Properties

Label 200.4.f.c.149.2
Level $200$
Weight $4$
Character 200.149
Analytic conductor $11.800$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [200,4,Mod(149,200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("200.149");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 200 = 2^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.8003820011\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{11} + 7x^{10} - 12x^{9} + 21x^{8} - 68x^{6} + 336x^{4} - 768x^{3} + 1792x^{2} - 4096x + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.2
Root \(-0.428316 + 1.95360i\) of defining polynomial
Character \(\chi\) \(=\) 200.149
Dual form 200.4.f.c.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.38191 + 1.52528i) q^{2} +1.51777 q^{3} +(3.34703 - 7.26618i) q^{4} +(-3.61520 + 2.31503i) q^{6} +5.13620i q^{7} +(3.11063 + 22.4126i) q^{8} -24.6964 q^{9} -31.3403i q^{11} +(5.08003 - 11.0284i) q^{12} +4.75340 q^{13} +(-7.83414 - 12.2340i) q^{14} +(-41.5948 - 48.6403i) q^{16} +108.154i q^{17} +(58.8246 - 37.6689i) q^{18} +89.8913i q^{19} +7.79558i q^{21} +(47.8028 + 74.6499i) q^{22} +68.5157i q^{23} +(4.72123 + 34.0172i) q^{24} +(-11.3222 + 7.25027i) q^{26} -78.4633 q^{27} +(37.3205 + 17.1910i) q^{28} -16.5719i q^{29} -300.523 q^{31} +(173.265 + 52.4132i) q^{32} -47.5675i q^{33} +(-164.966 - 257.614i) q^{34} +(-82.6595 + 179.448i) q^{36} -327.879 q^{37} +(-137.109 - 214.113i) q^{38} +7.21458 q^{39} -73.4968 q^{41} +(-11.8904 - 18.5684i) q^{42} -0.836008 q^{43} +(-227.724 - 104.897i) q^{44} +(-104.506 - 163.198i) q^{46} +228.335i q^{47} +(-63.1314 - 73.8249i) q^{48} +316.619 q^{49} +164.153i q^{51} +(15.9098 - 34.5391i) q^{52} -647.393 q^{53} +(186.893 - 119.679i) q^{54} +(-115.115 + 15.9768i) q^{56} +136.434i q^{57} +(25.2768 + 39.4728i) q^{58} +753.676i q^{59} -290.838i q^{61} +(715.821 - 458.383i) q^{62} -126.845i q^{63} +(-492.648 + 139.435i) q^{64} +(72.5538 + 113.302i) q^{66} -801.801 q^{67} +(785.868 + 361.995i) q^{68} +103.991i q^{69} +767.674 q^{71} +(-76.8213 - 553.509i) q^{72} +48.3194i q^{73} +(780.980 - 500.108i) q^{74} +(653.166 + 300.869i) q^{76} +160.970 q^{77} +(-17.1845 + 11.0043i) q^{78} -451.701 q^{79} +547.712 q^{81} +(175.063 - 112.103i) q^{82} +976.099 q^{83} +(56.6441 + 26.0920i) q^{84} +(1.99130 - 1.27515i) q^{86} -25.1524i q^{87} +(702.417 - 97.4881i) q^{88} +1204.25 q^{89} +24.4144i q^{91} +(497.847 + 229.324i) q^{92} -456.126 q^{93} +(-348.275 - 543.873i) q^{94} +(262.977 + 79.5513i) q^{96} -559.147i q^{97} +(-754.161 + 482.934i) q^{98} +773.992i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 12 q^{3} - 16 q^{4} - 36 q^{6} - 24 q^{8} + 108 q^{9} - 164 q^{12} - 68 q^{14} - 56 q^{16} + 450 q^{18} + 492 q^{22} - 360 q^{24} - 308 q^{26} + 432 q^{27} + 628 q^{28} - 264 q^{31} + 856 q^{32}+ \cdots + 638 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/200\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(151\) \(177\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38191 + 1.52528i −0.842134 + 0.539269i
\(3\) 1.51777 0.292095 0.146048 0.989278i \(-0.453345\pi\)
0.146048 + 0.989278i \(0.453345\pi\)
\(4\) 3.34703 7.26618i 0.418379 0.908273i
\(5\) 0 0
\(6\) −3.61520 + 2.31503i −0.245983 + 0.157518i
\(7\) 5.13620i 0.277328i 0.990339 + 0.138664i \(0.0442809\pi\)
−0.990339 + 0.138664i \(0.955719\pi\)
\(8\) 3.11063 + 22.4126i 0.137472 + 0.990506i
\(9\) −24.6964 −0.914680
\(10\) 0 0
\(11\) 31.3403i 0.859042i −0.903057 0.429521i \(-0.858682\pi\)
0.903057 0.429521i \(-0.141318\pi\)
\(12\) 5.08003 11.0284i 0.122207 0.265302i
\(13\) 4.75340 0.101412 0.0507060 0.998714i \(-0.483853\pi\)
0.0507060 + 0.998714i \(0.483853\pi\)
\(14\) −7.83414 12.2340i −0.149555 0.233548i
\(15\) 0 0
\(16\) −41.5948 48.6403i −0.649918 0.760004i
\(17\) 108.154i 1.54301i 0.636221 + 0.771507i \(0.280497\pi\)
−0.636221 + 0.771507i \(0.719503\pi\)
\(18\) 58.8246 37.6689i 0.770283 0.493258i
\(19\) 89.8913i 1.08539i 0.839929 + 0.542697i \(0.182597\pi\)
−0.839929 + 0.542697i \(0.817403\pi\)
\(20\) 0 0
\(21\) 7.79558i 0.0810064i
\(22\) 47.8028 + 74.6499i 0.463254 + 0.723428i
\(23\) 68.5157i 0.621152i 0.950548 + 0.310576i \(0.100522\pi\)
−0.950548 + 0.310576i \(0.899478\pi\)
\(24\) 4.72123 + 34.0172i 0.0401549 + 0.289322i
\(25\) 0 0
\(26\) −11.3222 + 7.25027i −0.0854025 + 0.0546883i
\(27\) −78.4633 −0.559269
\(28\) 37.3205 + 17.1910i 0.251890 + 0.116028i
\(29\) 16.5719i 0.106115i −0.998591 0.0530573i \(-0.983103\pi\)
0.998591 0.0530573i \(-0.0168966\pi\)
\(30\) 0 0
\(31\) −300.523 −1.74115 −0.870574 0.492037i \(-0.836252\pi\)
−0.870574 + 0.492037i \(0.836252\pi\)
\(32\) 173.265 + 52.4132i 0.957164 + 0.289545i
\(33\) 47.5675i 0.250922i
\(34\) −164.966 257.614i −0.832099 1.29942i
\(35\) 0 0
\(36\) −82.6595 + 179.448i −0.382683 + 0.830779i
\(37\) −327.879 −1.45684 −0.728419 0.685132i \(-0.759744\pi\)
−0.728419 + 0.685132i \(0.759744\pi\)
\(38\) −137.109 214.113i −0.585318 0.914046i
\(39\) 7.21458 0.0296220
\(40\) 0 0
\(41\) −73.4968 −0.279958 −0.139979 0.990154i \(-0.544703\pi\)
−0.139979 + 0.990154i \(0.544703\pi\)
\(42\) −11.8904 18.5684i −0.0436842 0.0682182i
\(43\) −0.836008 −0.00296489 −0.00148244 0.999999i \(-0.500472\pi\)
−0.00148244 + 0.999999i \(0.500472\pi\)
\(44\) −227.724 104.897i −0.780244 0.359405i
\(45\) 0 0
\(46\) −104.506 163.198i −0.334968 0.523093i
\(47\) 228.335i 0.708639i 0.935124 + 0.354319i \(0.115287\pi\)
−0.935124 + 0.354319i \(0.884713\pi\)
\(48\) −63.1314 73.8249i −0.189838 0.221994i
\(49\) 316.619 0.923089
\(50\) 0 0
\(51\) 164.153i 0.450707i
\(52\) 15.9098 34.5391i 0.0424286 0.0921097i
\(53\) −647.393 −1.67785 −0.838927 0.544244i \(-0.816817\pi\)
−0.838927 + 0.544244i \(0.816817\pi\)
\(54\) 186.893 119.679i 0.470980 0.301596i
\(55\) 0 0
\(56\) −115.115 + 15.9768i −0.274695 + 0.0381248i
\(57\) 136.434i 0.317038i
\(58\) 25.2768 + 39.4728i 0.0572243 + 0.0893627i
\(59\) 753.676i 1.66305i 0.555484 + 0.831527i \(0.312533\pi\)
−0.555484 + 0.831527i \(0.687467\pi\)
\(60\) 0 0
\(61\) 290.838i 0.610459i −0.952279 0.305229i \(-0.901267\pi\)
0.952279 0.305229i \(-0.0987331\pi\)
\(62\) 715.821 458.383i 1.46628 0.938946i
\(63\) 126.845i 0.253667i
\(64\) −492.648 + 139.435i −0.962203 + 0.272333i
\(65\) 0 0
\(66\) 72.5538 + 113.302i 0.135314 + 0.211310i
\(67\) −801.801 −1.46202 −0.731012 0.682364i \(-0.760952\pi\)
−0.731012 + 0.682364i \(0.760952\pi\)
\(68\) 785.868 + 361.995i 1.40148 + 0.645565i
\(69\) 103.991i 0.181436i
\(70\) 0 0
\(71\) 767.674 1.28318 0.641592 0.767046i \(-0.278274\pi\)
0.641592 + 0.767046i \(0.278274\pi\)
\(72\) −76.8213 553.509i −0.125743 0.905996i
\(73\) 48.3194i 0.0774707i 0.999250 + 0.0387353i \(0.0123329\pi\)
−0.999250 + 0.0387353i \(0.987667\pi\)
\(74\) 780.980 500.108i 1.22685 0.785627i
\(75\) 0 0
\(76\) 653.166 + 300.869i 0.985833 + 0.454106i
\(77\) 160.970 0.238237
\(78\) −17.1845 + 11.0043i −0.0249457 + 0.0159742i
\(79\) −451.701 −0.643296 −0.321648 0.946859i \(-0.604237\pi\)
−0.321648 + 0.946859i \(0.604237\pi\)
\(80\) 0 0
\(81\) 547.712 0.751320
\(82\) 175.063 112.103i 0.235762 0.150973i
\(83\) 976.099 1.29085 0.645427 0.763822i \(-0.276680\pi\)
0.645427 + 0.763822i \(0.276680\pi\)
\(84\) 56.6441 + 26.0920i 0.0735759 + 0.0338914i
\(85\) 0 0
\(86\) 1.99130 1.27515i 0.00249683 0.00159887i
\(87\) 25.1524i 0.0309956i
\(88\) 702.417 97.4881i 0.850886 0.118094i
\(89\) 1204.25 1.43428 0.717139 0.696930i \(-0.245451\pi\)
0.717139 + 0.696930i \(0.245451\pi\)
\(90\) 0 0
\(91\) 24.4144i 0.0281244i
\(92\) 497.847 + 229.324i 0.564176 + 0.259877i
\(93\) −456.126 −0.508581
\(94\) −348.275 543.873i −0.382147 0.596769i
\(95\) 0 0
\(96\) 262.977 + 79.5513i 0.279583 + 0.0845747i
\(97\) 559.147i 0.585287i −0.956222 0.292643i \(-0.905465\pi\)
0.956222 0.292643i \(-0.0945348\pi\)
\(98\) −754.161 + 482.934i −0.777364 + 0.497793i
\(99\) 773.992i 0.785749i
\(100\) 0 0
\(101\) 542.070i 0.534039i −0.963691 0.267020i \(-0.913961\pi\)
0.963691 0.267020i \(-0.0860389\pi\)
\(102\) −250.380 390.999i −0.243052 0.379556i
\(103\) 1764.97i 1.68842i 0.536009 + 0.844212i \(0.319931\pi\)
−0.536009 + 0.844212i \(0.680069\pi\)
\(104\) 14.7861 + 106.536i 0.0139413 + 0.100449i
\(105\) 0 0
\(106\) 1542.03 987.457i 1.41298 0.904814i
\(107\) 442.840 0.400103 0.200051 0.979785i \(-0.435889\pi\)
0.200051 + 0.979785i \(0.435889\pi\)
\(108\) −262.619 + 570.129i −0.233986 + 0.507969i
\(109\) 1547.20i 1.35959i −0.733403 0.679795i \(-0.762069\pi\)
0.733403 0.679795i \(-0.237931\pi\)
\(110\) 0 0
\(111\) −497.646 −0.425536
\(112\) 249.826 213.639i 0.210771 0.180241i
\(113\) 788.524i 0.656444i −0.944601 0.328222i \(-0.893551\pi\)
0.944601 0.328222i \(-0.106449\pi\)
\(114\) −208.101 324.975i −0.170969 0.266989i
\(115\) 0 0
\(116\) −120.414 55.4667i −0.0963810 0.0443961i
\(117\) −117.392 −0.0927596
\(118\) −1149.57 1795.19i −0.896833 1.40051i
\(119\) −555.501 −0.427922
\(120\) 0 0
\(121\) 348.785 0.262047
\(122\) 443.610 + 692.751i 0.329201 + 0.514088i
\(123\) −111.551 −0.0817744
\(124\) −1005.86 + 2183.66i −0.728460 + 1.58144i
\(125\) 0 0
\(126\) 193.475 + 302.135i 0.136795 + 0.213621i
\(127\) 1543.92i 1.07875i −0.842066 0.539374i \(-0.818661\pi\)
0.842066 0.539374i \(-0.181339\pi\)
\(128\) 960.768 1083.55i 0.663443 0.748227i
\(129\) −1.26887 −0.000866029
\(130\) 0 0
\(131\) 1933.26i 1.28938i 0.764442 + 0.644692i \(0.223014\pi\)
−0.764442 + 0.644692i \(0.776986\pi\)
\(132\) −345.634 159.210i −0.227906 0.104981i
\(133\) −461.699 −0.301010
\(134\) 1909.82 1222.97i 1.23122 0.788424i
\(135\) 0 0
\(136\) −2424.02 + 336.428i −1.52836 + 0.212121i
\(137\) 478.247i 0.298244i 0.988819 + 0.149122i \(0.0476447\pi\)
−0.988819 + 0.149122i \(0.952355\pi\)
\(138\) −158.616 247.698i −0.0978426 0.152793i
\(139\) 2057.45i 1.25547i 0.778427 + 0.627735i \(0.216018\pi\)
−0.778427 + 0.627735i \(0.783982\pi\)
\(140\) 0 0
\(141\) 346.560i 0.206990i
\(142\) −1828.53 + 1170.92i −1.08061 + 0.691981i
\(143\) 148.973i 0.0871172i
\(144\) 1027.24 + 1201.24i 0.594467 + 0.695161i
\(145\) 0 0
\(146\) −73.7007 115.093i −0.0417775 0.0652407i
\(147\) 480.556 0.269630
\(148\) −1097.42 + 2382.43i −0.609510 + 1.32321i
\(149\) 2838.89i 1.56088i −0.625231 0.780440i \(-0.714995\pi\)
0.625231 0.780440i \(-0.285005\pi\)
\(150\) 0 0
\(151\) −2187.09 −1.17869 −0.589346 0.807881i \(-0.700615\pi\)
−0.589346 + 0.807881i \(0.700615\pi\)
\(152\) −2014.70 + 279.619i −1.07509 + 0.149211i
\(153\) 2671.02i 1.41136i
\(154\) −383.417 + 245.525i −0.200627 + 0.128474i
\(155\) 0 0
\(156\) 24.1474 52.4224i 0.0123932 0.0269048i
\(157\) 936.231 0.475920 0.237960 0.971275i \(-0.423521\pi\)
0.237960 + 0.971275i \(0.423521\pi\)
\(158\) 1075.91 688.972i 0.541741 0.346909i
\(159\) −982.595 −0.490093
\(160\) 0 0
\(161\) −351.910 −0.172263
\(162\) −1304.60 + 835.416i −0.632712 + 0.405163i
\(163\) 2329.68 1.11948 0.559738 0.828670i \(-0.310902\pi\)
0.559738 + 0.828670i \(0.310902\pi\)
\(164\) −245.996 + 534.041i −0.117128 + 0.254278i
\(165\) 0 0
\(166\) −2324.98 + 1488.83i −1.08707 + 0.696117i
\(167\) 2020.42i 0.936195i 0.883677 + 0.468097i \(0.155060\pi\)
−0.883677 + 0.468097i \(0.844940\pi\)
\(168\) −174.719 + 24.2492i −0.0802373 + 0.0111361i
\(169\) −2174.41 −0.989716
\(170\) 0 0
\(171\) 2219.99i 0.992788i
\(172\) −2.79815 + 6.07459i −0.00124045 + 0.00269292i
\(173\) −912.153 −0.400866 −0.200433 0.979707i \(-0.564235\pi\)
−0.200433 + 0.979707i \(0.564235\pi\)
\(174\) 38.3645 + 59.9108i 0.0167150 + 0.0261024i
\(175\) 0 0
\(176\) −1524.40 + 1303.59i −0.652875 + 0.558307i
\(177\) 1143.91i 0.485771i
\(178\) −2868.43 + 1836.83i −1.20785 + 0.773461i
\(179\) 3226.95i 1.34745i −0.738982 0.673726i \(-0.764693\pi\)
0.738982 0.673726i \(-0.235307\pi\)
\(180\) 0 0
\(181\) 1003.43i 0.412068i −0.978545 0.206034i \(-0.933944\pi\)
0.978545 0.206034i \(-0.0660557\pi\)
\(182\) −37.2388 58.1530i −0.0151666 0.0236845i
\(183\) 441.426i 0.178312i
\(184\) −1535.61 + 213.127i −0.615255 + 0.0853909i
\(185\) 0 0
\(186\) 1086.45 695.721i 0.428294 0.274262i
\(187\) 3389.59 1.32551
\(188\) 1659.12 + 764.243i 0.643637 + 0.296480i
\(189\) 403.003i 0.155101i
\(190\) 0 0
\(191\) 1272.08 0.481907 0.240953 0.970537i \(-0.422540\pi\)
0.240953 + 0.970537i \(0.422540\pi\)
\(192\) −747.727 + 211.630i −0.281055 + 0.0795473i
\(193\) 730.914i 0.272603i 0.990667 + 0.136301i \(0.0435216\pi\)
−0.990667 + 0.136301i \(0.956478\pi\)
\(194\) 852.857 + 1331.84i 0.315627 + 0.492890i
\(195\) 0 0
\(196\) 1059.74 2300.61i 0.386201 0.838416i
\(197\) 3582.02 1.29547 0.647737 0.761864i \(-0.275716\pi\)
0.647737 + 0.761864i \(0.275716\pi\)
\(198\) −1180.56 1843.58i −0.423729 0.661705i
\(199\) −2007.64 −0.715166 −0.357583 0.933881i \(-0.616399\pi\)
−0.357583 + 0.933881i \(0.616399\pi\)
\(200\) 0 0
\(201\) −1216.95 −0.427051
\(202\) 826.809 + 1291.16i 0.287991 + 0.449733i
\(203\) 85.1165 0.0294286
\(204\) 1192.77 + 549.427i 0.409365 + 0.188567i
\(205\) 0 0
\(206\) −2692.08 4204.01i −0.910514 1.42188i
\(207\) 1692.09i 0.568156i
\(208\) −197.717 231.207i −0.0659095 0.0770736i
\(209\) 2817.22 0.932398
\(210\) 0 0
\(211\) 1414.79i 0.461603i 0.973001 + 0.230802i \(0.0741349\pi\)
−0.973001 + 0.230802i \(0.925865\pi\)
\(212\) −2166.84 + 4704.07i −0.701979 + 1.52395i
\(213\) 1165.15 0.374812
\(214\) −1054.81 + 675.456i −0.336940 + 0.215763i
\(215\) 0 0
\(216\) −244.070 1758.57i −0.0768837 0.553959i
\(217\) 1543.55i 0.482870i
\(218\) 2359.92 + 3685.31i 0.733184 + 1.14496i
\(219\) 73.3379i 0.0226288i
\(220\) 0 0
\(221\) 514.100i 0.156480i
\(222\) 1185.35 759.050i 0.358358 0.229478i
\(223\) 1.69909i 0.000510221i −1.00000 0.000255111i \(-0.999919\pi\)
1.00000 0.000255111i \(-8.12042e-5\pi\)
\(224\) −269.205 + 889.924i −0.0802990 + 0.265449i
\(225\) 0 0
\(226\) 1202.72 + 1878.20i 0.353999 + 0.552813i
\(227\) −3374.87 −0.986775 −0.493387 0.869810i \(-0.664241\pi\)
−0.493387 + 0.869810i \(0.664241\pi\)
\(228\) 991.358 + 456.650i 0.287957 + 0.132642i
\(229\) 1330.69i 0.383994i −0.981396 0.191997i \(-0.938504\pi\)
0.981396 0.191997i \(-0.0614964\pi\)
\(230\) 0 0
\(231\) 244.316 0.0695879
\(232\) 371.419 51.5491i 0.105107 0.0145878i
\(233\) 4373.02i 1.22955i 0.788701 + 0.614776i \(0.210754\pi\)
−0.788701 + 0.614776i \(0.789246\pi\)
\(234\) 279.617 179.055i 0.0781160 0.0500223i
\(235\) 0 0
\(236\) 5476.34 + 2522.58i 1.51051 + 0.695787i
\(237\) −685.580 −0.187904
\(238\) 1323.16 847.296i 0.360367 0.230765i
\(239\) −794.613 −0.215060 −0.107530 0.994202i \(-0.534294\pi\)
−0.107530 + 0.994202i \(0.534294\pi\)
\(240\) 0 0
\(241\) 617.471 0.165041 0.0825204 0.996589i \(-0.473703\pi\)
0.0825204 + 0.996589i \(0.473703\pi\)
\(242\) −830.776 + 531.995i −0.220679 + 0.141314i
\(243\) 2949.81 0.778727
\(244\) −2113.28 973.444i −0.554463 0.255403i
\(245\) 0 0
\(246\) 265.706 170.147i 0.0688650 0.0440984i
\(247\) 427.289i 0.110072i
\(248\) −934.817 6735.51i −0.239359 1.72462i
\(249\) 1481.50 0.377052
\(250\) 0 0
\(251\) 907.026i 0.228092i 0.993475 + 0.114046i \(0.0363811\pi\)
−0.993475 + 0.114046i \(0.963619\pi\)
\(252\) −921.681 424.555i −0.230399 0.106129i
\(253\) 2147.30 0.533596
\(254\) 2354.92 + 3677.49i 0.581735 + 0.908450i
\(255\) 0 0
\(256\) −635.751 + 4046.36i −0.155213 + 0.987881i
\(257\) 4350.70i 1.05599i −0.849248 0.527994i \(-0.822944\pi\)
0.849248 0.527994i \(-0.177056\pi\)
\(258\) 3.02234 1.93538i 0.000729313 0.000467022i
\(259\) 1684.05i 0.404022i
\(260\) 0 0
\(261\) 409.266i 0.0970610i
\(262\) −2948.76 4604.85i −0.695324 1.08583i
\(263\) 3606.18i 0.845499i −0.906246 0.422750i \(-0.861065\pi\)
0.906246 0.422750i \(-0.138935\pi\)
\(264\) 1066.11 147.965i 0.248540 0.0344947i
\(265\) 0 0
\(266\) 1099.73 704.221i 0.253491 0.162325i
\(267\) 1827.78 0.418946
\(268\) −2683.65 + 5826.03i −0.611680 + 1.32792i
\(269\) 6501.85i 1.47370i 0.676057 + 0.736849i \(0.263687\pi\)
−0.676057 + 0.736849i \(0.736313\pi\)
\(270\) 0 0
\(271\) 1011.82 0.226803 0.113401 0.993549i \(-0.463825\pi\)
0.113401 + 0.993549i \(0.463825\pi\)
\(272\) 5260.65 4498.65i 1.17270 1.00283i
\(273\) 37.0555i 0.00821502i
\(274\) −729.461 1139.14i −0.160833 0.251161i
\(275\) 0 0
\(276\) 755.619 + 348.062i 0.164793 + 0.0759089i
\(277\) −2618.50 −0.567979 −0.283990 0.958827i \(-0.591658\pi\)
−0.283990 + 0.958827i \(0.591658\pi\)
\(278\) −3138.19 4900.66i −0.677036 1.05727i
\(279\) 7421.84 1.59259
\(280\) 0 0
\(281\) 2302.29 0.488766 0.244383 0.969679i \(-0.421415\pi\)
0.244383 + 0.969679i \(0.421415\pi\)
\(282\) −528.602 825.476i −0.111623 0.174313i
\(283\) −6591.42 −1.38452 −0.692260 0.721648i \(-0.743385\pi\)
−0.692260 + 0.721648i \(0.743385\pi\)
\(284\) 2569.43 5578.06i 0.536857 1.16548i
\(285\) 0 0
\(286\) 227.226 + 354.841i 0.0469795 + 0.0733643i
\(287\) 377.494i 0.0776403i
\(288\) −4279.02 1294.42i −0.875499 0.264841i
\(289\) −6784.33 −1.38089
\(290\) 0 0
\(291\) 848.658i 0.170960i
\(292\) 351.098 + 161.727i 0.0703645 + 0.0324121i
\(293\) −4765.54 −0.950190 −0.475095 0.879934i \(-0.657586\pi\)
−0.475095 + 0.879934i \(0.657586\pi\)
\(294\) −1144.64 + 732.984i −0.227065 + 0.145403i
\(295\) 0 0
\(296\) −1019.91 7348.62i −0.200274 1.44301i
\(297\) 2459.06i 0.480436i
\(298\) 4330.11 + 6762.00i 0.841733 + 1.31447i
\(299\) 325.682i 0.0629923i
\(300\) 0 0
\(301\) 4.29390i 0.000822247i
\(302\) 5209.45 3335.92i 0.992617 0.635632i
\(303\) 822.739i 0.155990i
\(304\) 4372.34 3739.01i 0.824903 0.705417i
\(305\) 0 0
\(306\) 4074.05 + 6362.13i 0.761105 + 1.18856i
\(307\) 117.958 0.0219290 0.0109645 0.999940i \(-0.496510\pi\)
0.0109645 + 0.999940i \(0.496510\pi\)
\(308\) 538.771 1169.64i 0.0996732 0.216384i
\(309\) 2678.82i 0.493181i
\(310\) 0 0
\(311\) 4085.06 0.744832 0.372416 0.928066i \(-0.378530\pi\)
0.372416 + 0.928066i \(0.378530\pi\)
\(312\) 22.4419 + 161.697i 0.00407219 + 0.0293407i
\(313\) 904.680i 0.163372i −0.996658 0.0816861i \(-0.973969\pi\)
0.996658 0.0816861i \(-0.0260305\pi\)
\(314\) −2230.02 + 1428.02i −0.400788 + 0.256648i
\(315\) 0 0
\(316\) −1511.86 + 3282.14i −0.269141 + 0.584288i
\(317\) −5437.26 −0.963366 −0.481683 0.876346i \(-0.659974\pi\)
−0.481683 + 0.876346i \(0.659974\pi\)
\(318\) 2340.46 1498.73i 0.412724 0.264292i
\(319\) −519.369 −0.0911569
\(320\) 0 0
\(321\) 672.131 0.116868
\(322\) 838.219 536.762i 0.145069 0.0928961i
\(323\) −9722.12 −1.67478
\(324\) 1833.21 3979.78i 0.314337 0.682404i
\(325\) 0 0
\(326\) −5549.10 + 3553.42i −0.942749 + 0.603698i
\(327\) 2348.30i 0.397130i
\(328\) −228.621 1647.25i −0.0384863 0.277300i
\(329\) −1172.77 −0.196526
\(330\) 0 0
\(331\) 5944.03i 0.987049i −0.869732 0.493525i \(-0.835708\pi\)
0.869732 0.493525i \(-0.164292\pi\)
\(332\) 3267.03 7092.51i 0.540066 1.17245i
\(333\) 8097.42 1.33254
\(334\) −3081.71 4812.46i −0.504860 0.788401i
\(335\) 0 0
\(336\) 379.179 324.255i 0.0615652 0.0526475i
\(337\) 5636.91i 0.911164i 0.890194 + 0.455582i \(0.150569\pi\)
−0.890194 + 0.455582i \(0.849431\pi\)
\(338\) 5179.25 3316.58i 0.833473 0.533722i
\(339\) 1196.80i 0.191744i
\(340\) 0 0
\(341\) 9418.50i 1.49572i
\(342\) 3386.11 + 5287.82i 0.535379 + 0.836060i
\(343\) 3387.93i 0.533327i
\(344\) −2.60051 18.7371i −0.000407588 0.00293674i
\(345\) 0 0
\(346\) 2172.67 1391.29i 0.337582 0.216174i
\(347\) −7761.12 −1.20069 −0.600344 0.799742i \(-0.704970\pi\)
−0.600344 + 0.799742i \(0.704970\pi\)
\(348\) −182.762 84.1858i −0.0281525 0.0129679i
\(349\) 8709.62i 1.33586i 0.744224 + 0.667930i \(0.232819\pi\)
−0.744224 + 0.667930i \(0.767181\pi\)
\(350\) 0 0
\(351\) −372.968 −0.0567166
\(352\) 1642.65 5430.19i 0.248731 0.822244i
\(353\) 986.323i 0.148716i 0.997232 + 0.0743579i \(0.0236907\pi\)
−0.997232 + 0.0743579i \(0.976309\pi\)
\(354\) −1744.78 2724.69i −0.261961 0.409084i
\(355\) 0 0
\(356\) 4030.68 8750.33i 0.600072 1.30272i
\(357\) −843.124 −0.124994
\(358\) 4922.01 + 7686.32i 0.726638 + 1.13473i
\(359\) 11470.1 1.68626 0.843131 0.537708i \(-0.180710\pi\)
0.843131 + 0.537708i \(0.180710\pi\)
\(360\) 0 0
\(361\) −1221.44 −0.178078
\(362\) 1530.51 + 2390.08i 0.222215 + 0.347016i
\(363\) 529.376 0.0765428
\(364\) 177.399 + 81.7157i 0.0255447 + 0.0117667i
\(365\) 0 0
\(366\) 673.299 + 1051.44i 0.0961582 + 0.150163i
\(367\) 3330.42i 0.473697i 0.971547 + 0.236848i \(0.0761145\pi\)
−0.971547 + 0.236848i \(0.923886\pi\)
\(368\) 3332.62 2849.89i 0.472078 0.403698i
\(369\) 1815.10 0.256072
\(370\) 0 0
\(371\) 3325.14i 0.465317i
\(372\) −1526.67 + 3314.29i −0.212780 + 0.461931i
\(373\) 9398.88 1.30471 0.652354 0.757915i \(-0.273782\pi\)
0.652354 + 0.757915i \(0.273782\pi\)
\(374\) −8073.70 + 5170.07i −1.11626 + 0.714808i
\(375\) 0 0
\(376\) −5117.57 + 710.265i −0.701911 + 0.0974178i
\(377\) 78.7729i 0.0107613i
\(378\) 614.693 + 959.918i 0.0836413 + 0.130616i
\(379\) 3840.58i 0.520521i −0.965538 0.260260i \(-0.916192\pi\)
0.965538 0.260260i \(-0.0838084\pi\)
\(380\) 0 0
\(381\) 2343.32i 0.315097i
\(382\) −3029.98 + 1940.27i −0.405830 + 0.259877i
\(383\) 2969.97i 0.396236i 0.980178 + 0.198118i \(0.0634830\pi\)
−0.980178 + 0.198118i \(0.936517\pi\)
\(384\) 1458.23 1644.58i 0.193789 0.218554i
\(385\) 0 0
\(386\) −1114.85 1740.98i −0.147006 0.229568i
\(387\) 20.6464 0.00271192
\(388\) −4062.86 1871.48i −0.531600 0.244872i
\(389\) 8349.10i 1.08822i 0.839015 + 0.544108i \(0.183132\pi\)
−0.839015 + 0.544108i \(0.816868\pi\)
\(390\) 0 0
\(391\) −7410.26 −0.958447
\(392\) 984.886 + 7096.26i 0.126899 + 0.914325i
\(393\) 2934.24i 0.376623i
\(394\) −8532.06 + 5463.59i −1.09096 + 0.698608i
\(395\) 0 0
\(396\) 5623.96 + 2590.57i 0.713674 + 0.328741i
\(397\) −4506.27 −0.569680 −0.284840 0.958575i \(-0.591940\pi\)
−0.284840 + 0.958575i \(0.591940\pi\)
\(398\) 4782.03 3062.22i 0.602265 0.385666i
\(399\) −700.754 −0.0879238
\(400\) 0 0
\(401\) −7654.44 −0.953228 −0.476614 0.879113i \(-0.658136\pi\)
−0.476614 + 0.879113i \(0.658136\pi\)
\(402\) 2898.68 1856.19i 0.359634 0.230295i
\(403\) −1428.51 −0.176573
\(404\) −3938.78 1814.32i −0.485053 0.223431i
\(405\) 0 0
\(406\) −202.740 + 129.827i −0.0247828 + 0.0158699i
\(407\) 10275.8i 1.25148i
\(408\) −3679.10 + 510.621i −0.446428 + 0.0619596i
\(409\) −2603.53 −0.314758 −0.157379 0.987538i \(-0.550304\pi\)
−0.157379 + 0.987538i \(0.550304\pi\)
\(410\) 0 0
\(411\) 725.870i 0.0871156i
\(412\) 12824.6 + 5907.41i 1.53355 + 0.706401i
\(413\) −3871.03 −0.461212
\(414\) 2580.91 + 4030.41i 0.306389 + 0.478463i
\(415\) 0 0
\(416\) 823.599 + 249.141i 0.0970680 + 0.0293633i
\(417\) 3122.74i 0.366717i
\(418\) −6710.38 + 4297.05i −0.785204 + 0.502813i
\(419\) 525.993i 0.0613280i −0.999530 0.0306640i \(-0.990238\pi\)
0.999530 0.0306640i \(-0.00976219\pi\)
\(420\) 0 0
\(421\) 15126.1i 1.75107i −0.483157 0.875534i \(-0.660510\pi\)
0.483157 0.875534i \(-0.339490\pi\)
\(422\) −2157.96 3369.91i −0.248928 0.388732i
\(423\) 5639.03i 0.648178i
\(424\) −2013.80 14509.7i −0.230658 1.66192i
\(425\) 0 0
\(426\) −2775.30 + 1777.19i −0.315642 + 0.202125i
\(427\) 1493.80 0.169298
\(428\) 1482.20 3217.76i 0.167394 0.363402i
\(429\) 226.107i 0.0254465i
\(430\) 0 0
\(431\) 4887.92 0.546271 0.273135 0.961976i \(-0.411939\pi\)
0.273135 + 0.961976i \(0.411939\pi\)
\(432\) 3263.66 + 3816.48i 0.363479 + 0.425047i
\(433\) 6944.15i 0.770704i 0.922770 + 0.385352i \(0.125920\pi\)
−0.922770 + 0.385352i \(0.874080\pi\)
\(434\) 2354.34 + 3676.60i 0.260397 + 0.406641i
\(435\) 0 0
\(436\) −11242.3 5178.54i −1.23488 0.568823i
\(437\) −6158.96 −0.674195
\(438\) −111.861 174.684i −0.0122030 0.0190565i
\(439\) −577.528 −0.0627879 −0.0313940 0.999507i \(-0.509995\pi\)
−0.0313940 + 0.999507i \(0.509995\pi\)
\(440\) 0 0
\(441\) −7819.35 −0.844331
\(442\) −784.148 1224.54i −0.0843848 0.131777i
\(443\) −7039.42 −0.754973 −0.377486 0.926015i \(-0.623211\pi\)
−0.377486 + 0.926015i \(0.623211\pi\)
\(444\) −1665.64 + 3615.98i −0.178035 + 0.386502i
\(445\) 0 0
\(446\) 2.59159 + 4.04708i 0.000275146 + 0.000429674i
\(447\) 4308.79i 0.455926i
\(448\) −716.163 2530.34i −0.0755257 0.266846i
\(449\) −6396.99 −0.672366 −0.336183 0.941797i \(-0.609136\pi\)
−0.336183 + 0.941797i \(0.609136\pi\)
\(450\) 0 0
\(451\) 2303.41i 0.240496i
\(452\) −5729.56 2639.22i −0.596230 0.274642i
\(453\) −3319.50 −0.344291
\(454\) 8038.65 5147.62i 0.830996 0.532136i
\(455\) 0 0
\(456\) −3057.85 + 424.397i −0.314028 + 0.0435838i
\(457\) 7015.85i 0.718135i −0.933312 0.359068i \(-0.883095\pi\)
0.933312 0.359068i \(-0.116905\pi\)
\(458\) 2029.68 + 3169.60i 0.207076 + 0.323374i
\(459\) 8486.14i 0.862961i
\(460\) 0 0
\(461\) 13374.1i 1.35118i 0.737279 + 0.675588i \(0.236110\pi\)
−0.737279 + 0.675588i \(0.763890\pi\)
\(462\) −581.939 + 372.650i −0.0586023 + 0.0375265i
\(463\) 15414.3i 1.54722i −0.633661 0.773611i \(-0.718449\pi\)
0.633661 0.773611i \(-0.281551\pi\)
\(464\) −806.062 + 689.304i −0.0806476 + 0.0689658i
\(465\) 0 0
\(466\) −6670.08 10416.1i −0.663059 1.03545i
\(467\) −1796.43 −0.178006 −0.0890032 0.996031i \(-0.528368\pi\)
−0.0890032 + 0.996031i \(0.528368\pi\)
\(468\) −392.914 + 852.989i −0.0388086 + 0.0842510i
\(469\) 4118.21i 0.405461i
\(470\) 0 0
\(471\) 1420.99 0.139014
\(472\) −16891.8 + 2344.41i −1.64727 + 0.228623i
\(473\) 26.2008i 0.00254696i
\(474\) 1632.99 1045.70i 0.158240 0.101331i
\(475\) 0 0
\(476\) −1859.28 + 4036.37i −0.179033 + 0.388670i
\(477\) 15988.3 1.53470
\(478\) 1892.70 1212.01i 0.181109 0.115975i
\(479\) −11789.0 −1.12454 −0.562270 0.826954i \(-0.690072\pi\)
−0.562270 + 0.826954i \(0.690072\pi\)
\(480\) 0 0
\(481\) −1558.54 −0.147741
\(482\) −1470.76 + 941.818i −0.138986 + 0.0890013i
\(483\) −534.119 −0.0503173
\(484\) 1167.39 2534.33i 0.109635 0.238010i
\(485\) 0 0
\(486\) −7026.20 + 4499.29i −0.655792 + 0.419943i
\(487\) 18083.0i 1.68258i 0.540582 + 0.841291i \(0.318204\pi\)
−0.540582 + 0.841291i \(0.681796\pi\)
\(488\) 6518.43 904.690i 0.604663 0.0839208i
\(489\) 3535.92 0.326994
\(490\) 0 0
\(491\) 11259.2i 1.03487i 0.855722 + 0.517435i \(0.173113\pi\)
−0.855722 + 0.517435i \(0.826887\pi\)
\(492\) −373.366 + 810.553i −0.0342127 + 0.0742735i
\(493\) 1792.32 0.163736
\(494\) −651.736 1017.77i −0.0593583 0.0926953i
\(495\) 0 0
\(496\) 12500.2 + 14617.5i 1.13160 + 1.32328i
\(497\) 3942.92i 0.355864i
\(498\) −3528.80 + 2259.70i −0.317529 + 0.203332i
\(499\) 4589.82i 0.411761i 0.978577 + 0.205880i \(0.0660058\pi\)
−0.978577 + 0.205880i \(0.933994\pi\)
\(500\) 0 0
\(501\) 3066.53i 0.273458i
\(502\) −1383.47 2160.46i −0.123003 0.192084i
\(503\) 5257.43i 0.466038i 0.972472 + 0.233019i \(0.0748604\pi\)
−0.972472 + 0.233019i \(0.925140\pi\)
\(504\) 2842.93 394.569i 0.251258 0.0348720i
\(505\) 0 0
\(506\) −5114.69 + 3275.24i −0.449359 + 0.287751i
\(507\) −3300.25 −0.289091
\(508\) −11218.4 5167.56i −0.979797 0.451325i
\(509\) 2451.99i 0.213522i −0.994285 0.106761i \(-0.965952\pi\)
0.994285 0.106761i \(-0.0340479\pi\)
\(510\) 0 0
\(511\) −248.178 −0.0214848
\(512\) −4657.54 10607.8i −0.402023 0.915629i
\(513\) 7053.17i 0.607027i
\(514\) 6636.04 + 10363.0i 0.569461 + 0.889283i
\(515\) 0 0
\(516\) −4.24695 + 9.21984i −0.000362328 + 0.000786591i
\(517\) 7156.08 0.608750
\(518\) 2568.65 + 4011.26i 0.217877 + 0.340241i
\(519\) −1384.44 −0.117091
\(520\) 0 0
\(521\) 10677.6 0.897878 0.448939 0.893562i \(-0.351802\pi\)
0.448939 + 0.893562i \(0.351802\pi\)
\(522\) −624.246 974.836i −0.0523419 0.0817383i
\(523\) 19565.8 1.63585 0.817927 0.575323i \(-0.195124\pi\)
0.817927 + 0.575323i \(0.195124\pi\)
\(524\) 14047.4 + 6470.67i 1.17111 + 0.539451i
\(525\) 0 0
\(526\) 5500.43 + 8589.60i 0.455951 + 0.712024i
\(527\) 32502.9i 2.68662i
\(528\) −2313.69 + 1978.56i −0.190702 + 0.163079i
\(529\) 7472.60 0.614170
\(530\) 0 0
\(531\) 18613.1i 1.52116i
\(532\) −1545.32 + 3354.79i −0.125936 + 0.273400i
\(533\) −349.360 −0.0283911
\(534\) −4353.63 + 2787.89i −0.352809 + 0.225924i
\(535\) 0 0
\(536\) −2494.11 17970.4i −0.200987 1.44814i
\(537\) 4897.78i 0.393584i
\(538\) −9917.16 15486.9i −0.794719 1.24105i
\(539\) 9922.95i 0.792972i
\(540\) 0 0
\(541\) 3313.01i 0.263286i −0.991297 0.131643i \(-0.957975\pi\)
0.991297 0.131643i \(-0.0420252\pi\)
\(542\) −2410.07 + 1543.31i −0.190998 + 0.122308i
\(543\) 1522.98i 0.120363i
\(544\) −5668.71 + 18739.4i −0.446772 + 1.47692i
\(545\) 0 0
\(546\) −56.5201 88.2630i −0.00443010 0.00691815i
\(547\) 25040.9 1.95735 0.978675 0.205414i \(-0.0658542\pi\)
0.978675 + 0.205414i \(0.0658542\pi\)
\(548\) 3475.03 + 1600.71i 0.270887 + 0.124779i
\(549\) 7182.64i 0.558375i
\(550\) 0 0
\(551\) 1489.67 0.115176
\(552\) −2330.71 + 323.478i −0.179713 + 0.0249423i
\(553\) 2320.03i 0.178404i
\(554\) 6237.04 3993.95i 0.478315 0.306293i
\(555\) 0 0
\(556\) 14949.8 + 6886.34i 1.14031 + 0.525263i
\(557\) 2708.11 0.206008 0.103004 0.994681i \(-0.467155\pi\)
0.103004 + 0.994681i \(0.467155\pi\)
\(558\) −17678.2 + 11320.4i −1.34118 + 0.858836i
\(559\) −3.97388 −0.000300675
\(560\) 0 0
\(561\) 5144.62 0.387177
\(562\) −5483.86 + 3511.64i −0.411606 + 0.263576i
\(563\) −9374.67 −0.701768 −0.350884 0.936419i \(-0.614119\pi\)
−0.350884 + 0.936419i \(0.614119\pi\)
\(564\) 2518.17 + 1159.95i 0.188003 + 0.0866003i
\(565\) 0 0
\(566\) 15700.2 10053.8i 1.16595 0.746628i
\(567\) 2813.16i 0.208363i
\(568\) 2387.95 + 17205.6i 0.176402 + 1.27100i
\(569\) −12092.5 −0.890938 −0.445469 0.895297i \(-0.646963\pi\)
−0.445469 + 0.895297i \(0.646963\pi\)
\(570\) 0 0
\(571\) 10847.4i 0.795008i 0.917601 + 0.397504i \(0.130123\pi\)
−0.917601 + 0.397504i \(0.869877\pi\)
\(572\) −1082.47 498.617i −0.0791261 0.0364480i
\(573\) 1930.72 0.140763
\(574\) 575.785 + 899.158i 0.0418690 + 0.0653835i
\(575\) 0 0
\(576\) 12166.6 3443.53i 0.880108 0.249098i
\(577\) 22325.8i 1.61080i −0.592729 0.805402i \(-0.701949\pi\)
0.592729 0.805402i \(-0.298051\pi\)
\(578\) 16159.7 10348.0i 1.16290 0.744673i
\(579\) 1109.36i 0.0796261i
\(580\) 0 0
\(581\) 5013.44i 0.357990i
\(582\) 1294.44 + 2021.43i 0.0921931 + 0.143971i
\(583\) 20289.5i 1.44135i
\(584\) −1082.96 + 150.304i −0.0767351 + 0.0106500i
\(585\) 0 0
\(586\) 11351.1 7268.79i 0.800187 0.512408i
\(587\) 281.244 0.0197754 0.00988770 0.999951i \(-0.496853\pi\)
0.00988770 + 0.999951i \(0.496853\pi\)
\(588\) 1608.44 3491.81i 0.112808 0.244898i
\(589\) 27014.4i 1.88983i
\(590\) 0 0
\(591\) 5436.69 0.378402
\(592\) 13638.1 + 15948.1i 0.946825 + 1.10720i
\(593\) 934.658i 0.0647248i 0.999476 + 0.0323624i \(0.0103031\pi\)
−0.999476 + 0.0323624i \(0.989697\pi\)
\(594\) −3750.77 5857.28i −0.259084 0.404591i
\(595\) 0 0
\(596\) −20627.9 9501.86i −1.41770 0.653039i
\(597\) −3047.14 −0.208897
\(598\) −496.757 775.748i −0.0339698 0.0530480i
\(599\) 15278.2 1.04215 0.521077 0.853510i \(-0.325530\pi\)
0.521077 + 0.853510i \(0.325530\pi\)
\(600\) 0 0
\(601\) 10958.6 0.743780 0.371890 0.928277i \(-0.378710\pi\)
0.371890 + 0.928277i \(0.378710\pi\)
\(602\) 6.54941 + 10.2277i 0.000443412 + 0.000692442i
\(603\) 19801.6 1.33728
\(604\) −7320.24 + 15891.8i −0.493140 + 1.07057i
\(605\) 0 0
\(606\) 1254.91 + 1959.69i 0.0841207 + 0.131365i
\(607\) 24850.2i 1.66167i −0.556515 0.830837i \(-0.687862\pi\)
0.556515 0.830837i \(-0.312138\pi\)
\(608\) −4711.49 + 15575.0i −0.314270 + 1.03890i
\(609\) 129.187 0.00859596
\(610\) 0 0
\(611\) 1085.37i 0.0718645i
\(612\) −19408.1 8939.97i −1.28190 0.590485i
\(613\) −3961.58 −0.261022 −0.130511 0.991447i \(-0.541662\pi\)
−0.130511 + 0.991447i \(0.541662\pi\)
\(614\) −280.965 + 179.919i −0.0184671 + 0.0118256i
\(615\) 0 0
\(616\) 500.718 + 3607.75i 0.0327508 + 0.235975i
\(617\) 20732.3i 1.35275i 0.736555 + 0.676377i \(0.236451\pi\)
−0.736555 + 0.676377i \(0.763549\pi\)
\(618\) −4085.96 6380.73i −0.265957 0.415324i
\(619\) 7801.96i 0.506603i 0.967387 + 0.253301i \(0.0815164\pi\)
−0.967387 + 0.253301i \(0.918484\pi\)
\(620\) 0 0
\(621\) 5375.97i 0.347391i
\(622\) −9730.27 + 6230.87i −0.627248 + 0.401664i
\(623\) 6185.29i 0.397766i
\(624\) −300.089 350.919i −0.0192519 0.0225128i
\(625\) 0 0
\(626\) 1379.89 + 2154.87i 0.0881015 + 0.137581i
\(627\) 4275.90 0.272349
\(628\) 3133.59 6802.82i 0.199115 0.432265i
\(629\) 35461.5i 2.24792i
\(630\) 0 0
\(631\) −9359.85 −0.590507 −0.295253 0.955419i \(-0.595404\pi\)
−0.295253 + 0.955419i \(0.595404\pi\)
\(632\) −1405.08 10123.8i −0.0884350 0.637188i
\(633\) 2147.33i 0.134832i
\(634\) 12951.1 8293.36i 0.811283 0.519513i
\(635\) 0 0
\(636\) −3288.78 + 7139.71i −0.205045 + 0.445138i
\(637\) 1505.02 0.0936123
\(638\) 1237.09 792.183i 0.0767663 0.0491581i
\(639\) −18958.8 −1.17370
\(640\) 0 0
\(641\) 19129.1 1.17871 0.589356 0.807873i \(-0.299381\pi\)
0.589356 + 0.807873i \(0.299381\pi\)
\(642\) −1600.96 + 1025.19i −0.0984186 + 0.0630233i
\(643\) 11243.5 0.689582 0.344791 0.938680i \(-0.387950\pi\)
0.344791 + 0.938680i \(0.387950\pi\)
\(644\) −1177.85 + 2557.04i −0.0720713 + 0.156462i
\(645\) 0 0
\(646\) 23157.3 14829.0i 1.41039 0.903155i
\(647\) 11887.6i 0.722331i 0.932502 + 0.361166i \(0.117621\pi\)
−0.932502 + 0.361166i \(0.882379\pi\)
\(648\) 1703.73 + 12275.7i 0.103285 + 0.744187i
\(649\) 23620.4 1.42863
\(650\) 0 0
\(651\) 2342.75i 0.141044i
\(652\) 7797.51 16927.9i 0.468365 1.01679i
\(653\) −5327.46 −0.319264 −0.159632 0.987177i \(-0.551031\pi\)
−0.159632 + 0.987177i \(0.551031\pi\)
\(654\) 3581.82 + 5593.46i 0.214160 + 0.334436i
\(655\) 0 0
\(656\) 3057.08 + 3574.91i 0.181950 + 0.212769i
\(657\) 1193.31i 0.0708609i
\(658\) 2793.44 1788.81i 0.165501 0.105980i
\(659\) 26016.2i 1.53786i 0.639334 + 0.768929i \(0.279210\pi\)
−0.639334 + 0.768929i \(0.720790\pi\)
\(660\) 0 0
\(661\) 5961.64i 0.350803i −0.984497 0.175401i \(-0.943878\pi\)
0.984497 0.175401i \(-0.0561224\pi\)
\(662\) 9066.32 + 14158.2i 0.532285 + 0.831228i
\(663\) 780.287i 0.0457071i
\(664\) 3036.28 + 21876.9i 0.177456 + 1.27860i
\(665\) 0 0
\(666\) −19287.4 + 12350.8i −1.12218 + 0.718597i
\(667\) 1135.43 0.0659134
\(668\) 14680.7 + 6762.40i 0.850320 + 0.391684i
\(669\) 2.57883i 0.000149033i
\(670\) 0 0
\(671\) −9114.95 −0.524410
\(672\) −408.591 + 1350.70i −0.0234550 + 0.0775364i
\(673\) 17544.1i 1.00487i −0.864615 0.502435i \(-0.832438\pi\)
0.864615 0.502435i \(-0.167562\pi\)
\(674\) −8597.88 13426.6i −0.491362 0.767322i
\(675\) 0 0
\(676\) −7277.80 + 15799.6i −0.414076 + 0.898932i
\(677\) 17000.0 0.965088 0.482544 0.875872i \(-0.339713\pi\)
0.482544 + 0.875872i \(0.339713\pi\)
\(678\) 1825.46 + 2850.68i 0.103402 + 0.161474i
\(679\) 2871.89 0.162317
\(680\) 0 0
\(681\) −5122.28 −0.288232
\(682\) −14365.9 22434.1i −0.806594 1.25960i
\(683\) −5386.68 −0.301780 −0.150890 0.988551i \(-0.548214\pi\)
−0.150890 + 0.988551i \(0.548214\pi\)
\(684\) −16130.8 7430.37i −0.901722 0.415361i
\(685\) 0 0
\(686\) −5167.55 8069.77i −0.287607 0.449133i
\(687\) 2019.69i 0.112163i
\(688\) 34.7736 + 40.6637i 0.00192693 + 0.00225333i
\(689\) −3077.32 −0.170155
\(690\) 0 0
\(691\) 18049.0i 0.993658i 0.867849 + 0.496829i \(0.165502\pi\)
−0.867849 + 0.496829i \(0.834498\pi\)
\(692\) −3053.01 + 6627.87i −0.167714 + 0.364095i
\(693\) −3975.37 −0.217910
\(694\) 18486.3 11837.9i 1.01114 0.647493i
\(695\) 0 0
\(696\) 563.730 78.2397i 0.0307013 0.00426102i
\(697\) 7948.99i 0.431979i
\(698\) −13284.6 20745.6i −0.720387 1.12497i
\(699\) 6637.24i 0.359147i
\(700\) 0 0
\(701\) 7991.13i 0.430558i −0.976553 0.215279i \(-0.930934\pi\)
0.976553 0.215279i \(-0.0690660\pi\)
\(702\) 888.377 568.881i 0.0477630 0.0305855i
\(703\) 29473.5i 1.58124i
\(704\) 4369.92 + 15439.7i 0.233946 + 0.826573i
\(705\) 0 0
\(706\) −1504.42 2349.34i −0.0801977 0.125239i
\(707\) 2784.18 0.148104
\(708\) 8311.84 + 3828.70i 0.441212 + 0.203236i
\(709\) 11306.8i 0.598920i 0.954109 + 0.299460i \(0.0968065\pi\)
−0.954109 + 0.299460i \(0.903194\pi\)
\(710\) 0 0
\(711\) 11155.4 0.588410
\(712\) 3745.99 + 26990.5i 0.197173 + 1.42066i
\(713\) 20590.6i 1.08152i
\(714\) 2008.25 1286.00i 0.105262 0.0674053i
\(715\) 0 0
\(716\) −23447.6 10800.7i −1.22385 0.563745i
\(717\) −1206.04 −0.0628180
\(718\) −27320.8 + 17495.1i −1.42006 + 0.909348i
\(719\) −30968.9 −1.60632 −0.803160 0.595763i \(-0.796850\pi\)
−0.803160 + 0.595763i \(0.796850\pi\)
\(720\) 0 0
\(721\) −9065.23 −0.468248
\(722\) 2909.36 1863.04i 0.149966 0.0960320i
\(723\) 937.181 0.0482076
\(724\) −7291.09 3358.51i −0.374270 0.172400i
\(725\) 0 0
\(726\) −1260.93 + 807.448i −0.0644593 + 0.0412771i
\(727\) 26520.2i 1.35293i 0.736474 + 0.676466i \(0.236489\pi\)
−0.736474 + 0.676466i \(0.763511\pi\)
\(728\) −547.190 + 75.9442i −0.0278574 + 0.00386632i
\(729\) −10311.1 −0.523858
\(730\) 0 0
\(731\) 90.4178i 0.00457486i
\(732\) −3207.48 1477.47i −0.161956 0.0746021i
\(733\) −15980.8 −0.805270 −0.402635 0.915361i \(-0.631906\pi\)
−0.402635 + 0.915361i \(0.631906\pi\)
\(734\) −5079.83 7932.78i −0.255450 0.398916i
\(735\) 0 0
\(736\) −3591.13 + 11871.4i −0.179851 + 0.594545i
\(737\) 25128.7i 1.25594i
\(738\) −4323.42 + 2768.55i −0.215647 + 0.138092i
\(739\) 10163.8i 0.505927i 0.967476 + 0.252964i \(0.0814053\pi\)
−0.967476 + 0.252964i \(0.918595\pi\)
\(740\) 0 0
\(741\) 648.528i 0.0321515i
\(742\) 5071.77 + 7920.19i 0.250931 + 0.391859i
\(743\) 37765.7i 1.86472i 0.361530 + 0.932360i \(0.382254\pi\)
−0.361530 + 0.932360i \(0.617746\pi\)
\(744\) −1418.84 10223.0i −0.0699156 0.503753i
\(745\) 0 0
\(746\) −22387.3 + 14335.9i −1.09874 + 0.703588i
\(747\) −24106.1 −1.18072
\(748\) 11345.1 24629.3i 0.554567 1.20393i
\(749\) 2274.51i 0.110960i
\(750\) 0 0
\(751\) −20234.4 −0.983175 −0.491587 0.870828i \(-0.663583\pi\)
−0.491587 + 0.870828i \(0.663583\pi\)
\(752\) 11106.3 9497.52i 0.538568 0.460557i
\(753\) 1376.66i 0.0666245i
\(754\) 120.151 + 187.630i 0.00580323 + 0.00906245i
\(755\) 0 0
\(756\) −2928.29 1348.86i −0.140874 0.0648911i
\(757\) −27066.9 −1.29956 −0.649778 0.760124i \(-0.725138\pi\)
−0.649778 + 0.760124i \(0.725138\pi\)
\(758\) 5857.97 + 9147.94i 0.280701 + 0.438348i
\(759\) 3259.12 0.155861
\(760\) 0 0
\(761\) −30797.4 −1.46702 −0.733512 0.679677i \(-0.762120\pi\)
−0.733512 + 0.679677i \(0.762120\pi\)
\(762\) 3574.23 + 5581.59i 0.169922 + 0.265354i
\(763\) 7946.74 0.377053
\(764\) 4257.68 9243.13i 0.201620 0.437703i
\(765\) 0 0
\(766\) −4530.05 7074.22i −0.213678 0.333684i
\(767\) 3582.52i 0.168654i
\(768\) −964.926 + 6141.45i −0.0453369 + 0.288556i
\(769\) 35490.2 1.66425 0.832125 0.554588i \(-0.187124\pi\)
0.832125 + 0.554588i \(0.187124\pi\)
\(770\) 0 0
\(771\) 6603.37i 0.308449i
\(772\) 5310.96 + 2446.39i 0.247598 + 0.114051i
\(773\) −37364.0 −1.73854 −0.869269 0.494339i \(-0.835410\pi\)
−0.869269 + 0.494339i \(0.835410\pi\)
\(774\) −49.1779 + 31.4915i −0.00228380 + 0.00146245i
\(775\) 0 0
\(776\) 12531.9 1739.30i 0.579730 0.0804604i
\(777\) 2556.01i 0.118013i
\(778\) −12734.7 19886.8i −0.586841 0.916424i
\(779\) 6606.72i 0.303864i
\(780\) 0 0
\(781\) 24059.1i 1.10231i
\(782\) 17650.6 11302.7i 0.807141 0.516860i
\(783\) 1300.29i 0.0593467i
\(784\) −13169.7 15400.5i −0.599932 0.701551i
\(785\) 0 0
\(786\) −4475.55 6989.11i −0.203101 0.317167i
\(787\) −28529.7 −1.29222 −0.646108 0.763246i \(-0.723605\pi\)
−0.646108 + 0.763246i \(0.723605\pi\)
\(788\) 11989.1 26027.6i 0.541999 1.17664i
\(789\) 5473.35i 0.246967i
\(790\) 0 0
\(791\) 4050.01 0.182051
\(792\) −17347.2 + 2407.60i −0.778288 + 0.108018i
\(793\) 1382.47i 0.0619078i
\(794\) 10733.5 6873.33i 0.479747 0.307211i
\(795\) 0 0
\(796\) −6719.64 + 14587.9i −0.299210 + 0.649565i
\(797\) −7130.44 −0.316905 −0.158452 0.987367i \(-0.550650\pi\)
−0.158452 + 0.987367i \(0.550650\pi\)
\(798\) 1669.14 1068.85i 0.0740436 0.0474145i
\(799\) −24695.3 −1.09344
\(800\) 0 0
\(801\) −29740.7 −1.31191
\(802\) 18232.2 11675.2i 0.802745 0.514046i
\(803\) 1514.35 0.0665505
\(804\) −4073.18 + 8842.59i −0.178669 + 0.387878i
\(805\) 0 0
\(806\) 3402.58 2178.88i 0.148698 0.0952204i
\(807\) 9868.33i 0.430461i
\(808\) 12149.2 1686.18i 0.528969 0.0734153i
\(809\) 11060.3 0.480665 0.240333 0.970691i \(-0.422743\pi\)
0.240333 + 0.970691i \(0.422743\pi\)
\(810\) 0 0
\(811\) 27381.5i 1.18557i 0.805361 + 0.592784i \(0.201971\pi\)
−0.805361 + 0.592784i \(0.798029\pi\)
\(812\) 284.888 618.472i 0.0123123 0.0267292i
\(813\) 1535.71 0.0662481
\(814\) −15673.5 24476.1i −0.674886 1.05392i
\(815\) 0 0
\(816\) 7984.47 6827.92i 0.342540 0.292923i
\(817\) 75.1498i 0.00321807i
\(818\) 6201.38 3971.11i 0.265069 0.169739i
\(819\) 602.947i 0.0257249i
\(820\) 0 0
\(821\) 30033.9i 1.27672i 0.769736 + 0.638362i \(0.220388\pi\)
−0.769736 + 0.638362i \(0.779612\pi\)
\(822\) −1107.16 1728.96i −0.0469787 0.0733630i
\(823\) 3186.93i 0.134981i −0.997720 0.0674906i \(-0.978501\pi\)
0.997720 0.0674906i \(-0.0214993\pi\)
\(824\) −39557.5 + 5490.17i −1.67239 + 0.232111i
\(825\) 0 0
\(826\) 9220.45 5904.40i 0.388403 0.248717i
\(827\) −18326.0 −0.770563 −0.385282 0.922799i \(-0.625896\pi\)
−0.385282 + 0.922799i \(0.625896\pi\)
\(828\) −12295.0 5663.47i −0.516040 0.237704i
\(829\) 4370.27i 0.183095i 0.995801 + 0.0915475i \(0.0291813\pi\)
−0.995801 + 0.0915475i \(0.970819\pi\)
\(830\) 0 0
\(831\) −3974.28 −0.165904
\(832\) −2341.75 + 662.788i −0.0975789 + 0.0276179i
\(833\) 34243.7i 1.42434i
\(834\) −4763.05 7438.09i −0.197759 0.308825i
\(835\) 0 0
\(836\) 9429.32 20470.4i 0.390096 0.846872i
\(837\) 23580.1 0.973771
\(838\) 802.288 + 1252.87i 0.0330723 + 0.0516464i
\(839\) 29789.0 1.22578 0.612890 0.790168i \(-0.290007\pi\)
0.612890 + 0.790168i \(0.290007\pi\)
\(840\) 0 0
\(841\) 24114.4 0.988740
\(842\) 23071.5 + 36029.0i 0.944296 + 1.47463i
\(843\) 3494.35 0.142766
\(844\) 10280.1 + 4735.35i 0.419262 + 0.193125i
\(845\) 0 0
\(846\) 8601.12 + 13431.7i 0.349542 + 0.545853i
\(847\) 1791.43i 0.0726732i
\(848\) 26928.2 + 31489.4i 1.09047 + 1.27518i
\(849\) −10004.3 −0.404412
\(850\) 0 0
\(851\) 22464.9i 0.904918i
\(852\) 3899.81 8466.22i 0.156814 0.340432i
\(853\) 39023.7 1.56641 0.783205 0.621764i \(-0.213584\pi\)
0.783205 + 0.621764i \(0.213584\pi\)
\(854\) −3558.10 + 2278.47i −0.142571 + 0.0912969i
\(855\) 0 0
\(856\) 1377.51 + 9925.19i 0.0550028 + 0.396304i
\(857\) 2749.52i 0.109594i −0.998498 0.0547969i \(-0.982549\pi\)
0.998498 0.0547969i \(-0.0174512\pi\)
\(858\) 344.877 + 538.568i 0.0137225 + 0.0214294i
\(859\) 48225.6i 1.91553i 0.287559 + 0.957763i \(0.407156\pi\)
−0.287559 + 0.957763i \(0.592844\pi\)
\(860\) 0 0
\(861\) 572.950i 0.0226784i
\(862\) −11642.6 + 7455.45i −0.460033 + 0.294587i
\(863\) 12421.1i 0.489942i 0.969530 + 0.244971i \(0.0787784\pi\)
−0.969530 + 0.244971i \(0.921222\pi\)
\(864\) −13595.0 4112.51i −0.535313 0.161934i
\(865\) 0 0
\(866\) −10591.8 16540.4i −0.415616 0.649036i
\(867\) −10297.1 −0.403353
\(868\) −11215.7 5166.30i −0.438578 0.202023i
\(869\) 14156.5i 0.552618i
\(870\) 0 0
\(871\) −3811.28 −0.148267
\(872\) 34676.8 4812.78i 1.34668 0.186905i
\(873\) 13808.9i 0.535350i
\(874\) 14670.1 9394.15i 0.567762 0.363572i
\(875\) 0 0
\(876\) 532.886 + 245.464i 0.0205531 + 0.00946742i
\(877\) −38301.8 −1.47475 −0.737377 0.675482i \(-0.763936\pi\)
−0.737377 + 0.675482i \(0.763936\pi\)
\(878\) 1375.62 880.892i 0.0528758 0.0338595i
\(879\) −7233.00 −0.277546
\(880\) 0 0
\(881\) 14792.0 0.565671 0.282836 0.959168i \(-0.408725\pi\)
0.282836 + 0.959168i \(0.408725\pi\)
\(882\) 18625.0 11926.7i 0.711040 0.455321i
\(883\) 2064.99 0.0787002 0.0393501 0.999225i \(-0.487471\pi\)
0.0393501 + 0.999225i \(0.487471\pi\)
\(884\) 3735.55 + 1720.71i 0.142127 + 0.0654680i
\(885\) 0 0
\(886\) 16767.3 10737.1i 0.635788 0.407133i
\(887\) 19268.8i 0.729406i 0.931124 + 0.364703i \(0.118829\pi\)
−0.931124 + 0.364703i \(0.881171\pi\)
\(888\) −1547.99 11153.5i −0.0584991 0.421495i
\(889\) 7929.89 0.299167
\(890\) 0 0
\(891\) 17165.5i 0.645415i
\(892\) −12.3459 5.68690i −0.000463420 0.000213466i
\(893\) −20525.3 −0.769152
\(894\) 6572.12 + 10263.2i 0.245866 + 0.383951i
\(895\) 0 0
\(896\) 5565.31 + 4934.69i 0.207505 + 0.183992i
\(897\) 494.312i 0.0183998i
\(898\) 15237.1 9757.21i 0.566223 0.362586i
\(899\) 4980.24i 0.184761i
\(900\) 0 0
\(901\) 70018.3i 2.58895i
\(902\) −3513.35 5486.53i −0.129692 0.202529i
\(903\) 6.51717i 0.000240175i
\(904\) 17672.9 2452.81i 0.650211 0.0902425i
\(905\) 0 0
\(906\) 7906.76 5063.17i 0.289939 0.185665i
\(907\) 46355.6 1.69704 0.848519 0.529165i \(-0.177495\pi\)
0.848519 + 0.529165i \(0.177495\pi\)
\(908\) −11295.8 + 24522.4i −0.412846 + 0.896260i
\(909\) 13387.2i 0.488475i
\(910\) 0 0
\(911\) 23365.5 0.849761 0.424881 0.905249i \(-0.360316\pi\)
0.424881 + 0.905249i \(0.360316\pi\)
\(912\) 6636.21 5674.96i 0.240950 0.206049i
\(913\) 30591.3i 1.10890i
\(914\) 10701.2 + 16711.2i 0.387268 + 0.604766i
\(915\) 0 0
\(916\) −9669.05 4453.87i −0.348771 0.160655i
\(917\) −9929.58 −0.357583
\(918\) 12943.8 + 20213.3i 0.465368 + 0.726728i
\(919\) 36178.5 1.29860 0.649302 0.760530i \(-0.275061\pi\)
0.649302 + 0.760530i \(0.275061\pi\)
\(920\) 0 0
\(921\) 179.033 0.00640535
\(922\) −20399.2 31855.9i −0.728647 1.13787i
\(923\) 3649.06 0.130130
\(924\) 817.732 1775.24i 0.0291141 0.0632047i
\(925\) 0 0
\(926\) 23511.2 + 36715.5i 0.834368 + 1.30297i
\(927\) 43588.4i 1.54437i
\(928\) 868.587 2871.33i 0.0307249 0.101569i
\(929\) −17014.6 −0.600895 −0.300447 0.953798i \(-0.597136\pi\)
−0.300447 + 0.953798i \(0.597136\pi\)
\(930\) 0 0
\(931\) 28461.3i 1.00191i
\(932\) 31775.1 + 14636.6i 1.11677 + 0.514419i
\(933\) 6200.20 0.217562
\(934\) 4278.95 2740.07i 0.149905 0.0959933i
\(935\) 0 0
\(936\) −365.162 2631.05i −0.0127518 0.0918789i
\(937\) 16898.8i 0.589179i 0.955624 + 0.294589i \(0.0951829\pi\)
−0.955624 + 0.294589i \(0.904817\pi\)
\(938\) 6281.43 + 9809.22i 0.218652 + 0.341452i
\(939\) 1373.10i 0.0477203i
\(940\) 0 0
\(941\) 43995.9i 1.52415i 0.647489 + 0.762074i \(0.275819\pi\)
−0.647489 + 0.762074i \(0.724181\pi\)
\(942\) −3384.67 + 2167.40i −0.117068 + 0.0749658i
\(943\) 5035.68i 0.173897i
\(944\) 36659.0 31349.0i 1.26393 1.08085i
\(945\) 0 0
\(946\) −39.9635 62.4080i −0.00137350 0.00214488i
\(947\) 2588.13 0.0888099 0.0444050 0.999014i \(-0.485861\pi\)
0.0444050 + 0.999014i \(0.485861\pi\)
\(948\) −2294.66 + 4981.54i −0.0786149 + 0.170668i
\(949\) 229.681i 0.00785646i
\(950\) 0 0
\(951\) −8252.52 −0.281395
\(952\) −1727.96 12450.2i −0.0588272 0.423859i
\(953\) 7309.24i 0.248447i −0.992254 0.124223i \(-0.960356\pi\)
0.992254 0.124223i \(-0.0396439\pi\)
\(954\) −38082.7 + 24386.6i −1.29242 + 0.827615i
\(955\) 0 0
\(956\) −2659.60 + 5773.80i −0.0899764 + 0.195333i
\(957\) −788.283 −0.0266265
\(958\) 28080.5 17981.6i 0.947013 0.606429i
\(959\) −2456.37 −0.0827115
\(960\) 0 0
\(961\) 60523.3 2.03160
\(962\) 3712.31 2377.21i 0.124418 0.0796720i
\(963\) −10936.5 −0.365966
\(964\) 2066.70 4486.66i 0.0690496 0.149902i
\(965\) 0 0
\(966\) 1272.23 814.682i 0.0423739 0.0271345i
\(967\) 27600.6i 0.917866i 0.888471 + 0.458933i \(0.151768\pi\)
−0.888471 + 0.458933i \(0.848232\pi\)
\(968\) 1084.94 + 7817.17i 0.0360241 + 0.259559i
\(969\) −14756.0 −0.489195
\(970\) 0 0
\(971\) 22638.5i 0.748201i −0.927388 0.374100i \(-0.877952\pi\)
0.927388 0.374100i \(-0.122048\pi\)
\(972\) 9873.11 21433.9i 0.325803 0.707296i
\(973\) −10567.5 −0.348178
\(974\) −27581.6 43072.1i −0.907364 1.41696i
\(975\) 0 0
\(976\) −14146.4 + 12097.3i −0.463951 + 0.396748i
\(977\) 18390.3i 0.602208i −0.953591 0.301104i \(-0.902645\pi\)
0.953591 0.301104i \(-0.0973551\pi\)
\(978\) −8422.27 + 5393.28i −0.275373 + 0.176337i
\(979\) 37741.7i 1.23210i
\(980\) 0 0
\(981\) 38210.3i 1.24359i
\(982\) −17173.5 26818.5i −0.558073 0.871499i
\(983\) 11139.1i 0.361425i −0.983536 0.180712i \(-0.942160\pi\)
0.983536 0.180712i \(-0.0578404\pi\)
\(984\) −346.995 2500.16i −0.0112417 0.0809980i
\(985\) 0 0
\(986\) −4269.15 + 2733.79i −0.137888 + 0.0882979i
\(987\) −1780.00 −0.0574043
\(988\) 3104.76 + 1430.15i 0.0999753 + 0.0460518i
\(989\) 57.2797i 0.00184165i
\(990\) 0 0
\(991\) 30232.3 0.969083 0.484542 0.874768i \(-0.338986\pi\)
0.484542 + 0.874768i \(0.338986\pi\)
\(992\) −52070.3 15751.4i −1.66657 0.504141i
\(993\) 9021.68i 0.288313i
\(994\) −6014.07 9391.70i −0.191906 0.299685i
\(995\) 0 0
\(996\) 4958.62 10764.8i 0.157751 0.342466i
\(997\) −9623.78 −0.305705 −0.152853 0.988249i \(-0.548846\pi\)
−0.152853 + 0.988249i \(0.548846\pi\)
\(998\) −7000.77 10932.6i −0.222050 0.346758i
\(999\) 25726.5 0.814764
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 200.4.f.c.149.2 12
4.3 odd 2 800.4.f.b.49.5 12
5.2 odd 4 200.4.d.b.101.5 12
5.3 odd 4 40.4.d.a.21.8 yes 12
5.4 even 2 200.4.f.b.149.11 12
8.3 odd 2 800.4.f.c.49.7 12
8.5 even 2 200.4.f.b.149.12 12
15.8 even 4 360.4.k.c.181.5 12
20.3 even 4 160.4.d.a.81.5 12
20.7 even 4 800.4.d.d.401.8 12
20.19 odd 2 800.4.f.c.49.8 12
40.3 even 4 160.4.d.a.81.8 12
40.13 odd 4 40.4.d.a.21.7 12
40.19 odd 2 800.4.f.b.49.6 12
40.27 even 4 800.4.d.d.401.5 12
40.29 even 2 inner 200.4.f.c.149.1 12
40.37 odd 4 200.4.d.b.101.6 12
60.23 odd 4 1440.4.k.c.721.4 12
80.3 even 4 1280.4.a.bd.1.4 6
80.13 odd 4 1280.4.a.bb.1.3 6
80.43 even 4 1280.4.a.ba.1.3 6
80.53 odd 4 1280.4.a.bc.1.4 6
120.53 even 4 360.4.k.c.181.6 12
120.83 odd 4 1440.4.k.c.721.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.d.a.21.7 12 40.13 odd 4
40.4.d.a.21.8 yes 12 5.3 odd 4
160.4.d.a.81.5 12 20.3 even 4
160.4.d.a.81.8 12 40.3 even 4
200.4.d.b.101.5 12 5.2 odd 4
200.4.d.b.101.6 12 40.37 odd 4
200.4.f.b.149.11 12 5.4 even 2
200.4.f.b.149.12 12 8.5 even 2
200.4.f.c.149.1 12 40.29 even 2 inner
200.4.f.c.149.2 12 1.1 even 1 trivial
360.4.k.c.181.5 12 15.8 even 4
360.4.k.c.181.6 12 120.53 even 4
800.4.d.d.401.5 12 40.27 even 4
800.4.d.d.401.8 12 20.7 even 4
800.4.f.b.49.5 12 4.3 odd 2
800.4.f.b.49.6 12 40.19 odd 2
800.4.f.c.49.7 12 8.3 odd 2
800.4.f.c.49.8 12 20.19 odd 2
1280.4.a.ba.1.3 6 80.43 even 4
1280.4.a.bb.1.3 6 80.13 odd 4
1280.4.a.bc.1.4 6 80.53 odd 4
1280.4.a.bd.1.4 6 80.3 even 4
1440.4.k.c.721.4 12 60.23 odd 4
1440.4.k.c.721.10 12 120.83 odd 4