Properties

Label 5120.2.a.j.1.2
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5120,2,Mod(1,5120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5120.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.18688.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 10x^{2} - 4x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.04953\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.04953 q^{3} +1.00000 q^{5} +0.463747 q^{7} -1.89848 q^{9} -2.89848 q^{11} +5.58333 q^{13} -1.04953 q^{15} -1.34416 q^{17} -6.99755 q^{19} -0.486719 q^{21} +3.84894 q^{23} +1.00000 q^{25} +5.14112 q^{27} +1.55432 q^{29} -3.17157 q^{31} +3.04205 q^{33} +0.463747 q^{35} +9.75592 q^{37} -5.85990 q^{39} -2.89848 q^{41} -2.29463 q^{43} -1.89848 q^{45} +3.29217 q^{47} -6.78494 q^{49} +1.41074 q^{51} -4.65584 q^{53} -2.89848 q^{55} +7.34416 q^{57} +9.68587 q^{59} -4.86946 q^{61} -0.880415 q^{63} +5.58333 q^{65} -8.39370 q^{67} -4.03960 q^{69} -15.8960 q^{71} +0.556770 q^{73} -1.04953 q^{75} -1.34416 q^{77} +4.23917 q^{79} +0.299657 q^{81} -9.99252 q^{83} -1.34416 q^{85} -1.63131 q^{87} -17.3068 q^{89} +2.58926 q^{91} +3.32867 q^{93} -6.99755 q^{95} +9.04205 q^{97} +5.50270 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 8 q^{7} + 8 q^{9} + 4 q^{11} + 4 q^{13} - 4 q^{17} - 4 q^{19} - 16 q^{21} + 4 q^{23} + 4 q^{25} - 12 q^{27} - 8 q^{29} - 24 q^{31} - 12 q^{33} - 8 q^{35} + 8 q^{37} - 32 q^{39} + 4 q^{41}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.04953 −0.605949 −0.302974 0.952999i \(-0.597980\pi\)
−0.302974 + 0.952999i \(0.597980\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.463747 0.175280 0.0876400 0.996152i \(-0.472067\pi\)
0.0876400 + 0.996152i \(0.472067\pi\)
\(8\) 0 0
\(9\) −1.89848 −0.632826
\(10\) 0 0
\(11\) −2.89848 −0.873924 −0.436962 0.899480i \(-0.643946\pi\)
−0.436962 + 0.899480i \(0.643946\pi\)
\(12\) 0 0
\(13\) 5.58333 1.54854 0.774269 0.632857i \(-0.218118\pi\)
0.774269 + 0.632857i \(0.218118\pi\)
\(14\) 0 0
\(15\) −1.04953 −0.270988
\(16\) 0 0
\(17\) −1.34416 −0.326007 −0.163004 0.986625i \(-0.552118\pi\)
−0.163004 + 0.986625i \(0.552118\pi\)
\(18\) 0 0
\(19\) −6.99755 −1.60535 −0.802674 0.596419i \(-0.796590\pi\)
−0.802674 + 0.596419i \(0.796590\pi\)
\(20\) 0 0
\(21\) −0.486719 −0.106211
\(22\) 0 0
\(23\) 3.84894 0.802560 0.401280 0.915955i \(-0.368565\pi\)
0.401280 + 0.915955i \(0.368565\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.14112 0.989409
\(28\) 0 0
\(29\) 1.55432 0.288629 0.144315 0.989532i \(-0.453902\pi\)
0.144315 + 0.989532i \(0.453902\pi\)
\(30\) 0 0
\(31\) −3.17157 −0.569631 −0.284816 0.958582i \(-0.591932\pi\)
−0.284816 + 0.958582i \(0.591932\pi\)
\(32\) 0 0
\(33\) 3.04205 0.529553
\(34\) 0 0
\(35\) 0.463747 0.0783876
\(36\) 0 0
\(37\) 9.75592 1.60386 0.801932 0.597416i \(-0.203806\pi\)
0.801932 + 0.597416i \(0.203806\pi\)
\(38\) 0 0
\(39\) −5.85990 −0.938334
\(40\) 0 0
\(41\) −2.89848 −0.452666 −0.226333 0.974050i \(-0.572674\pi\)
−0.226333 + 0.974050i \(0.572674\pi\)
\(42\) 0 0
\(43\) −2.29463 −0.349928 −0.174964 0.984575i \(-0.555981\pi\)
−0.174964 + 0.984575i \(0.555981\pi\)
\(44\) 0 0
\(45\) −1.89848 −0.283008
\(46\) 0 0
\(47\) 3.29217 0.480213 0.240107 0.970747i \(-0.422818\pi\)
0.240107 + 0.970747i \(0.422818\pi\)
\(48\) 0 0
\(49\) −6.78494 −0.969277
\(50\) 0 0
\(51\) 1.41074 0.197544
\(52\) 0 0
\(53\) −4.65584 −0.639529 −0.319764 0.947497i \(-0.603604\pi\)
−0.319764 + 0.947497i \(0.603604\pi\)
\(54\) 0 0
\(55\) −2.89848 −0.390831
\(56\) 0 0
\(57\) 7.34416 0.972758
\(58\) 0 0
\(59\) 9.68587 1.26099 0.630496 0.776192i \(-0.282851\pi\)
0.630496 + 0.776192i \(0.282851\pi\)
\(60\) 0 0
\(61\) −4.86946 −0.623471 −0.311735 0.950169i \(-0.600910\pi\)
−0.311735 + 0.950169i \(0.600910\pi\)
\(62\) 0 0
\(63\) −0.880415 −0.110922
\(64\) 0 0
\(65\) 5.58333 0.692527
\(66\) 0 0
\(67\) −8.39370 −1.02545 −0.512727 0.858552i \(-0.671365\pi\)
−0.512727 + 0.858552i \(0.671365\pi\)
\(68\) 0 0
\(69\) −4.03960 −0.486310
\(70\) 0 0
\(71\) −15.8960 −1.88651 −0.943256 0.332068i \(-0.892254\pi\)
−0.943256 + 0.332068i \(0.892254\pi\)
\(72\) 0 0
\(73\) 0.556770 0.0651650 0.0325825 0.999469i \(-0.489627\pi\)
0.0325825 + 0.999469i \(0.489627\pi\)
\(74\) 0 0
\(75\) −1.04953 −0.121190
\(76\) 0 0
\(77\) −1.34416 −0.153181
\(78\) 0 0
\(79\) 4.23917 0.476944 0.238472 0.971149i \(-0.423353\pi\)
0.238472 + 0.971149i \(0.423353\pi\)
\(80\) 0 0
\(81\) 0.299657 0.0332952
\(82\) 0 0
\(83\) −9.99252 −1.09682 −0.548411 0.836209i \(-0.684767\pi\)
−0.548411 + 0.836209i \(0.684767\pi\)
\(84\) 0 0
\(85\) −1.34416 −0.145795
\(86\) 0 0
\(87\) −1.63131 −0.174895
\(88\) 0 0
\(89\) −17.3068 −1.83451 −0.917257 0.398296i \(-0.869602\pi\)
−0.917257 + 0.398296i \(0.869602\pi\)
\(90\) 0 0
\(91\) 2.58926 0.271428
\(92\) 0 0
\(93\) 3.32867 0.345167
\(94\) 0 0
\(95\) −6.99755 −0.717933
\(96\) 0 0
\(97\) 9.04205 0.918081 0.459041 0.888415i \(-0.348193\pi\)
0.459041 + 0.888415i \(0.348193\pi\)
\(98\) 0 0
\(99\) 5.50270 0.553042
\(100\) 0 0
\(101\) 9.75245 0.970405 0.485203 0.874402i \(-0.338746\pi\)
0.485203 + 0.874402i \(0.338746\pi\)
\(102\) 0 0
\(103\) −15.0156 −1.47953 −0.739766 0.672864i \(-0.765064\pi\)
−0.739766 + 0.672864i \(0.765064\pi\)
\(104\) 0 0
\(105\) −0.486719 −0.0474989
\(106\) 0 0
\(107\) 16.6434 1.60898 0.804491 0.593964i \(-0.202438\pi\)
0.804491 + 0.593964i \(0.202438\pi\)
\(108\) 0 0
\(109\) 5.85990 0.561276 0.280638 0.959814i \(-0.409454\pi\)
0.280638 + 0.959814i \(0.409454\pi\)
\(110\) 0 0
\(111\) −10.2392 −0.971859
\(112\) 0 0
\(113\) 7.99509 0.752115 0.376058 0.926596i \(-0.377280\pi\)
0.376058 + 0.926596i \(0.377280\pi\)
\(114\) 0 0
\(115\) 3.84894 0.358916
\(116\) 0 0
\(117\) −10.5998 −0.979955
\(118\) 0 0
\(119\) −0.623352 −0.0571426
\(120\) 0 0
\(121\) −2.59882 −0.236257
\(122\) 0 0
\(123\) 3.04205 0.274293
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −10.9795 −0.974272 −0.487136 0.873326i \(-0.661958\pi\)
−0.487136 + 0.873326i \(0.661958\pi\)
\(128\) 0 0
\(129\) 2.40829 0.212038
\(130\) 0 0
\(131\) 6.21015 0.542584 0.271292 0.962497i \(-0.412549\pi\)
0.271292 + 0.962497i \(0.412549\pi\)
\(132\) 0 0
\(133\) −3.24509 −0.281385
\(134\) 0 0
\(135\) 5.14112 0.442477
\(136\) 0 0
\(137\) −21.8960 −1.87070 −0.935352 0.353719i \(-0.884917\pi\)
−0.935352 + 0.353719i \(0.884917\pi\)
\(138\) 0 0
\(139\) −6.30922 −0.535141 −0.267571 0.963538i \(-0.586221\pi\)
−0.267571 + 0.963538i \(0.586221\pi\)
\(140\) 0 0
\(141\) −3.45525 −0.290984
\(142\) 0 0
\(143\) −16.1832 −1.35330
\(144\) 0 0
\(145\) 1.55432 0.129079
\(146\) 0 0
\(147\) 7.12102 0.587332
\(148\) 0 0
\(149\) 10.3862 0.850872 0.425436 0.904989i \(-0.360121\pi\)
0.425436 + 0.904989i \(0.360121\pi\)
\(150\) 0 0
\(151\) −17.0266 −1.38560 −0.692801 0.721129i \(-0.743624\pi\)
−0.692801 + 0.721129i \(0.743624\pi\)
\(152\) 0 0
\(153\) 2.55186 0.206306
\(154\) 0 0
\(155\) −3.17157 −0.254747
\(156\) 0 0
\(157\) 5.45381 0.435262 0.217631 0.976031i \(-0.430167\pi\)
0.217631 + 0.976031i \(0.430167\pi\)
\(158\) 0 0
\(159\) 4.88646 0.387521
\(160\) 0 0
\(161\) 1.78494 0.140673
\(162\) 0 0
\(163\) −17.4308 −1.36529 −0.682644 0.730751i \(-0.739170\pi\)
−0.682644 + 0.730751i \(0.739170\pi\)
\(164\) 0 0
\(165\) 3.04205 0.236823
\(166\) 0 0
\(167\) 18.6314 1.44174 0.720872 0.693069i \(-0.243742\pi\)
0.720872 + 0.693069i \(0.243742\pi\)
\(168\) 0 0
\(169\) 18.1736 1.39797
\(170\) 0 0
\(171\) 13.2847 1.01591
\(172\) 0 0
\(173\) 6.38131 0.485162 0.242581 0.970131i \(-0.422006\pi\)
0.242581 + 0.970131i \(0.422006\pi\)
\(174\) 0 0
\(175\) 0.463747 0.0350560
\(176\) 0 0
\(177\) −10.1656 −0.764097
\(178\) 0 0
\(179\) −21.4828 −1.60570 −0.802851 0.596180i \(-0.796685\pi\)
−0.802851 + 0.596180i \(0.796685\pi\)
\(180\) 0 0
\(181\) 16.5228 1.22813 0.614067 0.789254i \(-0.289533\pi\)
0.614067 + 0.789254i \(0.289533\pi\)
\(182\) 0 0
\(183\) 5.11067 0.377791
\(184\) 0 0
\(185\) 9.75592 0.717270
\(186\) 0 0
\(187\) 3.89603 0.284906
\(188\) 0 0
\(189\) 2.38418 0.173424
\(190\) 0 0
\(191\) −3.89603 −0.281906 −0.140953 0.990016i \(-0.545017\pi\)
−0.140953 + 0.990016i \(0.545017\pi\)
\(192\) 0 0
\(193\) −19.0371 −1.37032 −0.685162 0.728391i \(-0.740269\pi\)
−0.685162 + 0.728391i \(0.740269\pi\)
\(194\) 0 0
\(195\) −5.85990 −0.419636
\(196\) 0 0
\(197\) −0.0665816 −0.00474374 −0.00237187 0.999997i \(-0.500755\pi\)
−0.00237187 + 0.999997i \(0.500755\pi\)
\(198\) 0 0
\(199\) −11.3137 −0.802008 −0.401004 0.916076i \(-0.631339\pi\)
−0.401004 + 0.916076i \(0.631339\pi\)
\(200\) 0 0
\(201\) 8.80947 0.621372
\(202\) 0 0
\(203\) 0.720810 0.0505910
\(204\) 0 0
\(205\) −2.89848 −0.202439
\(206\) 0 0
\(207\) −7.30714 −0.507881
\(208\) 0 0
\(209\) 20.2822 1.40295
\(210\) 0 0
\(211\) 0.478170 0.0329186 0.0164593 0.999865i \(-0.494761\pi\)
0.0164593 + 0.999865i \(0.494761\pi\)
\(212\) 0 0
\(213\) 16.6834 1.14313
\(214\) 0 0
\(215\) −2.29463 −0.156492
\(216\) 0 0
\(217\) −1.47081 −0.0998450
\(218\) 0 0
\(219\) −0.584349 −0.0394867
\(220\) 0 0
\(221\) −7.50490 −0.504834
\(222\) 0 0
\(223\) −19.6049 −1.31284 −0.656419 0.754396i \(-0.727930\pi\)
−0.656419 + 0.754396i \(0.727930\pi\)
\(224\) 0 0
\(225\) −1.89848 −0.126565
\(226\) 0 0
\(227\) −22.8465 −1.51637 −0.758187 0.652037i \(-0.773915\pi\)
−0.758187 + 0.652037i \(0.773915\pi\)
\(228\) 0 0
\(229\) −26.5829 −1.75665 −0.878324 0.478066i \(-0.841338\pi\)
−0.878324 + 0.478066i \(0.841338\pi\)
\(230\) 0 0
\(231\) 1.41074 0.0928201
\(232\) 0 0
\(233\) 17.2402 1.12944 0.564721 0.825282i \(-0.308984\pi\)
0.564721 + 0.825282i \(0.308984\pi\)
\(234\) 0 0
\(235\) 3.29217 0.214758
\(236\) 0 0
\(237\) −4.44915 −0.289004
\(238\) 0 0
\(239\) −27.6930 −1.79131 −0.895655 0.444749i \(-0.853293\pi\)
−0.895655 + 0.444749i \(0.853293\pi\)
\(240\) 0 0
\(241\) 9.09661 0.585964 0.292982 0.956118i \(-0.405352\pi\)
0.292982 + 0.956118i \(0.405352\pi\)
\(242\) 0 0
\(243\) −15.7379 −1.00958
\(244\) 0 0
\(245\) −6.78494 −0.433474
\(246\) 0 0
\(247\) −39.0696 −2.48594
\(248\) 0 0
\(249\) 10.4875 0.664617
\(250\) 0 0
\(251\) 12.2102 0.770698 0.385349 0.922771i \(-0.374081\pi\)
0.385349 + 0.922771i \(0.374081\pi\)
\(252\) 0 0
\(253\) −11.1561 −0.701377
\(254\) 0 0
\(255\) 1.41074 0.0883442
\(256\) 0 0
\(257\) −23.0647 −1.43874 −0.719369 0.694628i \(-0.755569\pi\)
−0.719369 + 0.694628i \(0.755569\pi\)
\(258\) 0 0
\(259\) 4.52428 0.281125
\(260\) 0 0
\(261\) −2.95084 −0.182652
\(262\) 0 0
\(263\) 21.1833 1.30622 0.653109 0.757264i \(-0.273464\pi\)
0.653109 + 0.757264i \(0.273464\pi\)
\(264\) 0 0
\(265\) −4.65584 −0.286006
\(266\) 0 0
\(267\) 18.1640 1.11162
\(268\) 0 0
\(269\) −8.98553 −0.547857 −0.273929 0.961750i \(-0.588323\pi\)
−0.273929 + 0.961750i \(0.588323\pi\)
\(270\) 0 0
\(271\) 10.8235 0.657482 0.328741 0.944420i \(-0.393376\pi\)
0.328741 + 0.944420i \(0.393376\pi\)
\(272\) 0 0
\(273\) −2.71751 −0.164471
\(274\) 0 0
\(275\) −2.89848 −0.174785
\(276\) 0 0
\(277\) −23.3449 −1.40266 −0.701330 0.712836i \(-0.747410\pi\)
−0.701330 + 0.712836i \(0.747410\pi\)
\(278\) 0 0
\(279\) 6.02116 0.360478
\(280\) 0 0
\(281\) 10.6064 0.632726 0.316363 0.948638i \(-0.397538\pi\)
0.316363 + 0.948638i \(0.397538\pi\)
\(282\) 0 0
\(283\) −3.96003 −0.235399 −0.117700 0.993049i \(-0.537552\pi\)
−0.117700 + 0.993049i \(0.537552\pi\)
\(284\) 0 0
\(285\) 7.34416 0.435031
\(286\) 0 0
\(287\) −1.34416 −0.0793434
\(288\) 0 0
\(289\) −15.1932 −0.893719
\(290\) 0 0
\(291\) −9.48994 −0.556310
\(292\) 0 0
\(293\) −19.9951 −1.16813 −0.584063 0.811708i \(-0.698538\pi\)
−0.584063 + 0.811708i \(0.698538\pi\)
\(294\) 0 0
\(295\) 9.68587 0.563933
\(296\) 0 0
\(297\) −14.9014 −0.864668
\(298\) 0 0
\(299\) 21.4899 1.24280
\(300\) 0 0
\(301\) −1.06413 −0.0613353
\(302\) 0 0
\(303\) −10.2355 −0.588016
\(304\) 0 0
\(305\) −4.86946 −0.278825
\(306\) 0 0
\(307\) 30.6759 1.75077 0.875384 0.483428i \(-0.160609\pi\)
0.875384 + 0.483428i \(0.160609\pi\)
\(308\) 0 0
\(309\) 15.7594 0.896520
\(310\) 0 0
\(311\) −0.490189 −0.0277960 −0.0138980 0.999903i \(-0.504424\pi\)
−0.0138980 + 0.999903i \(0.504424\pi\)
\(312\) 0 0
\(313\) −22.5794 −1.27627 −0.638133 0.769926i \(-0.720293\pi\)
−0.638133 + 0.769926i \(0.720293\pi\)
\(314\) 0 0
\(315\) −0.880415 −0.0496057
\(316\) 0 0
\(317\) 26.3488 1.47990 0.739949 0.672663i \(-0.234850\pi\)
0.739949 + 0.672663i \(0.234850\pi\)
\(318\) 0 0
\(319\) −4.50515 −0.252240
\(320\) 0 0
\(321\) −17.4679 −0.974961
\(322\) 0 0
\(323\) 9.40584 0.523355
\(324\) 0 0
\(325\) 5.58333 0.309708
\(326\) 0 0
\(327\) −6.15016 −0.340105
\(328\) 0 0
\(329\) 1.52674 0.0841718
\(330\) 0 0
\(331\) 25.0966 1.37943 0.689717 0.724079i \(-0.257735\pi\)
0.689717 + 0.724079i \(0.257735\pi\)
\(332\) 0 0
\(333\) −18.5214 −1.01497
\(334\) 0 0
\(335\) −8.39370 −0.458597
\(336\) 0 0
\(337\) −12.2972 −0.669871 −0.334936 0.942241i \(-0.608715\pi\)
−0.334936 + 0.942241i \(0.608715\pi\)
\(338\) 0 0
\(339\) −8.39112 −0.455743
\(340\) 0 0
\(341\) 9.19274 0.497815
\(342\) 0 0
\(343\) −6.39273 −0.345175
\(344\) 0 0
\(345\) −4.03960 −0.217485
\(346\) 0 0
\(347\) −6.19065 −0.332332 −0.166166 0.986098i \(-0.553139\pi\)
−0.166166 + 0.986098i \(0.553139\pi\)
\(348\) 0 0
\(349\) −26.8631 −1.43795 −0.718975 0.695036i \(-0.755388\pi\)
−0.718975 + 0.695036i \(0.755388\pi\)
\(350\) 0 0
\(351\) 28.7046 1.53214
\(352\) 0 0
\(353\) 24.6785 1.31350 0.656752 0.754106i \(-0.271930\pi\)
0.656752 + 0.754106i \(0.271930\pi\)
\(354\) 0 0
\(355\) −15.8960 −0.843673
\(356\) 0 0
\(357\) 0.654229 0.0346255
\(358\) 0 0
\(359\) −28.5745 −1.50811 −0.754053 0.656813i \(-0.771904\pi\)
−0.754053 + 0.656813i \(0.771904\pi\)
\(360\) 0 0
\(361\) 29.9657 1.57714
\(362\) 0 0
\(363\) 2.72755 0.143159
\(364\) 0 0
\(365\) 0.556770 0.0291427
\(366\) 0 0
\(367\) 9.86594 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(368\) 0 0
\(369\) 5.50270 0.286459
\(370\) 0 0
\(371\) −2.15913 −0.112097
\(372\) 0 0
\(373\) 11.1566 0.577667 0.288834 0.957379i \(-0.406733\pi\)
0.288834 + 0.957379i \(0.406733\pi\)
\(374\) 0 0
\(375\) −1.04953 −0.0541977
\(376\) 0 0
\(377\) 8.67827 0.446953
\(378\) 0 0
\(379\) 4.79941 0.246529 0.123265 0.992374i \(-0.460664\pi\)
0.123265 + 0.992374i \(0.460664\pi\)
\(380\) 0 0
\(381\) 11.5233 0.590359
\(382\) 0 0
\(383\) 6.25012 0.319366 0.159683 0.987168i \(-0.448953\pi\)
0.159683 + 0.987168i \(0.448953\pi\)
\(384\) 0 0
\(385\) −1.34416 −0.0685048
\(386\) 0 0
\(387\) 4.35630 0.221443
\(388\) 0 0
\(389\) −4.30211 −0.218126 −0.109063 0.994035i \(-0.534785\pi\)
−0.109063 + 0.994035i \(0.534785\pi\)
\(390\) 0 0
\(391\) −5.17361 −0.261640
\(392\) 0 0
\(393\) −6.51777 −0.328778
\(394\) 0 0
\(395\) 4.23917 0.213296
\(396\) 0 0
\(397\) 9.81245 0.492473 0.246236 0.969210i \(-0.420806\pi\)
0.246236 + 0.969210i \(0.420806\pi\)
\(398\) 0 0
\(399\) 3.40584 0.170505
\(400\) 0 0
\(401\) 11.1736 0.557983 0.278992 0.960294i \(-0.410000\pi\)
0.278992 + 0.960294i \(0.410000\pi\)
\(402\) 0 0
\(403\) −17.7079 −0.882096
\(404\) 0 0
\(405\) 0.299657 0.0148901
\(406\) 0 0
\(407\) −28.2773 −1.40166
\(408\) 0 0
\(409\) −39.6611 −1.96111 −0.980557 0.196233i \(-0.937129\pi\)
−0.980557 + 0.196233i \(0.937129\pi\)
\(410\) 0 0
\(411\) 22.9806 1.13355
\(412\) 0 0
\(413\) 4.49180 0.221027
\(414\) 0 0
\(415\) −9.99252 −0.490513
\(416\) 0 0
\(417\) 6.62174 0.324268
\(418\) 0 0
\(419\) −5.39382 −0.263505 −0.131753 0.991283i \(-0.542060\pi\)
−0.131753 + 0.991283i \(0.542060\pi\)
\(420\) 0 0
\(421\) −11.9541 −0.582605 −0.291303 0.956631i \(-0.594089\pi\)
−0.291303 + 0.956631i \(0.594089\pi\)
\(422\) 0 0
\(423\) −6.25012 −0.303891
\(424\) 0 0
\(425\) −1.34416 −0.0652014
\(426\) 0 0
\(427\) −2.25820 −0.109282
\(428\) 0 0
\(429\) 16.9848 0.820033
\(430\) 0 0
\(431\) 23.3909 1.12670 0.563349 0.826219i \(-0.309513\pi\)
0.563349 + 0.826219i \(0.309513\pi\)
\(432\) 0 0
\(433\) −3.33925 −0.160474 −0.0802372 0.996776i \(-0.525568\pi\)
−0.0802372 + 0.996776i \(0.525568\pi\)
\(434\) 0 0
\(435\) −1.63131 −0.0782152
\(436\) 0 0
\(437\) −26.9332 −1.28839
\(438\) 0 0
\(439\) 1.27064 0.0606444 0.0303222 0.999540i \(-0.490347\pi\)
0.0303222 + 0.999540i \(0.490347\pi\)
\(440\) 0 0
\(441\) 12.8811 0.613384
\(442\) 0 0
\(443\) −24.7474 −1.17579 −0.587893 0.808939i \(-0.700042\pi\)
−0.587893 + 0.808939i \(0.700042\pi\)
\(444\) 0 0
\(445\) −17.3068 −0.820420
\(446\) 0 0
\(447\) −10.9007 −0.515585
\(448\) 0 0
\(449\) −15.9831 −0.754288 −0.377144 0.926155i \(-0.623094\pi\)
−0.377144 + 0.926155i \(0.623094\pi\)
\(450\) 0 0
\(451\) 8.40118 0.395596
\(452\) 0 0
\(453\) 17.8700 0.839604
\(454\) 0 0
\(455\) 2.58926 0.121386
\(456\) 0 0
\(457\) −6.78739 −0.317501 −0.158750 0.987319i \(-0.550747\pi\)
−0.158750 + 0.987319i \(0.550747\pi\)
\(458\) 0 0
\(459\) −6.91050 −0.322554
\(460\) 0 0
\(461\) −29.8316 −1.38940 −0.694699 0.719300i \(-0.744463\pi\)
−0.694699 + 0.719300i \(0.744463\pi\)
\(462\) 0 0
\(463\) −21.3234 −0.990982 −0.495491 0.868613i \(-0.665012\pi\)
−0.495491 + 0.868613i \(0.665012\pi\)
\(464\) 0 0
\(465\) 3.32867 0.154364
\(466\) 0 0
\(467\) 6.66332 0.308342 0.154171 0.988044i \(-0.450729\pi\)
0.154171 + 0.988044i \(0.450729\pi\)
\(468\) 0 0
\(469\) −3.89256 −0.179741
\(470\) 0 0
\(471\) −5.72396 −0.263746
\(472\) 0 0
\(473\) 6.65093 0.305810
\(474\) 0 0
\(475\) −6.99755 −0.321069
\(476\) 0 0
\(477\) 8.83901 0.404710
\(478\) 0 0
\(479\) −10.1932 −0.465740 −0.232870 0.972508i \(-0.574812\pi\)
−0.232870 + 0.972508i \(0.574812\pi\)
\(480\) 0 0
\(481\) 54.4706 2.48364
\(482\) 0 0
\(483\) −1.87335 −0.0852405
\(484\) 0 0
\(485\) 9.04205 0.410578
\(486\) 0 0
\(487\) −5.87940 −0.266421 −0.133210 0.991088i \(-0.542529\pi\)
−0.133210 + 0.991088i \(0.542529\pi\)
\(488\) 0 0
\(489\) 18.2943 0.827295
\(490\) 0 0
\(491\) 4.27022 0.192712 0.0963562 0.995347i \(-0.469281\pi\)
0.0963562 + 0.995347i \(0.469281\pi\)
\(492\) 0 0
\(493\) −2.08925 −0.0940952
\(494\) 0 0
\(495\) 5.50270 0.247328
\(496\) 0 0
\(497\) −7.37174 −0.330668
\(498\) 0 0
\(499\) 29.9583 1.34112 0.670559 0.741856i \(-0.266054\pi\)
0.670559 + 0.741856i \(0.266054\pi\)
\(500\) 0 0
\(501\) −19.5543 −0.873622
\(502\) 0 0
\(503\) 31.7450 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(504\) 0 0
\(505\) 9.75245 0.433978
\(506\) 0 0
\(507\) −19.0738 −0.847098
\(508\) 0 0
\(509\) −2.38071 −0.105523 −0.0527616 0.998607i \(-0.516802\pi\)
−0.0527616 + 0.998607i \(0.516802\pi\)
\(510\) 0 0
\(511\) 0.258201 0.0114221
\(512\) 0 0
\(513\) −35.9752 −1.58834
\(514\) 0 0
\(515\) −15.0156 −0.661667
\(516\) 0 0
\(517\) −9.54230 −0.419670
\(518\) 0 0
\(519\) −6.69740 −0.293983
\(520\) 0 0
\(521\) −23.1736 −1.01525 −0.507627 0.861577i \(-0.669477\pi\)
−0.507627 + 0.861577i \(0.669477\pi\)
\(522\) 0 0
\(523\) −41.7180 −1.82420 −0.912100 0.409968i \(-0.865540\pi\)
−0.912100 + 0.409968i \(0.865540\pi\)
\(524\) 0 0
\(525\) −0.486719 −0.0212421
\(526\) 0 0
\(527\) 4.26311 0.185704
\(528\) 0 0
\(529\) −8.18562 −0.355897
\(530\) 0 0
\(531\) −18.3884 −0.797989
\(532\) 0 0
\(533\) −16.1832 −0.700971
\(534\) 0 0
\(535\) 16.6434 0.719559
\(536\) 0 0
\(537\) 22.5470 0.972973
\(538\) 0 0
\(539\) 19.6660 0.847075
\(540\) 0 0
\(541\) −18.9240 −0.813607 −0.406804 0.913516i \(-0.633357\pi\)
−0.406804 + 0.913516i \(0.633357\pi\)
\(542\) 0 0
\(543\) −17.3413 −0.744186
\(544\) 0 0
\(545\) 5.85990 0.251010
\(546\) 0 0
\(547\) 6.66332 0.284903 0.142452 0.989802i \(-0.454502\pi\)
0.142452 + 0.989802i \(0.454502\pi\)
\(548\) 0 0
\(549\) 9.24457 0.394549
\(550\) 0 0
\(551\) −10.8764 −0.463350
\(552\) 0 0
\(553\) 1.96590 0.0835988
\(554\) 0 0
\(555\) −10.2392 −0.434629
\(556\) 0 0
\(557\) −14.7724 −0.625928 −0.312964 0.949765i \(-0.601322\pi\)
−0.312964 + 0.949765i \(0.601322\pi\)
\(558\) 0 0
\(559\) −12.8117 −0.541876
\(560\) 0 0
\(561\) −4.08901 −0.172638
\(562\) 0 0
\(563\) −29.0495 −1.22429 −0.612146 0.790745i \(-0.709694\pi\)
−0.612146 + 0.790745i \(0.709694\pi\)
\(564\) 0 0
\(565\) 7.99509 0.336356
\(566\) 0 0
\(567\) 0.138965 0.00583599
\(568\) 0 0
\(569\) 19.8690 0.832954 0.416477 0.909146i \(-0.363265\pi\)
0.416477 + 0.909146i \(0.363265\pi\)
\(570\) 0 0
\(571\) 22.2943 0.932986 0.466493 0.884525i \(-0.345517\pi\)
0.466493 + 0.884525i \(0.345517\pi\)
\(572\) 0 0
\(573\) 4.08901 0.170821
\(574\) 0 0
\(575\) 3.84894 0.160512
\(576\) 0 0
\(577\) 15.1927 0.632482 0.316241 0.948679i \(-0.397579\pi\)
0.316241 + 0.948679i \(0.397579\pi\)
\(578\) 0 0
\(579\) 19.9801 0.830346
\(580\) 0 0
\(581\) −4.63400 −0.192251
\(582\) 0 0
\(583\) 13.4948 0.558899
\(584\) 0 0
\(585\) −10.5998 −0.438249
\(586\) 0 0
\(587\) −30.7051 −1.26734 −0.633668 0.773605i \(-0.718451\pi\)
−0.633668 + 0.773605i \(0.718451\pi\)
\(588\) 0 0
\(589\) 22.1932 0.914456
\(590\) 0 0
\(591\) 0.0698796 0.00287446
\(592\) 0 0
\(593\) −21.4757 −0.881902 −0.440951 0.897531i \(-0.645359\pi\)
−0.440951 + 0.897531i \(0.645359\pi\)
\(594\) 0 0
\(595\) −0.623352 −0.0255549
\(596\) 0 0
\(597\) 11.8741 0.485975
\(598\) 0 0
\(599\) 26.7025 1.09104 0.545518 0.838099i \(-0.316333\pi\)
0.545518 + 0.838099i \(0.316333\pi\)
\(600\) 0 0
\(601\) −7.19053 −0.293308 −0.146654 0.989188i \(-0.546850\pi\)
−0.146654 + 0.989188i \(0.546850\pi\)
\(602\) 0 0
\(603\) 15.9353 0.648934
\(604\) 0 0
\(605\) −2.59882 −0.105657
\(606\) 0 0
\(607\) −5.73930 −0.232951 −0.116475 0.993194i \(-0.537160\pi\)
−0.116475 + 0.993194i \(0.537160\pi\)
\(608\) 0 0
\(609\) −0.756515 −0.0306555
\(610\) 0 0
\(611\) 18.3813 0.743628
\(612\) 0 0
\(613\) −10.7670 −0.434875 −0.217437 0.976074i \(-0.569770\pi\)
−0.217437 + 0.976074i \(0.569770\pi\)
\(614\) 0 0
\(615\) 3.04205 0.122667
\(616\) 0 0
\(617\) 5.32012 0.214180 0.107090 0.994249i \(-0.465847\pi\)
0.107090 + 0.994249i \(0.465847\pi\)
\(618\) 0 0
\(619\) −30.6564 −1.23219 −0.616093 0.787673i \(-0.711285\pi\)
−0.616093 + 0.787673i \(0.711285\pi\)
\(620\) 0 0
\(621\) 19.7879 0.794060
\(622\) 0 0
\(623\) −8.02597 −0.321554
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −21.2869 −0.850117
\(628\) 0 0
\(629\) −13.1135 −0.522871
\(630\) 0 0
\(631\) −7.43468 −0.295970 −0.147985 0.988990i \(-0.547279\pi\)
−0.147985 + 0.988990i \(0.547279\pi\)
\(632\) 0 0
\(633\) −0.501855 −0.0199470
\(634\) 0 0
\(635\) −10.9795 −0.435707
\(636\) 0 0
\(637\) −37.8826 −1.50096
\(638\) 0 0
\(639\) 30.1783 1.19383
\(640\) 0 0
\(641\) −18.9034 −0.746639 −0.373319 0.927703i \(-0.621780\pi\)
−0.373319 + 0.927703i \(0.621780\pi\)
\(642\) 0 0
\(643\) −27.5023 −1.08459 −0.542293 0.840189i \(-0.682444\pi\)
−0.542293 + 0.840189i \(0.682444\pi\)
\(644\) 0 0
\(645\) 2.40829 0.0948263
\(646\) 0 0
\(647\) −31.9756 −1.25709 −0.628545 0.777773i \(-0.716349\pi\)
−0.628545 + 0.777773i \(0.716349\pi\)
\(648\) 0 0
\(649\) −28.0743 −1.10201
\(650\) 0 0
\(651\) 1.54366 0.0605010
\(652\) 0 0
\(653\) 15.4234 0.603563 0.301781 0.953377i \(-0.402419\pi\)
0.301781 + 0.953377i \(0.402419\pi\)
\(654\) 0 0
\(655\) 6.21015 0.242651
\(656\) 0 0
\(657\) −1.05702 −0.0412381
\(658\) 0 0
\(659\) −5.96811 −0.232485 −0.116242 0.993221i \(-0.537085\pi\)
−0.116242 + 0.993221i \(0.537085\pi\)
\(660\) 0 0
\(661\) −16.7464 −0.651358 −0.325679 0.945480i \(-0.605593\pi\)
−0.325679 + 0.945480i \(0.605593\pi\)
\(662\) 0 0
\(663\) 7.87665 0.305904
\(664\) 0 0
\(665\) −3.24509 −0.125839
\(666\) 0 0
\(667\) 5.98248 0.231642
\(668\) 0 0
\(669\) 20.5760 0.795513
\(670\) 0 0
\(671\) 14.1140 0.544866
\(672\) 0 0
\(673\) 30.4089 1.17218 0.586088 0.810247i \(-0.300667\pi\)
0.586088 + 0.810247i \(0.300667\pi\)
\(674\) 0 0
\(675\) 5.14112 0.197882
\(676\) 0 0
\(677\) 46.1409 1.77334 0.886669 0.462405i \(-0.153013\pi\)
0.886669 + 0.462405i \(0.153013\pi\)
\(678\) 0 0
\(679\) 4.19323 0.160921
\(680\) 0 0
\(681\) 23.9782 0.918845
\(682\) 0 0
\(683\) −25.1563 −0.962579 −0.481290 0.876562i \(-0.659831\pi\)
−0.481290 + 0.876562i \(0.659831\pi\)
\(684\) 0 0
\(685\) −21.8960 −0.836604
\(686\) 0 0
\(687\) 27.8997 1.06444
\(688\) 0 0
\(689\) −25.9951 −0.990334
\(690\) 0 0
\(691\) 44.0863 1.67712 0.838561 0.544808i \(-0.183397\pi\)
0.838561 + 0.544808i \(0.183397\pi\)
\(692\) 0 0
\(693\) 2.55186 0.0969373
\(694\) 0 0
\(695\) −6.30922 −0.239322
\(696\) 0 0
\(697\) 3.89603 0.147572
\(698\) 0 0
\(699\) −18.0942 −0.684384
\(700\) 0 0
\(701\) 0.896274 0.0338518 0.0169259 0.999857i \(-0.494612\pi\)
0.0169259 + 0.999857i \(0.494612\pi\)
\(702\) 0 0
\(703\) −68.2675 −2.57476
\(704\) 0 0
\(705\) −3.45525 −0.130132
\(706\) 0 0
\(707\) 4.52267 0.170093
\(708\) 0 0
\(709\) 15.9836 0.600277 0.300138 0.953896i \(-0.402967\pi\)
0.300138 + 0.953896i \(0.402967\pi\)
\(710\) 0 0
\(711\) −8.04798 −0.301823
\(712\) 0 0
\(713\) −12.2072 −0.457164
\(714\) 0 0
\(715\) −16.1832 −0.605216
\(716\) 0 0
\(717\) 29.0647 1.08544
\(718\) 0 0
\(719\) 19.7820 0.737744 0.368872 0.929480i \(-0.379744\pi\)
0.368872 + 0.929480i \(0.379744\pi\)
\(720\) 0 0
\(721\) −6.96345 −0.259332
\(722\) 0 0
\(723\) −9.54720 −0.355064
\(724\) 0 0
\(725\) 1.55432 0.0577259
\(726\) 0 0
\(727\) 5.00706 0.185702 0.0928508 0.995680i \(-0.470402\pi\)
0.0928508 + 0.995680i \(0.470402\pi\)
\(728\) 0 0
\(729\) 15.6184 0.578461
\(730\) 0 0
\(731\) 3.08435 0.114079
\(732\) 0 0
\(733\) 2.15219 0.0794931 0.0397465 0.999210i \(-0.487345\pi\)
0.0397465 + 0.999210i \(0.487345\pi\)
\(734\) 0 0
\(735\) 7.12102 0.262663
\(736\) 0 0
\(737\) 24.3289 0.896168
\(738\) 0 0
\(739\) 21.2749 0.782609 0.391305 0.920261i \(-0.372024\pi\)
0.391305 + 0.920261i \(0.372024\pi\)
\(740\) 0 0
\(741\) 41.0049 1.50635
\(742\) 0 0
\(743\) 40.7480 1.49490 0.747450 0.664318i \(-0.231278\pi\)
0.747450 + 0.664318i \(0.231278\pi\)
\(744\) 0 0
\(745\) 10.3862 0.380521
\(746\) 0 0
\(747\) 18.9706 0.694097
\(748\) 0 0
\(749\) 7.71836 0.282023
\(750\) 0 0
\(751\) 20.8596 0.761179 0.380590 0.924744i \(-0.375721\pi\)
0.380590 + 0.924744i \(0.375721\pi\)
\(752\) 0 0
\(753\) −12.8150 −0.467004
\(754\) 0 0
\(755\) −17.0266 −0.619660
\(756\) 0 0
\(757\) 19.9492 0.725064 0.362532 0.931971i \(-0.381912\pi\)
0.362532 + 0.931971i \(0.381912\pi\)
\(758\) 0 0
\(759\) 11.7087 0.424998
\(760\) 0 0
\(761\) 13.7778 0.499446 0.249723 0.968317i \(-0.419660\pi\)
0.249723 + 0.968317i \(0.419660\pi\)
\(762\) 0 0
\(763\) 2.71751 0.0983806
\(764\) 0 0
\(765\) 2.55186 0.0922628
\(766\) 0 0
\(767\) 54.0794 1.95270
\(768\) 0 0
\(769\) −6.89137 −0.248509 −0.124255 0.992250i \(-0.539654\pi\)
−0.124255 + 0.992250i \(0.539654\pi\)
\(770\) 0 0
\(771\) 24.2072 0.871801
\(772\) 0 0
\(773\) 16.2355 0.583951 0.291976 0.956426i \(-0.405687\pi\)
0.291976 + 0.956426i \(0.405687\pi\)
\(774\) 0 0
\(775\) −3.17157 −0.113926
\(776\) 0 0
\(777\) −4.74839 −0.170348
\(778\) 0 0
\(779\) 20.2822 0.726687
\(780\) 0 0
\(781\) 46.0743 1.64867
\(782\) 0 0
\(783\) 7.99093 0.285572
\(784\) 0 0
\(785\) 5.45381 0.194655
\(786\) 0 0
\(787\) 21.2993 0.759238 0.379619 0.925143i \(-0.376055\pi\)
0.379619 + 0.925143i \(0.376055\pi\)
\(788\) 0 0
\(789\) −22.2326 −0.791501
\(790\) 0 0
\(791\) 3.70770 0.131831
\(792\) 0 0
\(793\) −27.1878 −0.965468
\(794\) 0 0
\(795\) 4.88646 0.173305
\(796\) 0 0
\(797\) 14.7159 0.521264 0.260632 0.965438i \(-0.416069\pi\)
0.260632 + 0.965438i \(0.416069\pi\)
\(798\) 0 0
\(799\) −4.42522 −0.156553
\(800\) 0 0
\(801\) 32.8565 1.16093
\(802\) 0 0
\(803\) −1.61379 −0.0569493
\(804\) 0 0
\(805\) 1.78494 0.0629108
\(806\) 0 0
\(807\) 9.43062 0.331973
\(808\) 0 0
\(809\) −17.7970 −0.625708 −0.312854 0.949801i \(-0.601285\pi\)
−0.312854 + 0.949801i \(0.601285\pi\)
\(810\) 0 0
\(811\) 3.01742 0.105956 0.0529779 0.998596i \(-0.483129\pi\)
0.0529779 + 0.998596i \(0.483129\pi\)
\(812\) 0 0
\(813\) −11.3597 −0.398400
\(814\) 0 0
\(815\) −17.4308 −0.610576
\(816\) 0 0
\(817\) 16.0568 0.561755
\(818\) 0 0
\(819\) −4.91565 −0.171767
\(820\) 0 0
\(821\) 38.6184 1.34779 0.673897 0.738826i \(-0.264619\pi\)
0.673897 + 0.738826i \(0.264619\pi\)
\(822\) 0 0
\(823\) 41.1720 1.43516 0.717582 0.696474i \(-0.245249\pi\)
0.717582 + 0.696474i \(0.245249\pi\)
\(824\) 0 0
\(825\) 3.04205 0.105911
\(826\) 0 0
\(827\) 51.3645 1.78612 0.893059 0.449939i \(-0.148554\pi\)
0.893059 + 0.449939i \(0.148554\pi\)
\(828\) 0 0
\(829\) 33.7412 1.17188 0.585940 0.810354i \(-0.300725\pi\)
0.585940 + 0.810354i \(0.300725\pi\)
\(830\) 0 0
\(831\) 24.5013 0.849940
\(832\) 0 0
\(833\) 9.12006 0.315991
\(834\) 0 0
\(835\) 18.6314 0.644767
\(836\) 0 0
\(837\) −16.3054 −0.563598
\(838\) 0 0
\(839\) 17.7869 0.614072 0.307036 0.951698i \(-0.400663\pi\)
0.307036 + 0.951698i \(0.400663\pi\)
\(840\) 0 0
\(841\) −26.5841 −0.916693
\(842\) 0 0
\(843\) −11.1318 −0.383400
\(844\) 0 0
\(845\) 18.1736 0.625191
\(846\) 0 0
\(847\) −1.20520 −0.0414111
\(848\) 0 0
\(849\) 4.15619 0.142640
\(850\) 0 0
\(851\) 37.5500 1.28720
\(852\) 0 0
\(853\) 6.12952 0.209871 0.104935 0.994479i \(-0.466536\pi\)
0.104935 + 0.994479i \(0.466536\pi\)
\(854\) 0 0
\(855\) 13.2847 0.454327
\(856\) 0 0
\(857\) −39.7072 −1.35637 −0.678186 0.734890i \(-0.737234\pi\)
−0.678186 + 0.734890i \(0.737234\pi\)
\(858\) 0 0
\(859\) −4.88351 −0.166623 −0.0833117 0.996524i \(-0.526550\pi\)
−0.0833117 + 0.996524i \(0.526550\pi\)
\(860\) 0 0
\(861\) 1.41074 0.0480780
\(862\) 0 0
\(863\) 45.1975 1.53854 0.769271 0.638923i \(-0.220620\pi\)
0.769271 + 0.638923i \(0.220620\pi\)
\(864\) 0 0
\(865\) 6.38131 0.216971
\(866\) 0 0
\(867\) 15.9458 0.541548
\(868\) 0 0
\(869\) −12.2871 −0.416813
\(870\) 0 0
\(871\) −46.8648 −1.58795
\(872\) 0 0
\(873\) −17.1661 −0.580986
\(874\) 0 0
\(875\) 0.463747 0.0156775
\(876\) 0 0
\(877\) −20.3305 −0.686511 −0.343255 0.939242i \(-0.611530\pi\)
−0.343255 + 0.939242i \(0.611530\pi\)
\(878\) 0 0
\(879\) 20.9855 0.707824
\(880\) 0 0
\(881\) 12.2102 0.411371 0.205685 0.978618i \(-0.434058\pi\)
0.205685 + 0.978618i \(0.434058\pi\)
\(882\) 0 0
\(883\) 26.4164 0.888982 0.444491 0.895783i \(-0.353385\pi\)
0.444491 + 0.895783i \(0.353385\pi\)
\(884\) 0 0
\(885\) −10.1656 −0.341715
\(886\) 0 0
\(887\) 42.4950 1.42684 0.713421 0.700736i \(-0.247145\pi\)
0.713421 + 0.700736i \(0.247145\pi\)
\(888\) 0 0
\(889\) −5.09171 −0.170770
\(890\) 0 0
\(891\) −0.868549 −0.0290975
\(892\) 0 0
\(893\) −23.0371 −0.770909
\(894\) 0 0
\(895\) −21.4828 −0.718092
\(896\) 0 0
\(897\) −22.5544 −0.753070
\(898\) 0 0
\(899\) −4.92963 −0.164412
\(900\) 0 0
\(901\) 6.25820 0.208491
\(902\) 0 0
\(903\) 1.11684 0.0371661
\(904\) 0 0
\(905\) 16.5228 0.549238
\(906\) 0 0
\(907\) 5.97009 0.198234 0.0991168 0.995076i \(-0.468398\pi\)
0.0991168 + 0.995076i \(0.468398\pi\)
\(908\) 0 0
\(909\) −18.5148 −0.614098
\(910\) 0 0
\(911\) 33.0306 1.09435 0.547177 0.837017i \(-0.315703\pi\)
0.547177 + 0.837017i \(0.315703\pi\)
\(912\) 0 0
\(913\) 28.9631 0.958539
\(914\) 0 0
\(915\) 5.11067 0.168953
\(916\) 0 0
\(917\) 2.87994 0.0951041
\(918\) 0 0
\(919\) −18.3501 −0.605313 −0.302657 0.953100i \(-0.597874\pi\)
−0.302657 + 0.953100i \(0.597874\pi\)
\(920\) 0 0
\(921\) −32.1954 −1.06088
\(922\) 0 0
\(923\) −88.7528 −2.92133
\(924\) 0 0
\(925\) 9.75592 0.320773
\(926\) 0 0
\(927\) 28.5068 0.936287
\(928\) 0 0
\(929\) 50.7648 1.66554 0.832770 0.553619i \(-0.186754\pi\)
0.832770 + 0.553619i \(0.186754\pi\)
\(930\) 0 0
\(931\) 47.4779 1.55603
\(932\) 0 0
\(933\) 0.514470 0.0168430
\(934\) 0 0
\(935\) 3.89603 0.127414
\(936\) 0 0
\(937\) 57.2804 1.87127 0.935634 0.352971i \(-0.114829\pi\)
0.935634 + 0.352971i \(0.114829\pi\)
\(938\) 0 0
\(939\) 23.6979 0.773351
\(940\) 0 0
\(941\) −59.3824 −1.93581 −0.967905 0.251315i \(-0.919137\pi\)
−0.967905 + 0.251315i \(0.919137\pi\)
\(942\) 0 0
\(943\) −11.1561 −0.363292
\(944\) 0 0
\(945\) 2.38418 0.0775574
\(946\) 0 0
\(947\) −15.2152 −0.494427 −0.247214 0.968961i \(-0.579515\pi\)
−0.247214 + 0.968961i \(0.579515\pi\)
\(948\) 0 0
\(949\) 3.10863 0.100911
\(950\) 0 0
\(951\) −27.6540 −0.896742
\(952\) 0 0
\(953\) 33.6640 1.09049 0.545243 0.838278i \(-0.316438\pi\)
0.545243 + 0.838278i \(0.316438\pi\)
\(954\) 0 0
\(955\) −3.89603 −0.126072
\(956\) 0 0
\(957\) 4.72831 0.152845
\(958\) 0 0
\(959\) −10.1542 −0.327897
\(960\) 0 0
\(961\) −20.9411 −0.675520
\(962\) 0 0
\(963\) −31.5972 −1.01821
\(964\) 0 0
\(965\) −19.0371 −0.612827
\(966\) 0 0
\(967\) 12.6075 0.405430 0.202715 0.979238i \(-0.435024\pi\)
0.202715 + 0.979238i \(0.435024\pi\)
\(968\) 0 0
\(969\) −9.87174 −0.317126
\(970\) 0 0
\(971\) −0.567180 −0.0182017 −0.00910084 0.999959i \(-0.502897\pi\)
−0.00910084 + 0.999959i \(0.502897\pi\)
\(972\) 0 0
\(973\) −2.92589 −0.0937996
\(974\) 0 0
\(975\) −5.85990 −0.187667
\(976\) 0 0
\(977\) 21.1220 0.675752 0.337876 0.941191i \(-0.390292\pi\)
0.337876 + 0.941191i \(0.390292\pi\)
\(978\) 0 0
\(979\) 50.1633 1.60323
\(980\) 0 0
\(981\) −11.1249 −0.355190
\(982\) 0 0
\(983\) 35.2583 1.12457 0.562283 0.826945i \(-0.309923\pi\)
0.562283 + 0.826945i \(0.309923\pi\)
\(984\) 0 0
\(985\) −0.0665816 −0.00212147
\(986\) 0 0
\(987\) −1.60236 −0.0510038
\(988\) 0 0
\(989\) −8.83190 −0.280838
\(990\) 0 0
\(991\) −11.9471 −0.379513 −0.189756 0.981831i \(-0.560770\pi\)
−0.189756 + 0.981831i \(0.560770\pi\)
\(992\) 0 0
\(993\) −26.3397 −0.835867
\(994\) 0 0
\(995\) −11.3137 −0.358669
\(996\) 0 0
\(997\) −10.5929 −0.335480 −0.167740 0.985831i \(-0.553647\pi\)
−0.167740 + 0.985831i \(0.553647\pi\)
\(998\) 0 0
\(999\) 50.1564 1.58688
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.j.1.2 4
4.3 odd 2 5120.2.a.p.1.3 4
8.3 odd 2 5120.2.a.i.1.2 4
8.5 even 2 5120.2.a.c.1.3 4
32.3 odd 8 1280.2.l.c.321.3 yes 8
32.5 even 8 1280.2.l.b.961.3 yes 8
32.11 odd 8 1280.2.l.c.961.3 yes 8
32.13 even 8 1280.2.l.b.321.3 8
32.19 odd 8 1280.2.l.e.321.2 yes 8
32.21 even 8 1280.2.l.h.961.2 yes 8
32.27 odd 8 1280.2.l.e.961.2 yes 8
32.29 even 8 1280.2.l.h.321.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1280.2.l.b.321.3 8 32.13 even 8
1280.2.l.b.961.3 yes 8 32.5 even 8
1280.2.l.c.321.3 yes 8 32.3 odd 8
1280.2.l.c.961.3 yes 8 32.11 odd 8
1280.2.l.e.321.2 yes 8 32.19 odd 8
1280.2.l.e.961.2 yes 8 32.27 odd 8
1280.2.l.h.321.2 yes 8 32.29 even 8
1280.2.l.h.961.2 yes 8 32.21 even 8
5120.2.a.c.1.3 4 8.5 even 2
5120.2.a.i.1.2 4 8.3 odd 2
5120.2.a.j.1.2 4 1.1 even 1 trivial
5120.2.a.p.1.3 4 4.3 odd 2