Properties

Label 1280.4.a.ba.1.3
Level $1280$
Weight $4$
Character 1280.1
Self dual yes
Analytic conductor $75.522$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(1,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(75.5224448073\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 21x^{4} + 38x^{3} + 93x^{2} - 108x - 60 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.90720\) of defining polynomial
Character \(\chi\) \(=\) 1280.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.51777 q^{3} -5.00000 q^{5} +5.13620 q^{7} -24.6964 q^{9} -31.3403 q^{11} +4.75340 q^{13} +7.58886 q^{15} +108.154 q^{17} +89.8913 q^{19} -7.79558 q^{21} -68.5157 q^{23} +25.0000 q^{25} +78.4633 q^{27} +16.5719 q^{29} +300.523 q^{31} +47.5675 q^{33} -25.6810 q^{35} -327.879 q^{37} -7.21458 q^{39} +73.4968 q^{41} -0.836008 q^{43} +123.482 q^{45} -228.335 q^{47} -316.619 q^{49} -164.153 q^{51} +647.393 q^{53} +156.702 q^{55} -136.434 q^{57} -753.676 q^{59} -290.838 q^{61} -126.845 q^{63} -23.7670 q^{65} -801.801 q^{67} +103.991 q^{69} +767.674 q^{71} +48.3194 q^{73} -37.9443 q^{75} -160.970 q^{77} -451.701 q^{79} +547.712 q^{81} -976.099 q^{83} -540.771 q^{85} -25.1524 q^{87} +1204.25 q^{89} +24.4144 q^{91} -456.126 q^{93} -449.456 q^{95} -559.147 q^{97} +773.992 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} - 30 q^{5} + 14 q^{7} + 54 q^{9} - 44 q^{11} + 30 q^{15} - 152 q^{19} - 4 q^{21} + 302 q^{23} + 150 q^{25} - 216 q^{27} + 132 q^{31} - 116 q^{33} - 70 q^{35} + 68 q^{37} + 300 q^{39} - 20 q^{41}+ \cdots - 5516 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.51777 −0.292095 −0.146048 0.989278i \(-0.546655\pi\)
−0.146048 + 0.989278i \(0.546655\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 5.13620 0.277328 0.138664 0.990339i \(-0.455719\pi\)
0.138664 + 0.990339i \(0.455719\pi\)
\(8\) 0 0
\(9\) −24.6964 −0.914680
\(10\) 0 0
\(11\) −31.3403 −0.859042 −0.429521 0.903057i \(-0.641318\pi\)
−0.429521 + 0.903057i \(0.641318\pi\)
\(12\) 0 0
\(13\) 4.75340 0.101412 0.0507060 0.998714i \(-0.483853\pi\)
0.0507060 + 0.998714i \(0.483853\pi\)
\(14\) 0 0
\(15\) 7.58886 0.130629
\(16\) 0 0
\(17\) 108.154 1.54301 0.771507 0.636221i \(-0.219503\pi\)
0.771507 + 0.636221i \(0.219503\pi\)
\(18\) 0 0
\(19\) 89.8913 1.08539 0.542697 0.839929i \(-0.317403\pi\)
0.542697 + 0.839929i \(0.317403\pi\)
\(20\) 0 0
\(21\) −7.79558 −0.0810064
\(22\) 0 0
\(23\) −68.5157 −0.621152 −0.310576 0.950548i \(-0.600522\pi\)
−0.310576 + 0.950548i \(0.600522\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) 78.4633 0.559269
\(28\) 0 0
\(29\) 16.5719 0.106115 0.0530573 0.998591i \(-0.483103\pi\)
0.0530573 + 0.998591i \(0.483103\pi\)
\(30\) 0 0
\(31\) 300.523 1.74115 0.870574 0.492037i \(-0.163748\pi\)
0.870574 + 0.492037i \(0.163748\pi\)
\(32\) 0 0
\(33\) 47.5675 0.250922
\(34\) 0 0
\(35\) −25.6810 −0.124025
\(36\) 0 0
\(37\) −327.879 −1.45684 −0.728419 0.685132i \(-0.759744\pi\)
−0.728419 + 0.685132i \(0.759744\pi\)
\(38\) 0 0
\(39\) −7.21458 −0.0296220
\(40\) 0 0
\(41\) 73.4968 0.279958 0.139979 0.990154i \(-0.455297\pi\)
0.139979 + 0.990154i \(0.455297\pi\)
\(42\) 0 0
\(43\) −0.836008 −0.00296489 −0.00148244 0.999999i \(-0.500472\pi\)
−0.00148244 + 0.999999i \(0.500472\pi\)
\(44\) 0 0
\(45\) 123.482 0.409057
\(46\) 0 0
\(47\) −228.335 −0.708639 −0.354319 0.935124i \(-0.615287\pi\)
−0.354319 + 0.935124i \(0.615287\pi\)
\(48\) 0 0
\(49\) −316.619 −0.923089
\(50\) 0 0
\(51\) −164.153 −0.450707
\(52\) 0 0
\(53\) 647.393 1.67785 0.838927 0.544244i \(-0.183183\pi\)
0.838927 + 0.544244i \(0.183183\pi\)
\(54\) 0 0
\(55\) 156.702 0.384175
\(56\) 0 0
\(57\) −136.434 −0.317038
\(58\) 0 0
\(59\) −753.676 −1.66305 −0.831527 0.555484i \(-0.812533\pi\)
−0.831527 + 0.555484i \(0.812533\pi\)
\(60\) 0 0
\(61\) −290.838 −0.610459 −0.305229 0.952279i \(-0.598733\pi\)
−0.305229 + 0.952279i \(0.598733\pi\)
\(62\) 0 0
\(63\) −126.845 −0.253667
\(64\) 0 0
\(65\) −23.7670 −0.0453528
\(66\) 0 0
\(67\) −801.801 −1.46202 −0.731012 0.682364i \(-0.760952\pi\)
−0.731012 + 0.682364i \(0.760952\pi\)
\(68\) 0 0
\(69\) 103.991 0.181436
\(70\) 0 0
\(71\) 767.674 1.28318 0.641592 0.767046i \(-0.278274\pi\)
0.641592 + 0.767046i \(0.278274\pi\)
\(72\) 0 0
\(73\) 48.3194 0.0774707 0.0387353 0.999250i \(-0.487667\pi\)
0.0387353 + 0.999250i \(0.487667\pi\)
\(74\) 0 0
\(75\) −37.9443 −0.0584191
\(76\) 0 0
\(77\) −160.970 −0.238237
\(78\) 0 0
\(79\) −451.701 −0.643296 −0.321648 0.946859i \(-0.604237\pi\)
−0.321648 + 0.946859i \(0.604237\pi\)
\(80\) 0 0
\(81\) 547.712 0.751320
\(82\) 0 0
\(83\) −976.099 −1.29085 −0.645427 0.763822i \(-0.723320\pi\)
−0.645427 + 0.763822i \(0.723320\pi\)
\(84\) 0 0
\(85\) −540.771 −0.690057
\(86\) 0 0
\(87\) −25.1524 −0.0309956
\(88\) 0 0
\(89\) 1204.25 1.43428 0.717139 0.696930i \(-0.245451\pi\)
0.717139 + 0.696930i \(0.245451\pi\)
\(90\) 0 0
\(91\) 24.4144 0.0281244
\(92\) 0 0
\(93\) −456.126 −0.508581
\(94\) 0 0
\(95\) −449.456 −0.485403
\(96\) 0 0
\(97\) −559.147 −0.585287 −0.292643 0.956222i \(-0.594535\pi\)
−0.292643 + 0.956222i \(0.594535\pi\)
\(98\) 0 0
\(99\) 773.992 0.785749
\(100\) 0 0
\(101\) 542.070 0.534039 0.267020 0.963691i \(-0.413961\pi\)
0.267020 + 0.963691i \(0.413961\pi\)
\(102\) 0 0
\(103\) −1764.97 −1.68842 −0.844212 0.536009i \(-0.819931\pi\)
−0.844212 + 0.536009i \(0.819931\pi\)
\(104\) 0 0
\(105\) 38.9779 0.0362272
\(106\) 0 0
\(107\) −442.840 −0.400103 −0.200051 0.979785i \(-0.564111\pi\)
−0.200051 + 0.979785i \(0.564111\pi\)
\(108\) 0 0
\(109\) 1547.20 1.35959 0.679795 0.733403i \(-0.262069\pi\)
0.679795 + 0.733403i \(0.262069\pi\)
\(110\) 0 0
\(111\) 497.646 0.425536
\(112\) 0 0
\(113\) 788.524 0.656444 0.328222 0.944601i \(-0.393551\pi\)
0.328222 + 0.944601i \(0.393551\pi\)
\(114\) 0 0
\(115\) 342.578 0.277788
\(116\) 0 0
\(117\) −117.392 −0.0927596
\(118\) 0 0
\(119\) 555.501 0.427922
\(120\) 0 0
\(121\) −348.785 −0.262047
\(122\) 0 0
\(123\) −111.551 −0.0817744
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1543.92 1.07875 0.539374 0.842066i \(-0.318661\pi\)
0.539374 + 0.842066i \(0.318661\pi\)
\(128\) 0 0
\(129\) 1.26887 0.000866029 0
\(130\) 0 0
\(131\) −1933.26 −1.28938 −0.644692 0.764442i \(-0.723014\pi\)
−0.644692 + 0.764442i \(0.723014\pi\)
\(132\) 0 0
\(133\) 461.699 0.301010
\(134\) 0 0
\(135\) −392.317 −0.250113
\(136\) 0 0
\(137\) −478.247 −0.298244 −0.149122 0.988819i \(-0.547645\pi\)
−0.149122 + 0.988819i \(0.547645\pi\)
\(138\) 0 0
\(139\) −2057.45 −1.25547 −0.627735 0.778427i \(-0.716018\pi\)
−0.627735 + 0.778427i \(0.716018\pi\)
\(140\) 0 0
\(141\) 346.560 0.206990
\(142\) 0 0
\(143\) −148.973 −0.0871172
\(144\) 0 0
\(145\) −82.8595 −0.0474559
\(146\) 0 0
\(147\) 480.556 0.269630
\(148\) 0 0
\(149\) −2838.89 −1.56088 −0.780440 0.625231i \(-0.785005\pi\)
−0.780440 + 0.625231i \(0.785005\pi\)
\(150\) 0 0
\(151\) −2187.09 −1.17869 −0.589346 0.807881i \(-0.700615\pi\)
−0.589346 + 0.807881i \(0.700615\pi\)
\(152\) 0 0
\(153\) −2671.02 −1.41136
\(154\) 0 0
\(155\) −1502.62 −0.778665
\(156\) 0 0
\(157\) −936.231 −0.475920 −0.237960 0.971275i \(-0.576479\pi\)
−0.237960 + 0.971275i \(0.576479\pi\)
\(158\) 0 0
\(159\) −982.595 −0.490093
\(160\) 0 0
\(161\) −351.910 −0.172263
\(162\) 0 0
\(163\) −2329.68 −1.11948 −0.559738 0.828670i \(-0.689098\pi\)
−0.559738 + 0.828670i \(0.689098\pi\)
\(164\) 0 0
\(165\) −237.837 −0.112216
\(166\) 0 0
\(167\) 2020.42 0.936195 0.468097 0.883677i \(-0.344940\pi\)
0.468097 + 0.883677i \(0.344940\pi\)
\(168\) 0 0
\(169\) −2174.41 −0.989716
\(170\) 0 0
\(171\) −2219.99 −0.992788
\(172\) 0 0
\(173\) −912.153 −0.400866 −0.200433 0.979707i \(-0.564235\pi\)
−0.200433 + 0.979707i \(0.564235\pi\)
\(174\) 0 0
\(175\) 128.405 0.0554657
\(176\) 0 0
\(177\) 1143.91 0.485771
\(178\) 0 0
\(179\) −3226.95 −1.34745 −0.673726 0.738982i \(-0.735307\pi\)
−0.673726 + 0.738982i \(0.735307\pi\)
\(180\) 0 0
\(181\) 1003.43 0.412068 0.206034 0.978545i \(-0.433944\pi\)
0.206034 + 0.978545i \(0.433944\pi\)
\(182\) 0 0
\(183\) 441.426 0.178312
\(184\) 0 0
\(185\) 1639.40 0.651517
\(186\) 0 0
\(187\) −3389.59 −1.32551
\(188\) 0 0
\(189\) 403.003 0.155101
\(190\) 0 0
\(191\) −1272.08 −0.481907 −0.240953 0.970537i \(-0.577460\pi\)
−0.240953 + 0.970537i \(0.577460\pi\)
\(192\) 0 0
\(193\) −730.914 −0.272603 −0.136301 0.990667i \(-0.543522\pi\)
−0.136301 + 0.990667i \(0.543522\pi\)
\(194\) 0 0
\(195\) 36.0729 0.0132474
\(196\) 0 0
\(197\) 3582.02 1.29547 0.647737 0.761864i \(-0.275716\pi\)
0.647737 + 0.761864i \(0.275716\pi\)
\(198\) 0 0
\(199\) 2007.64 0.715166 0.357583 0.933881i \(-0.383601\pi\)
0.357583 + 0.933881i \(0.383601\pi\)
\(200\) 0 0
\(201\) 1216.95 0.427051
\(202\) 0 0
\(203\) 85.1165 0.0294286
\(204\) 0 0
\(205\) −367.484 −0.125201
\(206\) 0 0
\(207\) 1692.09 0.568156
\(208\) 0 0
\(209\) −2817.22 −0.932398
\(210\) 0 0
\(211\) −1414.79 −0.461603 −0.230802 0.973001i \(-0.574135\pi\)
−0.230802 + 0.973001i \(0.574135\pi\)
\(212\) 0 0
\(213\) −1165.15 −0.374812
\(214\) 0 0
\(215\) 4.18004 0.00132594
\(216\) 0 0
\(217\) 1543.55 0.482870
\(218\) 0 0
\(219\) −73.3379 −0.0226288
\(220\) 0 0
\(221\) 514.100 0.156480
\(222\) 0 0
\(223\) −1.69909 −0.000510221 0 −0.000255111 1.00000i \(-0.500081\pi\)
−0.000255111 1.00000i \(0.500081\pi\)
\(224\) 0 0
\(225\) −617.409 −0.182936
\(226\) 0 0
\(227\) −3374.87 −0.986775 −0.493387 0.869810i \(-0.664241\pi\)
−0.493387 + 0.869810i \(0.664241\pi\)
\(228\) 0 0
\(229\) −1330.69 −0.383994 −0.191997 0.981396i \(-0.561496\pi\)
−0.191997 + 0.981396i \(0.561496\pi\)
\(230\) 0 0
\(231\) 244.316 0.0695879
\(232\) 0 0
\(233\) 4373.02 1.22955 0.614776 0.788701i \(-0.289246\pi\)
0.614776 + 0.788701i \(0.289246\pi\)
\(234\) 0 0
\(235\) 1141.67 0.316913
\(236\) 0 0
\(237\) 685.580 0.187904
\(238\) 0 0
\(239\) −794.613 −0.215060 −0.107530 0.994202i \(-0.534294\pi\)
−0.107530 + 0.994202i \(0.534294\pi\)
\(240\) 0 0
\(241\) 617.471 0.165041 0.0825204 0.996589i \(-0.473703\pi\)
0.0825204 + 0.996589i \(0.473703\pi\)
\(242\) 0 0
\(243\) −2949.81 −0.778727
\(244\) 0 0
\(245\) 1583.10 0.412818
\(246\) 0 0
\(247\) 427.289 0.110072
\(248\) 0 0
\(249\) 1481.50 0.377052
\(250\) 0 0
\(251\) 907.026 0.228092 0.114046 0.993475i \(-0.463619\pi\)
0.114046 + 0.993475i \(0.463619\pi\)
\(252\) 0 0
\(253\) 2147.30 0.533596
\(254\) 0 0
\(255\) 820.767 0.201563
\(256\) 0 0
\(257\) −4350.70 −1.05599 −0.527994 0.849248i \(-0.677056\pi\)
−0.527994 + 0.849248i \(0.677056\pi\)
\(258\) 0 0
\(259\) −1684.05 −0.404022
\(260\) 0 0
\(261\) −409.266 −0.0970610
\(262\) 0 0
\(263\) 3606.18 0.845499 0.422750 0.906246i \(-0.361065\pi\)
0.422750 + 0.906246i \(0.361065\pi\)
\(264\) 0 0
\(265\) −3236.96 −0.750359
\(266\) 0 0
\(267\) −1827.78 −0.418946
\(268\) 0 0
\(269\) −6501.85 −1.47370 −0.736849 0.676057i \(-0.763687\pi\)
−0.736849 + 0.676057i \(0.763687\pi\)
\(270\) 0 0
\(271\) −1011.82 −0.226803 −0.113401 0.993549i \(-0.536175\pi\)
−0.113401 + 0.993549i \(0.536175\pi\)
\(272\) 0 0
\(273\) −37.0555 −0.00821502
\(274\) 0 0
\(275\) −783.508 −0.171808
\(276\) 0 0
\(277\) −2618.50 −0.567979 −0.283990 0.958827i \(-0.591658\pi\)
−0.283990 + 0.958827i \(0.591658\pi\)
\(278\) 0 0
\(279\) −7421.84 −1.59259
\(280\) 0 0
\(281\) −2302.29 −0.488766 −0.244383 0.969679i \(-0.578585\pi\)
−0.244383 + 0.969679i \(0.578585\pi\)
\(282\) 0 0
\(283\) −6591.42 −1.38452 −0.692260 0.721648i \(-0.743385\pi\)
−0.692260 + 0.721648i \(0.743385\pi\)
\(284\) 0 0
\(285\) 682.172 0.141784
\(286\) 0 0
\(287\) 377.494 0.0776403
\(288\) 0 0
\(289\) 6784.33 1.38089
\(290\) 0 0
\(291\) 848.658 0.170960
\(292\) 0 0
\(293\) 4765.54 0.950190 0.475095 0.879934i \(-0.342414\pi\)
0.475095 + 0.879934i \(0.342414\pi\)
\(294\) 0 0
\(295\) 3768.38 0.743741
\(296\) 0 0
\(297\) −2459.06 −0.480436
\(298\) 0 0
\(299\) −325.682 −0.0629923
\(300\) 0 0
\(301\) −4.29390 −0.000822247 0
\(302\) 0 0
\(303\) −822.739 −0.155990
\(304\) 0 0
\(305\) 1454.19 0.273005
\(306\) 0 0
\(307\) 117.958 0.0219290 0.0109645 0.999940i \(-0.496510\pi\)
0.0109645 + 0.999940i \(0.496510\pi\)
\(308\) 0 0
\(309\) 2678.82 0.493181
\(310\) 0 0
\(311\) 4085.06 0.744832 0.372416 0.928066i \(-0.378530\pi\)
0.372416 + 0.928066i \(0.378530\pi\)
\(312\) 0 0
\(313\) −904.680 −0.163372 −0.0816861 0.996658i \(-0.526031\pi\)
−0.0816861 + 0.996658i \(0.526031\pi\)
\(314\) 0 0
\(315\) 634.227 0.113443
\(316\) 0 0
\(317\) 5437.26 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(318\) 0 0
\(319\) −519.369 −0.0911569
\(320\) 0 0
\(321\) 672.131 0.116868
\(322\) 0 0
\(323\) 9722.12 1.67478
\(324\) 0 0
\(325\) 118.835 0.0202824
\(326\) 0 0
\(327\) −2348.30 −0.397130
\(328\) 0 0
\(329\) −1172.77 −0.196526
\(330\) 0 0
\(331\) −5944.03 −0.987049 −0.493525 0.869732i \(-0.664292\pi\)
−0.493525 + 0.869732i \(0.664292\pi\)
\(332\) 0 0
\(333\) 8097.42 1.33254
\(334\) 0 0
\(335\) 4009.01 0.653837
\(336\) 0 0
\(337\) 5636.91 0.911164 0.455582 0.890194i \(-0.349431\pi\)
0.455582 + 0.890194i \(0.349431\pi\)
\(338\) 0 0
\(339\) −1196.80 −0.191744
\(340\) 0 0
\(341\) −9418.50 −1.49572
\(342\) 0 0
\(343\) −3387.93 −0.533327
\(344\) 0 0
\(345\) −519.956 −0.0811405
\(346\) 0 0
\(347\) 7761.12 1.20069 0.600344 0.799742i \(-0.295030\pi\)
0.600344 + 0.799742i \(0.295030\pi\)
\(348\) 0 0
\(349\) −8709.62 −1.33586 −0.667930 0.744224i \(-0.732819\pi\)
−0.667930 + 0.744224i \(0.732819\pi\)
\(350\) 0 0
\(351\) 372.968 0.0567166
\(352\) 0 0
\(353\) −986.323 −0.148716 −0.0743579 0.997232i \(-0.523691\pi\)
−0.0743579 + 0.997232i \(0.523691\pi\)
\(354\) 0 0
\(355\) −3838.37 −0.573858
\(356\) 0 0
\(357\) −843.124 −0.124994
\(358\) 0 0
\(359\) −11470.1 −1.68626 −0.843131 0.537708i \(-0.819290\pi\)
−0.843131 + 0.537708i \(0.819290\pi\)
\(360\) 0 0
\(361\) 1221.44 0.178078
\(362\) 0 0
\(363\) 529.376 0.0765428
\(364\) 0 0
\(365\) −241.597 −0.0346459
\(366\) 0 0
\(367\) −3330.42 −0.473697 −0.236848 0.971547i \(-0.576114\pi\)
−0.236848 + 0.971547i \(0.576114\pi\)
\(368\) 0 0
\(369\) −1815.10 −0.256072
\(370\) 0 0
\(371\) 3325.14 0.465317
\(372\) 0 0
\(373\) −9398.88 −1.30471 −0.652354 0.757915i \(-0.726218\pi\)
−0.652354 + 0.757915i \(0.726218\pi\)
\(374\) 0 0
\(375\) 189.722 0.0261258
\(376\) 0 0
\(377\) 78.7729 0.0107613
\(378\) 0 0
\(379\) 3840.58 0.520521 0.260260 0.965538i \(-0.416192\pi\)
0.260260 + 0.965538i \(0.416192\pi\)
\(380\) 0 0
\(381\) −2343.32 −0.315097
\(382\) 0 0
\(383\) 2969.97 0.396236 0.198118 0.980178i \(-0.436517\pi\)
0.198118 + 0.980178i \(0.436517\pi\)
\(384\) 0 0
\(385\) 804.850 0.106543
\(386\) 0 0
\(387\) 20.6464 0.00271192
\(388\) 0 0
\(389\) 8349.10 1.08822 0.544108 0.839015i \(-0.316868\pi\)
0.544108 + 0.839015i \(0.316868\pi\)
\(390\) 0 0
\(391\) −7410.26 −0.958447
\(392\) 0 0
\(393\) 2934.24 0.376623
\(394\) 0 0
\(395\) 2258.51 0.287691
\(396\) 0 0
\(397\) 4506.27 0.569680 0.284840 0.958575i \(-0.408060\pi\)
0.284840 + 0.958575i \(0.408060\pi\)
\(398\) 0 0
\(399\) −700.754 −0.0879238
\(400\) 0 0
\(401\) −7654.44 −0.953228 −0.476614 0.879113i \(-0.658136\pi\)
−0.476614 + 0.879113i \(0.658136\pi\)
\(402\) 0 0
\(403\) 1428.51 0.176573
\(404\) 0 0
\(405\) −2738.56 −0.336001
\(406\) 0 0
\(407\) 10275.8 1.25148
\(408\) 0 0
\(409\) −2603.53 −0.314758 −0.157379 0.987538i \(-0.550304\pi\)
−0.157379 + 0.987538i \(0.550304\pi\)
\(410\) 0 0
\(411\) 725.870 0.0871156
\(412\) 0 0
\(413\) −3871.03 −0.461212
\(414\) 0 0
\(415\) 4880.50 0.577287
\(416\) 0 0
\(417\) 3122.74 0.366717
\(418\) 0 0
\(419\) −525.993 −0.0613280 −0.0306640 0.999530i \(-0.509762\pi\)
−0.0306640 + 0.999530i \(0.509762\pi\)
\(420\) 0 0
\(421\) 15126.1 1.75107 0.875534 0.483157i \(-0.160510\pi\)
0.875534 + 0.483157i \(0.160510\pi\)
\(422\) 0 0
\(423\) 5639.03 0.648178
\(424\) 0 0
\(425\) 2703.86 0.308603
\(426\) 0 0
\(427\) −1493.80 −0.169298
\(428\) 0 0
\(429\) 226.107 0.0254465
\(430\) 0 0
\(431\) −4887.92 −0.546271 −0.273135 0.961976i \(-0.588061\pi\)
−0.273135 + 0.961976i \(0.588061\pi\)
\(432\) 0 0
\(433\) −6944.15 −0.770704 −0.385352 0.922770i \(-0.625920\pi\)
−0.385352 + 0.922770i \(0.625920\pi\)
\(434\) 0 0
\(435\) 125.762 0.0138617
\(436\) 0 0
\(437\) −6158.96 −0.674195
\(438\) 0 0
\(439\) 577.528 0.0627879 0.0313940 0.999507i \(-0.490005\pi\)
0.0313940 + 0.999507i \(0.490005\pi\)
\(440\) 0 0
\(441\) 7819.35 0.844331
\(442\) 0 0
\(443\) −7039.42 −0.754973 −0.377486 0.926015i \(-0.623211\pi\)
−0.377486 + 0.926015i \(0.623211\pi\)
\(444\) 0 0
\(445\) −6021.27 −0.641429
\(446\) 0 0
\(447\) 4308.79 0.455926
\(448\) 0 0
\(449\) 6396.99 0.672366 0.336183 0.941797i \(-0.390864\pi\)
0.336183 + 0.941797i \(0.390864\pi\)
\(450\) 0 0
\(451\) −2303.41 −0.240496
\(452\) 0 0
\(453\) 3319.50 0.344291
\(454\) 0 0
\(455\) −122.072 −0.0125776
\(456\) 0 0
\(457\) 7015.85 0.718135 0.359068 0.933312i \(-0.383095\pi\)
0.359068 + 0.933312i \(0.383095\pi\)
\(458\) 0 0
\(459\) 8486.14 0.862961
\(460\) 0 0
\(461\) 13374.1 1.35118 0.675588 0.737279i \(-0.263890\pi\)
0.675588 + 0.737279i \(0.263890\pi\)
\(462\) 0 0
\(463\) −15414.3 −1.54722 −0.773611 0.633661i \(-0.781551\pi\)
−0.773611 + 0.633661i \(0.781551\pi\)
\(464\) 0 0
\(465\) 2280.63 0.227445
\(466\) 0 0
\(467\) −1796.43 −0.178006 −0.0890032 0.996031i \(-0.528368\pi\)
−0.0890032 + 0.996031i \(0.528368\pi\)
\(468\) 0 0
\(469\) −4118.21 −0.405461
\(470\) 0 0
\(471\) 1420.99 0.139014
\(472\) 0 0
\(473\) 26.2008 0.00254696
\(474\) 0 0
\(475\) 2247.28 0.217079
\(476\) 0 0
\(477\) −15988.3 −1.53470
\(478\) 0 0
\(479\) −11789.0 −1.12454 −0.562270 0.826954i \(-0.690072\pi\)
−0.562270 + 0.826954i \(0.690072\pi\)
\(480\) 0 0
\(481\) −1558.54 −0.147741
\(482\) 0 0
\(483\) 534.119 0.0503173
\(484\) 0 0
\(485\) 2795.74 0.261748
\(486\) 0 0
\(487\) 18083.0 1.68258 0.841291 0.540582i \(-0.181796\pi\)
0.841291 + 0.540582i \(0.181796\pi\)
\(488\) 0 0
\(489\) 3535.92 0.326994
\(490\) 0 0
\(491\) 11259.2 1.03487 0.517435 0.855722i \(-0.326887\pi\)
0.517435 + 0.855722i \(0.326887\pi\)
\(492\) 0 0
\(493\) 1792.32 0.163736
\(494\) 0 0
\(495\) −3869.96 −0.351397
\(496\) 0 0
\(497\) 3942.92 0.355864
\(498\) 0 0
\(499\) 4589.82 0.411761 0.205880 0.978577i \(-0.433994\pi\)
0.205880 + 0.978577i \(0.433994\pi\)
\(500\) 0 0
\(501\) −3066.53 −0.273458
\(502\) 0 0
\(503\) −5257.43 −0.466038 −0.233019 0.972472i \(-0.574860\pi\)
−0.233019 + 0.972472i \(0.574860\pi\)
\(504\) 0 0
\(505\) −2710.35 −0.238830
\(506\) 0 0
\(507\) 3300.25 0.289091
\(508\) 0 0
\(509\) 2451.99 0.213522 0.106761 0.994285i \(-0.465952\pi\)
0.106761 + 0.994285i \(0.465952\pi\)
\(510\) 0 0
\(511\) 248.178 0.0214848
\(512\) 0 0
\(513\) 7053.17 0.607027
\(514\) 0 0
\(515\) 8824.85 0.755086
\(516\) 0 0
\(517\) 7156.08 0.608750
\(518\) 0 0
\(519\) 1384.44 0.117091
\(520\) 0 0
\(521\) −10677.6 −0.897878 −0.448939 0.893562i \(-0.648198\pi\)
−0.448939 + 0.893562i \(0.648198\pi\)
\(522\) 0 0
\(523\) 19565.8 1.63585 0.817927 0.575323i \(-0.195124\pi\)
0.817927 + 0.575323i \(0.195124\pi\)
\(524\) 0 0
\(525\) −194.889 −0.0162013
\(526\) 0 0
\(527\) 32502.9 2.68662
\(528\) 0 0
\(529\) −7472.60 −0.614170
\(530\) 0 0
\(531\) 18613.1 1.52116
\(532\) 0 0
\(533\) 349.360 0.0283911
\(534\) 0 0
\(535\) 2214.20 0.178931
\(536\) 0 0
\(537\) 4897.78 0.393584
\(538\) 0 0
\(539\) 9922.95 0.792972
\(540\) 0 0
\(541\) −3313.01 −0.263286 −0.131643 0.991297i \(-0.542025\pi\)
−0.131643 + 0.991297i \(0.542025\pi\)
\(542\) 0 0
\(543\) −1522.98 −0.120363
\(544\) 0 0
\(545\) −7736.02 −0.608027
\(546\) 0 0
\(547\) 25040.9 1.95735 0.978675 0.205414i \(-0.0658542\pi\)
0.978675 + 0.205414i \(0.0658542\pi\)
\(548\) 0 0
\(549\) 7182.64 0.558375
\(550\) 0 0
\(551\) 1489.67 0.115176
\(552\) 0 0
\(553\) −2320.03 −0.178404
\(554\) 0 0
\(555\) −2488.23 −0.190305
\(556\) 0 0
\(557\) −2708.11 −0.206008 −0.103004 0.994681i \(-0.532845\pi\)
−0.103004 + 0.994681i \(0.532845\pi\)
\(558\) 0 0
\(559\) −3.97388 −0.000300675 0
\(560\) 0 0
\(561\) 5144.62 0.387177
\(562\) 0 0
\(563\) 9374.67 0.701768 0.350884 0.936419i \(-0.385881\pi\)
0.350884 + 0.936419i \(0.385881\pi\)
\(564\) 0 0
\(565\) −3942.62 −0.293571
\(566\) 0 0
\(567\) 2813.16 0.208363
\(568\) 0 0
\(569\) −12092.5 −0.890938 −0.445469 0.895297i \(-0.646963\pi\)
−0.445469 + 0.895297i \(0.646963\pi\)
\(570\) 0 0
\(571\) 10847.4 0.795008 0.397504 0.917601i \(-0.369877\pi\)
0.397504 + 0.917601i \(0.369877\pi\)
\(572\) 0 0
\(573\) 1930.72 0.140763
\(574\) 0 0
\(575\) −1712.89 −0.124230
\(576\) 0 0
\(577\) −22325.8 −1.61080 −0.805402 0.592729i \(-0.798051\pi\)
−0.805402 + 0.592729i \(0.798051\pi\)
\(578\) 0 0
\(579\) 1109.36 0.0796261
\(580\) 0 0
\(581\) −5013.44 −0.357990
\(582\) 0 0
\(583\) −20289.5 −1.44135
\(584\) 0 0
\(585\) 586.959 0.0414833
\(586\) 0 0
\(587\) −281.244 −0.0197754 −0.00988770 0.999951i \(-0.503147\pi\)
−0.00988770 + 0.999951i \(0.503147\pi\)
\(588\) 0 0
\(589\) 27014.4 1.88983
\(590\) 0 0
\(591\) −5436.69 −0.378402
\(592\) 0 0
\(593\) −934.658 −0.0647248 −0.0323624 0.999476i \(-0.510303\pi\)
−0.0323624 + 0.999476i \(0.510303\pi\)
\(594\) 0 0
\(595\) −2777.51 −0.191372
\(596\) 0 0
\(597\) −3047.14 −0.208897
\(598\) 0 0
\(599\) −15278.2 −1.04215 −0.521077 0.853510i \(-0.674470\pi\)
−0.521077 + 0.853510i \(0.674470\pi\)
\(600\) 0 0
\(601\) −10958.6 −0.743780 −0.371890 0.928277i \(-0.621290\pi\)
−0.371890 + 0.928277i \(0.621290\pi\)
\(602\) 0 0
\(603\) 19801.6 1.33728
\(604\) 0 0
\(605\) 1743.92 0.117191
\(606\) 0 0
\(607\) 24850.2 1.66167 0.830837 0.556515i \(-0.187862\pi\)
0.830837 + 0.556515i \(0.187862\pi\)
\(608\) 0 0
\(609\) −129.187 −0.00859596
\(610\) 0 0
\(611\) −1085.37 −0.0718645
\(612\) 0 0
\(613\) 3961.58 0.261022 0.130511 0.991447i \(-0.458338\pi\)
0.130511 + 0.991447i \(0.458338\pi\)
\(614\) 0 0
\(615\) 557.757 0.0365706
\(616\) 0 0
\(617\) −20732.3 −1.35275 −0.676377 0.736555i \(-0.736451\pi\)
−0.676377 + 0.736555i \(0.736451\pi\)
\(618\) 0 0
\(619\) −7801.96 −0.506603 −0.253301 0.967387i \(-0.581516\pi\)
−0.253301 + 0.967387i \(0.581516\pi\)
\(620\) 0 0
\(621\) −5375.97 −0.347391
\(622\) 0 0
\(623\) 6185.29 0.397766
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 4275.90 0.272349
\(628\) 0 0
\(629\) −35461.5 −2.24792
\(630\) 0 0
\(631\) −9359.85 −0.590507 −0.295253 0.955419i \(-0.595404\pi\)
−0.295253 + 0.955419i \(0.595404\pi\)
\(632\) 0 0
\(633\) 2147.33 0.134832
\(634\) 0 0
\(635\) −7719.61 −0.482431
\(636\) 0 0
\(637\) −1505.02 −0.0936123
\(638\) 0 0
\(639\) −18958.8 −1.17370
\(640\) 0 0
\(641\) 19129.1 1.17871 0.589356 0.807873i \(-0.299381\pi\)
0.589356 + 0.807873i \(0.299381\pi\)
\(642\) 0 0
\(643\) −11243.5 −0.689582 −0.344791 0.938680i \(-0.612050\pi\)
−0.344791 + 0.938680i \(0.612050\pi\)
\(644\) 0 0
\(645\) −6.34435 −0.000387300 0
\(646\) 0 0
\(647\) 11887.6 0.722331 0.361166 0.932502i \(-0.382379\pi\)
0.361166 + 0.932502i \(0.382379\pi\)
\(648\) 0 0
\(649\) 23620.4 1.42863
\(650\) 0 0
\(651\) −2342.75 −0.141044
\(652\) 0 0
\(653\) −5327.46 −0.319264 −0.159632 0.987177i \(-0.551031\pi\)
−0.159632 + 0.987177i \(0.551031\pi\)
\(654\) 0 0
\(655\) 9666.28 0.576630
\(656\) 0 0
\(657\) −1193.31 −0.0708609
\(658\) 0 0
\(659\) 26016.2 1.53786 0.768929 0.639334i \(-0.220790\pi\)
0.768929 + 0.639334i \(0.220790\pi\)
\(660\) 0 0
\(661\) 5961.64 0.350803 0.175401 0.984497i \(-0.443878\pi\)
0.175401 + 0.984497i \(0.443878\pi\)
\(662\) 0 0
\(663\) −780.287 −0.0457071
\(664\) 0 0
\(665\) −2308.50 −0.134616
\(666\) 0 0
\(667\) −1135.43 −0.0659134
\(668\) 0 0
\(669\) 2.57883 0.000149033 0
\(670\) 0 0
\(671\) 9114.95 0.524410
\(672\) 0 0
\(673\) 17544.1 1.00487 0.502435 0.864615i \(-0.332438\pi\)
0.502435 + 0.864615i \(0.332438\pi\)
\(674\) 0 0
\(675\) 1961.58 0.111854
\(676\) 0 0
\(677\) 17000.0 0.965088 0.482544 0.875872i \(-0.339713\pi\)
0.482544 + 0.875872i \(0.339713\pi\)
\(678\) 0 0
\(679\) −2871.89 −0.162317
\(680\) 0 0
\(681\) 5122.28 0.288232
\(682\) 0 0
\(683\) −5386.68 −0.301780 −0.150890 0.988551i \(-0.548214\pi\)
−0.150890 + 0.988551i \(0.548214\pi\)
\(684\) 0 0
\(685\) 2391.23 0.133379
\(686\) 0 0
\(687\) 2019.69 0.112163
\(688\) 0 0
\(689\) 3077.32 0.170155
\(690\) 0 0
\(691\) −18049.0 −0.993658 −0.496829 0.867849i \(-0.665502\pi\)
−0.496829 + 0.867849i \(0.665502\pi\)
\(692\) 0 0
\(693\) 3975.37 0.217910
\(694\) 0 0
\(695\) 10287.2 0.561464
\(696\) 0 0
\(697\) 7948.99 0.431979
\(698\) 0 0
\(699\) −6637.24 −0.359147
\(700\) 0 0
\(701\) −7991.13 −0.430558 −0.215279 0.976553i \(-0.569066\pi\)
−0.215279 + 0.976553i \(0.569066\pi\)
\(702\) 0 0
\(703\) −29473.5 −1.58124
\(704\) 0 0
\(705\) −1732.80 −0.0925688
\(706\) 0 0
\(707\) 2784.18 0.148104
\(708\) 0 0
\(709\) 11306.8 0.598920 0.299460 0.954109i \(-0.403194\pi\)
0.299460 + 0.954109i \(0.403194\pi\)
\(710\) 0 0
\(711\) 11155.4 0.588410
\(712\) 0 0
\(713\) −20590.6 −1.08152
\(714\) 0 0
\(715\) 744.865 0.0389600
\(716\) 0 0
\(717\) 1206.04 0.0628180
\(718\) 0 0
\(719\) −30968.9 −1.60632 −0.803160 0.595763i \(-0.796850\pi\)
−0.803160 + 0.595763i \(0.796850\pi\)
\(720\) 0 0
\(721\) −9065.23 −0.468248
\(722\) 0 0
\(723\) −937.181 −0.0482076
\(724\) 0 0
\(725\) 414.298 0.0212229
\(726\) 0 0
\(727\) 26520.2 1.35293 0.676466 0.736474i \(-0.263511\pi\)
0.676466 + 0.736474i \(0.263511\pi\)
\(728\) 0 0
\(729\) −10311.1 −0.523858
\(730\) 0 0
\(731\) −90.4178 −0.00457486
\(732\) 0 0
\(733\) −15980.8 −0.805270 −0.402635 0.915361i \(-0.631906\pi\)
−0.402635 + 0.915361i \(0.631906\pi\)
\(734\) 0 0
\(735\) −2402.78 −0.120582
\(736\) 0 0
\(737\) 25128.7 1.25594
\(738\) 0 0
\(739\) 10163.8 0.505927 0.252964 0.967476i \(-0.418595\pi\)
0.252964 + 0.967476i \(0.418595\pi\)
\(740\) 0 0
\(741\) −648.528 −0.0321515
\(742\) 0 0
\(743\) −37765.7 −1.86472 −0.932360 0.361530i \(-0.882254\pi\)
−0.932360 + 0.361530i \(0.882254\pi\)
\(744\) 0 0
\(745\) 14194.5 0.698047
\(746\) 0 0
\(747\) 24106.1 1.18072
\(748\) 0 0
\(749\) −2274.51 −0.110960
\(750\) 0 0
\(751\) 20234.4 0.983175 0.491587 0.870828i \(-0.336417\pi\)
0.491587 + 0.870828i \(0.336417\pi\)
\(752\) 0 0
\(753\) −1376.66 −0.0666245
\(754\) 0 0
\(755\) 10935.4 0.527127
\(756\) 0 0
\(757\) −27066.9 −1.29956 −0.649778 0.760124i \(-0.725138\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(758\) 0 0
\(759\) −3259.12 −0.155861
\(760\) 0 0
\(761\) 30797.4 1.46702 0.733512 0.679677i \(-0.237880\pi\)
0.733512 + 0.679677i \(0.237880\pi\)
\(762\) 0 0
\(763\) 7946.74 0.377053
\(764\) 0 0
\(765\) 13355.1 0.631182
\(766\) 0 0
\(767\) −3582.52 −0.168654
\(768\) 0 0
\(769\) −35490.2 −1.66425 −0.832125 0.554588i \(-0.812876\pi\)
−0.832125 + 0.554588i \(0.812876\pi\)
\(770\) 0 0
\(771\) 6603.37 0.308449
\(772\) 0 0
\(773\) 37364.0 1.73854 0.869269 0.494339i \(-0.164590\pi\)
0.869269 + 0.494339i \(0.164590\pi\)
\(774\) 0 0
\(775\) 7513.09 0.348230
\(776\) 0 0
\(777\) 2556.01 0.118013
\(778\) 0 0
\(779\) 6606.72 0.303864
\(780\) 0 0
\(781\) −24059.1 −1.10231
\(782\) 0 0
\(783\) 1300.29 0.0593467
\(784\) 0 0
\(785\) 4681.16 0.212838
\(786\) 0 0
\(787\) −28529.7 −1.29222 −0.646108 0.763246i \(-0.723605\pi\)
−0.646108 + 0.763246i \(0.723605\pi\)
\(788\) 0 0
\(789\) −5473.35 −0.246967
\(790\) 0 0
\(791\) 4050.01 0.182051
\(792\) 0 0
\(793\) −1382.47 −0.0619078
\(794\) 0 0
\(795\) 4912.98 0.219176
\(796\) 0 0
\(797\) 7130.44 0.316905 0.158452 0.987367i \(-0.449350\pi\)
0.158452 + 0.987367i \(0.449350\pi\)
\(798\) 0 0
\(799\) −24695.3 −1.09344
\(800\) 0 0
\(801\) −29740.7 −1.31191
\(802\) 0 0
\(803\) −1514.35 −0.0665505
\(804\) 0 0
\(805\) 1759.55 0.0770385
\(806\) 0 0
\(807\) 9868.33 0.430461
\(808\) 0 0
\(809\) 11060.3 0.480665 0.240333 0.970691i \(-0.422743\pi\)
0.240333 + 0.970691i \(0.422743\pi\)
\(810\) 0 0
\(811\) 27381.5 1.18557 0.592784 0.805361i \(-0.298029\pi\)
0.592784 + 0.805361i \(0.298029\pi\)
\(812\) 0 0
\(813\) 1535.71 0.0662481
\(814\) 0 0
\(815\) 11648.4 0.500645
\(816\) 0 0
\(817\) −75.1498 −0.00321807
\(818\) 0 0
\(819\) −602.947 −0.0257249
\(820\) 0 0
\(821\) −30033.9 −1.27672 −0.638362 0.769736i \(-0.720388\pi\)
−0.638362 + 0.769736i \(0.720388\pi\)
\(822\) 0 0
\(823\) 3186.93 0.134981 0.0674906 0.997720i \(-0.478501\pi\)
0.0674906 + 0.997720i \(0.478501\pi\)
\(824\) 0 0
\(825\) 1189.19 0.0501844
\(826\) 0 0
\(827\) 18326.0 0.770563 0.385282 0.922799i \(-0.374104\pi\)
0.385282 + 0.922799i \(0.374104\pi\)
\(828\) 0 0
\(829\) −4370.27 −0.183095 −0.0915475 0.995801i \(-0.529181\pi\)
−0.0915475 + 0.995801i \(0.529181\pi\)
\(830\) 0 0
\(831\) 3974.28 0.165904
\(832\) 0 0
\(833\) −34243.7 −1.42434
\(834\) 0 0
\(835\) −10102.1 −0.418679
\(836\) 0 0
\(837\) 23580.1 0.973771
\(838\) 0 0
\(839\) −29789.0 −1.22578 −0.612890 0.790168i \(-0.709993\pi\)
−0.612890 + 0.790168i \(0.709993\pi\)
\(840\) 0 0
\(841\) −24114.4 −0.988740
\(842\) 0 0
\(843\) 3494.35 0.142766
\(844\) 0 0
\(845\) 10872.0 0.442614
\(846\) 0 0
\(847\) −1791.43 −0.0726732
\(848\) 0 0
\(849\) 10004.3 0.404412
\(850\) 0 0
\(851\) 22464.9 0.904918
\(852\) 0 0
\(853\) −39023.7 −1.56641 −0.783205 0.621764i \(-0.786416\pi\)
−0.783205 + 0.621764i \(0.786416\pi\)
\(854\) 0 0
\(855\) 11099.9 0.443988
\(856\) 0 0
\(857\) 2749.52 0.109594 0.0547969 0.998498i \(-0.482549\pi\)
0.0547969 + 0.998498i \(0.482549\pi\)
\(858\) 0 0
\(859\) −48225.6 −1.91553 −0.957763 0.287559i \(-0.907156\pi\)
−0.957763 + 0.287559i \(0.907156\pi\)
\(860\) 0 0
\(861\) −572.950 −0.0226784
\(862\) 0 0
\(863\) 12421.1 0.489942 0.244971 0.969530i \(-0.421222\pi\)
0.244971 + 0.969530i \(0.421222\pi\)
\(864\) 0 0
\(865\) 4560.77 0.179273
\(866\) 0 0
\(867\) −10297.1 −0.403353
\(868\) 0 0
\(869\) 14156.5 0.552618
\(870\) 0 0
\(871\) −3811.28 −0.148267
\(872\) 0 0
\(873\) 13808.9 0.535350
\(874\) 0 0
\(875\) −642.024 −0.0248050
\(876\) 0 0
\(877\) 38301.8 1.47475 0.737377 0.675482i \(-0.236064\pi\)
0.737377 + 0.675482i \(0.236064\pi\)
\(878\) 0 0
\(879\) −7233.00 −0.277546
\(880\) 0 0
\(881\) 14792.0 0.565671 0.282836 0.959168i \(-0.408725\pi\)
0.282836 + 0.959168i \(0.408725\pi\)
\(882\) 0 0
\(883\) −2064.99 −0.0787002 −0.0393501 0.999225i \(-0.512529\pi\)
−0.0393501 + 0.999225i \(0.512529\pi\)
\(884\) 0 0
\(885\) −5719.54 −0.217243
\(886\) 0 0
\(887\) 19268.8 0.729406 0.364703 0.931124i \(-0.381171\pi\)
0.364703 + 0.931124i \(0.381171\pi\)
\(888\) 0 0
\(889\) 7929.89 0.299167
\(890\) 0 0
\(891\) −17165.5 −0.645415
\(892\) 0 0
\(893\) −20525.3 −0.769152
\(894\) 0 0
\(895\) 16134.8 0.602598
\(896\) 0 0
\(897\) 494.312 0.0183998
\(898\) 0 0
\(899\) 4980.24 0.184761
\(900\) 0 0
\(901\) 70018.3 2.58895
\(902\) 0 0
\(903\) 6.51717 0.000240175 0
\(904\) 0 0
\(905\) −5017.14 −0.184282
\(906\) 0 0
\(907\) −46355.6 −1.69704 −0.848519 0.529165i \(-0.822505\pi\)
−0.848519 + 0.529165i \(0.822505\pi\)
\(908\) 0 0
\(909\) −13387.2 −0.488475
\(910\) 0 0
\(911\) −23365.5 −0.849761 −0.424881 0.905249i \(-0.639684\pi\)
−0.424881 + 0.905249i \(0.639684\pi\)
\(912\) 0 0
\(913\) 30591.3 1.10890
\(914\) 0 0
\(915\) −2207.13 −0.0797436
\(916\) 0 0
\(917\) −9929.58 −0.357583
\(918\) 0 0
\(919\) −36178.5 −1.29860 −0.649302 0.760530i \(-0.724939\pi\)
−0.649302 + 0.760530i \(0.724939\pi\)
\(920\) 0 0
\(921\) −179.033 −0.00640535
\(922\) 0 0
\(923\) 3649.06 0.130130
\(924\) 0 0
\(925\) −8196.98 −0.291367
\(926\) 0 0
\(927\) 43588.4 1.54437
\(928\) 0 0
\(929\) 17014.6 0.600895 0.300447 0.953798i \(-0.402864\pi\)
0.300447 + 0.953798i \(0.402864\pi\)
\(930\) 0 0
\(931\) −28461.3 −1.00191
\(932\) 0 0
\(933\) −6200.20 −0.217562
\(934\) 0 0
\(935\) 16947.9 0.592788
\(936\) 0 0
\(937\) −16898.8 −0.589179 −0.294589 0.955624i \(-0.595183\pi\)
−0.294589 + 0.955624i \(0.595183\pi\)
\(938\) 0 0
\(939\) 1373.10 0.0477203
\(940\) 0 0
\(941\) 43995.9 1.52415 0.762074 0.647489i \(-0.224181\pi\)
0.762074 + 0.647489i \(0.224181\pi\)
\(942\) 0 0
\(943\) −5035.68 −0.173897
\(944\) 0 0
\(945\) −2015.01 −0.0693634
\(946\) 0 0
\(947\) 2588.13 0.0888099 0.0444050 0.999014i \(-0.485861\pi\)
0.0444050 + 0.999014i \(0.485861\pi\)
\(948\) 0 0
\(949\) 229.681 0.00785646
\(950\) 0 0
\(951\) −8252.52 −0.281395
\(952\) 0 0
\(953\) −7309.24 −0.248447 −0.124223 0.992254i \(-0.539644\pi\)
−0.124223 + 0.992254i \(0.539644\pi\)
\(954\) 0 0
\(955\) 6360.38 0.215515
\(956\) 0 0
\(957\) 788.283 0.0266265
\(958\) 0 0
\(959\) −2456.37 −0.0827115
\(960\) 0 0
\(961\) 60523.3 2.03160
\(962\) 0 0
\(963\) 10936.5 0.365966
\(964\) 0 0
\(965\) 3654.57 0.121912
\(966\) 0 0
\(967\) 27600.6 0.917866 0.458933 0.888471i \(-0.348232\pi\)
0.458933 + 0.888471i \(0.348232\pi\)
\(968\) 0 0
\(969\) −14756.0 −0.489195
\(970\) 0 0
\(971\) −22638.5 −0.748201 −0.374100 0.927388i \(-0.622048\pi\)
−0.374100 + 0.927388i \(0.622048\pi\)
\(972\) 0 0
\(973\) −10567.5 −0.348178
\(974\) 0 0
\(975\) −180.364 −0.00592440
\(976\) 0 0
\(977\) −18390.3 −0.602208 −0.301104 0.953591i \(-0.597355\pi\)
−0.301104 + 0.953591i \(0.597355\pi\)
\(978\) 0 0
\(979\) −37741.7 −1.23210
\(980\) 0 0
\(981\) −38210.3 −1.24359
\(982\) 0 0
\(983\) 11139.1 0.361425 0.180712 0.983536i \(-0.442160\pi\)
0.180712 + 0.983536i \(0.442160\pi\)
\(984\) 0 0
\(985\) −17910.1 −0.579353
\(986\) 0 0
\(987\) 1780.00 0.0574043
\(988\) 0 0
\(989\) 57.2797 0.00184165
\(990\) 0 0
\(991\) −30232.3 −0.969083 −0.484542 0.874768i \(-0.661014\pi\)
−0.484542 + 0.874768i \(0.661014\pi\)
\(992\) 0 0
\(993\) 9021.68 0.288313
\(994\) 0 0
\(995\) −10038.2 −0.319832
\(996\) 0 0
\(997\) −9623.78 −0.305705 −0.152853 0.988249i \(-0.548846\pi\)
−0.152853 + 0.988249i \(0.548846\pi\)
\(998\) 0 0
\(999\) −25726.5 −0.814764
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.4.a.ba.1.3 6
4.3 odd 2 1280.4.a.bc.1.4 6
8.3 odd 2 1280.4.a.bb.1.3 6
8.5 even 2 1280.4.a.bd.1.4 6
16.3 odd 4 40.4.d.a.21.8 yes 12
16.5 even 4 160.4.d.a.81.8 12
16.11 odd 4 40.4.d.a.21.7 12
16.13 even 4 160.4.d.a.81.5 12
48.5 odd 4 1440.4.k.c.721.10 12
48.11 even 4 360.4.k.c.181.6 12
48.29 odd 4 1440.4.k.c.721.4 12
48.35 even 4 360.4.k.c.181.5 12
80.3 even 4 200.4.f.b.149.11 12
80.13 odd 4 800.4.f.c.49.8 12
80.19 odd 4 200.4.d.b.101.5 12
80.27 even 4 200.4.f.b.149.12 12
80.29 even 4 800.4.d.d.401.8 12
80.37 odd 4 800.4.f.c.49.7 12
80.43 even 4 200.4.f.c.149.1 12
80.53 odd 4 800.4.f.b.49.6 12
80.59 odd 4 200.4.d.b.101.6 12
80.67 even 4 200.4.f.c.149.2 12
80.69 even 4 800.4.d.d.401.5 12
80.77 odd 4 800.4.f.b.49.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.7 12 16.11 odd 4
40.4.d.a.21.8 yes 12 16.3 odd 4
160.4.d.a.81.5 12 16.13 even 4
160.4.d.a.81.8 12 16.5 even 4
200.4.d.b.101.5 12 80.19 odd 4
200.4.d.b.101.6 12 80.59 odd 4
200.4.f.b.149.11 12 80.3 even 4
200.4.f.b.149.12 12 80.27 even 4
200.4.f.c.149.1 12 80.43 even 4
200.4.f.c.149.2 12 80.67 even 4
360.4.k.c.181.5 12 48.35 even 4
360.4.k.c.181.6 12 48.11 even 4
800.4.d.d.401.5 12 80.69 even 4
800.4.d.d.401.8 12 80.29 even 4
800.4.f.b.49.5 12 80.77 odd 4
800.4.f.b.49.6 12 80.53 odd 4
800.4.f.c.49.7 12 80.37 odd 4
800.4.f.c.49.8 12 80.13 odd 4
1280.4.a.ba.1.3 6 1.1 even 1 trivial
1280.4.a.bb.1.3 6 8.3 odd 2
1280.4.a.bc.1.4 6 4.3 odd 2
1280.4.a.bd.1.4 6 8.5 even 2
1440.4.k.c.721.4 12 48.29 odd 4
1440.4.k.c.721.10 12 48.5 odd 4