Properties

Label 1280.4.d.i.641.2
Level $1280$
Weight $4$
Character 1280.641
Analytic conductor $75.522$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(75.5224448073\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 641.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.641
Dual form 1280.4.d.i.641.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{3} +5.00000i q^{5} +2.00000 q^{7} -37.0000 q^{9} -22.0000i q^{11} -10.0000i q^{13} -40.0000 q^{15} +10.0000 q^{17} +110.000i q^{19} +16.0000i q^{21} -154.000 q^{23} -25.0000 q^{25} -80.0000i q^{27} -222.000i q^{29} +92.0000 q^{31} +176.000 q^{33} +10.0000i q^{35} -34.0000i q^{37} +80.0000 q^{39} -398.000 q^{41} -268.000i q^{43} -185.000i q^{45} +10.0000 q^{47} -339.000 q^{49} +80.0000i q^{51} -582.000i q^{53} +110.000 q^{55} -880.000 q^{57} -746.000i q^{59} +226.000i q^{61} -74.0000 q^{63} +50.0000 q^{65} -172.000i q^{67} -1232.00i q^{69} +928.000 q^{71} -570.000 q^{73} -200.000i q^{75} -44.0000i q^{77} -64.0000 q^{79} -359.000 q^{81} -864.000i q^{83} +50.0000i q^{85} +1776.00 q^{87} +874.000 q^{89} -20.0000i q^{91} +736.000i q^{93} -550.000 q^{95} +306.000 q^{97} +814.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{7} - 74 q^{9} - 80 q^{15} + 20 q^{17} - 308 q^{23} - 50 q^{25} + 184 q^{31} + 352 q^{33} + 160 q^{39} - 796 q^{41} + 20 q^{47} - 678 q^{49} + 220 q^{55} - 1760 q^{57} - 148 q^{63} + 100 q^{65}+ \cdots + 612 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.00000i 1.53960i 0.638285 + 0.769800i \(0.279644\pi\)
−0.638285 + 0.769800i \(0.720356\pi\)
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 0 0
\(9\) −37.0000 −1.37037
\(10\) 0 0
\(11\) − 22.0000i − 0.603023i −0.953463 0.301511i \(-0.902509\pi\)
0.953463 0.301511i \(-0.0974911\pi\)
\(12\) 0 0
\(13\) − 10.0000i − 0.213346i −0.994294 0.106673i \(-0.965980\pi\)
0.994294 0.106673i \(-0.0340198\pi\)
\(14\) 0 0
\(15\) −40.0000 −0.688530
\(16\) 0 0
\(17\) 10.0000 0.142668 0.0713340 0.997452i \(-0.477274\pi\)
0.0713340 + 0.997452i \(0.477274\pi\)
\(18\) 0 0
\(19\) 110.000i 1.32820i 0.747645 + 0.664098i \(0.231184\pi\)
−0.747645 + 0.664098i \(0.768816\pi\)
\(20\) 0 0
\(21\) 16.0000i 0.166261i
\(22\) 0 0
\(23\) −154.000 −1.39614 −0.698070 0.716030i \(-0.745958\pi\)
−0.698070 + 0.716030i \(0.745958\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) − 80.0000i − 0.570222i
\(28\) 0 0
\(29\) − 222.000i − 1.42153i −0.703430 0.710765i \(-0.748349\pi\)
0.703430 0.710765i \(-0.251651\pi\)
\(30\) 0 0
\(31\) 92.0000 0.533022 0.266511 0.963832i \(-0.414129\pi\)
0.266511 + 0.963832i \(0.414129\pi\)
\(32\) 0 0
\(33\) 176.000 0.928414
\(34\) 0 0
\(35\) 10.0000i 0.0482945i
\(36\) 0 0
\(37\) − 34.0000i − 0.151069i −0.997143 0.0755347i \(-0.975934\pi\)
0.997143 0.0755347i \(-0.0240664\pi\)
\(38\) 0 0
\(39\) 80.0000 0.328468
\(40\) 0 0
\(41\) −398.000 −1.51603 −0.758014 0.652238i \(-0.773830\pi\)
−0.758014 + 0.652238i \(0.773830\pi\)
\(42\) 0 0
\(43\) − 268.000i − 0.950456i −0.879863 0.475228i \(-0.842366\pi\)
0.879863 0.475228i \(-0.157634\pi\)
\(44\) 0 0
\(45\) − 185.000i − 0.612848i
\(46\) 0 0
\(47\) 10.0000 0.0310351 0.0155176 0.999880i \(-0.495060\pi\)
0.0155176 + 0.999880i \(0.495060\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 80.0000i 0.219652i
\(52\) 0 0
\(53\) − 582.000i − 1.50837i −0.656659 0.754187i \(-0.728031\pi\)
0.656659 0.754187i \(-0.271969\pi\)
\(54\) 0 0
\(55\) 110.000 0.269680
\(56\) 0 0
\(57\) −880.000 −2.04489
\(58\) 0 0
\(59\) − 746.000i − 1.64612i −0.567956 0.823059i \(-0.692266\pi\)
0.567956 0.823059i \(-0.307734\pi\)
\(60\) 0 0
\(61\) 226.000i 0.474366i 0.971465 + 0.237183i \(0.0762241\pi\)
−0.971465 + 0.237183i \(0.923776\pi\)
\(62\) 0 0
\(63\) −74.0000 −0.147986
\(64\) 0 0
\(65\) 50.0000 0.0954113
\(66\) 0 0
\(67\) − 172.000i − 0.313629i −0.987628 0.156815i \(-0.949878\pi\)
0.987628 0.156815i \(-0.0501225\pi\)
\(68\) 0 0
\(69\) − 1232.00i − 2.14950i
\(70\) 0 0
\(71\) 928.000 1.55117 0.775587 0.631241i \(-0.217454\pi\)
0.775587 + 0.631241i \(0.217454\pi\)
\(72\) 0 0
\(73\) −570.000 −0.913883 −0.456941 0.889497i \(-0.651055\pi\)
−0.456941 + 0.889497i \(0.651055\pi\)
\(74\) 0 0
\(75\) − 200.000i − 0.307920i
\(76\) 0 0
\(77\) − 44.0000i − 0.0651203i
\(78\) 0 0
\(79\) −64.0000 −0.0911464 −0.0455732 0.998961i \(-0.514511\pi\)
−0.0455732 + 0.998961i \(0.514511\pi\)
\(80\) 0 0
\(81\) −359.000 −0.492455
\(82\) 0 0
\(83\) − 864.000i − 1.14261i −0.820739 0.571303i \(-0.806438\pi\)
0.820739 0.571303i \(-0.193562\pi\)
\(84\) 0 0
\(85\) 50.0000i 0.0638031i
\(86\) 0 0
\(87\) 1776.00 2.18859
\(88\) 0 0
\(89\) 874.000 1.04094 0.520471 0.853879i \(-0.325756\pi\)
0.520471 + 0.853879i \(0.325756\pi\)
\(90\) 0 0
\(91\) − 20.0000i − 0.0230392i
\(92\) 0 0
\(93\) 736.000i 0.820641i
\(94\) 0 0
\(95\) −550.000 −0.593987
\(96\) 0 0
\(97\) 306.000 0.320305 0.160153 0.987092i \(-0.448801\pi\)
0.160153 + 0.987092i \(0.448801\pi\)
\(98\) 0 0
\(99\) 814.000i 0.826364i
\(100\) 0 0
\(101\) − 930.000i − 0.916222i −0.888895 0.458111i \(-0.848526\pi\)
0.888895 0.458111i \(-0.151474\pi\)
\(102\) 0 0
\(103\) 462.000 0.441963 0.220982 0.975278i \(-0.429074\pi\)
0.220982 + 0.975278i \(0.429074\pi\)
\(104\) 0 0
\(105\) −80.0000 −0.0743543
\(106\) 0 0
\(107\) 1560.00i 1.40945i 0.709482 + 0.704724i \(0.248929\pi\)
−0.709482 + 0.704724i \(0.751071\pi\)
\(108\) 0 0
\(109\) 1186.00i 1.04219i 0.853500 + 0.521093i \(0.174475\pi\)
−0.853500 + 0.521093i \(0.825525\pi\)
\(110\) 0 0
\(111\) 272.000 0.232586
\(112\) 0 0
\(113\) −1382.00 −1.15051 −0.575255 0.817974i \(-0.695097\pi\)
−0.575255 + 0.817974i \(0.695097\pi\)
\(114\) 0 0
\(115\) − 770.000i − 0.624373i
\(116\) 0 0
\(117\) 370.000i 0.292363i
\(118\) 0 0
\(119\) 20.0000 0.0154067
\(120\) 0 0
\(121\) 847.000 0.636364
\(122\) 0 0
\(123\) − 3184.00i − 2.33408i
\(124\) 0 0
\(125\) − 125.000i − 0.0894427i
\(126\) 0 0
\(127\) −1198.00 −0.837050 −0.418525 0.908205i \(-0.637453\pi\)
−0.418525 + 0.908205i \(0.637453\pi\)
\(128\) 0 0
\(129\) 2144.00 1.46332
\(130\) 0 0
\(131\) 2314.00i 1.54332i 0.636034 + 0.771661i \(0.280574\pi\)
−0.636034 + 0.771661i \(0.719426\pi\)
\(132\) 0 0
\(133\) 220.000i 0.143432i
\(134\) 0 0
\(135\) 400.000 0.255011
\(136\) 0 0
\(137\) −2394.00 −1.49294 −0.746472 0.665417i \(-0.768254\pi\)
−0.746472 + 0.665417i \(0.768254\pi\)
\(138\) 0 0
\(139\) − 826.000i − 0.504032i −0.967723 0.252016i \(-0.918906\pi\)
0.967723 0.252016i \(-0.0810935\pi\)
\(140\) 0 0
\(141\) 80.0000i 0.0477817i
\(142\) 0 0
\(143\) −220.000 −0.128653
\(144\) 0 0
\(145\) 1110.00 0.635727
\(146\) 0 0
\(147\) − 2712.00i − 1.52165i
\(148\) 0 0
\(149\) − 2298.00i − 1.26349i −0.775178 0.631743i \(-0.782340\pi\)
0.775178 0.631743i \(-0.217660\pi\)
\(150\) 0 0
\(151\) 2120.00 1.14254 0.571269 0.820763i \(-0.306451\pi\)
0.571269 + 0.820763i \(0.306451\pi\)
\(152\) 0 0
\(153\) −370.000 −0.195508
\(154\) 0 0
\(155\) 460.000i 0.238375i
\(156\) 0 0
\(157\) − 838.000i − 0.425985i −0.977054 0.212993i \(-0.931679\pi\)
0.977054 0.212993i \(-0.0683210\pi\)
\(158\) 0 0
\(159\) 4656.00 2.32229
\(160\) 0 0
\(161\) −308.000 −0.150769
\(162\) 0 0
\(163\) 1440.00i 0.691960i 0.938242 + 0.345980i \(0.112454\pi\)
−0.938242 + 0.345980i \(0.887546\pi\)
\(164\) 0 0
\(165\) 880.000i 0.415199i
\(166\) 0 0
\(167\) 2122.00 0.983265 0.491633 0.870803i \(-0.336400\pi\)
0.491633 + 0.870803i \(0.336400\pi\)
\(168\) 0 0
\(169\) 2097.00 0.954483
\(170\) 0 0
\(171\) − 4070.00i − 1.82012i
\(172\) 0 0
\(173\) 3306.00i 1.45289i 0.687223 + 0.726447i \(0.258830\pi\)
−0.687223 + 0.726447i \(0.741170\pi\)
\(174\) 0 0
\(175\) −50.0000 −0.0215980
\(176\) 0 0
\(177\) 5968.00 2.53436
\(178\) 0 0
\(179\) − 2746.00i − 1.14662i −0.819337 0.573312i \(-0.805658\pi\)
0.819337 0.573312i \(-0.194342\pi\)
\(180\) 0 0
\(181\) 4062.00i 1.66810i 0.551689 + 0.834050i \(0.313984\pi\)
−0.551689 + 0.834050i \(0.686016\pi\)
\(182\) 0 0
\(183\) −1808.00 −0.730334
\(184\) 0 0
\(185\) 170.000 0.0675603
\(186\) 0 0
\(187\) − 220.000i − 0.0860320i
\(188\) 0 0
\(189\) − 160.000i − 0.0615782i
\(190\) 0 0
\(191\) 1908.00 0.722817 0.361408 0.932408i \(-0.382296\pi\)
0.361408 + 0.932408i \(0.382296\pi\)
\(192\) 0 0
\(193\) −2758.00 −1.02863 −0.514314 0.857602i \(-0.671953\pi\)
−0.514314 + 0.857602i \(0.671953\pi\)
\(194\) 0 0
\(195\) 400.000i 0.146895i
\(196\) 0 0
\(197\) 4322.00i 1.56310i 0.623846 + 0.781548i \(0.285569\pi\)
−0.623846 + 0.781548i \(0.714431\pi\)
\(198\) 0 0
\(199\) −2852.00 −1.01594 −0.507972 0.861373i \(-0.669605\pi\)
−0.507972 + 0.861373i \(0.669605\pi\)
\(200\) 0 0
\(201\) 1376.00 0.482863
\(202\) 0 0
\(203\) − 444.000i − 0.153511i
\(204\) 0 0
\(205\) − 1990.00i − 0.677988i
\(206\) 0 0
\(207\) 5698.00 1.91323
\(208\) 0 0
\(209\) 2420.00 0.800933
\(210\) 0 0
\(211\) − 4310.00i − 1.40622i −0.711081 0.703111i \(-0.751794\pi\)
0.711081 0.703111i \(-0.248206\pi\)
\(212\) 0 0
\(213\) 7424.00i 2.38819i
\(214\) 0 0
\(215\) 1340.00 0.425057
\(216\) 0 0
\(217\) 184.000 0.0575610
\(218\) 0 0
\(219\) − 4560.00i − 1.40701i
\(220\) 0 0
\(221\) − 100.000i − 0.0304377i
\(222\) 0 0
\(223\) 2742.00 0.823399 0.411699 0.911320i \(-0.364935\pi\)
0.411699 + 0.911320i \(0.364935\pi\)
\(224\) 0 0
\(225\) 925.000 0.274074
\(226\) 0 0
\(227\) − 1932.00i − 0.564896i −0.959283 0.282448i \(-0.908854\pi\)
0.959283 0.282448i \(-0.0911464\pi\)
\(228\) 0 0
\(229\) − 6114.00i − 1.76430i −0.470969 0.882150i \(-0.656096\pi\)
0.470969 0.882150i \(-0.343904\pi\)
\(230\) 0 0
\(231\) 352.000 0.100259
\(232\) 0 0
\(233\) −690.000 −0.194006 −0.0970030 0.995284i \(-0.530926\pi\)
−0.0970030 + 0.995284i \(0.530926\pi\)
\(234\) 0 0
\(235\) 50.0000i 0.0138793i
\(236\) 0 0
\(237\) − 512.000i − 0.140329i
\(238\) 0 0
\(239\) 1264.00 0.342098 0.171049 0.985263i \(-0.445284\pi\)
0.171049 + 0.985263i \(0.445284\pi\)
\(240\) 0 0
\(241\) −3246.00 −0.867607 −0.433803 0.901008i \(-0.642829\pi\)
−0.433803 + 0.901008i \(0.642829\pi\)
\(242\) 0 0
\(243\) − 5032.00i − 1.32841i
\(244\) 0 0
\(245\) − 1695.00i − 0.441998i
\(246\) 0 0
\(247\) 1100.00 0.283366
\(248\) 0 0
\(249\) 6912.00 1.75916
\(250\) 0 0
\(251\) − 2422.00i − 0.609065i −0.952502 0.304532i \(-0.901500\pi\)
0.952502 0.304532i \(-0.0985002\pi\)
\(252\) 0 0
\(253\) 3388.00i 0.841904i
\(254\) 0 0
\(255\) −400.000 −0.0982313
\(256\) 0 0
\(257\) −1158.00 −0.281066 −0.140533 0.990076i \(-0.544882\pi\)
−0.140533 + 0.990076i \(0.544882\pi\)
\(258\) 0 0
\(259\) − 68.0000i − 0.0163140i
\(260\) 0 0
\(261\) 8214.00i 1.94802i
\(262\) 0 0
\(263\) 3038.00 0.712286 0.356143 0.934432i \(-0.384092\pi\)
0.356143 + 0.934432i \(0.384092\pi\)
\(264\) 0 0
\(265\) 2910.00 0.674566
\(266\) 0 0
\(267\) 6992.00i 1.60263i
\(268\) 0 0
\(269\) − 3846.00i − 0.871728i −0.900013 0.435864i \(-0.856443\pi\)
0.900013 0.435864i \(-0.143557\pi\)
\(270\) 0 0
\(271\) −6612.00 −1.48210 −0.741052 0.671447i \(-0.765673\pi\)
−0.741052 + 0.671447i \(0.765673\pi\)
\(272\) 0 0
\(273\) 160.000 0.0354712
\(274\) 0 0
\(275\) 550.000i 0.120605i
\(276\) 0 0
\(277\) − 7314.00i − 1.58648i −0.608907 0.793241i \(-0.708392\pi\)
0.608907 0.793241i \(-0.291608\pi\)
\(278\) 0 0
\(279\) −3404.00 −0.730438
\(280\) 0 0
\(281\) 2102.00 0.446245 0.223122 0.974790i \(-0.428375\pi\)
0.223122 + 0.974790i \(0.428375\pi\)
\(282\) 0 0
\(283\) 4620.00i 0.970426i 0.874396 + 0.485213i \(0.161258\pi\)
−0.874396 + 0.485213i \(0.838742\pi\)
\(284\) 0 0
\(285\) − 4400.00i − 0.914504i
\(286\) 0 0
\(287\) −796.000 −0.163716
\(288\) 0 0
\(289\) −4813.00 −0.979646
\(290\) 0 0
\(291\) 2448.00i 0.493142i
\(292\) 0 0
\(293\) − 4018.00i − 0.801140i −0.916266 0.400570i \(-0.868812\pi\)
0.916266 0.400570i \(-0.131188\pi\)
\(294\) 0 0
\(295\) 3730.00 0.736166
\(296\) 0 0
\(297\) −1760.00 −0.343857
\(298\) 0 0
\(299\) 1540.00i 0.297861i
\(300\) 0 0
\(301\) − 536.000i − 0.102640i
\(302\) 0 0
\(303\) 7440.00 1.41062
\(304\) 0 0
\(305\) −1130.00 −0.212143
\(306\) 0 0
\(307\) − 8596.00i − 1.59804i −0.601302 0.799022i \(-0.705351\pi\)
0.601302 0.799022i \(-0.294649\pi\)
\(308\) 0 0
\(309\) 3696.00i 0.680447i
\(310\) 0 0
\(311\) 1312.00 0.239218 0.119609 0.992821i \(-0.461836\pi\)
0.119609 + 0.992821i \(0.461836\pi\)
\(312\) 0 0
\(313\) −1154.00 −0.208396 −0.104198 0.994557i \(-0.533228\pi\)
−0.104198 + 0.994557i \(0.533228\pi\)
\(314\) 0 0
\(315\) − 370.000i − 0.0661814i
\(316\) 0 0
\(317\) 7262.00i 1.28667i 0.765585 + 0.643335i \(0.222450\pi\)
−0.765585 + 0.643335i \(0.777550\pi\)
\(318\) 0 0
\(319\) −4884.00 −0.857215
\(320\) 0 0
\(321\) −12480.0 −2.16999
\(322\) 0 0
\(323\) 1100.00i 0.189491i
\(324\) 0 0
\(325\) 250.000i 0.0426692i
\(326\) 0 0
\(327\) −9488.00 −1.60455
\(328\) 0 0
\(329\) 20.0000 0.00335148
\(330\) 0 0
\(331\) 3098.00i 0.514446i 0.966352 + 0.257223i \(0.0828074\pi\)
−0.966352 + 0.257223i \(0.917193\pi\)
\(332\) 0 0
\(333\) 1258.00i 0.207021i
\(334\) 0 0
\(335\) 860.000 0.140259
\(336\) 0 0
\(337\) −7062.00 −1.14152 −0.570759 0.821118i \(-0.693351\pi\)
−0.570759 + 0.821118i \(0.693351\pi\)
\(338\) 0 0
\(339\) − 11056.0i − 1.77133i
\(340\) 0 0
\(341\) − 2024.00i − 0.321424i
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 0 0
\(345\) 6160.00 0.961285
\(346\) 0 0
\(347\) 2240.00i 0.346540i 0.984874 + 0.173270i \(0.0554334\pi\)
−0.984874 + 0.173270i \(0.944567\pi\)
\(348\) 0 0
\(349\) − 12166.0i − 1.86599i −0.359887 0.932996i \(-0.617185\pi\)
0.359887 0.932996i \(-0.382815\pi\)
\(350\) 0 0
\(351\) −800.000 −0.121655
\(352\) 0 0
\(353\) −9318.00 −1.40495 −0.702475 0.711709i \(-0.747922\pi\)
−0.702475 + 0.711709i \(0.747922\pi\)
\(354\) 0 0
\(355\) 4640.00i 0.693706i
\(356\) 0 0
\(357\) 160.000i 0.0237202i
\(358\) 0 0
\(359\) 5196.00 0.763884 0.381942 0.924186i \(-0.375255\pi\)
0.381942 + 0.924186i \(0.375255\pi\)
\(360\) 0 0
\(361\) −5241.00 −0.764106
\(362\) 0 0
\(363\) 6776.00i 0.979746i
\(364\) 0 0
\(365\) − 2850.00i − 0.408701i
\(366\) 0 0
\(367\) 12970.0 1.84476 0.922382 0.386279i \(-0.126240\pi\)
0.922382 + 0.386279i \(0.126240\pi\)
\(368\) 0 0
\(369\) 14726.0 2.07752
\(370\) 0 0
\(371\) − 1164.00i − 0.162889i
\(372\) 0 0
\(373\) 702.000i 0.0974482i 0.998812 + 0.0487241i \(0.0155155\pi\)
−0.998812 + 0.0487241i \(0.984484\pi\)
\(374\) 0 0
\(375\) 1000.00 0.137706
\(376\) 0 0
\(377\) −2220.00 −0.303278
\(378\) 0 0
\(379\) 6630.00i 0.898576i 0.893387 + 0.449288i \(0.148322\pi\)
−0.893387 + 0.449288i \(0.851678\pi\)
\(380\) 0 0
\(381\) − 9584.00i − 1.28872i
\(382\) 0 0
\(383\) 46.0000 0.00613705 0.00306853 0.999995i \(-0.499023\pi\)
0.00306853 + 0.999995i \(0.499023\pi\)
\(384\) 0 0
\(385\) 220.000 0.0291227
\(386\) 0 0
\(387\) 9916.00i 1.30248i
\(388\) 0 0
\(389\) − 11914.0i − 1.55286i −0.630202 0.776432i \(-0.717028\pi\)
0.630202 0.776432i \(-0.282972\pi\)
\(390\) 0 0
\(391\) −1540.00 −0.199185
\(392\) 0 0
\(393\) −18512.0 −2.37610
\(394\) 0 0
\(395\) − 320.000i − 0.0407619i
\(396\) 0 0
\(397\) − 2994.00i − 0.378500i −0.981929 0.189250i \(-0.939394\pi\)
0.981929 0.189250i \(-0.0606057\pi\)
\(398\) 0 0
\(399\) −1760.00 −0.220828
\(400\) 0 0
\(401\) −6402.00 −0.797258 −0.398629 0.917112i \(-0.630514\pi\)
−0.398629 + 0.917112i \(0.630514\pi\)
\(402\) 0 0
\(403\) − 920.000i − 0.113718i
\(404\) 0 0
\(405\) − 1795.00i − 0.220233i
\(406\) 0 0
\(407\) −748.000 −0.0910982
\(408\) 0 0
\(409\) −6.00000 −0.000725381 0 −0.000362691 1.00000i \(-0.500115\pi\)
−0.000362691 1.00000i \(0.500115\pi\)
\(410\) 0 0
\(411\) − 19152.0i − 2.29854i
\(412\) 0 0
\(413\) − 1492.00i − 0.177764i
\(414\) 0 0
\(415\) 4320.00 0.510989
\(416\) 0 0
\(417\) 6608.00 0.776008
\(418\) 0 0
\(419\) − 1770.00i − 0.206373i −0.994662 0.103186i \(-0.967096\pi\)
0.994662 0.103186i \(-0.0329038\pi\)
\(420\) 0 0
\(421\) 3638.00i 0.421153i 0.977577 + 0.210576i \(0.0675340\pi\)
−0.977577 + 0.210576i \(0.932466\pi\)
\(422\) 0 0
\(423\) −370.000 −0.0425296
\(424\) 0 0
\(425\) −250.000 −0.0285336
\(426\) 0 0
\(427\) 452.000i 0.0512267i
\(428\) 0 0
\(429\) − 1760.00i − 0.198074i
\(430\) 0 0
\(431\) −13492.0 −1.50786 −0.753929 0.656956i \(-0.771844\pi\)
−0.753929 + 0.656956i \(0.771844\pi\)
\(432\) 0 0
\(433\) −4478.00 −0.496995 −0.248498 0.968633i \(-0.579937\pi\)
−0.248498 + 0.968633i \(0.579937\pi\)
\(434\) 0 0
\(435\) 8880.00i 0.978766i
\(436\) 0 0
\(437\) − 16940.0i − 1.85435i
\(438\) 0 0
\(439\) −6796.00 −0.738851 −0.369425 0.929260i \(-0.620445\pi\)
−0.369425 + 0.929260i \(0.620445\pi\)
\(440\) 0 0
\(441\) 12543.0 1.35439
\(442\) 0 0
\(443\) − 7692.00i − 0.824962i −0.910966 0.412481i \(-0.864662\pi\)
0.910966 0.412481i \(-0.135338\pi\)
\(444\) 0 0
\(445\) 4370.00i 0.465523i
\(446\) 0 0
\(447\) 18384.0 1.94526
\(448\) 0 0
\(449\) 18818.0 1.97790 0.988949 0.148255i \(-0.0473657\pi\)
0.988949 + 0.148255i \(0.0473657\pi\)
\(450\) 0 0
\(451\) 8756.00i 0.914199i
\(452\) 0 0
\(453\) 16960.0i 1.75905i
\(454\) 0 0
\(455\) 100.000 0.0103035
\(456\) 0 0
\(457\) −11722.0 −1.19985 −0.599926 0.800056i \(-0.704803\pi\)
−0.599926 + 0.800056i \(0.704803\pi\)
\(458\) 0 0
\(459\) − 800.000i − 0.0813525i
\(460\) 0 0
\(461\) − 6846.00i − 0.691649i −0.938299 0.345824i \(-0.887599\pi\)
0.938299 0.345824i \(-0.112401\pi\)
\(462\) 0 0
\(463\) −13802.0 −1.38539 −0.692693 0.721233i \(-0.743576\pi\)
−0.692693 + 0.721233i \(0.743576\pi\)
\(464\) 0 0
\(465\) −3680.00 −0.367002
\(466\) 0 0
\(467\) 15396.0i 1.52557i 0.646651 + 0.762786i \(0.276169\pi\)
−0.646651 + 0.762786i \(0.723831\pi\)
\(468\) 0 0
\(469\) − 344.000i − 0.0338688i
\(470\) 0 0
\(471\) 6704.00 0.655847
\(472\) 0 0
\(473\) −5896.00 −0.573147
\(474\) 0 0
\(475\) − 2750.00i − 0.265639i
\(476\) 0 0
\(477\) 21534.0i 2.06703i
\(478\) 0 0
\(479\) −14584.0 −1.39115 −0.695574 0.718454i \(-0.744850\pi\)
−0.695574 + 0.718454i \(0.744850\pi\)
\(480\) 0 0
\(481\) −340.000 −0.0322301
\(482\) 0 0
\(483\) − 2464.00i − 0.232124i
\(484\) 0 0
\(485\) 1530.00i 0.143245i
\(486\) 0 0
\(487\) −6910.00 −0.642961 −0.321480 0.946916i \(-0.604180\pi\)
−0.321480 + 0.946916i \(0.604180\pi\)
\(488\) 0 0
\(489\) −11520.0 −1.06534
\(490\) 0 0
\(491\) − 2710.00i − 0.249085i −0.992214 0.124542i \(-0.960254\pi\)
0.992214 0.124542i \(-0.0397463\pi\)
\(492\) 0 0
\(493\) − 2220.00i − 0.202807i
\(494\) 0 0
\(495\) −4070.00 −0.369561
\(496\) 0 0
\(497\) 1856.00 0.167511
\(498\) 0 0
\(499\) − 5522.00i − 0.495388i −0.968838 0.247694i \(-0.920327\pi\)
0.968838 0.247694i \(-0.0796728\pi\)
\(500\) 0 0
\(501\) 16976.0i 1.51384i
\(502\) 0 0
\(503\) −3450.00 −0.305821 −0.152910 0.988240i \(-0.548865\pi\)
−0.152910 + 0.988240i \(0.548865\pi\)
\(504\) 0 0
\(505\) 4650.00 0.409747
\(506\) 0 0
\(507\) 16776.0i 1.46952i
\(508\) 0 0
\(509\) − 4590.00i − 0.399702i −0.979826 0.199851i \(-0.935954\pi\)
0.979826 0.199851i \(-0.0640458\pi\)
\(510\) 0 0
\(511\) −1140.00 −0.0986901
\(512\) 0 0
\(513\) 8800.00 0.757367
\(514\) 0 0
\(515\) 2310.00i 0.197652i
\(516\) 0 0
\(517\) − 220.000i − 0.0187149i
\(518\) 0 0
\(519\) −26448.0 −2.23688
\(520\) 0 0
\(521\) −7242.00 −0.608978 −0.304489 0.952516i \(-0.598486\pi\)
−0.304489 + 0.952516i \(0.598486\pi\)
\(522\) 0 0
\(523\) − 2732.00i − 0.228417i −0.993457 0.114208i \(-0.963567\pi\)
0.993457 0.114208i \(-0.0364332\pi\)
\(524\) 0 0
\(525\) − 400.000i − 0.0332522i
\(526\) 0 0
\(527\) 920.000 0.0760452
\(528\) 0 0
\(529\) 11549.0 0.949207
\(530\) 0 0
\(531\) 27602.0i 2.25579i
\(532\) 0 0
\(533\) 3980.00i 0.323439i
\(534\) 0 0
\(535\) −7800.00 −0.630324
\(536\) 0 0
\(537\) 21968.0 1.76534
\(538\) 0 0
\(539\) 7458.00i 0.595990i
\(540\) 0 0
\(541\) − 2486.00i − 0.197563i −0.995109 0.0987814i \(-0.968506\pi\)
0.995109 0.0987814i \(-0.0314945\pi\)
\(542\) 0 0
\(543\) −32496.0 −2.56821
\(544\) 0 0
\(545\) −5930.00 −0.466079
\(546\) 0 0
\(547\) 11860.0i 0.927051i 0.886084 + 0.463526i \(0.153416\pi\)
−0.886084 + 0.463526i \(0.846584\pi\)
\(548\) 0 0
\(549\) − 8362.00i − 0.650057i
\(550\) 0 0
\(551\) 24420.0 1.88807
\(552\) 0 0
\(553\) −128.000 −0.00984288
\(554\) 0 0
\(555\) 1360.00i 0.104016i
\(556\) 0 0
\(557\) 23546.0i 1.79116i 0.444901 + 0.895580i \(0.353239\pi\)
−0.444901 + 0.895580i \(0.646761\pi\)
\(558\) 0 0
\(559\) −2680.00 −0.202776
\(560\) 0 0
\(561\) 1760.00 0.132455
\(562\) 0 0
\(563\) 11792.0i 0.882724i 0.897329 + 0.441362i \(0.145505\pi\)
−0.897329 + 0.441362i \(0.854495\pi\)
\(564\) 0 0
\(565\) − 6910.00i − 0.514524i
\(566\) 0 0
\(567\) −718.000 −0.0531802
\(568\) 0 0
\(569\) −3702.00 −0.272752 −0.136376 0.990657i \(-0.543546\pi\)
−0.136376 + 0.990657i \(0.543546\pi\)
\(570\) 0 0
\(571\) 12170.0i 0.891942i 0.895048 + 0.445971i \(0.147141\pi\)
−0.895048 + 0.445971i \(0.852859\pi\)
\(572\) 0 0
\(573\) 15264.0i 1.11285i
\(574\) 0 0
\(575\) 3850.00 0.279228
\(576\) 0 0
\(577\) −6526.00 −0.470851 −0.235425 0.971892i \(-0.575648\pi\)
−0.235425 + 0.971892i \(0.575648\pi\)
\(578\) 0 0
\(579\) − 22064.0i − 1.58368i
\(580\) 0 0
\(581\) − 1728.00i − 0.123390i
\(582\) 0 0
\(583\) −12804.0 −0.909584
\(584\) 0 0
\(585\) −1850.00 −0.130749
\(586\) 0 0
\(587\) − 2624.00i − 0.184504i −0.995736 0.0922522i \(-0.970593\pi\)
0.995736 0.0922522i \(-0.0294066\pi\)
\(588\) 0 0
\(589\) 10120.0i 0.707958i
\(590\) 0 0
\(591\) −34576.0 −2.40654
\(592\) 0 0
\(593\) 17218.0 1.19234 0.596171 0.802858i \(-0.296688\pi\)
0.596171 + 0.802858i \(0.296688\pi\)
\(594\) 0 0
\(595\) 100.000i 0.00689008i
\(596\) 0 0
\(597\) − 22816.0i − 1.56415i
\(598\) 0 0
\(599\) 14236.0 0.971064 0.485532 0.874219i \(-0.338626\pi\)
0.485532 + 0.874219i \(0.338626\pi\)
\(600\) 0 0
\(601\) 19030.0 1.29160 0.645799 0.763508i \(-0.276525\pi\)
0.645799 + 0.763508i \(0.276525\pi\)
\(602\) 0 0
\(603\) 6364.00i 0.429788i
\(604\) 0 0
\(605\) 4235.00i 0.284590i
\(606\) 0 0
\(607\) −1966.00 −0.131462 −0.0657310 0.997837i \(-0.520938\pi\)
−0.0657310 + 0.997837i \(0.520938\pi\)
\(608\) 0 0
\(609\) 3552.00 0.236345
\(610\) 0 0
\(611\) − 100.000i − 0.00662122i
\(612\) 0 0
\(613\) − 16518.0i − 1.08835i −0.838973 0.544173i \(-0.816844\pi\)
0.838973 0.544173i \(-0.183156\pi\)
\(614\) 0 0
\(615\) 15920.0 1.04383
\(616\) 0 0
\(617\) −17954.0 −1.17148 −0.585738 0.810500i \(-0.699195\pi\)
−0.585738 + 0.810500i \(0.699195\pi\)
\(618\) 0 0
\(619\) 2494.00i 0.161942i 0.996716 + 0.0809712i \(0.0258022\pi\)
−0.996716 + 0.0809712i \(0.974198\pi\)
\(620\) 0 0
\(621\) 12320.0i 0.796110i
\(622\) 0 0
\(623\) 1748.00 0.112411
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 19360.0i 1.23312i
\(628\) 0 0
\(629\) − 340.000i − 0.0215528i
\(630\) 0 0
\(631\) −10600.0 −0.668747 −0.334373 0.942441i \(-0.608525\pi\)
−0.334373 + 0.942441i \(0.608525\pi\)
\(632\) 0 0
\(633\) 34480.0 2.16502
\(634\) 0 0
\(635\) − 5990.00i − 0.374340i
\(636\) 0 0
\(637\) 3390.00i 0.210858i
\(638\) 0 0
\(639\) −34336.0 −2.12568
\(640\) 0 0
\(641\) 4386.00 0.270260 0.135130 0.990828i \(-0.456855\pi\)
0.135130 + 0.990828i \(0.456855\pi\)
\(642\) 0 0
\(643\) − 22128.0i − 1.35714i −0.734534 0.678572i \(-0.762599\pi\)
0.734534 0.678572i \(-0.237401\pi\)
\(644\) 0 0
\(645\) 10720.0i 0.654418i
\(646\) 0 0
\(647\) 5650.00 0.343314 0.171657 0.985157i \(-0.445088\pi\)
0.171657 + 0.985157i \(0.445088\pi\)
\(648\) 0 0
\(649\) −16412.0 −0.992646
\(650\) 0 0
\(651\) 1472.00i 0.0886209i
\(652\) 0 0
\(653\) 15238.0i 0.913184i 0.889676 + 0.456592i \(0.150930\pi\)
−0.889676 + 0.456592i \(0.849070\pi\)
\(654\) 0 0
\(655\) −11570.0 −0.690194
\(656\) 0 0
\(657\) 21090.0 1.25236
\(658\) 0 0
\(659\) 13318.0i 0.787247i 0.919272 + 0.393623i \(0.128779\pi\)
−0.919272 + 0.393623i \(0.871221\pi\)
\(660\) 0 0
\(661\) 5838.00i 0.343528i 0.985138 + 0.171764i \(0.0549466\pi\)
−0.985138 + 0.171764i \(0.945053\pi\)
\(662\) 0 0
\(663\) 800.000 0.0468619
\(664\) 0 0
\(665\) −1100.00 −0.0641446
\(666\) 0 0
\(667\) 34188.0i 1.98465i
\(668\) 0 0
\(669\) 21936.0i 1.26771i
\(670\) 0 0
\(671\) 4972.00 0.286054
\(672\) 0 0
\(673\) 74.0000 0.00423847 0.00211924 0.999998i \(-0.499325\pi\)
0.00211924 + 0.999998i \(0.499325\pi\)
\(674\) 0 0
\(675\) 2000.00i 0.114044i
\(676\) 0 0
\(677\) 6194.00i 0.351632i 0.984423 + 0.175816i \(0.0562564\pi\)
−0.984423 + 0.175816i \(0.943744\pi\)
\(678\) 0 0
\(679\) 612.000 0.0345897
\(680\) 0 0
\(681\) 15456.0 0.869714
\(682\) 0 0
\(683\) − 23532.0i − 1.31834i −0.751993 0.659171i \(-0.770908\pi\)
0.751993 0.659171i \(-0.229092\pi\)
\(684\) 0 0
\(685\) − 11970.0i − 0.667665i
\(686\) 0 0
\(687\) 48912.0 2.71632
\(688\) 0 0
\(689\) −5820.00 −0.321806
\(690\) 0 0
\(691\) 18530.0i 1.02014i 0.860134 + 0.510068i \(0.170380\pi\)
−0.860134 + 0.510068i \(0.829620\pi\)
\(692\) 0 0
\(693\) 1628.00i 0.0892390i
\(694\) 0 0
\(695\) 4130.00 0.225410
\(696\) 0 0
\(697\) −3980.00 −0.216289
\(698\) 0 0
\(699\) − 5520.00i − 0.298692i
\(700\) 0 0
\(701\) − 5142.00i − 0.277048i −0.990359 0.138524i \(-0.955764\pi\)
0.990359 0.138524i \(-0.0442358\pi\)
\(702\) 0 0
\(703\) 3740.00 0.200650
\(704\) 0 0
\(705\) −400.000 −0.0213686
\(706\) 0 0
\(707\) − 1860.00i − 0.0989427i
\(708\) 0 0
\(709\) 21438.0i 1.13557i 0.823176 + 0.567786i \(0.192200\pi\)
−0.823176 + 0.567786i \(0.807800\pi\)
\(710\) 0 0
\(711\) 2368.00 0.124904
\(712\) 0 0
\(713\) −14168.0 −0.744174
\(714\) 0 0
\(715\) − 1100.00i − 0.0575352i
\(716\) 0 0
\(717\) 10112.0i 0.526694i
\(718\) 0 0
\(719\) 2624.00 0.136104 0.0680519 0.997682i \(-0.478322\pi\)
0.0680519 + 0.997682i \(0.478322\pi\)
\(720\) 0 0
\(721\) 924.000 0.0477275
\(722\) 0 0
\(723\) − 25968.0i − 1.33577i
\(724\) 0 0
\(725\) 5550.00i 0.284306i
\(726\) 0 0
\(727\) 9410.00 0.480052 0.240026 0.970766i \(-0.422844\pi\)
0.240026 + 0.970766i \(0.422844\pi\)
\(728\) 0 0
\(729\) 30563.0 1.55276
\(730\) 0 0
\(731\) − 2680.00i − 0.135600i
\(732\) 0 0
\(733\) − 19142.0i − 0.964565i −0.876016 0.482282i \(-0.839808\pi\)
0.876016 0.482282i \(-0.160192\pi\)
\(734\) 0 0
\(735\) 13560.0 0.680501
\(736\) 0 0
\(737\) −3784.00 −0.189125
\(738\) 0 0
\(739\) − 2930.00i − 0.145848i −0.997337 0.0729241i \(-0.976767\pi\)
0.997337 0.0729241i \(-0.0232331\pi\)
\(740\) 0 0
\(741\) 8800.00i 0.436270i
\(742\) 0 0
\(743\) −20250.0 −0.999866 −0.499933 0.866064i \(-0.666642\pi\)
−0.499933 + 0.866064i \(0.666642\pi\)
\(744\) 0 0
\(745\) 11490.0 0.565048
\(746\) 0 0
\(747\) 31968.0i 1.56579i
\(748\) 0 0
\(749\) 3120.00i 0.152206i
\(750\) 0 0
\(751\) −1916.00 −0.0930970 −0.0465485 0.998916i \(-0.514822\pi\)
−0.0465485 + 0.998916i \(0.514822\pi\)
\(752\) 0 0
\(753\) 19376.0 0.937717
\(754\) 0 0
\(755\) 10600.0i 0.510958i
\(756\) 0 0
\(757\) 20494.0i 0.983972i 0.870603 + 0.491986i \(0.163729\pi\)
−0.870603 + 0.491986i \(0.836271\pi\)
\(758\) 0 0
\(759\) −27104.0 −1.29620
\(760\) 0 0
\(761\) −14826.0 −0.706231 −0.353116 0.935580i \(-0.614878\pi\)
−0.353116 + 0.935580i \(0.614878\pi\)
\(762\) 0 0
\(763\) 2372.00i 0.112545i
\(764\) 0 0
\(765\) − 1850.00i − 0.0874338i
\(766\) 0 0
\(767\) −7460.00 −0.351193
\(768\) 0 0
\(769\) −39194.0 −1.83793 −0.918967 0.394334i \(-0.870975\pi\)
−0.918967 + 0.394334i \(0.870975\pi\)
\(770\) 0 0
\(771\) − 9264.00i − 0.432730i
\(772\) 0 0
\(773\) − 35862.0i − 1.66865i −0.551273 0.834325i \(-0.685858\pi\)
0.551273 0.834325i \(-0.314142\pi\)
\(774\) 0 0
\(775\) −2300.00 −0.106604
\(776\) 0 0
\(777\) 544.000 0.0251170
\(778\) 0 0
\(779\) − 43780.0i − 2.01358i
\(780\) 0 0
\(781\) − 20416.0i − 0.935393i
\(782\) 0 0
\(783\) −17760.0 −0.810588
\(784\) 0 0
\(785\) 4190.00 0.190506
\(786\) 0 0
\(787\) 23060.0i 1.04447i 0.852801 + 0.522236i \(0.174902\pi\)
−0.852801 + 0.522236i \(0.825098\pi\)
\(788\) 0 0
\(789\) 24304.0i 1.09664i
\(790\) 0 0
\(791\) −2764.00 −0.124243
\(792\) 0 0
\(793\) 2260.00 0.101204
\(794\) 0 0
\(795\) 23280.0i 1.03856i
\(796\) 0 0
\(797\) − 40466.0i − 1.79847i −0.437468 0.899234i \(-0.644125\pi\)
0.437468 0.899234i \(-0.355875\pi\)
\(798\) 0 0
\(799\) 100.000 0.00442772
\(800\) 0 0
\(801\) −32338.0 −1.42648
\(802\) 0 0
\(803\) 12540.0i 0.551092i
\(804\) 0 0
\(805\) − 1540.00i − 0.0674259i
\(806\) 0 0
\(807\) 30768.0 1.34211
\(808\) 0 0
\(809\) −36090.0 −1.56843 −0.784213 0.620492i \(-0.786933\pi\)
−0.784213 + 0.620492i \(0.786933\pi\)
\(810\) 0 0
\(811\) − 12022.0i − 0.520530i −0.965537 0.260265i \(-0.916190\pi\)
0.965537 0.260265i \(-0.0838099\pi\)
\(812\) 0 0
\(813\) − 52896.0i − 2.28185i
\(814\) 0 0
\(815\) −7200.00 −0.309454
\(816\) 0 0
\(817\) 29480.0 1.26239
\(818\) 0 0
\(819\) 740.000i 0.0315723i
\(820\) 0 0
\(821\) − 15250.0i − 0.648269i −0.946011 0.324134i \(-0.894927\pi\)
0.946011 0.324134i \(-0.105073\pi\)
\(822\) 0 0
\(823\) −45970.0 −1.94704 −0.973520 0.228603i \(-0.926584\pi\)
−0.973520 + 0.228603i \(0.926584\pi\)
\(824\) 0 0
\(825\) −4400.00 −0.185683
\(826\) 0 0
\(827\) 8160.00i 0.343109i 0.985175 + 0.171554i \(0.0548789\pi\)
−0.985175 + 0.171554i \(0.945121\pi\)
\(828\) 0 0
\(829\) 82.0000i 0.00343544i 0.999999 + 0.00171772i \(0.000546767\pi\)
−0.999999 + 0.00171772i \(0.999453\pi\)
\(830\) 0 0
\(831\) 58512.0 2.44255
\(832\) 0 0
\(833\) −3390.00 −0.141004
\(834\) 0 0
\(835\) 10610.0i 0.439730i
\(836\) 0 0
\(837\) − 7360.00i − 0.303941i
\(838\) 0 0
\(839\) −46796.0 −1.92560 −0.962799 0.270217i \(-0.912904\pi\)
−0.962799 + 0.270217i \(0.912904\pi\)
\(840\) 0 0
\(841\) −24895.0 −1.02075
\(842\) 0 0
\(843\) 16816.0i 0.687039i
\(844\) 0 0
\(845\) 10485.0i 0.426858i
\(846\) 0 0
\(847\) 1694.00 0.0687208
\(848\) 0 0
\(849\) −36960.0 −1.49407
\(850\) 0 0
\(851\) 5236.00i 0.210914i
\(852\) 0 0
\(853\) − 18566.0i − 0.745238i −0.927984 0.372619i \(-0.878460\pi\)
0.927984 0.372619i \(-0.121540\pi\)
\(854\) 0 0
\(855\) 20350.0 0.813983
\(856\) 0 0
\(857\) −21266.0 −0.847646 −0.423823 0.905745i \(-0.639312\pi\)
−0.423823 + 0.905745i \(0.639312\pi\)
\(858\) 0 0
\(859\) − 22106.0i − 0.878052i −0.898474 0.439026i \(-0.855324\pi\)
0.898474 0.439026i \(-0.144676\pi\)
\(860\) 0 0
\(861\) − 6368.00i − 0.252057i
\(862\) 0 0
\(863\) 6150.00 0.242582 0.121291 0.992617i \(-0.461297\pi\)
0.121291 + 0.992617i \(0.461297\pi\)
\(864\) 0 0
\(865\) −16530.0 −0.649754
\(866\) 0 0
\(867\) − 38504.0i − 1.50826i
\(868\) 0 0
\(869\) 1408.00i 0.0549633i
\(870\) 0 0
\(871\) −1720.00 −0.0669116
\(872\) 0 0
\(873\) −11322.0 −0.438937
\(874\) 0 0
\(875\) − 250.000i − 0.00965891i
\(876\) 0 0
\(877\) − 48038.0i − 1.84963i −0.380414 0.924816i \(-0.624218\pi\)
0.380414 0.924816i \(-0.375782\pi\)
\(878\) 0 0
\(879\) 32144.0 1.23344
\(880\) 0 0
\(881\) 34750.0 1.32890 0.664448 0.747335i \(-0.268667\pi\)
0.664448 + 0.747335i \(0.268667\pi\)
\(882\) 0 0
\(883\) 46608.0i 1.77631i 0.459541 + 0.888156i \(0.348014\pi\)
−0.459541 + 0.888156i \(0.651986\pi\)
\(884\) 0 0
\(885\) 29840.0i 1.13340i
\(886\) 0 0
\(887\) 33906.0 1.28349 0.641743 0.766920i \(-0.278212\pi\)
0.641743 + 0.766920i \(0.278212\pi\)
\(888\) 0 0
\(889\) −2396.00 −0.0903929
\(890\) 0 0
\(891\) 7898.00i 0.296962i
\(892\) 0 0
\(893\) 1100.00i 0.0412207i
\(894\) 0 0
\(895\) 13730.0 0.512786
\(896\) 0 0
\(897\) −12320.0 −0.458587
\(898\) 0 0
\(899\) − 20424.0i − 0.757707i
\(900\) 0 0
\(901\) − 5820.00i − 0.215197i
\(902\) 0 0
\(903\) 4288.00 0.158024
\(904\) 0 0
\(905\) −20310.0 −0.745997
\(906\) 0 0
\(907\) 46256.0i 1.69339i 0.532078 + 0.846695i \(0.321411\pi\)
−0.532078 + 0.846695i \(0.678589\pi\)
\(908\) 0 0
\(909\) 34410.0i 1.25556i
\(910\) 0 0
\(911\) −52092.0 −1.89450 −0.947248 0.320503i \(-0.896148\pi\)
−0.947248 + 0.320503i \(0.896148\pi\)
\(912\) 0 0
\(913\) −19008.0 −0.689018
\(914\) 0 0
\(915\) − 9040.00i − 0.326615i
\(916\) 0 0
\(917\) 4628.00i 0.166663i
\(918\) 0 0
\(919\) −19988.0 −0.717457 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(920\) 0 0
\(921\) 68768.0 2.46035
\(922\) 0 0
\(923\) − 9280.00i − 0.330937i
\(924\) 0 0
\(925\) 850.000i 0.0302139i
\(926\) 0 0
\(927\) −17094.0 −0.605653
\(928\) 0 0
\(929\) −31950.0 −1.12836 −0.564179 0.825652i \(-0.690807\pi\)
−0.564179 + 0.825652i \(0.690807\pi\)
\(930\) 0 0
\(931\) − 37290.0i − 1.31271i
\(932\) 0 0
\(933\) 10496.0i 0.368300i
\(934\) 0 0
\(935\) 1100.00 0.0384747
\(936\) 0 0
\(937\) −18874.0 −0.658043 −0.329022 0.944322i \(-0.606719\pi\)
−0.329022 + 0.944322i \(0.606719\pi\)
\(938\) 0 0
\(939\) − 9232.00i − 0.320847i
\(940\) 0 0
\(941\) − 24038.0i − 0.832749i −0.909193 0.416374i \(-0.863301\pi\)
0.909193 0.416374i \(-0.136699\pi\)
\(942\) 0 0
\(943\) 61292.0 2.11659
\(944\) 0 0
\(945\) 800.000 0.0275386
\(946\) 0 0
\(947\) − 11316.0i − 0.388301i −0.980972 0.194150i \(-0.937805\pi\)
0.980972 0.194150i \(-0.0621949\pi\)
\(948\) 0 0
\(949\) 5700.00i 0.194973i
\(950\) 0 0
\(951\) −58096.0 −1.98096
\(952\) 0 0
\(953\) 48390.0 1.64481 0.822406 0.568901i \(-0.192631\pi\)
0.822406 + 0.568901i \(0.192631\pi\)
\(954\) 0 0
\(955\) 9540.00i 0.323254i
\(956\) 0 0
\(957\) − 39072.0i − 1.31977i
\(958\) 0 0
\(959\) −4788.00 −0.161223
\(960\) 0 0
\(961\) −21327.0 −0.715887
\(962\) 0 0
\(963\) − 57720.0i − 1.93147i
\(964\) 0 0
\(965\) − 13790.0i − 0.460016i
\(966\) 0 0
\(967\) −21126.0 −0.702551 −0.351275 0.936272i \(-0.614252\pi\)
−0.351275 + 0.936272i \(0.614252\pi\)
\(968\) 0 0
\(969\) −8800.00 −0.291741
\(970\) 0 0
\(971\) − 42894.0i − 1.41765i −0.705387 0.708823i \(-0.749227\pi\)
0.705387 0.708823i \(-0.250773\pi\)
\(972\) 0 0
\(973\) − 1652.00i − 0.0544303i
\(974\) 0 0
\(975\) −2000.00 −0.0656936
\(976\) 0 0
\(977\) 9594.00 0.314165 0.157083 0.987585i \(-0.449791\pi\)
0.157083 + 0.987585i \(0.449791\pi\)
\(978\) 0 0
\(979\) − 19228.0i − 0.627711i
\(980\) 0 0
\(981\) − 43882.0i − 1.42818i
\(982\) 0 0
\(983\) 55742.0 1.80864 0.904320 0.426855i \(-0.140378\pi\)
0.904320 + 0.426855i \(0.140378\pi\)
\(984\) 0 0
\(985\) −21610.0 −0.699037
\(986\) 0 0
\(987\) 160.000i 0.00515994i
\(988\) 0 0
\(989\) 41272.0i 1.32697i
\(990\) 0 0
\(991\) 11788.0 0.377859 0.188929 0.981991i \(-0.439498\pi\)
0.188929 + 0.981991i \(0.439498\pi\)
\(992\) 0 0
\(993\) −24784.0 −0.792041
\(994\) 0 0
\(995\) − 14260.0i − 0.454344i
\(996\) 0 0
\(997\) 5074.00i 0.161179i 0.996747 + 0.0805894i \(0.0256802\pi\)
−0.996747 + 0.0805894i \(0.974320\pi\)
\(998\) 0 0
\(999\) −2720.00 −0.0861431
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.4.d.i.641.2 2
4.3 odd 2 1280.4.d.h.641.1 2
8.3 odd 2 1280.4.d.h.641.2 2
8.5 even 2 inner 1280.4.d.i.641.1 2
16.3 odd 4 640.4.a.d.1.1 yes 1
16.5 even 4 640.4.a.c.1.1 yes 1
16.11 odd 4 640.4.a.a.1.1 1
16.13 even 4 640.4.a.b.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.4.a.a.1.1 1 16.11 odd 4
640.4.a.b.1.1 yes 1 16.13 even 4
640.4.a.c.1.1 yes 1 16.5 even 4
640.4.a.d.1.1 yes 1 16.3 odd 4
1280.4.d.h.641.1 2 4.3 odd 2
1280.4.d.h.641.2 2 8.3 odd 2
1280.4.d.i.641.1 2 8.5 even 2 inner
1280.4.d.i.641.2 2 1.1 even 1 trivial