Properties

Label 1280.2.n.q
Level $1280$
Weight $2$
Character orbit 1280.n
Analytic conductor $10.221$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,2,Mod(767,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.767");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1280.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2208514587\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 1) q^{3} + ( - \beta_{6} + \beta_{4}) q^{5} - \beta_{6} q^{7} + (\beta_{3} - \beta_{2} - \beta_1 + 1) q^{9} + (\beta_{3} - \beta_{2} - 2 \beta_1 + 1) q^{11} + ( - \beta_{7} - \beta_{6} + \beta_{4}) q^{13}+ \cdots + ( - \beta_{3} - \beta_{2} - 5) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{17} - 16 q^{19} - 8 q^{27} - 16 q^{33} + 20 q^{35} + 8 q^{41} + 28 q^{43} - 8 q^{57} - 32 q^{59} - 28 q^{67} - 16 q^{73} + 20 q^{75} + 32 q^{81} + 44 q^{83} + 16 q^{97} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{20}^{5} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\zeta_{20}^{7} + \zeta_{20}^{6} - \zeta_{20}^{4} - \zeta_{20}^{3} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{20}^{7} + \zeta_{20}^{6} - \zeta_{20}^{4} + \zeta_{20}^{3} - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{20}^{4} - 2\zeta_{20}^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{20}^{7} + \zeta_{20}^{6} + \zeta_{20}^{5} - \zeta_{20}^{4} - \zeta_{20}^{3} + 2\zeta_{20}^{2} + 2\zeta_{20} - 1 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{20}^{7} - \zeta_{20}^{6} + \zeta_{20}^{4} + \zeta_{20}^{3} - 2\zeta_{20}^{2} + 1 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{20}^{7} - \zeta_{20}^{6} + \zeta_{20}^{5} + \zeta_{20}^{4} - \zeta_{20}^{3} - 2\zeta_{20}^{2} + 2\zeta_{20} + 1 \) Copy content Toggle raw display
\(\zeta_{20}\)\(=\) \( ( \beta_{7} + \beta_{5} + \beta_{3} - \beta_{2} - 2\beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{20}^{2}\)\(=\) \( ( -\beta_{7} + \beta_{5} - \beta_{3} - \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{20}^{3}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{5} + \beta_{3} - \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{20}^{4}\)\(=\) \( ( -\beta_{7} + \beta_{5} + 2\beta_{4} - \beta_{3} - \beta_{2} - 1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{20}^{5}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{20}^{6}\)\(=\) \( ( -\beta_{7} + \beta_{5} + 2\beta_{4} + \beta_{3} + \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{20}^{7}\)\(=\) \( ( \beta_{7} - 2\beta_{6} - \beta_{5} + \beta_{3} - \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(\beta_{1}\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
767.1
−0.587785 0.809017i
0.587785 0.809017i
0.951057 + 0.309017i
−0.951057 + 0.309017i
−0.587785 + 0.809017i
0.587785 + 0.809017i
0.951057 0.309017i
−0.951057 0.309017i
0 −0.618034 0.618034i 0 −1.90211 1.17557i 0 −1.90211 + 1.90211i 0 2.23607i 0
767.2 0 −0.618034 0.618034i 0 1.90211 + 1.17557i 0 1.90211 1.90211i 0 2.23607i 0
767.3 0 1.61803 + 1.61803i 0 −1.17557 + 1.90211i 0 −1.17557 + 1.17557i 0 2.23607i 0
767.4 0 1.61803 + 1.61803i 0 1.17557 1.90211i 0 1.17557 1.17557i 0 2.23607i 0
1023.1 0 −0.618034 + 0.618034i 0 −1.90211 + 1.17557i 0 −1.90211 1.90211i 0 2.23607i 0
1023.2 0 −0.618034 + 0.618034i 0 1.90211 1.17557i 0 1.90211 + 1.90211i 0 2.23607i 0
1023.3 0 1.61803 1.61803i 0 −1.17557 1.90211i 0 −1.17557 1.17557i 0 2.23607i 0
1023.4 0 1.61803 1.61803i 0 1.17557 + 1.90211i 0 1.17557 + 1.17557i 0 2.23607i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 767.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
20.e even 4 1 inner
40.i odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1280.2.n.q 8
4.b odd 2 1 1280.2.n.m 8
5.c odd 4 1 1280.2.n.m 8
8.b even 2 1 1280.2.n.m 8
8.d odd 2 1 inner 1280.2.n.q 8
16.e even 4 1 40.2.k.a 8
16.e even 4 1 160.2.o.a 8
16.f odd 4 1 40.2.k.a 8
16.f odd 4 1 160.2.o.a 8
20.e even 4 1 inner 1280.2.n.q 8
40.i odd 4 1 inner 1280.2.n.q 8
40.k even 4 1 1280.2.n.m 8
48.i odd 4 1 360.2.w.c 8
48.i odd 4 1 1440.2.bi.c 8
48.k even 4 1 360.2.w.c 8
48.k even 4 1 1440.2.bi.c 8
80.i odd 4 1 40.2.k.a 8
80.i odd 4 1 800.2.o.g 8
80.j even 4 1 40.2.k.a 8
80.j even 4 1 800.2.o.g 8
80.k odd 4 1 200.2.k.h 8
80.k odd 4 1 800.2.o.g 8
80.q even 4 1 200.2.k.h 8
80.q even 4 1 800.2.o.g 8
80.s even 4 1 160.2.o.a 8
80.s even 4 1 200.2.k.h 8
80.t odd 4 1 160.2.o.a 8
80.t odd 4 1 200.2.k.h 8
240.z odd 4 1 1440.2.bi.c 8
240.bb even 4 1 360.2.w.c 8
240.bd odd 4 1 360.2.w.c 8
240.bf even 4 1 1440.2.bi.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
40.2.k.a 8 16.e even 4 1
40.2.k.a 8 16.f odd 4 1
40.2.k.a 8 80.i odd 4 1
40.2.k.a 8 80.j even 4 1
160.2.o.a 8 16.e even 4 1
160.2.o.a 8 16.f odd 4 1
160.2.o.a 8 80.s even 4 1
160.2.o.a 8 80.t odd 4 1
200.2.k.h 8 80.k odd 4 1
200.2.k.h 8 80.q even 4 1
200.2.k.h 8 80.s even 4 1
200.2.k.h 8 80.t odd 4 1
360.2.w.c 8 48.i odd 4 1
360.2.w.c 8 48.k even 4 1
360.2.w.c 8 240.bb even 4 1
360.2.w.c 8 240.bd odd 4 1
800.2.o.g 8 80.i odd 4 1
800.2.o.g 8 80.j even 4 1
800.2.o.g 8 80.k odd 4 1
800.2.o.g 8 80.q even 4 1
1280.2.n.m 8 4.b odd 2 1
1280.2.n.m 8 5.c odd 4 1
1280.2.n.m 8 8.b even 2 1
1280.2.n.m 8 40.k even 4 1
1280.2.n.q 8 1.a even 1 1 trivial
1280.2.n.q 8 8.d odd 2 1 inner
1280.2.n.q 8 20.e even 4 1 inner
1280.2.n.q 8 40.i odd 4 1 inner
1440.2.bi.c 8 48.i odd 4 1
1440.2.bi.c 8 48.k even 4 1
1440.2.bi.c 8 240.z odd 4 1
1440.2.bi.c 8 240.bf even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1280, [\chi])\):

\( T_{3}^{4} - 2T_{3}^{3} + 2T_{3}^{2} + 4T_{3} + 4 \) Copy content Toggle raw display
\( T_{7}^{8} + 60T_{7}^{4} + 400 \) Copy content Toggle raw display
\( T_{13}^{8} + 360T_{13}^{4} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 2 T^{3} + 2 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{8} + 30T^{4} + 625 \) Copy content Toggle raw display
$7$ \( T^{8} + 60T^{4} + 400 \) Copy content Toggle raw display
$11$ \( (T^{4} + 12 T^{2} + 16)^{2} \) Copy content Toggle raw display
$13$ \( T^{8} + 360T^{4} + 400 \) Copy content Toggle raw display
$17$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$19$ \( (T + 2)^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + 1500 T^{4} + 250000 \) Copy content Toggle raw display
$29$ \( (T^{4} + 40 T^{2} + 80)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} + 100 T^{2} + 2000)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 360T^{4} + 400 \) Copy content Toggle raw display
$41$ \( (T^{2} - 2 T - 44)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} - 14 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 12060 T^{4} + 5856400 \) Copy content Toggle raw display
$53$ \( T^{8} + 360T^{4} + 400 \) Copy content Toggle raw display
$59$ \( (T^{2} + 8 T - 4)^{4} \) Copy content Toggle raw display
$61$ \( (T^{4} - 100 T^{2} + 80)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 14 T^{3} + \cdots + 484)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 180 T^{2} + 6480)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 8 T^{3} + \cdots + 6724)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 160 T^{2} + 1280)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} - 22 T^{3} + \cdots + 3364)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + 48 T^{2} + 256)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 8 T^{3} + 32 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
show more
show less