Properties

Label 1280.4.d.m.641.1
Level $1280$
Weight $4$
Character 1280.641
Analytic conductor $75.522$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1280,4,Mod(641,1280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1280.641");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1280 = 2^{8} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1280.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(75.5224448073\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 641.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1280.641
Dual form 1280.4.d.m.641.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{3} -5.00000i q^{5} +16.0000 q^{7} +11.0000 q^{9} +36.0000i q^{11} -42.0000i q^{13} -20.0000 q^{15} -110.000 q^{17} +116.000i q^{19} -64.0000i q^{21} +16.0000 q^{23} -25.0000 q^{25} -152.000i q^{27} +198.000i q^{29} -240.000 q^{31} +144.000 q^{33} -80.0000i q^{35} +258.000i q^{37} -168.000 q^{39} -442.000 q^{41} -292.000i q^{43} -55.0000i q^{45} -392.000 q^{47} -87.0000 q^{49} +440.000i q^{51} -142.000i q^{53} +180.000 q^{55} +464.000 q^{57} -348.000i q^{59} -570.000i q^{61} +176.000 q^{63} -210.000 q^{65} -692.000i q^{67} -64.0000i q^{69} +168.000 q^{71} +134.000 q^{73} +100.000i q^{75} +576.000i q^{77} -784.000 q^{79} -311.000 q^{81} -564.000i q^{83} +550.000i q^{85} +792.000 q^{87} -1034.00 q^{89} -672.000i q^{91} +960.000i q^{93} +580.000 q^{95} -382.000 q^{97} +396.000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{7} + 22 q^{9} - 40 q^{15} - 220 q^{17} + 32 q^{23} - 50 q^{25} - 480 q^{31} + 288 q^{33} - 336 q^{39} - 884 q^{41} - 784 q^{47} - 174 q^{49} + 360 q^{55} + 928 q^{57} + 352 q^{63} - 420 q^{65}+ \cdots - 764 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1280\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(261\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.00000i − 0.769800i −0.922958 0.384900i \(-0.874236\pi\)
0.922958 0.384900i \(-0.125764\pi\)
\(4\) 0 0
\(5\) − 5.00000i − 0.447214i
\(6\) 0 0
\(7\) 16.0000 0.863919 0.431959 0.901893i \(-0.357822\pi\)
0.431959 + 0.901893i \(0.357822\pi\)
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) 36.0000i 0.986764i 0.869813 + 0.493382i \(0.164240\pi\)
−0.869813 + 0.493382i \(0.835760\pi\)
\(12\) 0 0
\(13\) − 42.0000i − 0.896054i −0.894020 0.448027i \(-0.852127\pi\)
0.894020 0.448027i \(-0.147873\pi\)
\(14\) 0 0
\(15\) −20.0000 −0.344265
\(16\) 0 0
\(17\) −110.000 −1.56935 −0.784674 0.619909i \(-0.787170\pi\)
−0.784674 + 0.619909i \(0.787170\pi\)
\(18\) 0 0
\(19\) 116.000i 1.40064i 0.713827 + 0.700322i \(0.246960\pi\)
−0.713827 + 0.700322i \(0.753040\pi\)
\(20\) 0 0
\(21\) − 64.0000i − 0.665045i
\(22\) 0 0
\(23\) 16.0000 0.145054 0.0725268 0.997366i \(-0.476894\pi\)
0.0725268 + 0.997366i \(0.476894\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) − 152.000i − 1.08342i
\(28\) 0 0
\(29\) 198.000i 1.26785i 0.773394 + 0.633925i \(0.218557\pi\)
−0.773394 + 0.633925i \(0.781443\pi\)
\(30\) 0 0
\(31\) −240.000 −1.39049 −0.695246 0.718772i \(-0.744705\pi\)
−0.695246 + 0.718772i \(0.744705\pi\)
\(32\) 0 0
\(33\) 144.000 0.759612
\(34\) 0 0
\(35\) − 80.0000i − 0.386356i
\(36\) 0 0
\(37\) 258.000i 1.14635i 0.819433 + 0.573175i \(0.194288\pi\)
−0.819433 + 0.573175i \(0.805712\pi\)
\(38\) 0 0
\(39\) −168.000 −0.689783
\(40\) 0 0
\(41\) −442.000 −1.68363 −0.841815 0.539767i \(-0.818512\pi\)
−0.841815 + 0.539767i \(0.818512\pi\)
\(42\) 0 0
\(43\) − 292.000i − 1.03557i −0.855510 0.517786i \(-0.826756\pi\)
0.855510 0.517786i \(-0.173244\pi\)
\(44\) 0 0
\(45\) − 55.0000i − 0.182198i
\(46\) 0 0
\(47\) −392.000 −1.21658 −0.608288 0.793716i \(-0.708143\pi\)
−0.608288 + 0.793716i \(0.708143\pi\)
\(48\) 0 0
\(49\) −87.0000 −0.253644
\(50\) 0 0
\(51\) 440.000i 1.20808i
\(52\) 0 0
\(53\) − 142.000i − 0.368023i −0.982924 0.184011i \(-0.941092\pi\)
0.982924 0.184011i \(-0.0589083\pi\)
\(54\) 0 0
\(55\) 180.000 0.441294
\(56\) 0 0
\(57\) 464.000 1.07822
\(58\) 0 0
\(59\) − 348.000i − 0.767894i −0.923355 0.383947i \(-0.874565\pi\)
0.923355 0.383947i \(-0.125435\pi\)
\(60\) 0 0
\(61\) − 570.000i − 1.19641i −0.801343 0.598205i \(-0.795881\pi\)
0.801343 0.598205i \(-0.204119\pi\)
\(62\) 0 0
\(63\) 176.000 0.351967
\(64\) 0 0
\(65\) −210.000 −0.400728
\(66\) 0 0
\(67\) − 692.000i − 1.26181i −0.775860 0.630905i \(-0.782684\pi\)
0.775860 0.630905i \(-0.217316\pi\)
\(68\) 0 0
\(69\) − 64.0000i − 0.111662i
\(70\) 0 0
\(71\) 168.000 0.280816 0.140408 0.990094i \(-0.455159\pi\)
0.140408 + 0.990094i \(0.455159\pi\)
\(72\) 0 0
\(73\) 134.000 0.214843 0.107421 0.994214i \(-0.465741\pi\)
0.107421 + 0.994214i \(0.465741\pi\)
\(74\) 0 0
\(75\) 100.000i 0.153960i
\(76\) 0 0
\(77\) 576.000i 0.852484i
\(78\) 0 0
\(79\) −784.000 −1.11654 −0.558271 0.829658i \(-0.688535\pi\)
−0.558271 + 0.829658i \(0.688535\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) − 564.000i − 0.745868i −0.927858 0.372934i \(-0.878352\pi\)
0.927858 0.372934i \(-0.121648\pi\)
\(84\) 0 0
\(85\) 550.000i 0.701834i
\(86\) 0 0
\(87\) 792.000 0.975992
\(88\) 0 0
\(89\) −1034.00 −1.23150 −0.615752 0.787940i \(-0.711148\pi\)
−0.615752 + 0.787940i \(0.711148\pi\)
\(90\) 0 0
\(91\) − 672.000i − 0.774118i
\(92\) 0 0
\(93\) 960.000i 1.07040i
\(94\) 0 0
\(95\) 580.000 0.626387
\(96\) 0 0
\(97\) −382.000 −0.399858 −0.199929 0.979810i \(-0.564071\pi\)
−0.199929 + 0.979810i \(0.564071\pi\)
\(98\) 0 0
\(99\) 396.000i 0.402015i
\(100\) 0 0
\(101\) 674.000i 0.664015i 0.943277 + 0.332007i \(0.107726\pi\)
−0.943277 + 0.332007i \(0.892274\pi\)
\(102\) 0 0
\(103\) −992.000 −0.948977 −0.474489 0.880262i \(-0.657367\pi\)
−0.474489 + 0.880262i \(0.657367\pi\)
\(104\) 0 0
\(105\) −320.000 −0.297417
\(106\) 0 0
\(107\) − 500.000i − 0.451746i −0.974157 0.225873i \(-0.927477\pi\)
0.974157 0.225873i \(-0.0725234\pi\)
\(108\) 0 0
\(109\) 1046.00i 0.919162i 0.888136 + 0.459581i \(0.152000\pi\)
−0.888136 + 0.459581i \(0.848000\pi\)
\(110\) 0 0
\(111\) 1032.00 0.882460
\(112\) 0 0
\(113\) −558.000 −0.464533 −0.232266 0.972652i \(-0.574614\pi\)
−0.232266 + 0.972652i \(0.574614\pi\)
\(114\) 0 0
\(115\) − 80.0000i − 0.0648699i
\(116\) 0 0
\(117\) − 462.000i − 0.365059i
\(118\) 0 0
\(119\) −1760.00 −1.35579
\(120\) 0 0
\(121\) 35.0000 0.0262960
\(122\) 0 0
\(123\) 1768.00i 1.29606i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 328.000 0.229176 0.114588 0.993413i \(-0.463445\pi\)
0.114588 + 0.993413i \(0.463445\pi\)
\(128\) 0 0
\(129\) −1168.00 −0.797183
\(130\) 0 0
\(131\) 212.000i 0.141393i 0.997498 + 0.0706967i \(0.0225222\pi\)
−0.997498 + 0.0706967i \(0.977478\pi\)
\(132\) 0 0
\(133\) 1856.00i 1.21004i
\(134\) 0 0
\(135\) −760.000 −0.484521
\(136\) 0 0
\(137\) −1434.00 −0.894269 −0.447135 0.894467i \(-0.647556\pi\)
−0.447135 + 0.894467i \(0.647556\pi\)
\(138\) 0 0
\(139\) 2196.00i 1.34002i 0.742354 + 0.670008i \(0.233709\pi\)
−0.742354 + 0.670008i \(0.766291\pi\)
\(140\) 0 0
\(141\) 1568.00i 0.936521i
\(142\) 0 0
\(143\) 1512.00 0.884194
\(144\) 0 0
\(145\) 990.000 0.567000
\(146\) 0 0
\(147\) 348.000i 0.195255i
\(148\) 0 0
\(149\) 2418.00i 1.32946i 0.747081 + 0.664732i \(0.231454\pi\)
−0.747081 + 0.664732i \(0.768546\pi\)
\(150\) 0 0
\(151\) 3672.00 1.97896 0.989481 0.144666i \(-0.0462108\pi\)
0.989481 + 0.144666i \(0.0462108\pi\)
\(152\) 0 0
\(153\) −1210.00 −0.639364
\(154\) 0 0
\(155\) 1200.00i 0.621847i
\(156\) 0 0
\(157\) 358.000i 0.181984i 0.995852 + 0.0909921i \(0.0290038\pi\)
−0.995852 + 0.0909921i \(0.970996\pi\)
\(158\) 0 0
\(159\) −568.000 −0.283304
\(160\) 0 0
\(161\) 256.000 0.125314
\(162\) 0 0
\(163\) − 2564.00i − 1.23207i −0.787717 0.616037i \(-0.788737\pi\)
0.787717 0.616037i \(-0.211263\pi\)
\(164\) 0 0
\(165\) − 720.000i − 0.339709i
\(166\) 0 0
\(167\) −3056.00 −1.41605 −0.708025 0.706187i \(-0.750414\pi\)
−0.708025 + 0.706187i \(0.750414\pi\)
\(168\) 0 0
\(169\) 433.000 0.197087
\(170\) 0 0
\(171\) 1276.00i 0.570633i
\(172\) 0 0
\(173\) − 234.000i − 0.102836i −0.998677 0.0514182i \(-0.983626\pi\)
0.998677 0.0514182i \(-0.0163741\pi\)
\(174\) 0 0
\(175\) −400.000 −0.172784
\(176\) 0 0
\(177\) −1392.00 −0.591125
\(178\) 0 0
\(179\) − 524.000i − 0.218802i −0.993998 0.109401i \(-0.965107\pi\)
0.993998 0.109401i \(-0.0348933\pi\)
\(180\) 0 0
\(181\) 1138.00i 0.467331i 0.972317 + 0.233665i \(0.0750720\pi\)
−0.972317 + 0.233665i \(0.924928\pi\)
\(182\) 0 0
\(183\) −2280.00 −0.920997
\(184\) 0 0
\(185\) 1290.00 0.512663
\(186\) 0 0
\(187\) − 3960.00i − 1.54858i
\(188\) 0 0
\(189\) − 2432.00i − 0.935989i
\(190\) 0 0
\(191\) −1520.00 −0.575829 −0.287915 0.957656i \(-0.592962\pi\)
−0.287915 + 0.957656i \(0.592962\pi\)
\(192\) 0 0
\(193\) −2142.00 −0.798884 −0.399442 0.916759i \(-0.630796\pi\)
−0.399442 + 0.916759i \(0.630796\pi\)
\(194\) 0 0
\(195\) 840.000i 0.308480i
\(196\) 0 0
\(197\) 2306.00i 0.833988i 0.908909 + 0.416994i \(0.136916\pi\)
−0.908909 + 0.416994i \(0.863084\pi\)
\(198\) 0 0
\(199\) 3288.00 1.17126 0.585628 0.810580i \(-0.300848\pi\)
0.585628 + 0.810580i \(0.300848\pi\)
\(200\) 0 0
\(201\) −2768.00 −0.971342
\(202\) 0 0
\(203\) 3168.00i 1.09532i
\(204\) 0 0
\(205\) 2210.00i 0.752942i
\(206\) 0 0
\(207\) 176.000 0.0590959
\(208\) 0 0
\(209\) −4176.00 −1.38211
\(210\) 0 0
\(211\) 3876.00i 1.26462i 0.774715 + 0.632310i \(0.217893\pi\)
−0.774715 + 0.632310i \(0.782107\pi\)
\(212\) 0 0
\(213\) − 672.000i − 0.216172i
\(214\) 0 0
\(215\) −1460.00 −0.463122
\(216\) 0 0
\(217\) −3840.00 −1.20127
\(218\) 0 0
\(219\) − 536.000i − 0.165386i
\(220\) 0 0
\(221\) 4620.00i 1.40622i
\(222\) 0 0
\(223\) 5688.00 1.70806 0.854028 0.520226i \(-0.174152\pi\)
0.854028 + 0.520226i \(0.174152\pi\)
\(224\) 0 0
\(225\) −275.000 −0.0814815
\(226\) 0 0
\(227\) 2796.00i 0.817520i 0.912642 + 0.408760i \(0.134039\pi\)
−0.912642 + 0.408760i \(0.865961\pi\)
\(228\) 0 0
\(229\) − 4446.00i − 1.28297i −0.767136 0.641485i \(-0.778319\pi\)
0.767136 0.641485i \(-0.221681\pi\)
\(230\) 0 0
\(231\) 2304.00 0.656243
\(232\) 0 0
\(233\) −2522.00 −0.709106 −0.354553 0.935036i \(-0.615367\pi\)
−0.354553 + 0.935036i \(0.615367\pi\)
\(234\) 0 0
\(235\) 1960.00i 0.544069i
\(236\) 0 0
\(237\) 3136.00i 0.859515i
\(238\) 0 0
\(239\) −816.000 −0.220848 −0.110424 0.993885i \(-0.535221\pi\)
−0.110424 + 0.993885i \(0.535221\pi\)
\(240\) 0 0
\(241\) −5422.00 −1.44922 −0.724609 0.689160i \(-0.757980\pi\)
−0.724609 + 0.689160i \(0.757980\pi\)
\(242\) 0 0
\(243\) − 2860.00i − 0.755017i
\(244\) 0 0
\(245\) 435.000i 0.113433i
\(246\) 0 0
\(247\) 4872.00 1.25505
\(248\) 0 0
\(249\) −2256.00 −0.574169
\(250\) 0 0
\(251\) − 5900.00i − 1.48368i −0.670575 0.741842i \(-0.733952\pi\)
0.670575 0.741842i \(-0.266048\pi\)
\(252\) 0 0
\(253\) 576.000i 0.143134i
\(254\) 0 0
\(255\) 2200.00 0.540272
\(256\) 0 0
\(257\) 5250.00 1.27426 0.637132 0.770754i \(-0.280120\pi\)
0.637132 + 0.770754i \(0.280120\pi\)
\(258\) 0 0
\(259\) 4128.00i 0.990353i
\(260\) 0 0
\(261\) 2178.00i 0.516532i
\(262\) 0 0
\(263\) 6240.00 1.46302 0.731511 0.681829i \(-0.238815\pi\)
0.731511 + 0.681829i \(0.238815\pi\)
\(264\) 0 0
\(265\) −710.000 −0.164585
\(266\) 0 0
\(267\) 4136.00i 0.948012i
\(268\) 0 0
\(269\) − 714.000i − 0.161834i −0.996721 0.0809170i \(-0.974215\pi\)
0.996721 0.0809170i \(-0.0257849\pi\)
\(270\) 0 0
\(271\) −2144.00 −0.480586 −0.240293 0.970700i \(-0.577243\pi\)
−0.240293 + 0.970700i \(0.577243\pi\)
\(272\) 0 0
\(273\) −2688.00 −0.595916
\(274\) 0 0
\(275\) − 900.000i − 0.197353i
\(276\) 0 0
\(277\) 4466.00i 0.968722i 0.874868 + 0.484361i \(0.160948\pi\)
−0.874868 + 0.484361i \(0.839052\pi\)
\(278\) 0 0
\(279\) −2640.00 −0.566497
\(280\) 0 0
\(281\) 5302.00 1.12559 0.562795 0.826596i \(-0.309726\pi\)
0.562795 + 0.826596i \(0.309726\pi\)
\(282\) 0 0
\(283\) − 6932.00i − 1.45606i −0.685546 0.728029i \(-0.740436\pi\)
0.685546 0.728029i \(-0.259564\pi\)
\(284\) 0 0
\(285\) − 2320.00i − 0.482193i
\(286\) 0 0
\(287\) −7072.00 −1.45452
\(288\) 0 0
\(289\) 7187.00 1.46285
\(290\) 0 0
\(291\) 1528.00i 0.307811i
\(292\) 0 0
\(293\) 4034.00i 0.804330i 0.915567 + 0.402165i \(0.131742\pi\)
−0.915567 + 0.402165i \(0.868258\pi\)
\(294\) 0 0
\(295\) −1740.00 −0.343413
\(296\) 0 0
\(297\) 5472.00 1.06908
\(298\) 0 0
\(299\) − 672.000i − 0.129976i
\(300\) 0 0
\(301\) − 4672.00i − 0.894650i
\(302\) 0 0
\(303\) 2696.00 0.511159
\(304\) 0 0
\(305\) −2850.00 −0.535051
\(306\) 0 0
\(307\) 3836.00i 0.713134i 0.934270 + 0.356567i \(0.116053\pi\)
−0.934270 + 0.356567i \(0.883947\pi\)
\(308\) 0 0
\(309\) 3968.00i 0.730523i
\(310\) 0 0
\(311\) 664.000 0.121067 0.0605337 0.998166i \(-0.480720\pi\)
0.0605337 + 0.998166i \(0.480720\pi\)
\(312\) 0 0
\(313\) −2986.00 −0.539229 −0.269615 0.962968i \(-0.586896\pi\)
−0.269615 + 0.962968i \(0.586896\pi\)
\(314\) 0 0
\(315\) − 880.000i − 0.157404i
\(316\) 0 0
\(317\) 2726.00i 0.482989i 0.970402 + 0.241494i \(0.0776375\pi\)
−0.970402 + 0.241494i \(0.922362\pi\)
\(318\) 0 0
\(319\) −7128.00 −1.25107
\(320\) 0 0
\(321\) −2000.00 −0.347754
\(322\) 0 0
\(323\) − 12760.0i − 2.19810i
\(324\) 0 0
\(325\) 1050.00i 0.179211i
\(326\) 0 0
\(327\) 4184.00 0.707571
\(328\) 0 0
\(329\) −6272.00 −1.05102
\(330\) 0 0
\(331\) − 9212.00i − 1.52972i −0.644197 0.764860i \(-0.722808\pi\)
0.644197 0.764860i \(-0.277192\pi\)
\(332\) 0 0
\(333\) 2838.00i 0.467031i
\(334\) 0 0
\(335\) −3460.00 −0.564298
\(336\) 0 0
\(337\) −3278.00 −0.529864 −0.264932 0.964267i \(-0.585349\pi\)
−0.264932 + 0.964267i \(0.585349\pi\)
\(338\) 0 0
\(339\) 2232.00i 0.357598i
\(340\) 0 0
\(341\) − 8640.00i − 1.37209i
\(342\) 0 0
\(343\) −6880.00 −1.08305
\(344\) 0 0
\(345\) −320.000 −0.0499369
\(346\) 0 0
\(347\) 4956.00i 0.766721i 0.923599 + 0.383360i \(0.125233\pi\)
−0.923599 + 0.383360i \(0.874767\pi\)
\(348\) 0 0
\(349\) 4678.00i 0.717500i 0.933434 + 0.358750i \(0.116797\pi\)
−0.933434 + 0.358750i \(0.883203\pi\)
\(350\) 0 0
\(351\) −6384.00 −0.970805
\(352\) 0 0
\(353\) 1890.00 0.284970 0.142485 0.989797i \(-0.454491\pi\)
0.142485 + 0.989797i \(0.454491\pi\)
\(354\) 0 0
\(355\) − 840.000i − 0.125585i
\(356\) 0 0
\(357\) 7040.00i 1.04369i
\(358\) 0 0
\(359\) −6472.00 −0.951474 −0.475737 0.879588i \(-0.657819\pi\)
−0.475737 + 0.879588i \(0.657819\pi\)
\(360\) 0 0
\(361\) −6597.00 −0.961802
\(362\) 0 0
\(363\) − 140.000i − 0.0202427i
\(364\) 0 0
\(365\) − 670.000i − 0.0960806i
\(366\) 0 0
\(367\) −1960.00 −0.278777 −0.139389 0.990238i \(-0.544514\pi\)
−0.139389 + 0.990238i \(0.544514\pi\)
\(368\) 0 0
\(369\) −4862.00 −0.685923
\(370\) 0 0
\(371\) − 2272.00i − 0.317942i
\(372\) 0 0
\(373\) − 8750.00i − 1.21463i −0.794460 0.607316i \(-0.792246\pi\)
0.794460 0.607316i \(-0.207754\pi\)
\(374\) 0 0
\(375\) 500.000 0.0688530
\(376\) 0 0
\(377\) 8316.00 1.13606
\(378\) 0 0
\(379\) − 380.000i − 0.0515021i −0.999668 0.0257510i \(-0.991802\pi\)
0.999668 0.0257510i \(-0.00819772\pi\)
\(380\) 0 0
\(381\) − 1312.00i − 0.176419i
\(382\) 0 0
\(383\) 9688.00 1.29252 0.646258 0.763119i \(-0.276333\pi\)
0.646258 + 0.763119i \(0.276333\pi\)
\(384\) 0 0
\(385\) 2880.00 0.381243
\(386\) 0 0
\(387\) − 3212.00i − 0.421900i
\(388\) 0 0
\(389\) − 3870.00i − 0.504413i −0.967673 0.252207i \(-0.918844\pi\)
0.967673 0.252207i \(-0.0811563\pi\)
\(390\) 0 0
\(391\) −1760.00 −0.227639
\(392\) 0 0
\(393\) 848.000 0.108845
\(394\) 0 0
\(395\) 3920.00i 0.499333i
\(396\) 0 0
\(397\) 1622.00i 0.205053i 0.994730 + 0.102526i \(0.0326926\pi\)
−0.994730 + 0.102526i \(0.967307\pi\)
\(398\) 0 0
\(399\) 7424.00 0.931491
\(400\) 0 0
\(401\) 9906.00 1.23362 0.616811 0.787112i \(-0.288424\pi\)
0.616811 + 0.787112i \(0.288424\pi\)
\(402\) 0 0
\(403\) 10080.0i 1.24596i
\(404\) 0 0
\(405\) 1555.00i 0.190787i
\(406\) 0 0
\(407\) −9288.00 −1.13118
\(408\) 0 0
\(409\) 4214.00 0.509459 0.254730 0.967012i \(-0.418014\pi\)
0.254730 + 0.967012i \(0.418014\pi\)
\(410\) 0 0
\(411\) 5736.00i 0.688409i
\(412\) 0 0
\(413\) − 5568.00i − 0.663398i
\(414\) 0 0
\(415\) −2820.00 −0.333562
\(416\) 0 0
\(417\) 8784.00 1.03155
\(418\) 0 0
\(419\) 7012.00i 0.817562i 0.912632 + 0.408781i \(0.134046\pi\)
−0.912632 + 0.408781i \(0.865954\pi\)
\(420\) 0 0
\(421\) 1602.00i 0.185455i 0.995692 + 0.0927277i \(0.0295586\pi\)
−0.995692 + 0.0927277i \(0.970441\pi\)
\(422\) 0 0
\(423\) −4312.00 −0.495642
\(424\) 0 0
\(425\) 2750.00 0.313870
\(426\) 0 0
\(427\) − 9120.00i − 1.03360i
\(428\) 0 0
\(429\) − 6048.00i − 0.680653i
\(430\) 0 0
\(431\) 3584.00 0.400546 0.200273 0.979740i \(-0.435817\pi\)
0.200273 + 0.979740i \(0.435817\pi\)
\(432\) 0 0
\(433\) −3470.00 −0.385121 −0.192561 0.981285i \(-0.561679\pi\)
−0.192561 + 0.981285i \(0.561679\pi\)
\(434\) 0 0
\(435\) − 3960.00i − 0.436477i
\(436\) 0 0
\(437\) 1856.00i 0.203168i
\(438\) 0 0
\(439\) −3416.00 −0.371382 −0.185691 0.982608i \(-0.559452\pi\)
−0.185691 + 0.982608i \(0.559452\pi\)
\(440\) 0 0
\(441\) −957.000 −0.103337
\(442\) 0 0
\(443\) 9708.00i 1.04118i 0.853808 + 0.520588i \(0.174287\pi\)
−0.853808 + 0.520588i \(0.825713\pi\)
\(444\) 0 0
\(445\) 5170.00i 0.550745i
\(446\) 0 0
\(447\) 9672.00 1.02342
\(448\) 0 0
\(449\) −10366.0 −1.08954 −0.544768 0.838587i \(-0.683382\pi\)
−0.544768 + 0.838587i \(0.683382\pi\)
\(450\) 0 0
\(451\) − 15912.0i − 1.66135i
\(452\) 0 0
\(453\) − 14688.0i − 1.52340i
\(454\) 0 0
\(455\) −3360.00 −0.346196
\(456\) 0 0
\(457\) 16742.0 1.71369 0.856847 0.515572i \(-0.172420\pi\)
0.856847 + 0.515572i \(0.172420\pi\)
\(458\) 0 0
\(459\) 16720.0i 1.70027i
\(460\) 0 0
\(461\) − 1258.00i − 0.127095i −0.997979 0.0635476i \(-0.979759\pi\)
0.997979 0.0635476i \(-0.0202415\pi\)
\(462\) 0 0
\(463\) −13528.0 −1.35788 −0.678941 0.734193i \(-0.737561\pi\)
−0.678941 + 0.734193i \(0.737561\pi\)
\(464\) 0 0
\(465\) 4800.00 0.478698
\(466\) 0 0
\(467\) − 6916.00i − 0.685298i −0.939463 0.342649i \(-0.888676\pi\)
0.939463 0.342649i \(-0.111324\pi\)
\(468\) 0 0
\(469\) − 11072.0i − 1.09010i
\(470\) 0 0
\(471\) 1432.00 0.140091
\(472\) 0 0
\(473\) 10512.0 1.02187
\(474\) 0 0
\(475\) − 2900.00i − 0.280129i
\(476\) 0 0
\(477\) − 1562.00i − 0.149935i
\(478\) 0 0
\(479\) −1728.00 −0.164832 −0.0824158 0.996598i \(-0.526264\pi\)
−0.0824158 + 0.996598i \(0.526264\pi\)
\(480\) 0 0
\(481\) 10836.0 1.02719
\(482\) 0 0
\(483\) − 1024.00i − 0.0964671i
\(484\) 0 0
\(485\) 1910.00i 0.178822i
\(486\) 0 0
\(487\) 16656.0 1.54981 0.774903 0.632080i \(-0.217799\pi\)
0.774903 + 0.632080i \(0.217799\pi\)
\(488\) 0 0
\(489\) −10256.0 −0.948451
\(490\) 0 0
\(491\) − 1084.00i − 0.0996339i −0.998758 0.0498169i \(-0.984136\pi\)
0.998758 0.0498169i \(-0.0158638\pi\)
\(492\) 0 0
\(493\) − 21780.0i − 1.98970i
\(494\) 0 0
\(495\) 1980.00 0.179787
\(496\) 0 0
\(497\) 2688.00 0.242602
\(498\) 0 0
\(499\) − 5804.00i − 0.520687i −0.965516 0.260343i \(-0.916164\pi\)
0.965516 0.260343i \(-0.0838358\pi\)
\(500\) 0 0
\(501\) 12224.0i 1.09008i
\(502\) 0 0
\(503\) 10512.0 0.931823 0.465911 0.884831i \(-0.345727\pi\)
0.465911 + 0.884831i \(0.345727\pi\)
\(504\) 0 0
\(505\) 3370.00 0.296956
\(506\) 0 0
\(507\) − 1732.00i − 0.151718i
\(508\) 0 0
\(509\) − 4314.00i − 0.375667i −0.982201 0.187834i \(-0.939853\pi\)
0.982201 0.187834i \(-0.0601466\pi\)
\(510\) 0 0
\(511\) 2144.00 0.185607
\(512\) 0 0
\(513\) 17632.0 1.51749
\(514\) 0 0
\(515\) 4960.00i 0.424396i
\(516\) 0 0
\(517\) − 14112.0i − 1.20047i
\(518\) 0 0
\(519\) −936.000 −0.0791635
\(520\) 0 0
\(521\) 1190.00 0.100067 0.0500334 0.998748i \(-0.484067\pi\)
0.0500334 + 0.998748i \(0.484067\pi\)
\(522\) 0 0
\(523\) − 3780.00i − 0.316038i −0.987436 0.158019i \(-0.949489\pi\)
0.987436 0.158019i \(-0.0505107\pi\)
\(524\) 0 0
\(525\) 1600.00i 0.133009i
\(526\) 0 0
\(527\) 26400.0 2.18217
\(528\) 0 0
\(529\) −11911.0 −0.978959
\(530\) 0 0
\(531\) − 3828.00i − 0.312846i
\(532\) 0 0
\(533\) 18564.0i 1.50862i
\(534\) 0 0
\(535\) −2500.00 −0.202027
\(536\) 0 0
\(537\) −2096.00 −0.168434
\(538\) 0 0
\(539\) − 3132.00i − 0.250287i
\(540\) 0 0
\(541\) − 11002.0i − 0.874331i −0.899381 0.437165i \(-0.855982\pi\)
0.899381 0.437165i \(-0.144018\pi\)
\(542\) 0 0
\(543\) 4552.00 0.359751
\(544\) 0 0
\(545\) 5230.00 0.411062
\(546\) 0 0
\(547\) − 5908.00i − 0.461806i −0.972977 0.230903i \(-0.925832\pi\)
0.972977 0.230903i \(-0.0741680\pi\)
\(548\) 0 0
\(549\) − 6270.00i − 0.487426i
\(550\) 0 0
\(551\) −22968.0 −1.77581
\(552\) 0 0
\(553\) −12544.0 −0.964602
\(554\) 0 0
\(555\) − 5160.00i − 0.394648i
\(556\) 0 0
\(557\) 14806.0i 1.12630i 0.826354 + 0.563151i \(0.190411\pi\)
−0.826354 + 0.563151i \(0.809589\pi\)
\(558\) 0 0
\(559\) −12264.0 −0.927928
\(560\) 0 0
\(561\) −15840.0 −1.19210
\(562\) 0 0
\(563\) 684.000i 0.0512028i 0.999672 + 0.0256014i \(0.00815007\pi\)
−0.999672 + 0.0256014i \(0.991850\pi\)
\(564\) 0 0
\(565\) 2790.00i 0.207745i
\(566\) 0 0
\(567\) −4976.00 −0.368558
\(568\) 0 0
\(569\) 2582.00 0.190234 0.0951169 0.995466i \(-0.469677\pi\)
0.0951169 + 0.995466i \(0.469677\pi\)
\(570\) 0 0
\(571\) − 2540.00i − 0.186157i −0.995659 0.0930785i \(-0.970329\pi\)
0.995659 0.0930785i \(-0.0296708\pi\)
\(572\) 0 0
\(573\) 6080.00i 0.443273i
\(574\) 0 0
\(575\) −400.000 −0.0290107
\(576\) 0 0
\(577\) 22786.0 1.64401 0.822005 0.569480i \(-0.192856\pi\)
0.822005 + 0.569480i \(0.192856\pi\)
\(578\) 0 0
\(579\) 8568.00i 0.614981i
\(580\) 0 0
\(581\) − 9024.00i − 0.644369i
\(582\) 0 0
\(583\) 5112.00 0.363152
\(584\) 0 0
\(585\) −2310.00 −0.163259
\(586\) 0 0
\(587\) 7884.00i 0.554357i 0.960818 + 0.277178i \(0.0893993\pi\)
−0.960818 + 0.277178i \(0.910601\pi\)
\(588\) 0 0
\(589\) − 27840.0i − 1.94758i
\(590\) 0 0
\(591\) 9224.00 0.642005
\(592\) 0 0
\(593\) −21902.0 −1.51671 −0.758354 0.651843i \(-0.773996\pi\)
−0.758354 + 0.651843i \(0.773996\pi\)
\(594\) 0 0
\(595\) 8800.00i 0.606327i
\(596\) 0 0
\(597\) − 13152.0i − 0.901634i
\(598\) 0 0
\(599\) 15080.0 1.02863 0.514317 0.857600i \(-0.328045\pi\)
0.514317 + 0.857600i \(0.328045\pi\)
\(600\) 0 0
\(601\) 19702.0 1.33721 0.668603 0.743619i \(-0.266892\pi\)
0.668603 + 0.743619i \(0.266892\pi\)
\(602\) 0 0
\(603\) − 7612.00i − 0.514071i
\(604\) 0 0
\(605\) − 175.000i − 0.0117599i
\(606\) 0 0
\(607\) −7320.00 −0.489472 −0.244736 0.969590i \(-0.578701\pi\)
−0.244736 + 0.969590i \(0.578701\pi\)
\(608\) 0 0
\(609\) 12672.0 0.843178
\(610\) 0 0
\(611\) 16464.0i 1.09012i
\(612\) 0 0
\(613\) − 24350.0i − 1.60438i −0.597066 0.802192i \(-0.703667\pi\)
0.597066 0.802192i \(-0.296333\pi\)
\(614\) 0 0
\(615\) 8840.00 0.579615
\(616\) 0 0
\(617\) −19546.0 −1.27535 −0.637676 0.770305i \(-0.720104\pi\)
−0.637676 + 0.770305i \(0.720104\pi\)
\(618\) 0 0
\(619\) 3476.00i 0.225706i 0.993612 + 0.112853i \(0.0359990\pi\)
−0.993612 + 0.112853i \(0.964001\pi\)
\(620\) 0 0
\(621\) − 2432.00i − 0.157154i
\(622\) 0 0
\(623\) −16544.0 −1.06392
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 16704.0i 1.06394i
\(628\) 0 0
\(629\) − 28380.0i − 1.79902i
\(630\) 0 0
\(631\) 21880.0 1.38039 0.690197 0.723621i \(-0.257524\pi\)
0.690197 + 0.723621i \(0.257524\pi\)
\(632\) 0 0
\(633\) 15504.0 0.973505
\(634\) 0 0
\(635\) − 1640.00i − 0.102490i
\(636\) 0 0
\(637\) 3654.00i 0.227279i
\(638\) 0 0
\(639\) 1848.00 0.114406
\(640\) 0 0
\(641\) 20994.0 1.29362 0.646812 0.762649i \(-0.276102\pi\)
0.646812 + 0.762649i \(0.276102\pi\)
\(642\) 0 0
\(643\) 18204.0i 1.11648i 0.829680 + 0.558239i \(0.188523\pi\)
−0.829680 + 0.558239i \(0.811477\pi\)
\(644\) 0 0
\(645\) 5840.00i 0.356511i
\(646\) 0 0
\(647\) −2064.00 −0.125416 −0.0627080 0.998032i \(-0.519974\pi\)
−0.0627080 + 0.998032i \(0.519974\pi\)
\(648\) 0 0
\(649\) 12528.0 0.757730
\(650\) 0 0
\(651\) 15360.0i 0.924740i
\(652\) 0 0
\(653\) 9942.00i 0.595805i 0.954596 + 0.297902i \(0.0962870\pi\)
−0.954596 + 0.297902i \(0.903713\pi\)
\(654\) 0 0
\(655\) 1060.00 0.0632330
\(656\) 0 0
\(657\) 1474.00 0.0875285
\(658\) 0 0
\(659\) − 24236.0i − 1.43263i −0.697779 0.716313i \(-0.745828\pi\)
0.697779 0.716313i \(-0.254172\pi\)
\(660\) 0 0
\(661\) − 17614.0i − 1.03647i −0.855239 0.518234i \(-0.826590\pi\)
0.855239 0.518234i \(-0.173410\pi\)
\(662\) 0 0
\(663\) 18480.0 1.08251
\(664\) 0 0
\(665\) 9280.00 0.541147
\(666\) 0 0
\(667\) 3168.00i 0.183906i
\(668\) 0 0
\(669\) − 22752.0i − 1.31486i
\(670\) 0 0
\(671\) 20520.0 1.18057
\(672\) 0 0
\(673\) 13058.0 0.747918 0.373959 0.927445i \(-0.378000\pi\)
0.373959 + 0.927445i \(0.378000\pi\)
\(674\) 0 0
\(675\) 3800.00i 0.216685i
\(676\) 0 0
\(677\) 33186.0i 1.88396i 0.335668 + 0.941980i \(0.391038\pi\)
−0.335668 + 0.941980i \(0.608962\pi\)
\(678\) 0 0
\(679\) −6112.00 −0.345445
\(680\) 0 0
\(681\) 11184.0 0.629327
\(682\) 0 0
\(683\) − 31716.0i − 1.77684i −0.459035 0.888418i \(-0.651805\pi\)
0.459035 0.888418i \(-0.348195\pi\)
\(684\) 0 0
\(685\) 7170.00i 0.399929i
\(686\) 0 0
\(687\) −17784.0 −0.987630
\(688\) 0 0
\(689\) −5964.00 −0.329768
\(690\) 0 0
\(691\) 2084.00i 0.114731i 0.998353 + 0.0573655i \(0.0182700\pi\)
−0.998353 + 0.0573655i \(0.981730\pi\)
\(692\) 0 0
\(693\) 6336.00i 0.347308i
\(694\) 0 0
\(695\) 10980.0 0.599274
\(696\) 0 0
\(697\) 48620.0 2.64220
\(698\) 0 0
\(699\) 10088.0i 0.545870i
\(700\) 0 0
\(701\) − 7418.00i − 0.399678i −0.979829 0.199839i \(-0.935958\pi\)
0.979829 0.199839i \(-0.0640418\pi\)
\(702\) 0 0
\(703\) −29928.0 −1.60563
\(704\) 0 0
\(705\) 7840.00 0.418825
\(706\) 0 0
\(707\) 10784.0i 0.573655i
\(708\) 0 0
\(709\) 18242.0i 0.966280i 0.875543 + 0.483140i \(0.160504\pi\)
−0.875543 + 0.483140i \(0.839496\pi\)
\(710\) 0 0
\(711\) −8624.00 −0.454888
\(712\) 0 0
\(713\) −3840.00 −0.201696
\(714\) 0 0
\(715\) − 7560.00i − 0.395424i
\(716\) 0 0
\(717\) 3264.00i 0.170009i
\(718\) 0 0
\(719\) −3024.00 −0.156851 −0.0784257 0.996920i \(-0.524989\pi\)
−0.0784257 + 0.996920i \(0.524989\pi\)
\(720\) 0 0
\(721\) −15872.0 −0.819839
\(722\) 0 0
\(723\) 21688.0i 1.11561i
\(724\) 0 0
\(725\) − 4950.00i − 0.253570i
\(726\) 0 0
\(727\) −26176.0 −1.33537 −0.667685 0.744444i \(-0.732715\pi\)
−0.667685 + 0.744444i \(0.732715\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) 32120.0i 1.62517i
\(732\) 0 0
\(733\) − 17818.0i − 0.897848i −0.893570 0.448924i \(-0.851807\pi\)
0.893570 0.448924i \(-0.148193\pi\)
\(734\) 0 0
\(735\) 1740.00 0.0873209
\(736\) 0 0
\(737\) 24912.0 1.24511
\(738\) 0 0
\(739\) 22052.0i 1.09769i 0.835923 + 0.548847i \(0.184933\pi\)
−0.835923 + 0.548847i \(0.815067\pi\)
\(740\) 0 0
\(741\) − 19488.0i − 0.966140i
\(742\) 0 0
\(743\) 15840.0 0.782117 0.391059 0.920366i \(-0.372109\pi\)
0.391059 + 0.920366i \(0.372109\pi\)
\(744\) 0 0
\(745\) 12090.0 0.594555
\(746\) 0 0
\(747\) − 6204.00i − 0.303872i
\(748\) 0 0
\(749\) − 8000.00i − 0.390272i
\(750\) 0 0
\(751\) −21024.0 −1.02154 −0.510770 0.859717i \(-0.670640\pi\)
−0.510770 + 0.859717i \(0.670640\pi\)
\(752\) 0 0
\(753\) −23600.0 −1.14214
\(754\) 0 0
\(755\) − 18360.0i − 0.885018i
\(756\) 0 0
\(757\) 38034.0i 1.82612i 0.407831 + 0.913058i \(0.366285\pi\)
−0.407831 + 0.913058i \(0.633715\pi\)
\(758\) 0 0
\(759\) 2304.00 0.110184
\(760\) 0 0
\(761\) −37802.0 −1.80069 −0.900343 0.435182i \(-0.856684\pi\)
−0.900343 + 0.435182i \(0.856684\pi\)
\(762\) 0 0
\(763\) 16736.0i 0.794081i
\(764\) 0 0
\(765\) 6050.00i 0.285932i
\(766\) 0 0
\(767\) −14616.0 −0.688075
\(768\) 0 0
\(769\) 15042.0 0.705369 0.352684 0.935742i \(-0.385269\pi\)
0.352684 + 0.935742i \(0.385269\pi\)
\(770\) 0 0
\(771\) − 21000.0i − 0.980929i
\(772\) 0 0
\(773\) − 5950.00i − 0.276852i −0.990373 0.138426i \(-0.955796\pi\)
0.990373 0.138426i \(-0.0442043\pi\)
\(774\) 0 0
\(775\) 6000.00 0.278099
\(776\) 0 0
\(777\) 16512.0 0.762374
\(778\) 0 0
\(779\) − 51272.0i − 2.35816i
\(780\) 0 0
\(781\) 6048.00i 0.277099i
\(782\) 0 0
\(783\) 30096.0 1.37362
\(784\) 0 0
\(785\) 1790.00 0.0813858
\(786\) 0 0
\(787\) − 23364.0i − 1.05824i −0.848546 0.529121i \(-0.822522\pi\)
0.848546 0.529121i \(-0.177478\pi\)
\(788\) 0 0
\(789\) − 24960.0i − 1.12624i
\(790\) 0 0
\(791\) −8928.00 −0.401319
\(792\) 0 0
\(793\) −23940.0 −1.07205
\(794\) 0 0
\(795\) 2840.00i 0.126697i
\(796\) 0 0
\(797\) 19846.0i 0.882034i 0.897499 + 0.441017i \(0.145382\pi\)
−0.897499 + 0.441017i \(0.854618\pi\)
\(798\) 0 0
\(799\) 43120.0 1.90923
\(800\) 0 0
\(801\) −11374.0 −0.501724
\(802\) 0 0
\(803\) 4824.00i 0.211999i
\(804\) 0 0
\(805\) − 1280.00i − 0.0560423i
\(806\) 0 0
\(807\) −2856.00 −0.124580
\(808\) 0 0
\(809\) −24762.0 −1.07613 −0.538063 0.842905i \(-0.680844\pi\)
−0.538063 + 0.842905i \(0.680844\pi\)
\(810\) 0 0
\(811\) 16644.0i 0.720653i 0.932826 + 0.360327i \(0.117335\pi\)
−0.932826 + 0.360327i \(0.882665\pi\)
\(812\) 0 0
\(813\) 8576.00i 0.369955i
\(814\) 0 0
\(815\) −12820.0 −0.551000
\(816\) 0 0
\(817\) 33872.0 1.45047
\(818\) 0 0
\(819\) − 7392.00i − 0.315381i
\(820\) 0 0
\(821\) − 3182.00i − 0.135265i −0.997710 0.0676325i \(-0.978455\pi\)
0.997710 0.0676325i \(-0.0215445\pi\)
\(822\) 0 0
\(823\) −7504.00 −0.317829 −0.158914 0.987292i \(-0.550799\pi\)
−0.158914 + 0.987292i \(0.550799\pi\)
\(824\) 0 0
\(825\) −3600.00 −0.151922
\(826\) 0 0
\(827\) 12604.0i 0.529969i 0.964253 + 0.264984i \(0.0853668\pi\)
−0.964253 + 0.264984i \(0.914633\pi\)
\(828\) 0 0
\(829\) 12230.0i 0.512383i 0.966626 + 0.256191i \(0.0824678\pi\)
−0.966626 + 0.256191i \(0.917532\pi\)
\(830\) 0 0
\(831\) 17864.0 0.745722
\(832\) 0 0
\(833\) 9570.00 0.398056
\(834\) 0 0
\(835\) 15280.0i 0.633277i
\(836\) 0 0
\(837\) 36480.0i 1.50649i
\(838\) 0 0
\(839\) 9656.00 0.397333 0.198666 0.980067i \(-0.436339\pi\)
0.198666 + 0.980067i \(0.436339\pi\)
\(840\) 0 0
\(841\) −14815.0 −0.607446
\(842\) 0 0
\(843\) − 21208.0i − 0.866480i
\(844\) 0 0
\(845\) − 2165.00i − 0.0881400i
\(846\) 0 0
\(847\) 560.000 0.0227176
\(848\) 0 0
\(849\) −27728.0 −1.12087
\(850\) 0 0
\(851\) 4128.00i 0.166282i
\(852\) 0 0
\(853\) − 5806.00i − 0.233052i −0.993188 0.116526i \(-0.962824\pi\)
0.993188 0.116526i \(-0.0371759\pi\)
\(854\) 0 0
\(855\) 6380.00 0.255195
\(856\) 0 0
\(857\) 39094.0 1.55826 0.779128 0.626865i \(-0.215662\pi\)
0.779128 + 0.626865i \(0.215662\pi\)
\(858\) 0 0
\(859\) − 18876.0i − 0.749756i −0.927074 0.374878i \(-0.877685\pi\)
0.927074 0.374878i \(-0.122315\pi\)
\(860\) 0 0
\(861\) 28288.0i 1.11969i
\(862\) 0 0
\(863\) −32296.0 −1.27389 −0.636946 0.770909i \(-0.719803\pi\)
−0.636946 + 0.770909i \(0.719803\pi\)
\(864\) 0 0
\(865\) −1170.00 −0.0459898
\(866\) 0 0
\(867\) − 28748.0i − 1.12611i
\(868\) 0 0
\(869\) − 28224.0i − 1.10176i
\(870\) 0 0
\(871\) −29064.0 −1.13065
\(872\) 0 0
\(873\) −4202.00 −0.162905
\(874\) 0 0
\(875\) 2000.00i 0.0772712i
\(876\) 0 0
\(877\) − 9578.00i − 0.368787i −0.982853 0.184393i \(-0.940968\pi\)
0.982853 0.184393i \(-0.0590321\pi\)
\(878\) 0 0
\(879\) 16136.0 0.619174
\(880\) 0 0
\(881\) −41710.0 −1.59506 −0.797529 0.603281i \(-0.793860\pi\)
−0.797529 + 0.603281i \(0.793860\pi\)
\(882\) 0 0
\(883\) − 2260.00i − 0.0861326i −0.999072 0.0430663i \(-0.986287\pi\)
0.999072 0.0430663i \(-0.0137127\pi\)
\(884\) 0 0
\(885\) 6960.00i 0.264359i
\(886\) 0 0
\(887\) −33696.0 −1.27554 −0.637768 0.770228i \(-0.720142\pi\)
−0.637768 + 0.770228i \(0.720142\pi\)
\(888\) 0 0
\(889\) 5248.00 0.197989
\(890\) 0 0
\(891\) − 11196.0i − 0.420965i
\(892\) 0 0
\(893\) − 45472.0i − 1.70399i
\(894\) 0 0
\(895\) −2620.00 −0.0978513
\(896\) 0 0
\(897\) −2688.00 −0.100055
\(898\) 0 0
\(899\) − 47520.0i − 1.76294i
\(900\) 0 0
\(901\) 15620.0i 0.577556i
\(902\) 0 0
\(903\) −18688.0 −0.688702
\(904\) 0 0
\(905\) 5690.00 0.208997
\(906\) 0 0
\(907\) 7756.00i 0.283940i 0.989871 + 0.141970i \(0.0453437\pi\)
−0.989871 + 0.141970i \(0.954656\pi\)
\(908\) 0 0
\(909\) 7414.00i 0.270525i
\(910\) 0 0
\(911\) 5312.00 0.193188 0.0965941 0.995324i \(-0.469205\pi\)
0.0965941 + 0.995324i \(0.469205\pi\)
\(912\) 0 0
\(913\) 20304.0 0.735996
\(914\) 0 0
\(915\) 11400.0i 0.411882i
\(916\) 0 0
\(917\) 3392.00i 0.122152i
\(918\) 0 0
\(919\) −23576.0 −0.846246 −0.423123 0.906072i \(-0.639066\pi\)
−0.423123 + 0.906072i \(0.639066\pi\)
\(920\) 0 0
\(921\) 15344.0 0.548971
\(922\) 0 0
\(923\) − 7056.00i − 0.251626i
\(924\) 0 0
\(925\) − 6450.00i − 0.229270i
\(926\) 0 0
\(927\) −10912.0 −0.386620
\(928\) 0 0
\(929\) −19038.0 −0.672354 −0.336177 0.941799i \(-0.609134\pi\)
−0.336177 + 0.941799i \(0.609134\pi\)
\(930\) 0 0
\(931\) − 10092.0i − 0.355265i
\(932\) 0 0
\(933\) − 2656.00i − 0.0931978i
\(934\) 0 0
\(935\) −19800.0 −0.692545
\(936\) 0 0
\(937\) −20570.0 −0.717175 −0.358587 0.933496i \(-0.616741\pi\)
−0.358587 + 0.933496i \(0.616741\pi\)
\(938\) 0 0
\(939\) 11944.0i 0.415099i
\(940\) 0 0
\(941\) − 21386.0i − 0.740875i −0.928857 0.370438i \(-0.879208\pi\)
0.928857 0.370438i \(-0.120792\pi\)
\(942\) 0 0
\(943\) −7072.00 −0.244216
\(944\) 0 0
\(945\) −12160.0 −0.418587
\(946\) 0 0
\(947\) − 38020.0i − 1.30463i −0.757948 0.652315i \(-0.773798\pi\)
0.757948 0.652315i \(-0.226202\pi\)
\(948\) 0 0
\(949\) − 5628.00i − 0.192511i
\(950\) 0 0
\(951\) 10904.0 0.371805
\(952\) 0 0
\(953\) −20202.0 −0.686681 −0.343340 0.939211i \(-0.611558\pi\)
−0.343340 + 0.939211i \(0.611558\pi\)
\(954\) 0 0
\(955\) 7600.00i 0.257519i
\(956\) 0 0
\(957\) 28512.0i 0.963074i
\(958\) 0 0
\(959\) −22944.0 −0.772576
\(960\) 0 0
\(961\) 27809.0 0.933470
\(962\) 0 0
\(963\) − 5500.00i − 0.184045i
\(964\) 0 0
\(965\) 10710.0i 0.357272i
\(966\) 0 0
\(967\) 29840.0 0.992337 0.496168 0.868226i \(-0.334740\pi\)
0.496168 + 0.868226i \(0.334740\pi\)
\(968\) 0 0
\(969\) −51040.0 −1.69210
\(970\) 0 0
\(971\) − 12476.0i − 0.412332i −0.978517 0.206166i \(-0.933901\pi\)
0.978517 0.206166i \(-0.0660986\pi\)
\(972\) 0 0
\(973\) 35136.0i 1.15767i
\(974\) 0 0
\(975\) 4200.00 0.137957
\(976\) 0 0
\(977\) −36974.0 −1.21075 −0.605375 0.795940i \(-0.706977\pi\)
−0.605375 + 0.795940i \(0.706977\pi\)
\(978\) 0 0
\(979\) − 37224.0i − 1.21520i
\(980\) 0 0
\(981\) 11506.0i 0.374473i
\(982\) 0 0
\(983\) −16368.0 −0.531087 −0.265543 0.964099i \(-0.585551\pi\)
−0.265543 + 0.964099i \(0.585551\pi\)
\(984\) 0 0
\(985\) 11530.0 0.372971
\(986\) 0 0
\(987\) 25088.0i 0.809078i
\(988\) 0 0
\(989\) − 4672.00i − 0.150213i
\(990\) 0 0
\(991\) 49552.0 1.58837 0.794183 0.607678i \(-0.207899\pi\)
0.794183 + 0.607678i \(0.207899\pi\)
\(992\) 0 0
\(993\) −36848.0 −1.17758
\(994\) 0 0
\(995\) − 16440.0i − 0.523802i
\(996\) 0 0
\(997\) − 24414.0i − 0.775526i −0.921759 0.387763i \(-0.873248\pi\)
0.921759 0.387763i \(-0.126752\pi\)
\(998\) 0 0
\(999\) 39216.0 1.24198
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1280.4.d.m.641.1 2
4.3 odd 2 1280.4.d.d.641.2 2
8.3 odd 2 1280.4.d.d.641.1 2
8.5 even 2 inner 1280.4.d.m.641.2 2
16.3 odd 4 320.4.a.e.1.1 1
16.5 even 4 80.4.a.b.1.1 1
16.11 odd 4 40.4.a.b.1.1 1
16.13 even 4 320.4.a.j.1.1 1
48.5 odd 4 720.4.a.d.1.1 1
48.11 even 4 360.4.a.f.1.1 1
80.19 odd 4 1600.4.a.bk.1.1 1
80.27 even 4 200.4.c.f.49.1 2
80.29 even 4 1600.4.a.q.1.1 1
80.37 odd 4 400.4.c.h.49.2 2
80.43 even 4 200.4.c.f.49.2 2
80.53 odd 4 400.4.c.h.49.1 2
80.59 odd 4 200.4.a.d.1.1 1
80.69 even 4 400.4.a.p.1.1 1
112.27 even 4 1960.4.a.e.1.1 1
240.59 even 4 1800.4.a.h.1.1 1
240.107 odd 4 1800.4.f.d.649.2 2
240.203 odd 4 1800.4.f.d.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.a.b.1.1 1 16.11 odd 4
80.4.a.b.1.1 1 16.5 even 4
200.4.a.d.1.1 1 80.59 odd 4
200.4.c.f.49.1 2 80.27 even 4
200.4.c.f.49.2 2 80.43 even 4
320.4.a.e.1.1 1 16.3 odd 4
320.4.a.j.1.1 1 16.13 even 4
360.4.a.f.1.1 1 48.11 even 4
400.4.a.p.1.1 1 80.69 even 4
400.4.c.h.49.1 2 80.53 odd 4
400.4.c.h.49.2 2 80.37 odd 4
720.4.a.d.1.1 1 48.5 odd 4
1280.4.d.d.641.1 2 8.3 odd 2
1280.4.d.d.641.2 2 4.3 odd 2
1280.4.d.m.641.1 2 1.1 even 1 trivial
1280.4.d.m.641.2 2 8.5 even 2 inner
1600.4.a.q.1.1 1 80.29 even 4
1600.4.a.bk.1.1 1 80.19 odd 4
1800.4.a.h.1.1 1 240.59 even 4
1800.4.f.d.649.1 2 240.203 odd 4
1800.4.f.d.649.2 2 240.107 odd 4
1960.4.a.e.1.1 1 112.27 even 4