Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1800,4,Mod(649,1800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1800.649");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1800 = 2^{3} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(106.203438010\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{13}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 40) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 1800.649 |
Dual form | 1800.4.f.d.649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1001\) | \(1351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 16.0000i | 0.863919i | 0.901893 | + | 0.431959i | \(0.142178\pi\) | ||||
−0.901893 | + | 0.431959i | \(0.857822\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −36.0000 | −0.986764 | −0.493382 | − | 0.869813i | \(-0.664240\pi\) | ||||
−0.493382 | + | 0.869813i | \(0.664240\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 42.0000i | 0.896054i | 0.894020 | + | 0.448027i | \(0.147873\pi\) | ||||
−0.894020 | + | 0.448027i | \(0.852127\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 110.000i | 1.56935i | 0.619909 | + | 0.784674i | \(0.287170\pi\) | ||||
−0.619909 | + | 0.784674i | \(0.712830\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 116.000 | 1.40064 | 0.700322 | − | 0.713827i | \(-0.253040\pi\) | ||||
0.700322 | + | 0.713827i | \(0.253040\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 16.0000i | 0.145054i | 0.997366 | + | 0.0725268i | \(0.0231063\pi\) | ||||
−0.997366 | + | 0.0725268i | \(0.976894\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 198.000 | 1.26785 | 0.633925 | − | 0.773394i | \(-0.281443\pi\) | ||||
0.633925 | + | 0.773394i | \(0.281443\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 240.000 | 1.39049 | 0.695246 | − | 0.718772i | \(-0.255295\pi\) | ||||
0.695246 | + | 0.718772i | \(0.255295\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 258.000i | − 1.14635i | −0.819433 | − | 0.573175i | \(-0.805712\pi\) | ||||
0.819433 | − | 0.573175i | \(-0.194288\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −442.000 | −1.68363 | −0.841815 | − | 0.539767i | \(-0.818512\pi\) | ||||
−0.841815 | + | 0.539767i | \(0.818512\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 292.000i | 1.03557i | 0.855510 | + | 0.517786i | \(0.173244\pi\) | ||||
−0.855510 | + | 0.517786i | \(0.826756\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 392.000i | − 1.21658i | −0.793716 | − | 0.608288i | \(-0.791857\pi\) | ||||
0.793716 | − | 0.608288i | \(-0.208143\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 87.0000 | 0.253644 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 142.000i | 0.368023i | 0.982924 | + | 0.184011i | \(0.0589083\pi\) | ||||
−0.982924 | + | 0.184011i | \(0.941092\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −348.000 | −0.767894 | −0.383947 | − | 0.923355i | \(-0.625435\pi\) | ||||
−0.383947 | + | 0.923355i | \(0.625435\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −570.000 | −1.19641 | −0.598205 | − | 0.801343i | \(-0.704119\pi\) | ||||
−0.598205 | + | 0.801343i | \(0.704119\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 692.000i | 1.26181i | 0.775860 | + | 0.630905i | \(0.217316\pi\) | ||||
−0.775860 | + | 0.630905i | \(0.782684\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −168.000 | −0.280816 | −0.140408 | − | 0.990094i | \(-0.544841\pi\) | ||||
−0.140408 | + | 0.990094i | \(0.544841\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 134.000i | 0.214843i | 0.994214 | + | 0.107421i | \(0.0342594\pi\) | ||||
−0.994214 | + | 0.107421i | \(0.965741\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 576.000i | − 0.852484i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −784.000 | −1.11654 | −0.558271 | − | 0.829658i | \(-0.688535\pi\) | ||||
−0.558271 | + | 0.829658i | \(0.688535\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 564.000i | 0.745868i | 0.927858 | + | 0.372934i | \(0.121648\pi\) | ||||
−0.927858 | + | 0.372934i | \(0.878352\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 1034.00 | 1.23150 | 0.615752 | − | 0.787940i | \(-0.288852\pi\) | ||||
0.615752 | + | 0.787940i | \(0.288852\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −672.000 | −0.774118 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 382.000i | − 0.399858i | −0.979810 | − | 0.199929i | \(-0.935929\pi\) | ||||
0.979810 | − | 0.199929i | \(-0.0640711\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 674.000 | 0.664015 | 0.332007 | − | 0.943277i | \(-0.392274\pi\) | ||||
0.332007 | + | 0.943277i | \(0.392274\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 992.000i | 0.948977i | 0.880262 | + | 0.474489i | \(0.157367\pi\) | ||||
−0.880262 | + | 0.474489i | \(0.842633\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 500.000i | 0.451746i | 0.974157 | + | 0.225873i | \(0.0725234\pi\) | ||||
−0.974157 | + | 0.225873i | \(0.927477\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −1046.00 | −0.919162 | −0.459581 | − | 0.888136i | \(-0.652000\pi\) | ||||
−0.459581 | + | 0.888136i | \(0.652000\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 558.000i | − 0.464533i | −0.972652 | − | 0.232266i | \(-0.925386\pi\) | ||||
0.972652 | − | 0.232266i | \(-0.0746141\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −1760.00 | −1.35579 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −35.0000 | −0.0262960 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 328.000i | − 0.229176i | −0.993413 | − | 0.114588i | \(-0.963445\pi\) | ||||
0.993413 | − | 0.114588i | \(-0.0365547\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 212.000 | 0.141393 | 0.0706967 | − | 0.997498i | \(-0.477478\pi\) | ||||
0.0706967 | + | 0.997498i | \(0.477478\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1856.00i | 1.21004i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 1434.00i | − 0.894269i | −0.894467 | − | 0.447135i | \(-0.852444\pi\) | ||||
0.894467 | − | 0.447135i | \(-0.147556\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −2196.00 | −1.34002 | −0.670008 | − | 0.742354i | \(-0.733709\pi\) | ||||
−0.670008 | + | 0.742354i | \(0.733709\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 1512.00i | − 0.884194i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −2418.00 | −1.32946 | −0.664732 | − | 0.747081i | \(-0.731454\pi\) | ||||
−0.664732 | + | 0.747081i | \(0.731454\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 3672.00 | 1.97896 | 0.989481 | − | 0.144666i | \(-0.0462108\pi\) | ||||
0.989481 | + | 0.144666i | \(0.0462108\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 358.000i | 0.181984i | 0.995852 | + | 0.0909921i | \(0.0290038\pi\) | ||||
−0.995852 | + | 0.0909921i | \(0.970996\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −256.000 | −0.125314 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 2564.00i | − 1.23207i | −0.787717 | − | 0.616037i | \(-0.788737\pi\) | ||||
0.787717 | − | 0.616037i | \(-0.211263\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 3056.00i | 1.41605i | 0.706187 | + | 0.708025i | \(0.250414\pi\) | ||||
−0.706187 | + | 0.708025i | \(0.749586\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 433.000 | 0.197087 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 234.000i | − 0.102836i | −0.998677 | − | 0.0514182i | \(-0.983626\pi\) | ||||
0.998677 | − | 0.0514182i | \(-0.0163741\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 524.000 | 0.218802 | 0.109401 | − | 0.993998i | \(-0.465107\pi\) | ||||
0.109401 | + | 0.993998i | \(0.465107\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −1138.00 | −0.467331 | −0.233665 | − | 0.972317i | \(-0.575072\pi\) | ||||
−0.233665 | + | 0.972317i | \(0.575072\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 3960.00i | − 1.54858i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | −1520.00 | −0.575829 | −0.287915 | − | 0.957656i | \(-0.592962\pi\) | ||||
−0.287915 | + | 0.957656i | \(0.592962\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 2142.00i | 0.798884i | 0.916759 | + | 0.399442i | \(0.130796\pi\) | ||||
−0.916759 | + | 0.399442i | \(0.869204\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 2306.00i | 0.833988i | 0.908909 | + | 0.416994i | \(0.136916\pi\) | ||||
−0.908909 | + | 0.416994i | \(0.863084\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −3288.00 | −1.17126 | −0.585628 | − | 0.810580i | \(-0.699152\pi\) | ||||
−0.585628 | + | 0.810580i | \(0.699152\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 3168.00i | 1.09532i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4176.00 | −1.38211 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −3876.00 | −1.26462 | −0.632310 | − | 0.774715i | \(-0.717893\pi\) | ||||
−0.632310 | + | 0.774715i | \(0.717893\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 3840.00i | 1.20127i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −4620.00 | −1.40622 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 5688.00i | 1.70806i | 0.520226 | + | 0.854028i | \(0.325848\pi\) | ||||
−0.520226 | + | 0.854028i | \(0.674152\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 2796.00i | 0.817520i | 0.912642 | + | 0.408760i | \(0.134039\pi\) | ||||
−0.912642 | + | 0.408760i | \(0.865961\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −4446.00 | −1.28297 | −0.641485 | − | 0.767136i | \(-0.721681\pi\) | ||||
−0.641485 | + | 0.767136i | \(0.721681\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 2522.00i | 0.709106i | 0.935036 | + | 0.354553i | \(0.115367\pi\) | ||||
−0.935036 | + | 0.354553i | \(0.884633\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 816.000 | 0.220848 | 0.110424 | − | 0.993885i | \(-0.464779\pi\) | ||||
0.110424 | + | 0.993885i | \(0.464779\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −5422.00 | −1.44922 | −0.724609 | − | 0.689160i | \(-0.757980\pi\) | ||||
−0.724609 | + | 0.689160i | \(0.757980\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 4872.00i | 1.25505i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 5900.00 | 1.48368 | 0.741842 | − | 0.670575i | \(-0.233952\pi\) | ||||
0.741842 | + | 0.670575i | \(0.233952\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 576.000i | − 0.143134i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 5250.00i | − 1.27426i | −0.770754 | − | 0.637132i | \(-0.780120\pi\) | ||||
0.770754 | − | 0.637132i | \(-0.219880\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 4128.00 | 0.990353 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6240.00i | 1.46302i | 0.681829 | + | 0.731511i | \(0.261185\pi\) | ||||
−0.681829 | + | 0.731511i | \(0.738815\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −714.000 | −0.161834 | −0.0809170 | − | 0.996721i | \(-0.525785\pi\) | ||||
−0.0809170 | + | 0.996721i | \(0.525785\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 2144.00 | 0.480586 | 0.240293 | − | 0.970700i | \(-0.422757\pi\) | ||||
0.240293 | + | 0.970700i | \(0.422757\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 4466.00i | − 0.968722i | −0.874868 | − | 0.484361i | \(-0.839052\pi\) | ||||
0.874868 | − | 0.484361i | \(-0.160948\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 5302.00 | 1.12559 | 0.562795 | − | 0.826596i | \(-0.309726\pi\) | ||||
0.562795 | + | 0.826596i | \(0.309726\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 6932.00i | 1.45606i | 0.685546 | + | 0.728029i | \(0.259564\pi\) | ||||
−0.685546 | + | 0.728029i | \(0.740436\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 7072.00i | − 1.45452i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −7187.00 | −1.46285 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 4034.00i | − 0.804330i | −0.915567 | − | 0.402165i | \(-0.868258\pi\) | ||||
0.915567 | − | 0.402165i | \(-0.131742\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −672.000 | −0.129976 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −4672.00 | −0.894650 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 3836.00i | − 0.713134i | −0.934270 | − | 0.356567i | \(-0.883947\pi\) | ||||
0.934270 | − | 0.356567i | \(-0.116053\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −664.000 | −0.121067 | −0.0605337 | − | 0.998166i | \(-0.519280\pi\) | ||||
−0.0605337 | + | 0.998166i | \(0.519280\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 2986.00i | − 0.539229i | −0.962968 | − | 0.269615i | \(-0.913104\pi\) | ||||
0.962968 | − | 0.269615i | \(-0.0868963\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 2726.00i | − 0.482989i | −0.970402 | − | 0.241494i | \(-0.922362\pi\) | ||||
0.970402 | − | 0.241494i | \(-0.0776375\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −7128.00 | −1.25107 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 12760.0i | 2.19810i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 6272.00 | 1.05102 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −9212.00 | −1.52972 | −0.764860 | − | 0.644197i | \(-0.777192\pi\) | ||||
−0.764860 | + | 0.644197i | \(0.777192\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 3278.00i | − 0.529864i | −0.964267 | − | 0.264932i | \(-0.914651\pi\) | ||||
0.964267 | − | 0.264932i | \(-0.0853494\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −8640.00 | −1.37209 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 6880.00i | 1.08305i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 4956.00i | − 0.766721i | −0.923599 | − | 0.383360i | \(-0.874767\pi\) | ||||
0.923599 | − | 0.383360i | \(-0.125233\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −4678.00 | −0.717500 | −0.358750 | − | 0.933434i | \(-0.616797\pi\) | ||||
−0.358750 | + | 0.933434i | \(0.616797\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 1890.00i | 0.284970i | 0.989797 | + | 0.142485i | \(0.0455093\pi\) | ||||
−0.989797 | + | 0.142485i | \(0.954491\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −6472.00 | −0.951474 | −0.475737 | − | 0.879588i | \(-0.657819\pi\) | ||||
−0.475737 | + | 0.879588i | \(0.657819\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 6597.00 | 0.961802 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 1960.00i | 0.278777i | 0.990238 | + | 0.139389i | \(0.0445137\pi\) | ||||
−0.990238 | + | 0.139389i | \(0.955486\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | −2272.00 | −0.317942 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 8750.00i | − 1.21463i | −0.794460 | − | 0.607316i | \(-0.792246\pi\) | ||||
0.794460 | − | 0.607316i | \(-0.207754\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 8316.00i | 1.13606i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 380.000 | 0.0515021 | 0.0257510 | − | 0.999668i | \(-0.491802\pi\) | ||||
0.0257510 | + | 0.999668i | \(0.491802\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 9688.00i | − 1.29252i | −0.763119 | − | 0.646258i | \(-0.776333\pi\) | ||||
0.763119 | − | 0.646258i | \(-0.223667\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 3870.00 | 0.504413 | 0.252207 | − | 0.967673i | \(-0.418844\pi\) | ||||
0.252207 | + | 0.967673i | \(0.418844\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −1760.00 | −0.227639 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 1622.00i | 0.205053i | 0.994730 | + | 0.102526i | \(0.0326926\pi\) | ||||
−0.994730 | + | 0.102526i | \(0.967307\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −9906.00 | −1.23362 | −0.616811 | − | 0.787112i | \(-0.711576\pi\) | ||||
−0.616811 | + | 0.787112i | \(0.711576\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 10080.0i | 1.24596i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 9288.00i | 1.13118i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 4214.00 | 0.509459 | 0.254730 | − | 0.967012i | \(-0.418014\pi\) | ||||
0.254730 | + | 0.967012i | \(0.418014\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 5568.00i | − 0.663398i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −7012.00 | −0.817562 | −0.408781 | − | 0.912632i | \(-0.634046\pi\) | ||||
−0.408781 | + | 0.912632i | \(0.634046\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −1602.00 | −0.185455 | −0.0927277 | − | 0.995692i | \(-0.529559\pi\) | ||||
−0.0927277 | + | 0.995692i | \(0.529559\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 9120.00i | − 1.03360i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 3584.00 | 0.400546 | 0.200273 | − | 0.979740i | \(-0.435817\pi\) | ||||
0.200273 | + | 0.979740i | \(0.435817\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 3470.00i | 0.385121i | 0.981285 | + | 0.192561i | \(0.0616792\pi\) | ||||
−0.981285 | + | 0.192561i | \(0.938321\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 1856.00i | 0.203168i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 3416.00 | 0.371382 | 0.185691 | − | 0.982608i | \(-0.440548\pi\) | ||||
0.185691 | + | 0.982608i | \(0.440548\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 9708.00i | 1.04118i | 0.853808 | + | 0.520588i | \(0.174287\pi\) | ||||
−0.853808 | + | 0.520588i | \(0.825713\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −10366.0 | −1.08954 | −0.544768 | − | 0.838587i | \(-0.683382\pi\) | ||||
−0.544768 | + | 0.838587i | \(0.683382\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 15912.0 | 1.66135 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 16742.0i | − 1.71369i | −0.515572 | − | 0.856847i | \(-0.672420\pi\) | ||||
0.515572 | − | 0.856847i | \(-0.327580\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 1258.00 | 0.127095 | 0.0635476 | − | 0.997979i | \(-0.479759\pi\) | ||||
0.0635476 | + | 0.997979i | \(0.479759\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 13528.0i | − 1.35788i | −0.734193 | − | 0.678941i | \(-0.762439\pi\) | ||||
0.734193 | − | 0.678941i | \(-0.237561\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 6916.00i | − 0.685298i | −0.939463 | − | 0.342649i | \(-0.888676\pi\) | ||||
0.939463 | − | 0.342649i | \(-0.111324\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −11072.0 | −1.09010 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 10512.0i | − 1.02187i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 1728.00 | 0.164832 | 0.0824158 | − | 0.996598i | \(-0.473736\pi\) | ||||
0.0824158 | + | 0.996598i | \(0.473736\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 10836.0 | 1.02719 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 16656.0i | 1.54981i | 0.632080 | + | 0.774903i | \(0.282201\pi\) | ||||
−0.632080 | + | 0.774903i | \(0.717799\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 1084.00 | 0.0996339 | 0.0498169 | − | 0.998758i | \(-0.484136\pi\) | ||||
0.0498169 | + | 0.998758i | \(0.484136\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 21780.0i | 1.98970i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 2688.00i | − 0.242602i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −5804.00 | −0.520687 | −0.260343 | − | 0.965516i | \(-0.583836\pi\) | ||||
−0.260343 | + | 0.965516i | \(0.583836\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 10512.0i | 0.931823i | 0.884831 | + | 0.465911i | \(0.154273\pi\) | ||||
−0.884831 | + | 0.465911i | \(0.845727\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −4314.00 | −0.375667 | −0.187834 | − | 0.982201i | \(-0.560147\pi\) | ||||
−0.187834 | + | 0.982201i | \(0.560147\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −2144.00 | −0.185607 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 14112.0i | 1.20047i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 1190.00 | 0.100067 | 0.0500334 | − | 0.998748i | \(-0.484067\pi\) | ||||
0.0500334 | + | 0.998748i | \(0.484067\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 3780.00i | 0.316038i | 0.987436 | + | 0.158019i | \(0.0505107\pi\) | ||||
−0.987436 | + | 0.158019i | \(0.949489\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 26400.0i | 2.18217i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11911.0 | 0.978959 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 18564.0i | − 1.50862i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −3132.00 | −0.250287 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −11002.0 | −0.874331 | −0.437165 | − | 0.899381i | \(-0.644018\pi\) | ||||
−0.437165 | + | 0.899381i | \(0.644018\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 5908.00i | 0.461806i | 0.972977 | + | 0.230903i | \(0.0741680\pi\) | ||||
−0.972977 | + | 0.230903i | \(0.925832\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 22968.0 | 1.77581 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 12544.0i | − 0.964602i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 14806.0i | − 1.12630i | −0.826354 | − | 0.563151i | \(-0.809589\pi\) | ||||
0.826354 | − | 0.563151i | \(-0.190411\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −12264.0 | −0.927928 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 684.000i | − 0.0512028i | −0.999672 | − | 0.0256014i | \(-0.991850\pi\) | ||||
0.999672 | − | 0.0256014i | \(-0.00815007\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −2582.00 | −0.190234 | −0.0951169 | − | 0.995466i | \(-0.530323\pi\) | ||||
−0.0951169 | + | 0.995466i | \(0.530323\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −2540.00 | −0.186157 | −0.0930785 | − | 0.995659i | \(-0.529671\pi\) | ||||
−0.0930785 | + | 0.995659i | \(0.529671\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 22786.0i | 1.64401i | 0.569480 | + | 0.822005i | \(0.307144\pi\) | ||||
−0.569480 | + | 0.822005i | \(0.692856\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −9024.00 | −0.644369 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 5112.00i | − 0.363152i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 7884.00i | − 0.554357i | −0.960818 | − | 0.277178i | \(-0.910601\pi\) | ||||
0.960818 | − | 0.277178i | \(-0.0893993\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 27840.0 | 1.94758 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 21902.0i | − 1.51671i | −0.651843 | − | 0.758354i | \(-0.726004\pi\) | ||||
0.651843 | − | 0.758354i | \(-0.273996\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 15080.0 | 1.02863 | 0.514317 | − | 0.857600i | \(-0.328045\pi\) | ||||
0.514317 | + | 0.857600i | \(0.328045\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −19702.0 | −1.33721 | −0.668603 | − | 0.743619i | \(-0.733108\pi\) | ||||
−0.668603 | + | 0.743619i | \(0.733108\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 7320.00i | 0.489472i | 0.969590 | + | 0.244736i | \(0.0787013\pi\) | ||||
−0.969590 | + | 0.244736i | \(0.921299\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 16464.0 | 1.09012 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 24350.0i | − 1.60438i | −0.597066 | − | 0.802192i | \(-0.703667\pi\) | ||||
0.597066 | − | 0.802192i | \(-0.296333\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 19546.0i | − 1.27535i | −0.770305 | − | 0.637676i | \(-0.779896\pi\) | ||||
0.770305 | − | 0.637676i | \(-0.220104\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −3476.00 | −0.225706 | −0.112853 | − | 0.993612i | \(-0.535999\pi\) | ||||
−0.112853 | + | 0.993612i | \(0.535999\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 16544.0i | 1.06392i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 28380.0 | 1.79902 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 21880.0 | 1.38039 | 0.690197 | − | 0.723621i | \(-0.257524\pi\) | ||||
0.690197 | + | 0.723621i | \(0.257524\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 3654.00i | 0.227279i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −20994.0 | −1.29362 | −0.646812 | − | 0.762649i | \(-0.723898\pi\) | ||||
−0.646812 | + | 0.762649i | \(0.723898\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 18204.0i | 1.11648i | 0.829680 | + | 0.558239i | \(0.188523\pi\) | ||||
−0.829680 | + | 0.558239i | \(0.811477\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 2064.00i | 0.125416i | 0.998032 | + | 0.0627080i | \(0.0199737\pi\) | ||||
−0.998032 | + | 0.0627080i | \(0.980026\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 12528.0 | 0.757730 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 9942.00i | 0.595805i | 0.954596 | + | 0.297902i | \(0.0962870\pi\) | ||||
−0.954596 | + | 0.297902i | \(0.903713\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 24236.0 | 1.43263 | 0.716313 | − | 0.697779i | \(-0.245828\pi\) | ||||
0.716313 | + | 0.697779i | \(0.245828\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 17614.0 | 1.03647 | 0.518234 | − | 0.855239i | \(-0.326590\pi\) | ||||
0.518234 | + | 0.855239i | \(0.326590\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 3168.00i | 0.183906i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 20520.0 | 1.18057 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 13058.0i | − 0.747918i | −0.927445 | − | 0.373959i | \(-0.878000\pi\) | ||||
0.927445 | − | 0.373959i | \(-0.122000\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 33186.0i | 1.88396i | 0.335668 | + | 0.941980i | \(0.391038\pi\) | ||||
−0.335668 | + | 0.941980i | \(0.608962\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 6112.00 | 0.345445 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 31716.0i | − 1.77684i | −0.459035 | − | 0.888418i | \(-0.651805\pi\) | ||||
0.459035 | − | 0.888418i | \(-0.348195\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −5964.00 | −0.329768 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −2084.00 | −0.114731 | −0.0573655 | − | 0.998353i | \(-0.518270\pi\) | ||||
−0.0573655 | + | 0.998353i | \(0.518270\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 48620.0i | − 2.64220i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 7418.00 | 0.399678 | 0.199839 | − | 0.979829i | \(-0.435958\pi\) | ||||
0.199839 | + | 0.979829i | \(0.435958\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 29928.0i | − 1.60563i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 10784.0i | 0.573655i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 18242.0 | 0.966280 | 0.483140 | − | 0.875543i | \(-0.339496\pi\) | ||||
0.483140 | + | 0.875543i | \(0.339496\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 3840.00i | 0.201696i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 3024.00 | 0.156851 | 0.0784257 | − | 0.996920i | \(-0.475011\pi\) | ||||
0.0784257 | + | 0.996920i | \(0.475011\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −15872.0 | −0.819839 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 26176.0i | − 1.33537i | −0.744444 | − | 0.667685i | \(-0.767285\pi\) | ||||
0.744444 | − | 0.667685i | \(-0.232715\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −32120.0 | −1.62517 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 17818.0i | 0.897848i | 0.893570 | + | 0.448924i | \(0.148193\pi\) | ||||
−0.893570 | + | 0.448924i | \(0.851807\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 24912.0i | − 1.24511i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 22052.0 | 1.09769 | 0.548847 | − | 0.835923i | \(-0.315067\pi\) | ||||
0.548847 | + | 0.835923i | \(0.315067\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 15840.0i | 0.782117i | 0.920366 | + | 0.391059i | \(0.127891\pi\) | ||||
−0.920366 | + | 0.391059i | \(0.872109\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −8000.00 | −0.390272 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 21024.0 | 1.02154 | 0.510770 | − | 0.859717i | \(-0.329360\pi\) | ||||
0.510770 | + | 0.859717i | \(0.329360\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 38034.0i | − 1.82612i | −0.407831 | − | 0.913058i | \(-0.633715\pi\) | ||||
0.407831 | − | 0.913058i | \(-0.366285\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −37802.0 | −1.80069 | −0.900343 | − | 0.435182i | \(-0.856684\pi\) | ||||
−0.900343 | + | 0.435182i | \(0.856684\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 16736.0i | − 0.794081i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 14616.0i | − 0.688075i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −15042.0 | −0.705369 | −0.352684 | − | 0.935742i | \(-0.614731\pi\) | ||||
−0.352684 | + | 0.935742i | \(0.614731\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 5950.00i | 0.276852i | 0.990373 | + | 0.138426i | \(0.0442043\pi\) | ||||
−0.990373 | + | 0.138426i | \(0.955796\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −51272.0 | −2.35816 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 6048.00 | 0.277099 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 23364.0i | 1.05824i | 0.848546 | + | 0.529121i | \(0.177478\pi\) | ||||
−0.848546 | + | 0.529121i | \(0.822522\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 8928.00 | 0.401319 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 23940.0i | − 1.07205i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 19846.0i | − 0.882034i | −0.897499 | − | 0.441017i | \(-0.854618\pi\) | ||||
0.897499 | − | 0.441017i | \(-0.145382\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 43120.0 | 1.90923 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 4824.00i | − 0.211999i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 24762.0 | 1.07613 | 0.538063 | − | 0.842905i | \(-0.319156\pi\) | ||||
0.538063 | + | 0.842905i | \(0.319156\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 16644.0 | 0.720653 | 0.360327 | − | 0.932826i | \(-0.382665\pi\) | ||||
0.360327 | + | 0.932826i | \(0.382665\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 33872.0i | 1.45047i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −3182.00 | −0.135265 | −0.0676325 | − | 0.997710i | \(-0.521545\pi\) | ||||
−0.0676325 | + | 0.997710i | \(0.521545\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 7504.00i | 0.317829i | 0.987292 | + | 0.158914i | \(0.0507994\pi\) | ||||
−0.987292 | + | 0.158914i | \(0.949201\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 12604.0i | − 0.529969i | −0.964253 | − | 0.264984i | \(-0.914633\pi\) | ||||
0.964253 | − | 0.264984i | \(-0.0853668\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −12230.0 | −0.512383 | −0.256191 | − | 0.966626i | \(-0.582468\pi\) | ||||
−0.256191 | + | 0.966626i | \(0.582468\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 9570.00i | 0.398056i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 9656.00 | 0.397333 | 0.198666 | − | 0.980067i | \(-0.436339\pi\) | ||||
0.198666 | + | 0.980067i | \(0.436339\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 14815.0 | 0.607446 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 560.000i | − 0.0227176i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 4128.00 | 0.166282 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 5806.00i | − 0.233052i | −0.993188 | − | 0.116526i | \(-0.962824\pi\) | ||||
0.993188 | − | 0.116526i | \(-0.0371759\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 39094.0i | 1.55826i | 0.626865 | + | 0.779128i | \(0.284338\pi\) | ||||
−0.626865 | + | 0.779128i | \(0.715662\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 18876.0 | 0.749756 | 0.374878 | − | 0.927074i | \(-0.377685\pi\) | ||||
0.374878 | + | 0.927074i | \(0.377685\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 32296.0i | 1.27389i | 0.770909 | + | 0.636946i | \(0.219803\pi\) | ||||
−0.770909 | + | 0.636946i | \(0.780197\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 28224.0 | 1.10176 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −29064.0 | −1.13065 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 9578.00i | − 0.368787i | −0.982853 | − | 0.184393i | \(-0.940968\pi\) | ||||
0.982853 | − | 0.184393i | \(-0.0590321\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 41710.0 | 1.59506 | 0.797529 | − | 0.603281i | \(-0.206140\pi\) | ||||
0.797529 | + | 0.603281i | \(0.206140\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 2260.00i | − 0.0861326i | −0.999072 | − | 0.0430663i | \(-0.986287\pi\) | ||||
0.999072 | − | 0.0430663i | \(-0.0137127\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 33696.0i | 1.27554i | 0.770228 | + | 0.637768i | \(0.220142\pi\) | ||||
−0.770228 | + | 0.637768i | \(0.779858\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 5248.00 | 0.197989 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 45472.0i | − 1.70399i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 47520.0 | 1.76294 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −15620.0 | −0.577556 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 7756.00i | 0.283940i | 0.989871 | + | 0.141970i | \(0.0453437\pi\) | ||||
−0.989871 | + | 0.141970i | \(0.954656\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 5312.00 | 0.193188 | 0.0965941 | − | 0.995324i | \(-0.469205\pi\) | ||||
0.0965941 | + | 0.995324i | \(0.469205\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 20304.0i | − 0.735996i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 3392.00i | 0.122152i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 23576.0 | 0.846246 | 0.423123 | − | 0.906072i | \(-0.360934\pi\) | ||||
0.423123 | + | 0.906072i | \(0.360934\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 7056.00i | − 0.251626i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −19038.0 | −0.672354 | −0.336177 | − | 0.941799i | \(-0.609134\pi\) | ||||
−0.336177 | + | 0.941799i | \(0.609134\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 10092.0 | 0.355265 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 20570.0i | 0.717175i | 0.933496 | + | 0.358587i | \(0.116741\pi\) | ||||
−0.933496 | + | 0.358587i | \(0.883259\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 21386.0 | 0.740875 | 0.370438 | − | 0.928857i | \(-0.379208\pi\) | ||||
0.370438 | + | 0.928857i | \(0.379208\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 7072.00i | − 0.244216i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 38020.0i | − 1.30463i | −0.757948 | − | 0.652315i | \(-0.773798\pi\) | ||||
0.757948 | − | 0.652315i | \(-0.226202\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −5628.00 | −0.192511 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 20202.0i | 0.686681i | 0.939211 | + | 0.343340i | \(0.111558\pi\) | ||||
−0.939211 | + | 0.343340i | \(0.888442\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 22944.0 | 0.772576 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 27809.0 | 0.933470 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 29840.0i | 0.992337i | 0.868226 | + | 0.496168i | \(0.165260\pi\) | ||||
−0.868226 | + | 0.496168i | \(0.834740\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 12476.0 | 0.412332 | 0.206166 | − | 0.978517i | \(-0.433901\pi\) | ||||
0.206166 | + | 0.978517i | \(0.433901\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 35136.0i | − 1.15767i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 36974.0i | 1.21075i | 0.795940 | + | 0.605375i | \(0.206977\pi\) | ||||
−0.795940 | + | 0.605375i | \(0.793023\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −37224.0 | −1.21520 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 16368.0i | − 0.531087i | −0.964099 | − | 0.265543i | \(-0.914449\pi\) | ||||
0.964099 | − | 0.265543i | \(-0.0855513\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −4672.00 | −0.150213 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −49552.0 | −1.58837 | −0.794183 | − | 0.607678i | \(-0.792101\pi\) | ||||
−0.794183 | + | 0.607678i | \(0.792101\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 24414.0i | 0.775526i | 0.921759 | + | 0.387763i | \(0.126752\pi\) | ||||
−0.921759 | + | 0.387763i | \(0.873248\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1800.4.f.d.649.2 | 2 | ||
3.2 | odd | 2 | 200.4.c.f.49.1 | 2 | |||
5.2 | odd | 4 | 1800.4.a.h.1.1 | 1 | |||
5.3 | odd | 4 | 360.4.a.f.1.1 | 1 | |||
5.4 | even | 2 | inner | 1800.4.f.d.649.1 | 2 | ||
12.11 | even | 2 | 400.4.c.h.49.2 | 2 | |||
15.2 | even | 4 | 200.4.a.d.1.1 | 1 | |||
15.8 | even | 4 | 40.4.a.b.1.1 | ✓ | 1 | ||
15.14 | odd | 2 | 200.4.c.f.49.2 | 2 | |||
20.3 | even | 4 | 720.4.a.d.1.1 | 1 | |||
60.23 | odd | 4 | 80.4.a.b.1.1 | 1 | |||
60.47 | odd | 4 | 400.4.a.p.1.1 | 1 | |||
60.59 | even | 2 | 400.4.c.h.49.1 | 2 | |||
105.83 | odd | 4 | 1960.4.a.e.1.1 | 1 | |||
120.53 | even | 4 | 320.4.a.e.1.1 | 1 | |||
120.77 | even | 4 | 1600.4.a.bk.1.1 | 1 | |||
120.83 | odd | 4 | 320.4.a.j.1.1 | 1 | |||
120.107 | odd | 4 | 1600.4.a.q.1.1 | 1 | |||
240.53 | even | 4 | 1280.4.d.d.641.1 | 2 | |||
240.83 | odd | 4 | 1280.4.d.m.641.1 | 2 | |||
240.173 | even | 4 | 1280.4.d.d.641.2 | 2 | |||
240.203 | odd | 4 | 1280.4.d.m.641.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
40.4.a.b.1.1 | ✓ | 1 | 15.8 | even | 4 | ||
80.4.a.b.1.1 | 1 | 60.23 | odd | 4 | |||
200.4.a.d.1.1 | 1 | 15.2 | even | 4 | |||
200.4.c.f.49.1 | 2 | 3.2 | odd | 2 | |||
200.4.c.f.49.2 | 2 | 15.14 | odd | 2 | |||
320.4.a.e.1.1 | 1 | 120.53 | even | 4 | |||
320.4.a.j.1.1 | 1 | 120.83 | odd | 4 | |||
360.4.a.f.1.1 | 1 | 5.3 | odd | 4 | |||
400.4.a.p.1.1 | 1 | 60.47 | odd | 4 | |||
400.4.c.h.49.1 | 2 | 60.59 | even | 2 | |||
400.4.c.h.49.2 | 2 | 12.11 | even | 2 | |||
720.4.a.d.1.1 | 1 | 20.3 | even | 4 | |||
1280.4.d.d.641.1 | 2 | 240.53 | even | 4 | |||
1280.4.d.d.641.2 | 2 | 240.173 | even | 4 | |||
1280.4.d.m.641.1 | 2 | 240.83 | odd | 4 | |||
1280.4.d.m.641.2 | 2 | 240.203 | odd | 4 | |||
1600.4.a.q.1.1 | 1 | 120.107 | odd | 4 | |||
1600.4.a.bk.1.1 | 1 | 120.77 | even | 4 | |||
1800.4.a.h.1.1 | 1 | 5.2 | odd | 4 | |||
1800.4.f.d.649.1 | 2 | 5.4 | even | 2 | inner | ||
1800.4.f.d.649.2 | 2 | 1.1 | even | 1 | trivial | ||
1960.4.a.e.1.1 | 1 | 105.83 | odd | 4 |