Properties

Label 1280.4.d.h.641.1
Level 12801280
Weight 44
Character 1280.641
Analytic conductor 75.52275.522
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1280=285 1280 = 2^{8} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1280.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 75.522444807375.5224448073
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 640)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 641.1
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 1280.641
Dual form 1280.4.d.h.641.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8.00000iq3+5.00000iq52.00000q737.0000q9+22.0000iq1110.0000iq13+40.0000q15+10.0000q17110.000iq19+16.0000iq21+154.000q2325.0000q25+80.0000iq27222.000iq2992.0000q31+176.000q3310.0000iq3534.0000iq3780.0000q39398.000q41+268.000iq43185.000iq4510.0000q47339.000q4980.0000iq51582.000iq53110.000q55880.000q57+746.000iq59+226.000iq61+74.0000q63+50.0000q65+172.000iq671232.00iq69928.000q71570.000q73+200.000iq7544.0000iq77+64.0000q79359.000q81+864.000iq83+50.0000iq851776.00q87+874.000q89+20.0000iq91+736.000iq93+550.000q95+306.000q97814.000iq99+O(q100)q-8.00000i q^{3} +5.00000i q^{5} -2.00000 q^{7} -37.0000 q^{9} +22.0000i q^{11} -10.0000i q^{13} +40.0000 q^{15} +10.0000 q^{17} -110.000i q^{19} +16.0000i q^{21} +154.000 q^{23} -25.0000 q^{25} +80.0000i q^{27} -222.000i q^{29} -92.0000 q^{31} +176.000 q^{33} -10.0000i q^{35} -34.0000i q^{37} -80.0000 q^{39} -398.000 q^{41} +268.000i q^{43} -185.000i q^{45} -10.0000 q^{47} -339.000 q^{49} -80.0000i q^{51} -582.000i q^{53} -110.000 q^{55} -880.000 q^{57} +746.000i q^{59} +226.000i q^{61} +74.0000 q^{63} +50.0000 q^{65} +172.000i q^{67} -1232.00i q^{69} -928.000 q^{71} -570.000 q^{73} +200.000i q^{75} -44.0000i q^{77} +64.0000 q^{79} -359.000 q^{81} +864.000i q^{83} +50.0000i q^{85} -1776.00 q^{87} +874.000 q^{89} +20.0000i q^{91} +736.000i q^{93} +550.000 q^{95} +306.000 q^{97} -814.000i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q4q774q9+80q15+20q17+308q2350q25184q31+352q33160q39796q4120q47678q49220q551760q57+148q63+100q65++612q97+O(q100) 2 q - 4 q^{7} - 74 q^{9} + 80 q^{15} + 20 q^{17} + 308 q^{23} - 50 q^{25} - 184 q^{31} + 352 q^{33} - 160 q^{39} - 796 q^{41} - 20 q^{47} - 678 q^{49} - 220 q^{55} - 1760 q^{57} + 148 q^{63} + 100 q^{65}+ \cdots + 612 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1280Z)×\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times.

nn 257257 261261 511511
χ(n)\chi(n) 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 8.00000i − 1.53960i −0.638285 0.769800i 0.720356π-0.720356\pi
0.638285 0.769800i 0.279644π-0.279644\pi
44 0 0
55 5.00000i 0.447214i
66 0 0
77 −2.00000 −0.107990 −0.0539949 0.998541i 0.517195π-0.517195\pi
−0.0539949 + 0.998541i 0.517195π0.517195\pi
88 0 0
99 −37.0000 −1.37037
1010 0 0
1111 22.0000i 0.603023i 0.953463 + 0.301511i 0.0974911π0.0974911\pi
−0.953463 + 0.301511i 0.902509π0.902509\pi
1212 0 0
1313 − 10.0000i − 0.213346i −0.994294 0.106673i 0.965980π-0.965980\pi
0.994294 0.106673i 0.0340198π-0.0340198\pi
1414 0 0
1515 40.0000 0.688530
1616 0 0
1717 10.0000 0.142668 0.0713340 0.997452i 0.477274π-0.477274\pi
0.0713340 + 0.997452i 0.477274π0.477274\pi
1818 0 0
1919 − 110.000i − 1.32820i −0.747645 0.664098i 0.768816π-0.768816\pi
0.747645 0.664098i 0.231184π-0.231184\pi
2020 0 0
2121 16.0000i 0.166261i
2222 0 0
2323 154.000 1.39614 0.698070 0.716030i 0.254042π-0.254042\pi
0.698070 + 0.716030i 0.254042π0.254042\pi
2424 0 0
2525 −25.0000 −0.200000
2626 0 0
2727 80.0000i 0.570222i
2828 0 0
2929 − 222.000i − 1.42153i −0.703430 0.710765i 0.748349π-0.748349\pi
0.703430 0.710765i 0.251651π-0.251651\pi
3030 0 0
3131 −92.0000 −0.533022 −0.266511 0.963832i 0.585871π-0.585871\pi
−0.266511 + 0.963832i 0.585871π0.585871\pi
3232 0 0
3333 176.000 0.928414
3434 0 0
3535 − 10.0000i − 0.0482945i
3636 0 0
3737 − 34.0000i − 0.151069i −0.997143 0.0755347i 0.975934π-0.975934\pi
0.997143 0.0755347i 0.0240664π-0.0240664\pi
3838 0 0
3939 −80.0000 −0.328468
4040 0 0
4141 −398.000 −1.51603 −0.758014 0.652238i 0.773830π-0.773830\pi
−0.758014 + 0.652238i 0.773830π0.773830\pi
4242 0 0
4343 268.000i 0.950456i 0.879863 + 0.475228i 0.157634π0.157634\pi
−0.879863 + 0.475228i 0.842366π0.842366\pi
4444 0 0
4545 − 185.000i − 0.612848i
4646 0 0
4747 −10.0000 −0.0310351 −0.0155176 0.999880i 0.504940π-0.504940\pi
−0.0155176 + 0.999880i 0.504940π0.504940\pi
4848 0 0
4949 −339.000 −0.988338
5050 0 0
5151 − 80.0000i − 0.219652i
5252 0 0
5353 − 582.000i − 1.50837i −0.656659 0.754187i 0.728031π-0.728031\pi
0.656659 0.754187i 0.271969π-0.271969\pi
5454 0 0
5555 −110.000 −0.269680
5656 0 0
5757 −880.000 −2.04489
5858 0 0
5959 746.000i 1.64612i 0.567956 + 0.823059i 0.307734π0.307734\pi
−0.567956 + 0.823059i 0.692266π0.692266\pi
6060 0 0
6161 226.000i 0.474366i 0.971465 + 0.237183i 0.0762241π0.0762241\pi
−0.971465 + 0.237183i 0.923776π0.923776\pi
6262 0 0
6363 74.0000 0.147986
6464 0 0
6565 50.0000 0.0954113
6666 0 0
6767 172.000i 0.313629i 0.987628 + 0.156815i 0.0501225π0.0501225\pi
−0.987628 + 0.156815i 0.949878π0.949878\pi
6868 0 0
6969 − 1232.00i − 2.14950i
7070 0 0
7171 −928.000 −1.55117 −0.775587 0.631241i 0.782546π-0.782546\pi
−0.775587 + 0.631241i 0.782546π0.782546\pi
7272 0 0
7373 −570.000 −0.913883 −0.456941 0.889497i 0.651055π-0.651055\pi
−0.456941 + 0.889497i 0.651055π0.651055\pi
7474 0 0
7575 200.000i 0.307920i
7676 0 0
7777 − 44.0000i − 0.0651203i
7878 0 0
7979 64.0000 0.0911464 0.0455732 0.998961i 0.485489π-0.485489\pi
0.0455732 + 0.998961i 0.485489π0.485489\pi
8080 0 0
8181 −359.000 −0.492455
8282 0 0
8383 864.000i 1.14261i 0.820739 + 0.571303i 0.193562π0.193562\pi
−0.820739 + 0.571303i 0.806438π0.806438\pi
8484 0 0
8585 50.0000i 0.0638031i
8686 0 0
8787 −1776.00 −2.18859
8888 0 0
8989 874.000 1.04094 0.520471 0.853879i 0.325756π-0.325756\pi
0.520471 + 0.853879i 0.325756π0.325756\pi
9090 0 0
9191 20.0000i 0.0230392i
9292 0 0
9393 736.000i 0.820641i
9494 0 0
9595 550.000 0.593987
9696 0 0
9797 306.000 0.320305 0.160153 0.987092i 0.448801π-0.448801\pi
0.160153 + 0.987092i 0.448801π0.448801\pi
9898 0 0
9999 − 814.000i − 0.826364i
100100 0 0
101101 − 930.000i − 0.916222i −0.888895 0.458111i 0.848526π-0.848526\pi
0.888895 0.458111i 0.151474π-0.151474\pi
102102 0 0
103103 −462.000 −0.441963 −0.220982 0.975278i 0.570926π-0.570926\pi
−0.220982 + 0.975278i 0.570926π0.570926\pi
104104 0 0
105105 −80.0000 −0.0743543
106106 0 0
107107 − 1560.00i − 1.40945i −0.709482 0.704724i 0.751071π-0.751071\pi
0.709482 0.704724i 0.248929π-0.248929\pi
108108 0 0
109109 1186.00i 1.04219i 0.853500 + 0.521093i 0.174475π0.174475\pi
−0.853500 + 0.521093i 0.825525π0.825525\pi
110110 0 0
111111 −272.000 −0.232586
112112 0 0
113113 −1382.00 −1.15051 −0.575255 0.817974i 0.695097π-0.695097\pi
−0.575255 + 0.817974i 0.695097π0.695097\pi
114114 0 0
115115 770.000i 0.624373i
116116 0 0
117117 370.000i 0.292363i
118118 0 0
119119 −20.0000 −0.0154067
120120 0 0
121121 847.000 0.636364
122122 0 0
123123 3184.00i 2.33408i
124124 0 0
125125 − 125.000i − 0.0894427i
126126 0 0
127127 1198.00 0.837050 0.418525 0.908205i 0.362547π-0.362547\pi
0.418525 + 0.908205i 0.362547π0.362547\pi
128128 0 0
129129 2144.00 1.46332
130130 0 0
131131 − 2314.00i − 1.54332i −0.636034 0.771661i 0.719426π-0.719426\pi
0.636034 0.771661i 0.280574π-0.280574\pi
132132 0 0
133133 220.000i 0.143432i
134134 0 0
135135 −400.000 −0.255011
136136 0 0
137137 −2394.00 −1.49294 −0.746472 0.665417i 0.768254π-0.768254\pi
−0.746472 + 0.665417i 0.768254π0.768254\pi
138138 0 0
139139 826.000i 0.504032i 0.967723 + 0.252016i 0.0810935π0.0810935\pi
−0.967723 + 0.252016i 0.918906π0.918906\pi
140140 0 0
141141 80.0000i 0.0477817i
142142 0 0
143143 220.000 0.128653
144144 0 0
145145 1110.00 0.635727
146146 0 0
147147 2712.00i 1.52165i
148148 0 0
149149 − 2298.00i − 1.26349i −0.775178 0.631743i 0.782340π-0.782340\pi
0.775178 0.631743i 0.217660π-0.217660\pi
150150 0 0
151151 −2120.00 −1.14254 −0.571269 0.820763i 0.693549π-0.693549\pi
−0.571269 + 0.820763i 0.693549π0.693549\pi
152152 0 0
153153 −370.000 −0.195508
154154 0 0
155155 − 460.000i − 0.238375i
156156 0 0
157157 − 838.000i − 0.425985i −0.977054 0.212993i 0.931679π-0.931679\pi
0.977054 0.212993i 0.0683210π-0.0683210\pi
158158 0 0
159159 −4656.00 −2.32229
160160 0 0
161161 −308.000 −0.150769
162162 0 0
163163 − 1440.00i − 0.691960i −0.938242 0.345980i 0.887546π-0.887546\pi
0.938242 0.345980i 0.112454π-0.112454\pi
164164 0 0
165165 880.000i 0.415199i
166166 0 0
167167 −2122.00 −0.983265 −0.491633 0.870803i 0.663600π-0.663600\pi
−0.491633 + 0.870803i 0.663600π0.663600\pi
168168 0 0
169169 2097.00 0.954483
170170 0 0
171171 4070.00i 1.82012i
172172 0 0
173173 3306.00i 1.45289i 0.687223 + 0.726447i 0.258830π0.258830\pi
−0.687223 + 0.726447i 0.741170π0.741170\pi
174174 0 0
175175 50.0000 0.0215980
176176 0 0
177177 5968.00 2.53436
178178 0 0
179179 2746.00i 1.14662i 0.819337 + 0.573312i 0.194342π0.194342\pi
−0.819337 + 0.573312i 0.805658π0.805658\pi
180180 0 0
181181 4062.00i 1.66810i 0.551689 + 0.834050i 0.313984π0.313984\pi
−0.551689 + 0.834050i 0.686016π0.686016\pi
182182 0 0
183183 1808.00 0.730334
184184 0 0
185185 170.000 0.0675603
186186 0 0
187187 220.000i 0.0860320i
188188 0 0
189189 − 160.000i − 0.0615782i
190190 0 0
191191 −1908.00 −0.722817 −0.361408 0.932408i 0.617704π-0.617704\pi
−0.361408 + 0.932408i 0.617704π0.617704\pi
192192 0 0
193193 −2758.00 −1.02863 −0.514314 0.857602i 0.671953π-0.671953\pi
−0.514314 + 0.857602i 0.671953π0.671953\pi
194194 0 0
195195 − 400.000i − 0.146895i
196196 0 0
197197 4322.00i 1.56310i 0.623846 + 0.781548i 0.285569π0.285569\pi
−0.623846 + 0.781548i 0.714431π0.714431\pi
198198 0 0
199199 2852.00 1.01594 0.507972 0.861373i 0.330395π-0.330395\pi
0.507972 + 0.861373i 0.330395π0.330395\pi
200200 0 0
201201 1376.00 0.482863
202202 0 0
203203 444.000i 0.153511i
204204 0 0
205205 − 1990.00i − 0.677988i
206206 0 0
207207 −5698.00 −1.91323
208208 0 0
209209 2420.00 0.800933
210210 0 0
211211 4310.00i 1.40622i 0.711081 + 0.703111i 0.248206π0.248206\pi
−0.711081 + 0.703111i 0.751794π0.751794\pi
212212 0 0
213213 7424.00i 2.38819i
214214 0 0
215215 −1340.00 −0.425057
216216 0 0
217217 184.000 0.0575610
218218 0 0
219219 4560.00i 1.40701i
220220 0 0
221221 − 100.000i − 0.0304377i
222222 0 0
223223 −2742.00 −0.823399 −0.411699 0.911320i 0.635065π-0.635065\pi
−0.411699 + 0.911320i 0.635065π0.635065\pi
224224 0 0
225225 925.000 0.274074
226226 0 0
227227 1932.00i 0.564896i 0.959283 + 0.282448i 0.0911464π0.0911464\pi
−0.959283 + 0.282448i 0.908854π0.908854\pi
228228 0 0
229229 − 6114.00i − 1.76430i −0.470969 0.882150i 0.656096π-0.656096\pi
0.470969 0.882150i 0.343904π-0.343904\pi
230230 0 0
231231 −352.000 −0.100259
232232 0 0
233233 −690.000 −0.194006 −0.0970030 0.995284i 0.530926π-0.530926\pi
−0.0970030 + 0.995284i 0.530926π0.530926\pi
234234 0 0
235235 − 50.0000i − 0.0138793i
236236 0 0
237237 − 512.000i − 0.140329i
238238 0 0
239239 −1264.00 −0.342098 −0.171049 0.985263i 0.554716π-0.554716\pi
−0.171049 + 0.985263i 0.554716π0.554716\pi
240240 0 0
241241 −3246.00 −0.867607 −0.433803 0.901008i 0.642829π-0.642829\pi
−0.433803 + 0.901008i 0.642829π0.642829\pi
242242 0 0
243243 5032.00i 1.32841i
244244 0 0
245245 − 1695.00i − 0.441998i
246246 0 0
247247 −1100.00 −0.283366
248248 0 0
249249 6912.00 1.75916
250250 0 0
251251 2422.00i 0.609065i 0.952502 + 0.304532i 0.0985002π0.0985002\pi
−0.952502 + 0.304532i 0.901500π0.901500\pi
252252 0 0
253253 3388.00i 0.841904i
254254 0 0
255255 400.000 0.0982313
256256 0 0
257257 −1158.00 −0.281066 −0.140533 0.990076i 0.544882π-0.544882\pi
−0.140533 + 0.990076i 0.544882π0.544882\pi
258258 0 0
259259 68.0000i 0.0163140i
260260 0 0
261261 8214.00i 1.94802i
262262 0 0
263263 −3038.00 −0.712286 −0.356143 0.934432i 0.615908π-0.615908\pi
−0.356143 + 0.934432i 0.615908π0.615908\pi
264264 0 0
265265 2910.00 0.674566
266266 0 0
267267 − 6992.00i − 1.60263i
268268 0 0
269269 − 3846.00i − 0.871728i −0.900013 0.435864i 0.856443π-0.856443\pi
0.900013 0.435864i 0.143557π-0.143557\pi
270270 0 0
271271 6612.00 1.48210 0.741052 0.671447i 0.234327π-0.234327\pi
0.741052 + 0.671447i 0.234327π0.234327\pi
272272 0 0
273273 160.000 0.0354712
274274 0 0
275275 − 550.000i − 0.120605i
276276 0 0
277277 − 7314.00i − 1.58648i −0.608907 0.793241i 0.708392π-0.708392\pi
0.608907 0.793241i 0.291608π-0.291608\pi
278278 0 0
279279 3404.00 0.730438
280280 0 0
281281 2102.00 0.446245 0.223122 0.974790i 0.428375π-0.428375\pi
0.223122 + 0.974790i 0.428375π0.428375\pi
282282 0 0
283283 − 4620.00i − 0.970426i −0.874396 0.485213i 0.838742π-0.838742\pi
0.874396 0.485213i 0.161258π-0.161258\pi
284284 0 0
285285 − 4400.00i − 0.914504i
286286 0 0
287287 796.000 0.163716
288288 0 0
289289 −4813.00 −0.979646
290290 0 0
291291 − 2448.00i − 0.493142i
292292 0 0
293293 − 4018.00i − 0.801140i −0.916266 0.400570i 0.868812π-0.868812\pi
0.916266 0.400570i 0.131188π-0.131188\pi
294294 0 0
295295 −3730.00 −0.736166
296296 0 0
297297 −1760.00 −0.343857
298298 0 0
299299 − 1540.00i − 0.297861i
300300 0 0
301301 − 536.000i − 0.102640i
302302 0 0
303303 −7440.00 −1.41062
304304 0 0
305305 −1130.00 −0.212143
306306 0 0
307307 8596.00i 1.59804i 0.601302 + 0.799022i 0.294649π0.294649\pi
−0.601302 + 0.799022i 0.705351π0.705351\pi
308308 0 0
309309 3696.00i 0.680447i
310310 0 0
311311 −1312.00 −0.239218 −0.119609 0.992821i 0.538164π-0.538164\pi
−0.119609 + 0.992821i 0.538164π0.538164\pi
312312 0 0
313313 −1154.00 −0.208396 −0.104198 0.994557i 0.533228π-0.533228\pi
−0.104198 + 0.994557i 0.533228π0.533228\pi
314314 0 0
315315 370.000i 0.0661814i
316316 0 0
317317 7262.00i 1.28667i 0.765585 + 0.643335i 0.222450π0.222450\pi
−0.765585 + 0.643335i 0.777550π0.777550\pi
318318 0 0
319319 4884.00 0.857215
320320 0 0
321321 −12480.0 −2.16999
322322 0 0
323323 − 1100.00i − 0.189491i
324324 0 0
325325 250.000i 0.0426692i
326326 0 0
327327 9488.00 1.60455
328328 0 0
329329 20.0000 0.00335148
330330 0 0
331331 − 3098.00i − 0.514446i −0.966352 0.257223i 0.917193π-0.917193\pi
0.966352 0.257223i 0.0828074π-0.0828074\pi
332332 0 0
333333 1258.00i 0.207021i
334334 0 0
335335 −860.000 −0.140259
336336 0 0
337337 −7062.00 −1.14152 −0.570759 0.821118i 0.693351π-0.693351\pi
−0.570759 + 0.821118i 0.693351π0.693351\pi
338338 0 0
339339 11056.0i 1.77133i
340340 0 0
341341 − 2024.00i − 0.321424i
342342 0 0
343343 1364.00 0.214720
344344 0 0
345345 6160.00 0.961285
346346 0 0
347347 − 2240.00i − 0.346540i −0.984874 0.173270i 0.944567π-0.944567\pi
0.984874 0.173270i 0.0554334π-0.0554334\pi
348348 0 0
349349 − 12166.0i − 1.86599i −0.359887 0.932996i 0.617185π-0.617185\pi
0.359887 0.932996i 0.382815π-0.382815\pi
350350 0 0
351351 800.000 0.121655
352352 0 0
353353 −9318.00 −1.40495 −0.702475 0.711709i 0.747922π-0.747922\pi
−0.702475 + 0.711709i 0.747922π0.747922\pi
354354 0 0
355355 − 4640.00i − 0.693706i
356356 0 0
357357 160.000i 0.0237202i
358358 0 0
359359 −5196.00 −0.763884 −0.381942 0.924186i 0.624745π-0.624745\pi
−0.381942 + 0.924186i 0.624745π0.624745\pi
360360 0 0
361361 −5241.00 −0.764106
362362 0 0
363363 − 6776.00i − 0.979746i
364364 0 0
365365 − 2850.00i − 0.408701i
366366 0 0
367367 −12970.0 −1.84476 −0.922382 0.386279i 0.873760π-0.873760\pi
−0.922382 + 0.386279i 0.873760π0.873760\pi
368368 0 0
369369 14726.0 2.07752
370370 0 0
371371 1164.00i 0.162889i
372372 0 0
373373 702.000i 0.0974482i 0.998812 + 0.0487241i 0.0155155π0.0155155\pi
−0.998812 + 0.0487241i 0.984484π0.984484\pi
374374 0 0
375375 −1000.00 −0.137706
376376 0 0
377377 −2220.00 −0.303278
378378 0 0
379379 − 6630.00i − 0.898576i −0.893387 0.449288i 0.851678π-0.851678\pi
0.893387 0.449288i 0.148322π-0.148322\pi
380380 0 0
381381 − 9584.00i − 1.28872i
382382 0 0
383383 −46.0000 −0.00613705 −0.00306853 0.999995i 0.500977π-0.500977\pi
−0.00306853 + 0.999995i 0.500977π0.500977\pi
384384 0 0
385385 220.000 0.0291227
386386 0 0
387387 − 9916.00i − 1.30248i
388388 0 0
389389 − 11914.0i − 1.55286i −0.630202 0.776432i 0.717028π-0.717028\pi
0.630202 0.776432i 0.282972π-0.282972\pi
390390 0 0
391391 1540.00 0.199185
392392 0 0
393393 −18512.0 −2.37610
394394 0 0
395395 320.000i 0.0407619i
396396 0 0
397397 − 2994.00i − 0.378500i −0.981929 0.189250i 0.939394π-0.939394\pi
0.981929 0.189250i 0.0606057π-0.0606057\pi
398398 0 0
399399 1760.00 0.220828
400400 0 0
401401 −6402.00 −0.797258 −0.398629 0.917112i 0.630514π-0.630514\pi
−0.398629 + 0.917112i 0.630514π0.630514\pi
402402 0 0
403403 920.000i 0.113718i
404404 0 0
405405 − 1795.00i − 0.220233i
406406 0 0
407407 748.000 0.0910982
408408 0 0
409409 −6.00000 −0.000725381 0 −0.000362691 1.00000i 0.500115π-0.500115\pi
−0.000362691 1.00000i 0.500115π0.500115\pi
410410 0 0
411411 19152.0i 2.29854i
412412 0 0
413413 − 1492.00i − 0.177764i
414414 0 0
415415 −4320.00 −0.510989
416416 0 0
417417 6608.00 0.776008
418418 0 0
419419 1770.00i 0.206373i 0.994662 + 0.103186i 0.0329038π0.0329038\pi
−0.994662 + 0.103186i 0.967096π0.967096\pi
420420 0 0
421421 3638.00i 0.421153i 0.977577 + 0.210576i 0.0675340π0.0675340\pi
−0.977577 + 0.210576i 0.932466π0.932466\pi
422422 0 0
423423 370.000 0.0425296
424424 0 0
425425 −250.000 −0.0285336
426426 0 0
427427 − 452.000i − 0.0512267i
428428 0 0
429429 − 1760.00i − 0.198074i
430430 0 0
431431 13492.0 1.50786 0.753929 0.656956i 0.228156π-0.228156\pi
0.753929 + 0.656956i 0.228156π0.228156\pi
432432 0 0
433433 −4478.00 −0.496995 −0.248498 0.968633i 0.579937π-0.579937\pi
−0.248498 + 0.968633i 0.579937π0.579937\pi
434434 0 0
435435 − 8880.00i − 0.978766i
436436 0 0
437437 − 16940.0i − 1.85435i
438438 0 0
439439 6796.00 0.738851 0.369425 0.929260i 0.379555π-0.379555\pi
0.369425 + 0.929260i 0.379555π0.379555\pi
440440 0 0
441441 12543.0 1.35439
442442 0 0
443443 7692.00i 0.824962i 0.910966 + 0.412481i 0.135338π0.135338\pi
−0.910966 + 0.412481i 0.864662π0.864662\pi
444444 0 0
445445 4370.00i 0.465523i
446446 0 0
447447 −18384.0 −1.94526
448448 0 0
449449 18818.0 1.97790 0.988949 0.148255i 0.0473657π-0.0473657\pi
0.988949 + 0.148255i 0.0473657π0.0473657\pi
450450 0 0
451451 − 8756.00i − 0.914199i
452452 0 0
453453 16960.0i 1.75905i
454454 0 0
455455 −100.000 −0.0103035
456456 0 0
457457 −11722.0 −1.19985 −0.599926 0.800056i 0.704803π-0.704803\pi
−0.599926 + 0.800056i 0.704803π0.704803\pi
458458 0 0
459459 800.000i 0.0813525i
460460 0 0
461461 − 6846.00i − 0.691649i −0.938299 0.345824i 0.887599π-0.887599\pi
0.938299 0.345824i 0.112401π-0.112401\pi
462462 0 0
463463 13802.0 1.38539 0.692693 0.721233i 0.256424π-0.256424\pi
0.692693 + 0.721233i 0.256424π0.256424\pi
464464 0 0
465465 −3680.00 −0.367002
466466 0 0
467467 − 15396.0i − 1.52557i −0.646651 0.762786i 0.723831π-0.723831\pi
0.646651 0.762786i 0.276169π-0.276169\pi
468468 0 0
469469 − 344.000i − 0.0338688i
470470 0 0
471471 −6704.00 −0.655847
472472 0 0
473473 −5896.00 −0.573147
474474 0 0
475475 2750.00i 0.265639i
476476 0 0
477477 21534.0i 2.06703i
478478 0 0
479479 14584.0 1.39115 0.695574 0.718454i 0.255150π-0.255150\pi
0.695574 + 0.718454i 0.255150π0.255150\pi
480480 0 0
481481 −340.000 −0.0322301
482482 0 0
483483 2464.00i 0.232124i
484484 0 0
485485 1530.00i 0.143245i
486486 0 0
487487 6910.00 0.642961 0.321480 0.946916i 0.395820π-0.395820\pi
0.321480 + 0.946916i 0.395820π0.395820\pi
488488 0 0
489489 −11520.0 −1.06534
490490 0 0
491491 2710.00i 0.249085i 0.992214 + 0.124542i 0.0397463π0.0397463\pi
−0.992214 + 0.124542i 0.960254π0.960254\pi
492492 0 0
493493 − 2220.00i − 0.202807i
494494 0 0
495495 4070.00 0.369561
496496 0 0
497497 1856.00 0.167511
498498 0 0
499499 5522.00i 0.495388i 0.968838 + 0.247694i 0.0796728π0.0796728\pi
−0.968838 + 0.247694i 0.920327π0.920327\pi
500500 0 0
501501 16976.0i 1.51384i
502502 0 0
503503 3450.00 0.305821 0.152910 0.988240i 0.451135π-0.451135\pi
0.152910 + 0.988240i 0.451135π0.451135\pi
504504 0 0
505505 4650.00 0.409747
506506 0 0
507507 − 16776.0i − 1.46952i
508508 0 0
509509 − 4590.00i − 0.399702i −0.979826 0.199851i 0.935954π-0.935954\pi
0.979826 0.199851i 0.0640458π-0.0640458\pi
510510 0 0
511511 1140.00 0.0986901
512512 0 0
513513 8800.00 0.757367
514514 0 0
515515 − 2310.00i − 0.197652i
516516 0 0
517517 − 220.000i − 0.0187149i
518518 0 0
519519 26448.0 2.23688
520520 0 0
521521 −7242.00 −0.608978 −0.304489 0.952516i 0.598486π-0.598486\pi
−0.304489 + 0.952516i 0.598486π0.598486\pi
522522 0 0
523523 2732.00i 0.228417i 0.993457 + 0.114208i 0.0364332π0.0364332\pi
−0.993457 + 0.114208i 0.963567π0.963567\pi
524524 0 0
525525 − 400.000i − 0.0332522i
526526 0 0
527527 −920.000 −0.0760452
528528 0 0
529529 11549.0 0.949207
530530 0 0
531531 − 27602.0i − 2.25579i
532532 0 0
533533 3980.00i 0.323439i
534534 0 0
535535 7800.00 0.630324
536536 0 0
537537 21968.0 1.76534
538538 0 0
539539 − 7458.00i − 0.595990i
540540 0 0
541541 − 2486.00i − 0.197563i −0.995109 0.0987814i 0.968506π-0.968506\pi
0.995109 0.0987814i 0.0314945π-0.0314945\pi
542542 0 0
543543 32496.0 2.56821
544544 0 0
545545 −5930.00 −0.466079
546546 0 0
547547 − 11860.0i − 0.927051i −0.886084 0.463526i 0.846584π-0.846584\pi
0.886084 0.463526i 0.153416π-0.153416\pi
548548 0 0
549549 − 8362.00i − 0.650057i
550550 0 0
551551 −24420.0 −1.88807
552552 0 0
553553 −128.000 −0.00984288
554554 0 0
555555 − 1360.00i − 0.104016i
556556 0 0
557557 23546.0i 1.79116i 0.444901 + 0.895580i 0.353239π0.353239\pi
−0.444901 + 0.895580i 0.646761π0.646761\pi
558558 0 0
559559 2680.00 0.202776
560560 0 0
561561 1760.00 0.132455
562562 0 0
563563 − 11792.0i − 0.882724i −0.897329 0.441362i 0.854495π-0.854495\pi
0.897329 0.441362i 0.145505π-0.145505\pi
564564 0 0
565565 − 6910.00i − 0.514524i
566566 0 0
567567 718.000 0.0531802
568568 0 0
569569 −3702.00 −0.272752 −0.136376 0.990657i 0.543546π-0.543546\pi
−0.136376 + 0.990657i 0.543546π0.543546\pi
570570 0 0
571571 − 12170.0i − 0.891942i −0.895048 0.445971i 0.852859π-0.852859\pi
0.895048 0.445971i 0.147141π-0.147141\pi
572572 0 0
573573 15264.0i 1.11285i
574574 0 0
575575 −3850.00 −0.279228
576576 0 0
577577 −6526.00 −0.470851 −0.235425 0.971892i 0.575648π-0.575648\pi
−0.235425 + 0.971892i 0.575648π0.575648\pi
578578 0 0
579579 22064.0i 1.58368i
580580 0 0
581581 − 1728.00i − 0.123390i
582582 0 0
583583 12804.0 0.909584
584584 0 0
585585 −1850.00 −0.130749
586586 0 0
587587 2624.00i 0.184504i 0.995736 + 0.0922522i 0.0294066π0.0294066\pi
−0.995736 + 0.0922522i 0.970593π0.970593\pi
588588 0 0
589589 10120.0i 0.707958i
590590 0 0
591591 34576.0 2.40654
592592 0 0
593593 17218.0 1.19234 0.596171 0.802858i 0.296688π-0.296688\pi
0.596171 + 0.802858i 0.296688π0.296688\pi
594594 0 0
595595 − 100.000i − 0.00689008i
596596 0 0
597597 − 22816.0i − 1.56415i
598598 0 0
599599 −14236.0 −0.971064 −0.485532 0.874219i 0.661374π-0.661374\pi
−0.485532 + 0.874219i 0.661374π0.661374\pi
600600 0 0
601601 19030.0 1.29160 0.645799 0.763508i 0.276525π-0.276525\pi
0.645799 + 0.763508i 0.276525π0.276525\pi
602602 0 0
603603 − 6364.00i − 0.429788i
604604 0 0
605605 4235.00i 0.284590i
606606 0 0
607607 1966.00 0.131462 0.0657310 0.997837i 0.479062π-0.479062\pi
0.0657310 + 0.997837i 0.479062π0.479062\pi
608608 0 0
609609 3552.00 0.236345
610610 0 0
611611 100.000i 0.00662122i
612612 0 0
613613 − 16518.0i − 1.08835i −0.838973 0.544173i 0.816844π-0.816844\pi
0.838973 0.544173i 0.183156π-0.183156\pi
614614 0 0
615615 −15920.0 −1.04383
616616 0 0
617617 −17954.0 −1.17148 −0.585738 0.810500i 0.699195π-0.699195\pi
−0.585738 + 0.810500i 0.699195π0.699195\pi
618618 0 0
619619 − 2494.00i − 0.161942i −0.996716 0.0809712i 0.974198π-0.974198\pi
0.996716 0.0809712i 0.0258022π-0.0258022\pi
620620 0 0
621621 12320.0i 0.796110i
622622 0 0
623623 −1748.00 −0.112411
624624 0 0
625625 625.000 0.0400000
626626 0 0
627627 − 19360.0i − 1.23312i
628628 0 0
629629 − 340.000i − 0.0215528i
630630 0 0
631631 10600.0 0.668747 0.334373 0.942441i 0.391475π-0.391475\pi
0.334373 + 0.942441i 0.391475π0.391475\pi
632632 0 0
633633 34480.0 2.16502
634634 0 0
635635 5990.00i 0.374340i
636636 0 0
637637 3390.00i 0.210858i
638638 0 0
639639 34336.0 2.12568
640640 0 0
641641 4386.00 0.270260 0.135130 0.990828i 0.456855π-0.456855\pi
0.135130 + 0.990828i 0.456855π0.456855\pi
642642 0 0
643643 22128.0i 1.35714i 0.734534 + 0.678572i 0.237401π0.237401\pi
−0.734534 + 0.678572i 0.762599π0.762599\pi
644644 0 0
645645 10720.0i 0.654418i
646646 0 0
647647 −5650.00 −0.343314 −0.171657 0.985157i 0.554912π-0.554912\pi
−0.171657 + 0.985157i 0.554912π0.554912\pi
648648 0 0
649649 −16412.0 −0.992646
650650 0 0
651651 − 1472.00i − 0.0886209i
652652 0 0
653653 15238.0i 0.913184i 0.889676 + 0.456592i 0.150930π0.150930\pi
−0.889676 + 0.456592i 0.849070π0.849070\pi
654654 0 0
655655 11570.0 0.690194
656656 0 0
657657 21090.0 1.25236
658658 0 0
659659 − 13318.0i − 0.787247i −0.919272 0.393623i 0.871221π-0.871221\pi
0.919272 0.393623i 0.128779π-0.128779\pi
660660 0 0
661661 5838.00i 0.343528i 0.985138 + 0.171764i 0.0549466π0.0549466\pi
−0.985138 + 0.171764i 0.945053π0.945053\pi
662662 0 0
663663 −800.000 −0.0468619
664664 0 0
665665 −1100.00 −0.0641446
666666 0 0
667667 − 34188.0i − 1.98465i
668668 0 0
669669 21936.0i 1.26771i
670670 0 0
671671 −4972.00 −0.286054
672672 0 0
673673 74.0000 0.00423847 0.00211924 0.999998i 0.499325π-0.499325\pi
0.00211924 + 0.999998i 0.499325π0.499325\pi
674674 0 0
675675 − 2000.00i − 0.114044i
676676 0 0
677677 6194.00i 0.351632i 0.984423 + 0.175816i 0.0562564π0.0562564\pi
−0.984423 + 0.175816i 0.943744π0.943744\pi
678678 0 0
679679 −612.000 −0.0345897
680680 0 0
681681 15456.0 0.869714
682682 0 0
683683 23532.0i 1.31834i 0.751993 + 0.659171i 0.229092π0.229092\pi
−0.751993 + 0.659171i 0.770908π0.770908\pi
684684 0 0
685685 − 11970.0i − 0.667665i
686686 0 0
687687 −48912.0 −2.71632
688688 0 0
689689 −5820.00 −0.321806
690690 0 0
691691 − 18530.0i − 1.02014i −0.860134 0.510068i 0.829620π-0.829620\pi
0.860134 0.510068i 0.170380π-0.170380\pi
692692 0 0
693693 1628.00i 0.0892390i
694694 0 0
695695 −4130.00 −0.225410
696696 0 0
697697 −3980.00 −0.216289
698698 0 0
699699 5520.00i 0.298692i
700700 0 0
701701 − 5142.00i − 0.277048i −0.990359 0.138524i 0.955764π-0.955764\pi
0.990359 0.138524i 0.0442358π-0.0442358\pi
702702 0 0
703703 −3740.00 −0.200650
704704 0 0
705705 −400.000 −0.0213686
706706 0 0
707707 1860.00i 0.0989427i
708708 0 0
709709 21438.0i 1.13557i 0.823176 + 0.567786i 0.192200π0.192200\pi
−0.823176 + 0.567786i 0.807800π0.807800\pi
710710 0 0
711711 −2368.00 −0.124904
712712 0 0
713713 −14168.0 −0.744174
714714 0 0
715715 1100.00i 0.0575352i
716716 0 0
717717 10112.0i 0.526694i
718718 0 0
719719 −2624.00 −0.136104 −0.0680519 0.997682i 0.521678π-0.521678\pi
−0.0680519 + 0.997682i 0.521678π0.521678\pi
720720 0 0
721721 924.000 0.0477275
722722 0 0
723723 25968.0i 1.33577i
724724 0 0
725725 5550.00i 0.284306i
726726 0 0
727727 −9410.00 −0.480052 −0.240026 0.970766i 0.577156π-0.577156\pi
−0.240026 + 0.970766i 0.577156π0.577156\pi
728728 0 0
729729 30563.0 1.55276
730730 0 0
731731 2680.00i 0.135600i
732732 0 0
733733 − 19142.0i − 0.964565i −0.876016 0.482282i 0.839808π-0.839808\pi
0.876016 0.482282i 0.160192π-0.160192\pi
734734 0 0
735735 −13560.0 −0.680501
736736 0 0
737737 −3784.00 −0.189125
738738 0 0
739739 2930.00i 0.145848i 0.997337 + 0.0729241i 0.0232331π0.0232331\pi
−0.997337 + 0.0729241i 0.976767π0.976767\pi
740740 0 0
741741 8800.00i 0.436270i
742742 0 0
743743 20250.0 0.999866 0.499933 0.866064i 0.333358π-0.333358\pi
0.499933 + 0.866064i 0.333358π0.333358\pi
744744 0 0
745745 11490.0 0.565048
746746 0 0
747747 − 31968.0i − 1.56579i
748748 0 0
749749 3120.00i 0.152206i
750750 0 0
751751 1916.00 0.0930970 0.0465485 0.998916i 0.485178π-0.485178\pi
0.0465485 + 0.998916i 0.485178π0.485178\pi
752752 0 0
753753 19376.0 0.937717
754754 0 0
755755 − 10600.0i − 0.510958i
756756 0 0
757757 20494.0i 0.983972i 0.870603 + 0.491986i 0.163729π0.163729\pi
−0.870603 + 0.491986i 0.836271π0.836271\pi
758758 0 0
759759 27104.0 1.29620
760760 0 0
761761 −14826.0 −0.706231 −0.353116 0.935580i 0.614878π-0.614878\pi
−0.353116 + 0.935580i 0.614878π0.614878\pi
762762 0 0
763763 − 2372.00i − 0.112545i
764764 0 0
765765 − 1850.00i − 0.0874338i
766766 0 0
767767 7460.00 0.351193
768768 0 0
769769 −39194.0 −1.83793 −0.918967 0.394334i 0.870975π-0.870975\pi
−0.918967 + 0.394334i 0.870975π0.870975\pi
770770 0 0
771771 9264.00i 0.432730i
772772 0 0
773773 − 35862.0i − 1.66865i −0.551273 0.834325i 0.685858π-0.685858\pi
0.551273 0.834325i 0.314142π-0.314142\pi
774774 0 0
775775 2300.00 0.106604
776776 0 0
777777 544.000 0.0251170
778778 0 0
779779 43780.0i 2.01358i
780780 0 0
781781 − 20416.0i − 0.935393i
782782 0 0
783783 17760.0 0.810588
784784 0 0
785785 4190.00 0.190506
786786 0 0
787787 − 23060.0i − 1.04447i −0.852801 0.522236i 0.825098π-0.825098\pi
0.852801 0.522236i 0.174902π-0.174902\pi
788788 0 0
789789 24304.0i 1.09664i
790790 0 0
791791 2764.00 0.124243
792792 0 0
793793 2260.00 0.101204
794794 0 0
795795 − 23280.0i − 1.03856i
796796 0 0
797797 − 40466.0i − 1.79847i −0.437468 0.899234i 0.644125π-0.644125\pi
0.437468 0.899234i 0.355875π-0.355875\pi
798798 0 0
799799 −100.000 −0.00442772
800800 0 0
801801 −32338.0 −1.42648
802802 0 0
803803 − 12540.0i − 0.551092i
804804 0 0
805805 − 1540.00i − 0.0674259i
806806 0 0
807807 −30768.0 −1.34211
808808 0 0
809809 −36090.0 −1.56843 −0.784213 0.620492i 0.786933π-0.786933\pi
−0.784213 + 0.620492i 0.786933π0.786933\pi
810810 0 0
811811 12022.0i 0.520530i 0.965537 + 0.260265i 0.0838099π0.0838099\pi
−0.965537 + 0.260265i 0.916190π0.916190\pi
812812 0 0
813813 − 52896.0i − 2.28185i
814814 0 0
815815 7200.00 0.309454
816816 0 0
817817 29480.0 1.26239
818818 0 0
819819 − 740.000i − 0.0315723i
820820 0 0
821821 − 15250.0i − 0.648269i −0.946011 0.324134i 0.894927π-0.894927\pi
0.946011 0.324134i 0.105073π-0.105073\pi
822822 0 0
823823 45970.0 1.94704 0.973520 0.228603i 0.0734158π-0.0734158\pi
0.973520 + 0.228603i 0.0734158π0.0734158\pi
824824 0 0
825825 −4400.00 −0.185683
826826 0 0
827827 − 8160.00i − 0.343109i −0.985175 0.171554i 0.945121π-0.945121\pi
0.985175 0.171554i 0.0548789π-0.0548789\pi
828828 0 0
829829 82.0000i 0.00343544i 0.999999 + 0.00171772i 0.000546767π0.000546767\pi
−0.999999 + 0.00171772i 0.999453π0.999453\pi
830830 0 0
831831 −58512.0 −2.44255
832832 0 0
833833 −3390.00 −0.141004
834834 0 0
835835 − 10610.0i − 0.439730i
836836 0 0
837837 − 7360.00i − 0.303941i
838838 0 0
839839 46796.0 1.92560 0.962799 0.270217i 0.0870955π-0.0870955\pi
0.962799 + 0.270217i 0.0870955π0.0870955\pi
840840 0 0
841841 −24895.0 −1.02075
842842 0 0
843843 − 16816.0i − 0.687039i
844844 0 0
845845 10485.0i 0.426858i
846846 0 0
847847 −1694.00 −0.0687208
848848 0 0
849849 −36960.0 −1.49407
850850 0 0
851851 − 5236.00i − 0.210914i
852852 0 0
853853 − 18566.0i − 0.745238i −0.927984 0.372619i 0.878460π-0.878460\pi
0.927984 0.372619i 0.121540π-0.121540\pi
854854 0 0
855855 −20350.0 −0.813983
856856 0 0
857857 −21266.0 −0.847646 −0.423823 0.905745i 0.639312π-0.639312\pi
−0.423823 + 0.905745i 0.639312π0.639312\pi
858858 0 0
859859 22106.0i 0.878052i 0.898474 + 0.439026i 0.144676π0.144676\pi
−0.898474 + 0.439026i 0.855324π0.855324\pi
860860 0 0
861861 − 6368.00i − 0.252057i
862862 0 0
863863 −6150.00 −0.242582 −0.121291 0.992617i 0.538703π-0.538703\pi
−0.121291 + 0.992617i 0.538703π0.538703\pi
864864 0 0
865865 −16530.0 −0.649754
866866 0 0
867867 38504.0i 1.50826i
868868 0 0
869869 1408.00i 0.0549633i
870870 0 0
871871 1720.00 0.0669116
872872 0 0
873873 −11322.0 −0.438937
874874 0 0
875875 250.000i 0.00965891i
876876 0 0
877877 − 48038.0i − 1.84963i −0.380414 0.924816i 0.624218π-0.624218\pi
0.380414 0.924816i 0.375782π-0.375782\pi
878878 0 0
879879 −32144.0 −1.23344
880880 0 0
881881 34750.0 1.32890 0.664448 0.747335i 0.268667π-0.268667\pi
0.664448 + 0.747335i 0.268667π0.268667\pi
882882 0 0
883883 − 46608.0i − 1.77631i −0.459541 0.888156i 0.651986π-0.651986\pi
0.459541 0.888156i 0.348014π-0.348014\pi
884884 0 0
885885 29840.0i 1.13340i
886886 0 0
887887 −33906.0 −1.28349 −0.641743 0.766920i 0.721788π-0.721788\pi
−0.641743 + 0.766920i 0.721788π0.721788\pi
888888 0 0
889889 −2396.00 −0.0903929
890890 0 0
891891 − 7898.00i − 0.296962i
892892 0 0
893893 1100.00i 0.0412207i
894894 0 0
895895 −13730.0 −0.512786
896896 0 0
897897 −12320.0 −0.458587
898898 0 0
899899 20424.0i 0.757707i
900900 0 0
901901 − 5820.00i − 0.215197i
902902 0 0
903903 −4288.00 −0.158024
904904 0 0
905905 −20310.0 −0.745997
906906 0 0
907907 − 46256.0i − 1.69339i −0.532078 0.846695i 0.678589π-0.678589\pi
0.532078 0.846695i 0.321411π-0.321411\pi
908908 0 0
909909 34410.0i 1.25556i
910910 0 0
911911 52092.0 1.89450 0.947248 0.320503i 0.103852π-0.103852\pi
0.947248 + 0.320503i 0.103852π0.103852\pi
912912 0 0
913913 −19008.0 −0.689018
914914 0 0
915915 9040.00i 0.326615i
916916 0 0
917917 4628.00i 0.166663i
918918 0 0
919919 19988.0 0.717457 0.358729 0.933442i 0.383210π-0.383210\pi
0.358729 + 0.933442i 0.383210π0.383210\pi
920920 0 0
921921 68768.0 2.46035
922922 0 0
923923 9280.00i 0.330937i
924924 0 0
925925 850.000i 0.0302139i
926926 0 0
927927 17094.0 0.605653
928928 0 0
929929 −31950.0 −1.12836 −0.564179 0.825652i 0.690807π-0.690807\pi
−0.564179 + 0.825652i 0.690807π0.690807\pi
930930 0 0
931931 37290.0i 1.31271i
932932 0 0
933933 10496.0i 0.368300i
934934 0 0
935935 −1100.00 −0.0384747
936936 0 0
937937 −18874.0 −0.658043 −0.329022 0.944322i 0.606719π-0.606719\pi
−0.329022 + 0.944322i 0.606719π0.606719\pi
938938 0 0
939939 9232.00i 0.320847i
940940 0 0
941941 − 24038.0i − 0.832749i −0.909193 0.416374i 0.863301π-0.863301\pi
0.909193 0.416374i 0.136699π-0.136699\pi
942942 0 0
943943 −61292.0 −2.11659
944944 0 0
945945 800.000 0.0275386
946946 0 0
947947 11316.0i 0.388301i 0.980972 + 0.194150i 0.0621949π0.0621949\pi
−0.980972 + 0.194150i 0.937805π0.937805\pi
948948 0 0
949949 5700.00i 0.194973i
950950 0 0
951951 58096.0 1.98096
952952 0 0
953953 48390.0 1.64481 0.822406 0.568901i 0.192631π-0.192631\pi
0.822406 + 0.568901i 0.192631π0.192631\pi
954954 0 0
955955 − 9540.00i − 0.323254i
956956 0 0
957957 − 39072.0i − 1.31977i
958958 0 0
959959 4788.00 0.161223
960960 0 0
961961 −21327.0 −0.715887
962962 0 0
963963 57720.0i 1.93147i
964964 0 0
965965 − 13790.0i − 0.460016i
966966 0 0
967967 21126.0 0.702551 0.351275 0.936272i 0.385748π-0.385748\pi
0.351275 + 0.936272i 0.385748π0.385748\pi
968968 0 0
969969 −8800.00 −0.291741
970970 0 0
971971 42894.0i 1.41765i 0.705387 + 0.708823i 0.250773π0.250773\pi
−0.705387 + 0.708823i 0.749227π0.749227\pi
972972 0 0
973973 − 1652.00i − 0.0544303i
974974 0 0
975975 2000.00 0.0656936
976976 0 0
977977 9594.00 0.314165 0.157083 0.987585i 0.449791π-0.449791\pi
0.157083 + 0.987585i 0.449791π0.449791\pi
978978 0 0
979979 19228.0i 0.627711i
980980 0 0
981981 − 43882.0i − 1.42818i
982982 0 0
983983 −55742.0 −1.80864 −0.904320 0.426855i 0.859622π-0.859622\pi
−0.904320 + 0.426855i 0.859622π0.859622\pi
984984 0 0
985985 −21610.0 −0.699037
986986 0 0
987987 − 160.000i − 0.00515994i
988988 0 0
989989 41272.0i 1.32697i
990990 0 0
991991 −11788.0 −0.377859 −0.188929 0.981991i 0.560502π-0.560502\pi
−0.188929 + 0.981991i 0.560502π0.560502\pi
992992 0 0
993993 −24784.0 −0.792041
994994 0 0
995995 14260.0i 0.454344i
996996 0 0
997997 5074.00i 0.161179i 0.996747 + 0.0805894i 0.0256802π0.0256802\pi
−0.996747 + 0.0805894i 0.974320π0.974320\pi
998998 0 0
999999 2720.00 0.0861431
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.4.d.h.641.1 2
4.3 odd 2 1280.4.d.i.641.2 2
8.3 odd 2 1280.4.d.i.641.1 2
8.5 even 2 inner 1280.4.d.h.641.2 2
16.3 odd 4 640.4.a.b.1.1 yes 1
16.5 even 4 640.4.a.a.1.1 1
16.11 odd 4 640.4.a.c.1.1 yes 1
16.13 even 4 640.4.a.d.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
640.4.a.a.1.1 1 16.5 even 4
640.4.a.b.1.1 yes 1 16.3 odd 4
640.4.a.c.1.1 yes 1 16.11 odd 4
640.4.a.d.1.1 yes 1 16.13 even 4
1280.4.d.h.641.1 2 1.1 even 1 trivial
1280.4.d.h.641.2 2 8.5 even 2 inner
1280.4.d.i.641.1 2 8.3 odd 2
1280.4.d.i.641.2 2 4.3 odd 2