.46129i 0.378402 + 0.378402i 0.870525 0.492123i \(-0.163779\pi\)
−0.492123 + 0.870525i \(0.663779\pi\)
\(140\) 0 0
\(141\) 2.44323 2.44323i 0.205757 0.205757i
\(142\) 0 0
\(143\) −16.1832 −1.35330
\(144\) 0 0
\(145\) −1.55432 −0.129079
\(146\) 0 0
\(147\) 5.03532 5.03532i 0.415306 0.415306i
\(148\) 0 0
\(149\) 7.34416 + 7.34416i 0.601657 + 0.601657i 0.940752 0.339095i \(-0.110121\pi\)
−0.339095 + 0.940752i \(0.610121\pi\)
\(150\) 0 0
\(151\) 17.0266i 1.38560i −0.721129 0.692801i \(-0.756376\pi\)
0.721129 0.692801i \(-0.243624\pi\)
\(152\) 0 0
\(153\) 2.55186i 0.206306i
\(154\) 0 0
\(155\) −2.24264 2.24264i −0.180133 0.180133i
\(156\) 0 0
\(157\) 3.85643 3.85643i 0.307776 0.307776i −0.536270 0.844046i \(-0.680167\pi\)
0.844046 + 0.536270i \(0.180167\pi\)
\(158\) 0 0
\(159\) −4.88646 −0.387521
\(160\) 0 0
\(161\) 1.78494 0.140673
\(162\) 0 0
\(163\) 12.3255 12.3255i 0.965405 0.965405i −0.0340163 0.999421i \(-0.510830\pi\)
0.999421 + 0.0340163i \(0.0108298\pi\)
\(164\) 0 0
\(165\) −2.15106 2.15106i −0.167459 0.167459i
\(166\) 0 0
\(167\) 18.6314i 1.44174i −0.693069 0.720872i \(-0.743742\pi\)
0.693069 0.720872i \(-0.256258\pi\)
\(168\) 0 0
\(169\) 18.1736i 1.39797i
\(170\) 0 0
\(171\) −9.39370 9.39370i −0.718354 0.718354i
\(172\) 0 0
\(173\) −4.51227 + 4.51227i −0.343061 + 0.343061i −0.857517 0.514456i \(-0.827994\pi\)
0.514456 + 0.857517i \(0.327994\pi\)
\(174\) 0 0
\(175\) 0.463747 0.0350560
\(176\) 0 0
\(177\) 10.1656 0.764097
\(178\) 0 0
\(179\) −15.1907 + 15.1907i −1.13540 + 1.13540i −0.146139 + 0.989264i \(0.546685\pi\)
−0.989264 + 0.146139i \(0.953315\pi\)
\(180\) 0 0
\(181\) 11.6834 + 11.6834i 0.868422 + 0.868422i 0.992298 0.123876i \(-0.0395326\pi\)
−0.123876 + 0.992298i \(0.539533\pi\)
\(182\) 0 0
\(183\) 5.11067i 0.377791i
\(184\) 0 0
\(185\) 9.75592i 0.717270i
\(186\) 0 0
\(187\) 2.75491 + 2.75491i 0.201459 + 0.201459i
\(188\) 0 0
\(189\) 1.68587 1.68587i 0.122629 0.122629i
\(190\) 0 0
\(191\) 3.89603 0.281906 0.140953 0.990016i \(-0.454983\pi\)
0.140953 + 0.990016i \(0.454983\pi\)
\(192\) 0 0
\(193\) −19.0371 −1.37032 −0.685162 0.728391i \(-0.740269\pi\)
−0.685162 + 0.728391i \(0.740269\pi\)
\(194\) 0 0
\(195\) 4.14357 4.14357i 0.296727 0.296727i
\(196\) 0 0
\(197\) 0.0470803 + 0.0470803i 0.00335433 + 0.00335433i 0.708782 0.705428i \(-0.249245\pi\)
−0.705428 + 0.708782i \(0.749245\pi\)
\(198\) 0 0
\(199\) 11.3137i 0.802008i 0.916076 + 0.401004i \(0.131339\pi\)
−0.916076 + 0.401004i \(0.868661\pi\)
\(200\) 0 0
\(201\) 8.80947i 0.621372i
\(202\) 0 0
\(203\) −0.509690 0.509690i −0.0357732 0.0357732i
\(204\) 0 0
\(205\) 2.04953 2.04953i 0.143146 0.143146i
\(206\) 0 0
\(207\) −7.30714 −0.507881
\(208\) 0 0
\(209\) −20.2822 −1.40295
\(210\) 0 0
\(211\) 0.338117 0.338117i 0.0232769 0.0232769i −0.695373 0.718649i \(-0.744761\pi\)
0.718649 + 0.695373i \(0.244761\pi\)
\(212\) 0 0
\(213\) 11.7970 + 11.7970i 0.808314 + 0.808314i
\(214\) 0 0
\(215\) 2.29463i 0.156492i
\(216\) 0 0
\(217\) 1.47081i 0.0998450i
\(218\) 0 0
\(219\) −0.413197 0.413197i −0.0279213 0.0279213i
\(220\) 0 0
\(221\) −5.30677 + 5.30677i −0.356972 + 0.356972i
\(222\) 0 0
\(223\) 19.6049 1.31284 0.656419 0.754396i \(-0.272070\pi\)
0.656419 + 0.754396i \(0.272070\pi\)
\(224\) 0 0
\(225\) −1.89848 −0.126565
\(226\) 0 0
\(227\) 16.1549 16.1549i 1.07224 1.07224i 0.0750599 0.997179i \(-0.476085\pi\)
0.997179 0.0750599i \(-0.0239148\pi\)
\(228\) 0 0
\(229\) 18.7970 + 18.7970i 1.24214 + 1.24214i 0.959112 + 0.283026i \(0.0913381\pi\)
0.283026 + 0.959112i \(0.408662\pi\)
\(230\) 0 0
\(231\) 1.41074i 0.0928201i
\(232\) 0 0
\(233\) 17.2402i 1.12944i −0.825282 0.564721i \(-0.808984\pi\)
0.825282 0.564721i \(-0.191016\pi\)
\(234\) 0 0
\(235\) −2.32792 2.32792i −0.151857 0.151857i
\(236\) 0 0
\(237\) 3.14603 3.14603i 0.204356 0.204356i
\(238\) 0 0
\(239\) −27.6930 −1.79131 −0.895655 0.444749i \(-0.853293\pi\)
−0.895655 + 0.444749i \(0.853293\pi\)
\(240\) 0 0
\(241\) −9.09661 −0.585964 −0.292982 0.956118i \(-0.594648\pi\)
−0.292982 + 0.956118i \(0.594648\pi\)
\(242\) 0 0
\(243\) −11.1283 + 11.1283i −0.713884 + 0.713884i
\(244\) 0 0
\(245\) −4.79768 4.79768i −0.306512 0.306512i
\(246\) 0 0
\(247\) 39.0696i 2.48594i
\(248\) 0 0
\(249\) 10.4875i 0.664617i
\(250\) 0 0
\(251\) 8.63388 + 8.63388i 0.544966 + 0.544966i 0.924980 0.380015i \(-0.124081\pi\)
−0.380015 + 0.924980i \(0.624081\pi\)
\(252\) 0 0
\(253\) −7.88854 + 7.88854i −0.495948 + 0.495948i
\(254\) 0 0
\(255\) −1.41074 −0.0883442
\(256\) 0 0
\(257\) −23.0647 −1.43874 −0.719369 0.694628i \(-0.755569\pi\)
−0.719369 + 0.694628i \(0.755569\pi\)
\(258\) 0 0
\(259\) −3.19915 + 3.19915i −0.198786 + 0.198786i
\(260\) 0 0
\(261\) 2.08656 + 2.08656i 0.129155 + 0.129155i
\(262\) 0 0
\(263\) 21.1833i 1.30622i −0.757264 0.653109i \(-0.773464\pi\)
0.757264 0.653109i \(-0.226536\pi\)
\(264\) 0 0
\(265\) 4.65584i 0.286006i
\(266\) 0 0
\(267\) −12.8439 12.8439i −0.786035 0.786035i
\(268\) 0 0
\(269\) 6.35373 6.35373i 0.387394 0.387394i −0.486363 0.873757i \(-0.661677\pi\)
0.873757 + 0.486363i \(0.161677\pi\)
\(270\) 0 0
\(271\) 10.8235 0.657482 0.328741 0.944420i \(-0.393376\pi\)
0.328741 + 0.944420i \(0.393376\pi\)
\(272\) 0 0
\(273\) 2.71751 0.164471
\(274\) 0 0
\(275\) −2.04953 + 2.04953i −0.123592 + 0.123592i
\(276\) 0 0
\(277\) −16.5074 16.5074i −0.991831 0.991831i 0.00813590 0.999967i \(-0.497410\pi\)
−0.999967 + 0.00813590i \(0.997410\pi\)
\(278\) 0 0
\(279\) 6.02116i 0.360478i
\(280\) 0 0
\(281\) 10.6064i 0.632726i 0.948638 + 0.316363i \(0.102462\pi\)
−0.948638 + 0.316363i \(0.897538\pi\)
\(282\) 0 0
\(283\) −2.80017 2.80017i −0.166453 0.166453i 0.618966 0.785418i \(-0.287552\pi\)
−0.785418 + 0.618966i \(0.787552\pi\)
\(284\) 0 0
\(285\) 5.19311 5.19311i 0.307613 0.307613i
\(286\) 0 0
\(287\) 1.34416 0.0793434
\(288\) 0 0
\(289\) −15.1932 −0.893719
\(290\) 0 0
\(291\) 6.71040 6.71040i 0.393371 0.393371i
\(292\) 0 0
\(293\) 14.1387 + 14.1387i 0.825990 + 0.825990i 0.986959 0.160970i \(-0.0514621\pi\)
−0.160970 + 0.986959i \(0.551462\pi\)
\(294\) 0 0
\(295\) 9.68587i 0.563933i
\(296\) 0 0
\(297\) 14.9014i 0.864668i
\(298\) 0 0
\(299\) −15.1957 15.1957i −0.878789 0.878789i
\(300\) 0 0
\(301\) 0.752452 0.752452i 0.0433706 0.0433706i
\(302\) 0 0
\(303\) −10.2355 −0.588016
\(304\) 0 0
\(305\) 4.86946 0.278825
\(306\) 0 0
\(307\) 21.6912 21.6912i 1.23798 1.23798i 0.277155 0.960825i \(-0.410609\pi\)
0.960825 0.277155i \(-0.0893914\pi\)
\(308\) 0 0
\(309\) 11.1436 + 11.1436i 0.633936 + 0.633936i
\(310\) 0 0
\(311\) 0.490189i 0.0277960i −0.999903 0.0138980i \(-0.995576\pi\)
0.999903 0.0138980i \(-0.00442402\pi\)
\(312\) 0 0
\(313\) 22.5794i 1.27627i −0.769926 0.638133i \(-0.779707\pi\)
0.769926 0.638133i \(-0.220293\pi\)
\(314\) 0 0
\(315\) −0.622547 0.622547i −0.0350766 0.0350766i
\(316\) 0 0
\(317\) 18.6314 18.6314i 1.04645 1.04645i 0.0475778 0.998868i \(-0.484850\pi\)
0.998868 0.0475778i \(-0.0151502\pi\)
\(318\) 0 0
\(319\) 4.50515 0.252240
\(320\) 0 0
\(321\) −17.4679 −0.974961
\(322\) 0 0
\(323\) −6.65093 + 6.65093i −0.370068 + 0.370068i
\(324\) 0 0
\(325\) −3.94801 3.94801i −0.218996 0.218996i
\(326\) 0 0
\(327\) 6.15016i 0.340105i
\(328\) 0 0
\(329\) 1.52674i 0.0841718i
\(330\) 0 0
\(331\) −17.7460 17.7460i −0.975408 0.975408i 0.0242972 0.999705i \(-0.492265\pi\)
−0.999705 + 0.0242972i \(0.992265\pi\)
\(332\) 0 0
\(333\) 13.0966 13.0966i 0.717690 0.717690i
\(334\) 0 0
\(335\) −8.39370 −0.458597
\(336\) 0 0
\(337\) 12.2972 0.669871 0.334936 0.942241i \(-0.391285\pi\)
0.334936 + 0.942241i \(0.391285\pi\)
\(338\) 0 0
\(339\) −5.93342 + 5.93342i −0.322259 + 0.322259i
\(340\) 0 0
\(341\) 6.50025 + 6.50025i 0.352008 + 0.352008i
\(342\) 0 0
\(343\) 6.39273i 0.345175i
\(344\) 0 0
\(345\) 4.03960i 0.217485i
\(346\) 0 0
\(347\) −4.37745 4.37745i −0.234994 0.234994i 0.579779 0.814773i \(-0.303139\pi\)
−0.814773 + 0.579779i \(0.803139\pi\)
\(348\) 0 0
\(349\) −18.9951 + 18.9951i −1.01678 + 1.01678i −0.0169273 + 0.999857i \(0.505388\pi\)
−0.999857 + 0.0169273i \(0.994612\pi\)
\(350\) 0 0
\(351\) −28.7046 −1.53214
\(352\) 0 0
\(353\) 24.6785 1.31350 0.656752 0.754106i \(-0.271930\pi\)
0.656752 + 0.754106i \(0.271930\pi\)
\(354\) 0 0
\(355\) 11.2402 11.2402i 0.596567 0.596567i
\(356\) 0 0
\(357\) −0.462610 0.462610i −0.0244839 0.0244839i
\(358\) 0 0
\(359\) 28.5745i 1.50811i 0.656813 + 0.754053i \(0.271904\pi\)
−0.656813 + 0.754053i \(0.728096\pi\)
\(360\) 0 0
\(361\) 29.9657i 1.57714i
\(362\) 0 0
\(363\) −1.92867 1.92867i −0.101229 0.101229i
\(364\) 0 0
\(365\) −0.393696 + 0.393696i −0.0206070 + 0.0206070i
\(366\) 0 0
\(367\) 9.86594 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(368\) 0 0
\(369\) −5.50270 −0.286459
\(370\) 0 0
\(371\) −1.52674 + 1.52674i −0.0792643 + 0.0792643i
\(372\) 0 0
\(373\) 7.88891 + 7.88891i 0.408472 + 0.408472i 0.881206 0.472733i \(-0.156733\pi\)
−0.472733 + 0.881206i \(0.656733\pi\)
\(374\) 0 0
\(375\) 1.04953i 0.0541977i
\(376\) 0 0
\(377\) 8.67827i 0.446953i
\(378\) 0 0
\(379\) 3.39370 + 3.39370i 0.174322 + 0.174322i 0.788875 0.614553i \(-0.210664\pi\)
−0.614553 + 0.788875i \(0.710664\pi\)
\(380\) 0 0
\(381\) 8.14823 8.14823i 0.417447 0.417447i
\(382\) 0 0
\(383\) −6.25012 −0.319366 −0.159683 0.987168i \(-0.551047\pi\)
−0.159683 + 0.987168i \(0.551047\pi\)
\(384\) 0 0
\(385\) −1.34416 −0.0685048
\(386\) 0 0
\(387\) −3.08037 + 3.08037i −0.156584 + 0.156584i
\(388\) 0 0
\(389\) 3.04205 + 3.04205i 0.154238 + 0.154238i 0.780008 0.625770i \(-0.215215\pi\)
−0.625770 + 0.780008i \(0.715215\pi\)
\(390\) 0 0
\(391\) 5.17361i 0.261640i
\(392\) 0 0
\(393\) 6.51777i 0.328778i
\(394\) 0 0
\(395\) −2.99755 2.99755i −0.150823 0.150823i
\(396\) 0 0
\(397\) −6.93845 + 6.93845i −0.348231 + 0.348231i −0.859450 0.511220i \(-0.829194\pi\)
0.511220 + 0.859450i \(0.329194\pi\)
\(398\) 0 0
\(399\) 3.40584 0.170505
\(400\) 0 0
\(401\) −11.1736 −0.557983 −0.278992 0.960294i \(-0.590000\pi\)
−0.278992 + 0.960294i \(0.590000\pi\)
\(402\) 0 0
\(403\) −12.5214 + 12.5214i −0.623736 + 0.623736i
\(404\) 0 0
\(405\) 0.211889 + 0.211889i 0.0105289 + 0.0105289i
\(406\) 0 0
\(407\) 28.2773i 1.40166i
\(408\) 0 0
\(409\) 39.6611i 1.96111i −0.196233 0.980557i \(-0.562871\pi\)
0.196233 0.980557i \(-0.437129\pi\)
\(410\) 0 0
\(411\) 16.2498 + 16.2498i 0.801541 + 0.801541i
\(412\) 0 0
\(413\) 3.17618 3.17618i 0.156290 0.156290i
\(414\) 0 0
\(415\) 9.99252 0.490513
\(416\) 0 0
\(417\) 6.62174 0.324268
\(418\) 0 0
\(419\) 3.81400 3.81400i 0.186326 0.186326i −0.607780 0.794106i \(-0.707940\pi\)
0.794106 + 0.607780i \(0.207940\pi\)
\(420\) 0 0
\(421\) 8.45280 + 8.45280i 0.411964 + 0.411964i 0.882422 0.470458i \(-0.155911\pi\)
−0.470458 + 0.882422i \(0.655911\pi\)
\(422\) 0 0
\(423\) 6.25012i 0.303891i
\(424\) 0 0
\(425\) 1.34416i 0.0652014i
\(426\) 0 0
\(427\) 1.59679 + 1.59679i 0.0772740 + 0.0772740i
\(428\) 0 0
\(429\) −12.0101 + 12.0101i −0.579851 + 0.579851i
\(430\) 0 0
\(431\) 23.3909 1.12670 0.563349 0.826219i \(-0.309513\pi\)
0.563349 + 0.826219i \(0.309513\pi\)
\(432\) 0 0
\(433\) 3.33925 0.160474 0.0802372 0.996776i \(-0.474432\pi\)
0.0802372 + 0.996776i \(0.474432\pi\)
\(434\) 0 0
\(435\) −1.15351 + 1.15351i −0.0553065 + 0.0553065i
\(436\) 0 0
\(437\) −19.0446 19.0446i −0.911028 0.911028i
\(438\) 0 0
\(439\) 1.27064i 0.0606444i 0.999540 + 0.0303222i \(0.00965333\pi\)
−0.999540 + 0.0303222i \(0.990347\pi\)
\(440\) 0 0
\(441\) 12.8811i 0.613384i
\(442\) 0 0
\(443\) −17.4991 17.4991i −0.831406 0.831406i 0.156303 0.987709i \(-0.450042\pi\)
−0.987709 + 0.156303i \(0.950042\pi\)
\(444\) 0 0
\(445\) −12.2377 + 12.2377i −0.580124 + 0.580124i
\(446\) 0 0
\(447\) 10.9007 0.515585
\(448\) 0 0
\(449\) −15.9831 −0.754288 −0.377144 0.926155i \(-0.623094\pi\)
−0.377144 + 0.926155i \(0.623094\pi\)
\(450\) 0 0
\(451\) −5.94053 + 5.94053i −0.279729 + 0.279729i
\(452\) 0 0
\(453\) −12.6360 12.6360i −0.593689 0.593689i
\(454\) 0 0
\(455\) 2.58926i 0.121386i
\(456\) 0 0
\(457\) 6.78739i 0.317501i 0.987319 + 0.158750i \(0.0507465\pi\)
−0.987319 + 0.158750i \(0.949253\pi\)
\(458\) 0 0
\(459\) 4.88646 + 4.88646i 0.228080 + 0.228080i
\(460\) 0 0
\(461\) 21.0942 21.0942i 0.982453 0.982453i −0.0173957 0.999849i \(-0.505537\pi\)
0.999849 + 0.0173957i \(0.00553750\pi\)
\(462\) 0 0
\(463\) −21.3234 −0.990982 −0.495491 0.868613i \(-0.665012\pi\)
−0.495491 + 0.868613i \(0.665012\pi\)
\(464\) 0 0
\(465\) −3.32867 −0.154364
\(466\) 0 0
\(467\) 4.71168 4.71168i 0.218031 0.218031i −0.589638 0.807668i \(-0.700729\pi\)
0.807668 + 0.589638i \(0.200729\pi\)
\(468\) 0 0
\(469\) −2.75245 2.75245i −0.127096 0.127096i
\(470\) 0 0
\(471\) 5.72396i 0.263746i
\(472\) 0 0
\(473\) 6.65093i 0.305810i
\(474\) 0 0
\(475\) −4.94801 4.94801i −0.227030 0.227030i
\(476\) 0 0
\(477\) 6.25012 6.25012i 0.286173 0.286173i
\(478\) 0 0
\(479\) 10.1932 0.465740 0.232870 0.972508i \(-0.425188\pi\)
0.232870 + 0.972508i \(0.425188\pi\)
\(480\) 0 0
\(481\) 54.4706 2.48364
\(482\) 0 0
\(483\) 1.32466 1.32466i 0.0602742 0.0602742i
\(484\) 0 0
\(485\) −6.39370 6.39370i −0.290323 0.290323i
\(486\) 0 0
\(487\) 5.87940i 0.266421i 0.991088 + 0.133210i \(0.0425286\pi\)
−0.991088 + 0.133210i \(0.957471\pi\)
\(488\) 0 0
\(489\) 18.2943i 0.827295i
\(490\) 0 0
\(491\) −3.01950 3.01950i −0.136268 0.136268i 0.635682 0.771951i \(-0.280719\pi\)
−0.771951 + 0.635682i \(0.780719\pi\)
\(492\) 0 0
\(493\) 1.47733 1.47733i 0.0665354 0.0665354i
\(494\) 0 0
\(495\) 5.50270 0.247328
\(496\) 0 0
\(497\) 7.37174 0.330668
\(498\) 0 0
\(499\) 21.1837 21.1837i 0.948313 0.948313i −0.0504151 0.998728i \(-0.516054\pi\)
0.998728 + 0.0504151i \(0.0160544\pi\)
\(500\) 0 0
\(501\) −13.8270 13.8270i −0.617744 0.617744i
\(502\) 0 0
\(503\) 31.7450i 1.41544i 0.706494 + 0.707719i \(0.250276\pi\)
−0.706494 + 0.707719i \(0.749724\pi\)
\(504\) 0 0
\(505\) 9.75245i 0.433978i
\(506\) 0 0
\(507\) −13.4872 13.4872i −0.598989 0.598989i
\(508\) 0 0
\(509\) −1.68342 + 1.68342i −0.0746161 + 0.0746161i −0.743430 0.668814i \(-0.766802\pi\)
0.668814 + 0.743430i \(0.266802\pi\)
\(510\) 0 0
\(511\) −0.258201 −0.0114221
\(512\) 0 0
\(513\) −35.9752 −1.58834
\(514\) 0 0
\(515\) 10.6176 10.6176i 0.467869 0.467869i
\(516\) 0 0
\(517\) 6.74742 + 6.74742i 0.296751 + 0.296751i
\(518\) 0 0
\(519\) 6.69740i 0.293983i
\(520\) 0 0
\(521\) 23.1736i 1.01525i 0.861577 + 0.507627i \(0.169477\pi\)
−0.861577 + 0.507627i \(0.830523\pi\)
\(522\) 0 0
\(523\) 29.4991 + 29.4991i 1.28990 + 1.28990i 0.934843 + 0.355061i \(0.115540\pi\)
0.355061 + 0.934843i \(0.384460\pi\)
\(524\) 0 0
\(525\) 0.344162 0.344162i 0.0150205 0.0150205i
\(526\) 0 0
\(527\) 4.26311 0.185704
\(528\) 0 0
\(529\) 8.18562 0.355897
\(530\) 0 0
\(531\) −13.0026 + 13.0026i −0.564264 + 0.564264i
\(532\) 0 0
\(533\) −11.4432 11.4432i −0.495661 0.495661i
\(534\) 0 0
\(535\) 16.6434i 0.719559i
\(536\) 0 0
\(537\) 22.5470i 0.972973i
\(538\) 0 0
\(539\) 13.9060 + 13.9060i 0.598972 + 0.598972i
\(540\) 0 0
\(541\) −13.3813 + 13.3813i −0.575307 + 0.575307i −0.933607 0.358299i \(-0.883357\pi\)
0.358299 + 0.933607i \(0.383357\pi\)
\(542\) 0 0
\(543\) 17.3413 0.744186
\(544\) 0 0
\(545\) 5.85990 0.251010
\(546\) 0 0
\(547\) −4.71168 + 4.71168i −0.201457 + 0.201457i −0.800624 0.599167i \(-0.795498\pi\)
0.599167 + 0.800624i \(0.295498\pi\)
\(548\) 0 0
\(549\) −6.53690 6.53690i −0.278988 0.278988i
\(550\) 0 0
\(551\) 10.8764i 0.463350i
\(552\) 0 0
\(553\) 1.96590i 0.0835988i
\(554\) 0 0
\(555\) 7.24019 + 7.24019i 0.307329 + 0.307329i
\(556\) 0 0
\(557\) 10.4457 10.4457i 0.442598 0.442598i −0.450286 0.892884i \(-0.648678\pi\)
0.892884 + 0.450286i \(0.148678\pi\)
\(558\) 0 0
\(559\) −12.8117 −0.541876
\(560\) 0 0
\(561\) 4.08901 0.172638
\(562\) 0 0
\(563\) −20.5411 + 20.5411i −0.865705 + 0.865705i −0.991994 0.126288i \(-0.959694\pi\)
0.126288 + 0.991994i \(0.459694\pi\)
\(564\) 0 0
\(565\) 5.65338 + 5.65338i 0.237840 + 0.237840i
\(566\) 0 0
\(567\) 0.138965i 0.00583599i
\(568\) 0 0
\(569\) 19.8690i 0.832954i 0.909146 + 0.416477i \(0.136735\pi\)
−0.909146 + 0.416477i \(0.863265\pi\)
\(570\) 0 0
\(571\) 15.7644 + 15.7644i 0.659720 + 0.659720i 0.955314 0.295593i \(-0.0955173\pi\)
−0.295593 + 0.955314i \(0.595517\pi\)
\(572\) 0 0
\(573\) 2.89137 2.89137i 0.120789 0.120789i
\(574\) 0 0
\(575\) −3.84894 −0.160512
\(576\) 0 0
\(577\) 15.1927 0.632482 0.316241 0.948679i \(-0.397579\pi\)
0.316241 + 0.948679i \(0.397579\pi\)
\(578\) 0 0
\(579\) −14.1281 + 14.1281i −0.587143 + 0.587143i
\(580\) 0 0
\(581\) 3.27674 + 3.27674i 0.135942 + 0.135942i
\(582\) 0 0
\(583\) 13.4948i 0.558899i
\(584\) 0 0
\(585\) 10.5998i 0.438249i
\(586\) 0 0
\(587\) 21.7118 + 21.7118i 0.896142 + 0.896142i 0.995092 0.0989505i \(-0.0315485\pi\)
−0.0989505 + 0.995092i \(0.531549\pi\)
\(588\) 0 0
\(589\) −15.6930 + 15.6930i −0.646618 + 0.646618i
\(590\) 0 0
\(591\) 0.0698796 0.00287446
\(592\) 0 0
\(593\) 21.4757 0.881902 0.440951 0.897531i \(-0.354641\pi\)
0.440951 + 0.897531i \(0.354641\pi\)
\(594\) 0 0
\(595\) −0.440776 + 0.440776i −0.0180701 + 0.0180701i
\(596\) 0 0
\(597\) 8.39627 + 8.39627i 0.343636 + 0.343636i
\(598\) 0 0
\(599\) 26.7025i 1.09104i 0.838099 + 0.545518i \(0.183667\pi\)
−0.838099 + 0.545518i \(0.816333\pi\)
\(600\) 0 0
\(601\) 7.19053i 0.293308i −0.989188 0.146654i \(-0.953150\pi\)
0.989188 0.146654i \(-0.0468504\pi\)
\(602\) 0 0
\(603\) 11.2679 + 11.2679i 0.458865 + 0.458865i
\(604\) 0 0
\(605\) −1.83764 + 1.83764i −0.0747109 + 0.0747109i
\(606\) 0 0
\(607\) 5.73930 0.232951 0.116475 0.993194i \(-0.462840\pi\)
0.116475 + 0.993194i \(0.462840\pi\)
\(608\) 0 0
\(609\) −0.756515 −0.0306555
\(610\) 0 0
\(611\) −12.9975 + 12.9975i −0.525824 + 0.525824i
\(612\) 0 0
\(613\) 7.61342 + 7.61342i 0.307503 + 0.307503i 0.843940 0.536437i \(-0.180230\pi\)
−0.536437 + 0.843940i \(0.680230\pi\)
\(614\) 0 0
\(615\) 3.04205i 0.122667i
\(616\) 0 0
\(617\) 5.32012i 0.214180i −0.994249 0.107090i \(-0.965847\pi\)
0.994249 0.107090i \(-0.0341533\pi\)
\(618\) 0 0
\(619\) 21.6774 + 21.6774i 0.871287 + 0.871287i 0.992613 0.121326i \(-0.0387145\pi\)
−0.121326 + 0.992613i \(0.538715\pi\)
\(620\) 0 0
\(621\) −13.9921 + 13.9921i −0.561486 + 0.561486i
\(622\) 0 0
\(623\) −8.02597 −0.321554
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) −15.0521 + 15.0521i −0.601123 + 0.601123i
\(628\) 0 0
\(629\) −9.27267 9.27267i −0.369726 0.369726i
\(630\) 0 0
\(631\) 7.43468i 0.295970i −0.988990 0.147985i \(-0.952721\pi\)
0.988990 0.147985i \(-0.0472787\pi\)
\(632\) 0 0
\(633\) 0.501855i 0.0199470i
\(634\) 0 0
\(635\) −7.76367 7.76367i −0.308092 0.308092i
\(636\) 0 0
\(637\) −26.7870 + 26.7870i −1.06134 + 1.06134i
\(638\) 0 0
\(639\) −30.1783 −1.19383
\(640\) 0 0
\(641\) −18.9034 −0.746639 −0.373319 0.927703i \(-0.621780\pi\)
−0.373319 + 0.927703i \(0.621780\pi\)
\(642\) 0 0
\(643\) 19.4471 19.4471i 0.766918 0.766918i −0.210645 0.977563i \(-0.567556\pi\)
0.977563 + 0.210645i \(0.0675563\pi\)
\(644\) 0 0
\(645\) −1.70292 1.70292i −0.0670523 0.0670523i
\(646\) 0 0
\(647\) 31.9756i 1.25709i 0.777773 + 0.628545i \(0.216349\pi\)
−0.777773 + 0.628545i \(0.783651\pi\)
\(648\) 0 0
\(649\) 28.0743i 1.10201i
\(650\) 0 0
\(651\) −1.09154 1.09154i −0.0427806 0.0427806i
\(652\) 0 0
\(653\) −10.9060 + 10.9060i −0.426783 + 0.426783i −0.887531 0.460748i \(-0.847581\pi\)
0.460748 + 0.887531i \(0.347581\pi\)
\(654\) 0 0
\(655\) 6.21015 0.242651
\(656\) 0 0
\(657\) 1.05702 0.0412381
\(658\) 0 0
\(659\) −4.22009 + 4.22009i −0.164391 + 0.164391i −0.784509 0.620118i \(-0.787085\pi\)
0.620118 + 0.784509i \(0.287085\pi\)
\(660\) 0 0
\(661\) −11.8415 11.8415i −0.460580 0.460580i 0.438266 0.898845i \(-0.355593\pi\)
−0.898845 + 0.438266i \(0.855593\pi\)
\(662\) 0 0
\(663\) 7.87665i 0.305904i
\(664\) 0 0
\(665\) 3.24509i 0.125839i
\(666\) 0 0
\(667\) 4.23025 + 4.23025i 0.163796 + 0.163796i
\(668\) 0 0
\(669\) 14.5494 14.5494i 0.562513 0.562513i
\(670\) 0 0
\(671\) −14.1140 −0.544866
\(672\) 0 0
\(673\) 30.4089 1.17218 0.586088 0.810247i \(-0.300667\pi\)
0.586088 + 0.810247i \(0.300667\pi\)
\(674\) 0 0
\(675\) −3.63532 + 3.63532i −0.139924 + 0.139924i
\(676\) 0 0
\(677\) −32.6265 32.6265i −1.25394 1.25394i −0.953939 0.300000i \(-0.903013\pi\)
−0.300000 0.953939i \(-0.596987\pi\)
\(678\) 0 0
\(679\) 4.19323i 0.160921i
\(680\) 0 0
\(681\) 23.9782i 0.918845i
\(682\) 0 0
\(683\) 17.7882 + 17.7882i 0.680646 + 0.680646i 0.960146 0.279499i \(-0.0901685\pi\)
−0.279499 + 0.960146i \(0.590169\pi\)
\(684\) 0 0
\(685\) 15.4828 15.4828i 0.591568 0.591568i
\(686\) 0 0
\(687\) 27.8997 1.06444
\(688\) 0 0
\(689\) 25.9951 0.990334
\(690\) 0 0
\(691\) 31.1737 31.1737i 1.18590 1.18590i 0.207715 0.978189i \(-0.433397\pi\)
0.978189 0.207715i \(-0.0666027\pi\)
\(692\) 0 0
\(693\) 1.80444 + 1.80444i 0.0685450 + 0.0685450i
\(694\) 0 0
\(695\) 6.30922i 0.239322i
\(696\) 0 0
\(697\) 3.89603i 0.147572i
\(698\) 0 0
\(699\) −12.7945 12.7945i −0.483933 0.483933i
\(700\) 0 0
\(701\) 0.633761 0.633761i 0.0239368 0.0239368i −0.695037 0.718974i \(-0.744612\pi\)
0.718974 + 0.695037i \(0.244612\pi\)
\(702\) 0 0
\(703\) 68.2675 2.57476
\(704\) 0 0
\(705\) −3.45525 −0.130132
\(706\) 0 0
\(707\) −3.19801 + 3.19801i −0.120274 + 0.120274i
\(708\) 0 0
\(709\) −11.3021 11.3021i −0.424460 0.424460i 0.462276 0.886736i \(-0.347033\pi\)
−0.886736 + 0.462276i \(0.847033\pi\)
\(710\) 0 0
\(711\) 8.04798i 0.301823i
\(712\) 0 0
\(713\) 12.2072i 0.457164i
\(714\) 0 0
\(715\) 11.4432 + 11.4432i 0.427953 + 0.427953i
\(716\) 0 0
\(717\) −20.5519 + 20.5519i −0.767523 + 0.767523i
\(718\) 0 0
\(719\) 19.7820 0.737744 0.368872 0.929480i \(-0.379744\pi\)
0.368872 + 0.929480i \(0.379744\pi\)
\(720\) 0 0
\(721\) 6.96345 0.259332
\(722\) 0 0
\(723\) −6.75089 + 6.75089i −0.251068 + 0.251068i
\(724\) 0 0
\(725\) 1.09907 + 1.09907i 0.0408184 + 0.0408184i
\(726\) 0 0
\(727\) 5.00706i 0.185702i 0.995680 + 0.0928508i \(0.0295980\pi\)
−0.995680 + 0.0928508i \(0.970402\pi\)
\(728\) 0 0
\(729\) 15.6184i 0.578461i
\(730\) 0 0
\(731\) 2.18097 + 2.18097i 0.0806660 + 0.0806660i
\(732\) 0 0
\(733\) 1.52183 1.52183i 0.0562101 0.0562101i −0.678443 0.734653i \(-0.737345\pi\)
0.734653 + 0.678443i \(0.237345\pi\)
\(734\) 0 0
\(735\) −7.12102 −0.262663
\(736\) 0 0
\(737\) 24.3289 0.896168
\(738\) 0 0
\(739\) −15.0436 + 15.0436i −0.553388 + 0.553388i −0.927417 0.374029i \(-0.877976\pi\)
0.374029 + 0.927417i \(0.377976\pi\)
\(740\) 0 0
\(741\) −28.9948 28.9948i −1.06515 1.06515i
\(742\) 0 0
\(743\) 40.7480i 1.49490i −0.664318 0.747450i \(-0.731278\pi\)
0.664318 0.747450i \(-0.268722\pi\)
\(744\) 0 0
\(745\) 10.3862i 0.380521i
\(746\) 0 0
\(747\) −13.4142 13.4142i −0.490801 0.490801i
\(748\) 0 0
\(749\) −5.45770 + 5.45770i −0.199420 + 0.199420i
\(750\) 0 0
\(751\) 20.8596 0.761179 0.380590 0.924744i \(-0.375721\pi\)
0.380590 + 0.924744i \(0.375721\pi\)
\(752\) 0 0
\(753\) 12.8150 0.467004
\(754\) 0 0
\(755\) −12.0396 + 12.0396i −0.438166 + 0.438166i
\(756\) 0 0
\(757\) 14.1062 + 14.1062i 0.512698 + 0.512698i 0.915352 0.402654i \(-0.131912\pi\)
−0.402654 + 0.915352i \(0.631912\pi\)
\(758\) 0 0
\(759\) 11.7087i 0.424998i
\(760\) 0 0
\(761\) 13.7778i 0.499446i 0.968317 + 0.249723i \(0.0803395\pi\)
−0.968317 + 0.249723i \(0.919660\pi\)
\(762\) 0 0
\(763\) 1.92157 + 1.92157i 0.0695656 + 0.0695656i
\(764\) 0 0
\(765\) 1.80444 1.80444i 0.0652397 0.0652397i
\(766\) 0 0
\(767\) −54.0794 −1.95270
\(768\) 0 0
\(769\) −6.89137 −0.248509 −0.124255 0.992250i \(-0.539654\pi\)
−0.124255 + 0.992250i \(0.539654\pi\)
\(770\) 0 0
\(771\) −17.1171 + 17.1171i −0.616457 + 0.616457i
\(772\) 0 0
\(773\) −11.4803 11.4803i −0.412916 0.412916i 0.469837 0.882753i \(-0.344313\pi\)
−0.882753 + 0.469837i \(0.844313\pi\)
\(774\) 0 0
\(775\) 3.17157i 0.113926i
\(776\) 0 0
\(777\) 4.74839i 0.170348i
\(778\) 0 0
\(779\) −14.3417 14.3417i −0.513845 0.513845i
\(780\) 0 0
\(781\) −32.5794 + 32.5794i −1.16578 + 1.16578i
\(782\) 0 0
\(783\) 7.99093 0.285572
\(784\) 0 0
\(785\) −5.45381 −0.194655
\(786\) 0 0
\(787\) 15.0609 15.0609i 0.536862 0.536862i −0.385744 0.922606i \(-0.626055\pi\)
0.922606 + 0.385744i \(0.126055\pi\)
\(788\) 0 0
\(789\) −15.7208 15.7208i −0.559676 0.559676i
\(790\) 0 0
\(791\) 3.70770i 0.131831i
\(792\) 0 0
\(793\) 27.1878i 0.965468i
\(794\) 0 0
\(795\) 3.45525 + 3.45525i 0.122545 + 0.122545i
\(796\) 0 0
\(797\) 10.4057 10.4057i 0.368589 0.368589i −0.498373 0.866963i \(-0.666069\pi\)
0.866963 + 0.498373i \(0.166069\pi\)
\(798\) 0 0
\(799\) 4.42522 0.156553
\(800\) 0 0
\(801\) 32.8565 1.16093
\(802\) 0 0
\(803\) 1.14112 1.14112i 0.0402692 0.0402692i
\(804\) 0 0
\(805\) −1.26214 1.26214i −0.0444847 0.0444847i
\(806\) 0 0
\(807\) 9.43062i 0.331973i
\(808\) 0 0
\(809\) 17.7970i 0.625708i 0.949801 + 0.312854i \(0.101285\pi\)
−0.949801 + 0.312854i \(0.898715\pi\)
\(810\) 0 0
\(811\) −2.13364 2.13364i −0.0749221 0.0749221i 0.668653 0.743575i \(-0.266871\pi\)
−0.743575 + 0.668653i \(0.766871\pi\)
\(812\) 0 0
\(813\) 8.03249 8.03249i 0.281712 0.281712i
\(814\) 0 0
\(815\) −17.4308 −0.610576
\(816\) 0 0
\(817\) −16.0568 −0.561755
\(818\) 0 0
\(819\) −3.47589 + 3.47589i −0.121457 + 0.121457i
\(820\) 0 0
\(821\) 27.3074 + 27.3074i 0.953034 + 0.953034i 0.998945 0.0459119i \(-0.0146194\pi\)
−0.0459119 + 0.998945i \(0.514619\pi\)
\(822\) 0 0
\(823\) 41.1720i 1.43516i 0.696474 + 0.717582i \(0.254751\pi\)
−0.696474 + 0.717582i \(0.745249\pi\)
\(824\) 0 0
\(825\) 3.04205i 0.105911i
\(826\) 0 0
\(827\) 36.3202 + 36.3202i 1.26298 + 1.26298i 0.949643 + 0.313334i \(0.101446\pi\)
0.313334 + 0.949643i \(0.398554\pi\)
\(828\) 0 0
\(829\) 23.8586 23.8586i 0.828645 0.828645i −0.158685 0.987329i \(-0.550725\pi\)
0.987329 + 0.158685i \(0.0507254\pi\)
\(830\) 0 0
\(831\) −24.5013 −0.849940
\(832\) 0 0
\(833\) 9.12006 0.315991
\(834\) 0 0
\(835\) −13.1744 + 13.1744i −0.455919 + 0.455919i
\(836\) 0 0
\(837\) 11.5297 + 11.5297i 0.398524 + 0.398524i
\(838\) 0 0
\(839\) 17.7869i 0.614072i −0.951698 0.307036i \(-0.900663\pi\)
0.951698 0.307036i \(-0.0993372\pi\)
\(840\) 0 0
\(841\) 26.5841i 0.916693i
\(842\) 0 0
\(843\) 7.87137 + 7.87137i 0.271105 + 0.271105i
\(844\) 0 0
\(845\) −12.8507 + 12.8507i −0.442077 + 0.442077i
\(846\) 0 0
\(847\) −1.20520 −0.0414111
\(848\) 0 0
\(849\) −4.15619 −0.142640
\(850\) 0 0
\(851\) 26.5519 26.5519i 0.910186 0.910186i
\(852\) 0 0
\(853\) 4.33423 + 4.33423i 0.148401 + 0.148401i 0.777403 0.629002i \(-0.216536\pi\)
−0.629002 + 0.777403i \(0.716536\pi\)
\(854\) 0 0
\(855\) 13.2847i 0.454327i
\(856\) 0 0
\(857\) 39.7072i 1.35637i −0.734890 0.678186i \(-0.762766\pi\)
0.734890 0.678186i \(-0.237234\pi\)
\(858\) 0 0
\(859\) −3.45317 3.45317i −0.117820 0.117820i 0.645738 0.763559i \(-0.276550\pi\)
−0.763559 + 0.645738i \(0.776550\pi\)
\(860\) 0 0
\(861\) 0.997546 0.997546i 0.0339963 0.0339963i
\(862\) 0 0
\(863\) −45.1975 −1.53854 −0.769271 0.638923i \(-0.779380\pi\)
−0.769271 + 0.638923i \(0.779380\pi\)
\(864\) 0 0
\(865\) 6.38131 0.216971
\(866\) 0 0
\(867\) −11.2754 + 11.2754i −0.382932 + 0.382932i
\(868\) 0 0
\(869\) 8.68832 + 8.68832i 0.294731 + 0.294731i
\(870\) 0 0
\(871\) 46.8648i 1.58795i
\(872\) 0 0
\(873\) 17.1661i 0.580986i
\(874\) 0 0
\(875\) −0.327919 0.327919i −0.0110857 0.0110857i
\(876\) 0 0
\(877\) 14.3758 14.3758i 0.485436 0.485436i −0.421426 0.906863i \(-0.638470\pi\)
0.906863 + 0.421426i \(0.138470\pi\)
\(878\) 0 0
\(879\) 20.9855 0.707824
\(880\) 0 0
\(881\) −12.2102 −0.411371 −0.205685 0.978618i \(-0.565942\pi\)
−0.205685 + 0.978618i \(0.565942\pi\)
\(882\) 0 0
\(883\) 18.6792 18.6792i 0.628605 0.628605i −0.319112 0.947717i \(-0.603385\pi\)
0.947717 + 0.319112i \(0.103385\pi\)
\(884\) 0 0
\(885\) −7.18820 7.18820i −0.241629 0.241629i
\(886\) 0 0
\(887\) 42.4950i 1.42684i 0.700736 + 0.713421i \(0.252855\pi\)
−0.700736 + 0.713421i \(0.747145\pi\)
\(888\) 0 0
\(889\) 5.09171i 0.170770i
\(890\) 0 0
\(891\) −0.614157 0.614157i −0.0205750 0.0205750i
\(892\) 0 0
\(893\) −16.2897 + 16.2897i −0.545115 + 0.545115i
\(894\) 0 0
\(895\) 21.4828 0.718092
\(896\) 0 0
\(897\) −22.5544 −0.753070
\(898\) 0 0
\(899\) 3.48577 3.48577i 0.116257 0.116257i
\(900\) 0 0
\(901\) −4.42522 4.42522i −0.147425 0.147425i
\(902\) 0 0
\(903\) 1.11684i 0.0371661i
\(904\) 0 0
\(905\) 16.5228i 0.549238i
\(906\) 0 0
\(907\) −4.22149 4.22149i −0.140172 0.140172i 0.633539 0.773711i \(-0.281602\pi\)
−0.773711 + 0.633539i \(0.781602\pi\)
\(908\) 0 0
\(909\) 13.0920 13.0920i 0.434233 0.434233i
\(910\) 0 0
\(911\) 33.0306 1.09435 0.547177 0.837017i \(-0.315703\pi\)
0.547177 + 0.837017i \(0.315703\pi\)
\(912\) 0 0
\(913\) −28.9631 −0.958539
\(914\) 0 0
\(915\) 3.61379 3.61379i 0.119468 0.119468i
\(916\) 0 0
\(917\) 2.03643 + 2.03643i 0.0672488 + 0.0672488i
\(918\) 0 0
\(919\) 18.3501i 0.605313i −0.953100 0.302657i \(-0.902126\pi\)
0.953100 0.302657i \(-0.0978736\pi\)
\(920\) 0 0
\(921\) 32.1954i 1.06088i
\(922\) 0 0
\(923\) −62.7577 62.7577i −2.06570 2.06570i
\(924\) 0 0
\(925\) 6.89848 6.89848i 0.226821 0.226821i
\(926\) 0 0
\(927\) −28.5068 −0.936287
\(928\) 0 0
\(929\) 50.7648 1.66554 0.832770 0.553619i \(-0.186754\pi\)
0.832770 + 0.553619i \(0.186754\pi\)
\(930\) 0 0
\(931\) −33.5720 + 33.5720i −1.10028 + 1.10028i
\(932\) 0 0
\(933\) −0.363785 0.363785i −0.0119098 0.0119098i
\(934\) 0 0
\(935\) 3.89603i 0.127414i
\(936\) 0 0
\(937\) 57.2804i 1.87127i −0.352971 0.935634i \(-0.614829\pi\)
0.352971 0.935634i \(-0.385171\pi\)
\(938\) 0 0
\(939\) −16.7569 16.7569i −0.546842 0.546842i
\(940\) 0 0
\(941\) 41.9897 41.9897i 1.36882 1.36882i 0.506706 0.862119i \(-0.330863\pi\)
0.862119 0.506706i \(-0.169137\pi\)
\(942\) 0 0
\(943\) −11.1561 −0.363292
\(944\) 0 0
\(945\) −2.38418 −0.0775574
\(946\) 0 0
\(947\) −10.7588 + 10.7588i −0.349613 + 0.349613i −0.859965 0.510353i \(-0.829515\pi\)
0.510353 + 0.859965i \(0.329515\pi\)
\(948\) 0 0
\(949\) 2.19814 + 2.19814i 0.0713545 + 0.0713545i
\(950\) 0 0
\(951\) 27.6540i 0.896742i
\(952\) 0 0
\(953\) 33.6640i 1.09049i 0.838278 + 0.545243i \(0.183562\pi\)
−0.838278 + 0.545243i \(0.816438\pi\)
\(954\) 0 0
\(955\) −2.75491 2.75491i −0.0891467 0.0891467i
\(956\) 0 0
\(957\) 3.34342 3.34342i 0.108077 0.108077i
\(958\) 0 0
\(959\) 10.1542 0.327897
\(960\) 0 0
\(961\) −20.9411 −0.675520
\(962\) 0 0
\(963\) 22.3426 22.3426i 0.719981 0.719981i
\(964\) 0 0
\(965\) 13.4613 + 13.4613i 0.433334 + 0.433334i
\(966\) 0 0
\(967\) 12.6075i 0.405430i −0.979238 0.202715i \(-0.935024\pi\)
0.979238 0.202715i \(-0.0649764\pi\)
\(968\) 0 0
\(969\) 9.87174i 0.317126i
\(970\) 0 0
\(971\) 0.401057 + 0.401057i 0.0128705 + 0.0128705i 0.713513 0.700642i \(-0.247103\pi\)
−0.700642 + 0.713513i \(0.747103\pi\)
\(972\) 0 0
\(973\) 2.06891 2.06891i 0.0663263 0.0663263i
\(974\) 0 0
\(975\) −5.85990 −0.187667
\(976\) 0 0
\(977\) −21.1220 −0.675752 −0.337876 0.941191i \(-0.609708\pi\)
−0.337876 + 0.941191i \(0.609708\pi\)
\(978\) 0 0
\(979\) 35.4708 35.4708i 1.13365 1.13365i
\(980\) 0 0
\(981\) −7.86648 7.86648i −0.251158 0.251158i
\(982\) 0 0
\(983\) 35.2583i 1.12457i 0.826945 + 0.562283i \(0.190077\pi\)
−0.826945 + 0.562283i \(0.809923\pi\)
\(984\) 0 0
\(985\) 0.0665816i 0.00212147i
\(986\) 0 0
\(987\) −1.13304 1.13304i −0.0360651 0.0360651i
\(988\) 0 0
\(989\) −6.24509 + 6.24509i −0.198582 + 0.198582i
\(990\) 0 0
\(991\) 11.9471 0.379513 0.189756 0.981831i \(-0.439230\pi\)
0.189756 + 0.981831i \(0.439230\pi\)
\(992\) 0 0
\(993\) −26.3397 −0.835867
\(994\) 0 0
\(995\) 8.00000 8.00000i 0.253617 0.253617i
\(996\) 0 0
\(997\) 7.49031 + 7.49031i 0.237221 + 0.237221i 0.815698 0.578478i \(-0.196353\pi\)
−0.578478 + 0.815698i \(0.696353\pi\)
\(998\) 0 0
\(999\) 50.1564i 1.58688i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.2.l.c.961.3 yes 8
4.3 odd 2 1280.2.l.h.961.2 yes 8
8.3 odd 2 1280.2.l.b.961.3 yes 8
8.5 even 2 1280.2.l.e.961.2 yes 8
16.3 odd 4 1280.2.l.h.321.2 yes 8
16.5 even 4 1280.2.l.e.321.2 yes 8
16.11 odd 4 1280.2.l.b.321.3 8
16.13 even 4 inner 1280.2.l.c.321.3 yes 8
32.3 odd 8 5120.2.a.j.1.2 4
32.13 even 8 5120.2.a.i.1.2 4
32.19 odd 8 5120.2.a.c.1.3 4
32.29 even 8 5120.2.a.p.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.l.b.321.3 8 16.11 odd 4
1280.2.l.b.961.3 yes 8 8.3 odd 2
1280.2.l.c.321.3 yes 8 16.13 even 4 inner
1280.2.l.c.961.3 yes 8 1.1 even 1 trivial
1280.2.l.e.321.2 yes 8 16.5 even 4
1280.2.l.e.961.2 yes 8 8.5 even 2
1280.2.l.h.321.2 yes 8 16.3 odd 4
1280.2.l.h.961.2 yes 8 4.3 odd 2
5120.2.a.c.1.3 4 32.19 odd 8
5120.2.a.i.1.2 4 32.13 even 8
5120.2.a.j.1.2 4 32.3 odd 8
5120.2.a.p.1.3 4 32.29 even 8