Properties

Label 130.2.j.b.47.1
Level $130$
Weight $2$
Character 130.47
Analytic conductor $1.038$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [130,2,Mod(47,130)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(130, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("130.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 130 = 2 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 130.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.03805522628\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 130.47
Dual form 130.2.j.b.83.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +(-1.00000 + 1.00000i) q^{3} -1.00000 q^{4} +(-2.00000 + 1.00000i) q^{5} +(-1.00000 - 1.00000i) q^{6} -2.00000 q^{7} -1.00000i q^{8} +1.00000i q^{9} +(-1.00000 - 2.00000i) q^{10} +(1.00000 - 1.00000i) q^{11} +(1.00000 - 1.00000i) q^{12} +(2.00000 + 3.00000i) q^{13} -2.00000i q^{14} +(1.00000 - 3.00000i) q^{15} +1.00000 q^{16} +(-5.00000 + 5.00000i) q^{17} -1.00000 q^{18} +(3.00000 - 3.00000i) q^{19} +(2.00000 - 1.00000i) q^{20} +(2.00000 - 2.00000i) q^{21} +(1.00000 + 1.00000i) q^{22} +(5.00000 + 5.00000i) q^{23} +(1.00000 + 1.00000i) q^{24} +(3.00000 - 4.00000i) q^{25} +(-3.00000 + 2.00000i) q^{26} +(-4.00000 - 4.00000i) q^{27} +2.00000 q^{28} +4.00000i q^{29} +(3.00000 + 1.00000i) q^{30} +(1.00000 + 1.00000i) q^{31} +1.00000i q^{32} +2.00000i q^{33} +(-5.00000 - 5.00000i) q^{34} +(4.00000 - 2.00000i) q^{35} -1.00000i q^{36} +8.00000 q^{37} +(3.00000 + 3.00000i) q^{38} +(-5.00000 - 1.00000i) q^{39} +(1.00000 + 2.00000i) q^{40} +(1.00000 + 1.00000i) q^{41} +(2.00000 + 2.00000i) q^{42} +(-5.00000 - 5.00000i) q^{43} +(-1.00000 + 1.00000i) q^{44} +(-1.00000 - 2.00000i) q^{45} +(-5.00000 + 5.00000i) q^{46} -2.00000 q^{47} +(-1.00000 + 1.00000i) q^{48} -3.00000 q^{49} +(4.00000 + 3.00000i) q^{50} -10.0000i q^{51} +(-2.00000 - 3.00000i) q^{52} +(-1.00000 + 1.00000i) q^{53} +(4.00000 - 4.00000i) q^{54} +(-1.00000 + 3.00000i) q^{55} +2.00000i q^{56} +6.00000i q^{57} -4.00000 q^{58} +(-3.00000 - 3.00000i) q^{59} +(-1.00000 + 3.00000i) q^{60} +2.00000 q^{61} +(-1.00000 + 1.00000i) q^{62} -2.00000i q^{63} -1.00000 q^{64} +(-7.00000 - 4.00000i) q^{65} -2.00000 q^{66} -12.0000i q^{67} +(5.00000 - 5.00000i) q^{68} -10.0000 q^{69} +(2.00000 + 4.00000i) q^{70} +(1.00000 + 1.00000i) q^{71} +1.00000 q^{72} +6.00000i q^{73} +8.00000i q^{74} +(1.00000 + 7.00000i) q^{75} +(-3.00000 + 3.00000i) q^{76} +(-2.00000 + 2.00000i) q^{77} +(1.00000 - 5.00000i) q^{78} +14.0000i q^{79} +(-2.00000 + 1.00000i) q^{80} +5.00000 q^{81} +(-1.00000 + 1.00000i) q^{82} -6.00000 q^{83} +(-2.00000 + 2.00000i) q^{84} +(5.00000 - 15.0000i) q^{85} +(5.00000 - 5.00000i) q^{86} +(-4.00000 - 4.00000i) q^{87} +(-1.00000 - 1.00000i) q^{88} +(7.00000 + 7.00000i) q^{89} +(2.00000 - 1.00000i) q^{90} +(-4.00000 - 6.00000i) q^{91} +(-5.00000 - 5.00000i) q^{92} -2.00000 q^{93} -2.00000i q^{94} +(-3.00000 + 9.00000i) q^{95} +(-1.00000 - 1.00000i) q^{96} -2.00000i q^{97} -3.00000i q^{98} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} - 4 q^{5} - 2 q^{6} - 4 q^{7} - 2 q^{10} + 2 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{15} + 2 q^{16} - 10 q^{17} - 2 q^{18} + 6 q^{19} + 4 q^{20} + 4 q^{21} + 2 q^{22} + 10 q^{23} + 2 q^{24}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/130\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.00000 + 1.00000i −0.577350 + 0.577350i −0.934172 0.356822i \(-0.883860\pi\)
0.356822 + 0.934172i \(0.383860\pi\)
\(4\) −1.00000 −0.500000
\(5\) −2.00000 + 1.00000i −0.894427 + 0.447214i
\(6\) −1.00000 1.00000i −0.408248 0.408248i
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) −1.00000 2.00000i −0.316228 0.632456i
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 1.00000 1.00000i 0.288675 0.288675i
\(13\) 2.00000 + 3.00000i 0.554700 + 0.832050i
\(14\) 2.00000i 0.534522i
\(15\) 1.00000 3.00000i 0.258199 0.774597i
\(16\) 1.00000 0.250000
\(17\) −5.00000 + 5.00000i −1.21268 + 1.21268i −0.242536 + 0.970143i \(0.577979\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) −1.00000 −0.235702
\(19\) 3.00000 3.00000i 0.688247 0.688247i −0.273597 0.961844i \(-0.588214\pi\)
0.961844 + 0.273597i \(0.0882135\pi\)
\(20\) 2.00000 1.00000i 0.447214 0.223607i
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) 1.00000 + 1.00000i 0.213201 + 0.213201i
\(23\) 5.00000 + 5.00000i 1.04257 + 1.04257i 0.999053 + 0.0435195i \(0.0138571\pi\)
0.0435195 + 0.999053i \(0.486143\pi\)
\(24\) 1.00000 + 1.00000i 0.204124 + 0.204124i
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) −3.00000 + 2.00000i −0.588348 + 0.392232i
\(27\) −4.00000 4.00000i −0.769800 0.769800i
\(28\) 2.00000 0.377964
\(29\) 4.00000i 0.742781i 0.928477 + 0.371391i \(0.121119\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 3.00000 + 1.00000i 0.547723 + 0.182574i
\(31\) 1.00000 + 1.00000i 0.179605 + 0.179605i 0.791184 0.611578i \(-0.209465\pi\)
−0.611578 + 0.791184i \(0.709465\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 2.00000i 0.348155i
\(34\) −5.00000 5.00000i −0.857493 0.857493i
\(35\) 4.00000 2.00000i 0.676123 0.338062i
\(36\) 1.00000i 0.166667i
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 3.00000 + 3.00000i 0.486664 + 0.486664i
\(39\) −5.00000 1.00000i −0.800641 0.160128i
\(40\) 1.00000 + 2.00000i 0.158114 + 0.316228i
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 2.00000 + 2.00000i 0.308607 + 0.308607i
\(43\) −5.00000 5.00000i −0.762493 0.762493i 0.214280 0.976772i \(-0.431260\pi\)
−0.976772 + 0.214280i \(0.931260\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) −1.00000 2.00000i −0.149071 0.298142i
\(46\) −5.00000 + 5.00000i −0.737210 + 0.737210i
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) −1.00000 + 1.00000i −0.144338 + 0.144338i
\(49\) −3.00000 −0.428571
\(50\) 4.00000 + 3.00000i 0.565685 + 0.424264i
\(51\) 10.0000i 1.40028i
\(52\) −2.00000 3.00000i −0.277350 0.416025i
\(53\) −1.00000 + 1.00000i −0.137361 + 0.137361i −0.772444 0.635083i \(-0.780966\pi\)
0.635083 + 0.772444i \(0.280966\pi\)
\(54\) 4.00000 4.00000i 0.544331 0.544331i
\(55\) −1.00000 + 3.00000i −0.134840 + 0.404520i
\(56\) 2.00000i 0.267261i
\(57\) 6.00000i 0.794719i
\(58\) −4.00000 −0.525226
\(59\) −3.00000 3.00000i −0.390567 0.390567i 0.484323 0.874889i \(-0.339066\pi\)
−0.874889 + 0.484323i \(0.839066\pi\)
\(60\) −1.00000 + 3.00000i −0.129099 + 0.387298i
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 + 1.00000i −0.127000 + 0.127000i
\(63\) 2.00000i 0.251976i
\(64\) −1.00000 −0.125000
\(65\) −7.00000 4.00000i −0.868243 0.496139i
\(66\) −2.00000 −0.246183
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) 5.00000 5.00000i 0.606339 0.606339i
\(69\) −10.0000 −1.20386
\(70\) 2.00000 + 4.00000i 0.239046 + 0.478091i
\(71\) 1.00000 + 1.00000i 0.118678 + 0.118678i 0.763952 0.645273i \(-0.223257\pi\)
−0.645273 + 0.763952i \(0.723257\pi\)
\(72\) 1.00000 0.117851
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 8.00000i 0.929981i
\(75\) 1.00000 + 7.00000i 0.115470 + 0.808290i
\(76\) −3.00000 + 3.00000i −0.344124 + 0.344124i
\(77\) −2.00000 + 2.00000i −0.227921 + 0.227921i
\(78\) 1.00000 5.00000i 0.113228 0.566139i
\(79\) 14.0000i 1.57512i 0.616236 + 0.787562i \(0.288657\pi\)
−0.616236 + 0.787562i \(0.711343\pi\)
\(80\) −2.00000 + 1.00000i −0.223607 + 0.111803i
\(81\) 5.00000 0.555556
\(82\) −1.00000 + 1.00000i −0.110432 + 0.110432i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) −2.00000 + 2.00000i −0.218218 + 0.218218i
\(85\) 5.00000 15.0000i 0.542326 1.62698i
\(86\) 5.00000 5.00000i 0.539164 0.539164i
\(87\) −4.00000 4.00000i −0.428845 0.428845i
\(88\) −1.00000 1.00000i −0.106600 0.106600i
\(89\) 7.00000 + 7.00000i 0.741999 + 0.741999i 0.972962 0.230964i \(-0.0741879\pi\)
−0.230964 + 0.972962i \(0.574188\pi\)
\(90\) 2.00000 1.00000i 0.210819 0.105409i
\(91\) −4.00000 6.00000i −0.419314 0.628971i
\(92\) −5.00000 5.00000i −0.521286 0.521286i
\(93\) −2.00000 −0.207390
\(94\) 2.00000i 0.206284i
\(95\) −3.00000 + 9.00000i −0.307794 + 0.923381i
\(96\) −1.00000 1.00000i −0.102062 0.102062i
\(97\) 2.00000i 0.203069i −0.994832 0.101535i \(-0.967625\pi\)
0.994832 0.101535i \(-0.0323753\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 10.0000 0.990148
\(103\) 5.00000 + 5.00000i 0.492665 + 0.492665i 0.909145 0.416480i \(-0.136736\pi\)
−0.416480 + 0.909145i \(0.636736\pi\)
\(104\) 3.00000 2.00000i 0.294174 0.196116i
\(105\) −2.00000 + 6.00000i −0.195180 + 0.585540i
\(106\) −1.00000 1.00000i −0.0971286 0.0971286i
\(107\) 13.0000 + 13.0000i 1.25676 + 1.25676i 0.952632 + 0.304125i \(0.0983642\pi\)
0.304125 + 0.952632i \(0.401636\pi\)
\(108\) 4.00000 + 4.00000i 0.384900 + 0.384900i
\(109\) 13.0000 13.0000i 1.24517 1.24517i 0.287348 0.957826i \(-0.407226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) −3.00000 1.00000i −0.286039 0.0953463i
\(111\) −8.00000 + 8.00000i −0.759326 + 0.759326i
\(112\) −2.00000 −0.188982
\(113\) 9.00000 9.00000i 0.846649 0.846649i −0.143065 0.989713i \(-0.545696\pi\)
0.989713 + 0.143065i \(0.0456957\pi\)
\(114\) −6.00000 −0.561951
\(115\) −15.0000 5.00000i −1.39876 0.466252i
\(116\) 4.00000i 0.371391i
\(117\) −3.00000 + 2.00000i −0.277350 + 0.184900i
\(118\) 3.00000 3.00000i 0.276172 0.276172i
\(119\) 10.0000 10.0000i 0.916698 0.916698i
\(120\) −3.00000 1.00000i −0.273861 0.0912871i
\(121\) 9.00000i 0.818182i
\(122\) 2.00000i 0.181071i
\(123\) −2.00000 −0.180334
\(124\) −1.00000 1.00000i −0.0898027 0.0898027i
\(125\) −2.00000 + 11.0000i −0.178885 + 0.983870i
\(126\) 2.00000 0.178174
\(127\) 15.0000 15.0000i 1.33103 1.33103i 0.426589 0.904445i \(-0.359715\pi\)
0.904445 0.426589i \(-0.140285\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 10.0000 0.880451
\(130\) 4.00000 7.00000i 0.350823 0.613941i
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 2.00000i 0.174078i
\(133\) −6.00000 + 6.00000i −0.520266 + 0.520266i
\(134\) 12.0000 1.03664
\(135\) 12.0000 + 4.00000i 1.03280 + 0.344265i
\(136\) 5.00000 + 5.00000i 0.428746 + 0.428746i
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 10.0000i 0.851257i
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) −4.00000 + 2.00000i −0.338062 + 0.169031i
\(141\) 2.00000 2.00000i 0.168430 0.168430i
\(142\) −1.00000 + 1.00000i −0.0839181 + 0.0839181i
\(143\) 5.00000 + 1.00000i 0.418121 + 0.0836242i
\(144\) 1.00000i 0.0833333i
\(145\) −4.00000 8.00000i −0.332182 0.664364i
\(146\) −6.00000 −0.496564
\(147\) 3.00000 3.00000i 0.247436 0.247436i
\(148\) −8.00000 −0.657596
\(149\) 13.0000 13.0000i 1.06500 1.06500i 0.0672664 0.997735i \(-0.478572\pi\)
0.997735 0.0672664i \(-0.0214278\pi\)
\(150\) −7.00000 + 1.00000i −0.571548 + 0.0816497i
\(151\) −9.00000 + 9.00000i −0.732410 + 0.732410i −0.971097 0.238687i \(-0.923283\pi\)
0.238687 + 0.971097i \(0.423283\pi\)
\(152\) −3.00000 3.00000i −0.243332 0.243332i
\(153\) −5.00000 5.00000i −0.404226 0.404226i
\(154\) −2.00000 2.00000i −0.161165 0.161165i
\(155\) −3.00000 1.00000i −0.240966 0.0803219i
\(156\) 5.00000 + 1.00000i 0.400320 + 0.0800641i
\(157\) 3.00000 + 3.00000i 0.239426 + 0.239426i 0.816612 0.577186i \(-0.195849\pi\)
−0.577186 + 0.816612i \(0.695849\pi\)
\(158\) −14.0000 −1.11378
\(159\) 2.00000i 0.158610i
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) −10.0000 10.0000i −0.788110 0.788110i
\(162\) 5.00000i 0.392837i
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) −1.00000 1.00000i −0.0780869 0.0780869i
\(165\) −2.00000 4.00000i −0.155700 0.311400i
\(166\) 6.00000i 0.465690i
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −2.00000 2.00000i −0.154303 0.154303i
\(169\) −5.00000 + 12.0000i −0.384615 + 0.923077i
\(170\) 15.0000 + 5.00000i 1.15045 + 0.383482i
\(171\) 3.00000 + 3.00000i 0.229416 + 0.229416i
\(172\) 5.00000 + 5.00000i 0.381246 + 0.381246i
\(173\) −15.0000 15.0000i −1.14043 1.14043i −0.988372 0.152057i \(-0.951410\pi\)
−0.152057 0.988372i \(-0.548590\pi\)
\(174\) 4.00000 4.00000i 0.303239 0.303239i
\(175\) −6.00000 + 8.00000i −0.453557 + 0.604743i
\(176\) 1.00000 1.00000i 0.0753778 0.0753778i
\(177\) 6.00000 0.450988
\(178\) −7.00000 + 7.00000i −0.524672 + 0.524672i
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 1.00000 + 2.00000i 0.0745356 + 0.149071i
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 6.00000 4.00000i 0.444750 0.296500i
\(183\) −2.00000 + 2.00000i −0.147844 + 0.147844i
\(184\) 5.00000 5.00000i 0.368605 0.368605i
\(185\) −16.0000 + 8.00000i −1.17634 + 0.588172i
\(186\) 2.00000i 0.146647i
\(187\) 10.0000i 0.731272i
\(188\) 2.00000 0.145865
\(189\) 8.00000 + 8.00000i 0.581914 + 0.581914i
\(190\) −9.00000 3.00000i −0.652929 0.217643i
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 1.00000 1.00000i 0.0721688 0.0721688i
\(193\) 14.0000i 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 2.00000 0.143592
\(195\) 11.0000 3.00000i 0.787726 0.214834i
\(196\) 3.00000 0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) −1.00000 + 1.00000i −0.0710669 + 0.0710669i
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) −4.00000 3.00000i −0.282843 0.212132i
\(201\) 12.0000 + 12.0000i 0.846415 + 0.846415i
\(202\) 0 0
\(203\) 8.00000i 0.561490i
\(204\) 10.0000i 0.700140i
\(205\) −3.00000 1.00000i −0.209529 0.0698430i
\(206\) −5.00000 + 5.00000i −0.348367 + 0.348367i
\(207\) −5.00000 + 5.00000i −0.347524 + 0.347524i
\(208\) 2.00000 + 3.00000i 0.138675 + 0.208013i
\(209\) 6.00000i 0.415029i
\(210\) −6.00000 2.00000i −0.414039 0.138013i
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 1.00000 1.00000i 0.0686803 0.0686803i
\(213\) −2.00000 −0.137038
\(214\) −13.0000 + 13.0000i −0.888662 + 0.888662i
\(215\) 15.0000 + 5.00000i 1.02299 + 0.340997i
\(216\) −4.00000 + 4.00000i −0.272166 + 0.272166i
\(217\) −2.00000 2.00000i −0.135769 0.135769i
\(218\) 13.0000 + 13.0000i 0.880471 + 0.880471i
\(219\) −6.00000 6.00000i −0.405442 0.405442i
\(220\) 1.00000 3.00000i 0.0674200 0.202260i
\(221\) −25.0000 5.00000i −1.68168 0.336336i
\(222\) −8.00000 8.00000i −0.536925 0.536925i
\(223\) −6.00000 −0.401790 −0.200895 0.979613i \(-0.564385\pi\)
−0.200895 + 0.979613i \(0.564385\pi\)
\(224\) 2.00000i 0.133631i
\(225\) 4.00000 + 3.00000i 0.266667 + 0.200000i
\(226\) 9.00000 + 9.00000i 0.598671 + 0.598671i
\(227\) 12.0000i 0.796468i −0.917284 0.398234i \(-0.869623\pi\)
0.917284 0.398234i \(-0.130377\pi\)
\(228\) 6.00000i 0.397360i
\(229\) −3.00000 3.00000i −0.198246 0.198246i 0.601002 0.799248i \(-0.294768\pi\)
−0.799248 + 0.601002i \(0.794768\pi\)
\(230\) 5.00000 15.0000i 0.329690 0.989071i
\(231\) 4.00000i 0.263181i
\(232\) 4.00000 0.262613
\(233\) −5.00000 5.00000i −0.327561 0.327561i 0.524097 0.851658i \(-0.324403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) −2.00000 3.00000i −0.130744 0.196116i
\(235\) 4.00000 2.00000i 0.260931 0.130466i
\(236\) 3.00000 + 3.00000i 0.195283 + 0.195283i
\(237\) −14.0000 14.0000i −0.909398 0.909398i
\(238\) 10.0000 + 10.0000i 0.648204 + 0.648204i
\(239\) −7.00000 + 7.00000i −0.452792 + 0.452792i −0.896280 0.443488i \(-0.853741\pi\)
0.443488 + 0.896280i \(0.353741\pi\)
\(240\) 1.00000 3.00000i 0.0645497 0.193649i
\(241\) 1.00000 1.00000i 0.0644157 0.0644157i −0.674165 0.738581i \(-0.735496\pi\)
0.738581 + 0.674165i \(0.235496\pi\)
\(242\) −9.00000 −0.578542
\(243\) 7.00000 7.00000i 0.449050 0.449050i
\(244\) −2.00000 −0.128037
\(245\) 6.00000 3.00000i 0.383326 0.191663i
\(246\) 2.00000i 0.127515i
\(247\) 15.0000 + 3.00000i 0.954427 + 0.190885i
\(248\) 1.00000 1.00000i 0.0635001 0.0635001i
\(249\) 6.00000 6.00000i 0.380235 0.380235i
\(250\) −11.0000 2.00000i −0.695701 0.126491i
\(251\) 30.0000i 1.89358i −0.321847 0.946792i \(-0.604304\pi\)
0.321847 0.946792i \(-0.395696\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 10.0000 0.628695
\(254\) 15.0000 + 15.0000i 0.941184 + 0.941184i
\(255\) 10.0000 + 20.0000i 0.626224 + 1.25245i
\(256\) 1.00000 0.0625000
\(257\) 15.0000 15.0000i 0.935674 0.935674i −0.0623783 0.998053i \(-0.519869\pi\)
0.998053 + 0.0623783i \(0.0198685\pi\)
\(258\) 10.0000i 0.622573i
\(259\) −16.0000 −0.994192
\(260\) 7.00000 + 4.00000i 0.434122 + 0.248069i
\(261\) −4.00000 −0.247594
\(262\) 12.0000i 0.741362i
\(263\) 9.00000 9.00000i 0.554964 0.554964i −0.372906 0.927869i \(-0.621638\pi\)
0.927869 + 0.372906i \(0.121638\pi\)
\(264\) 2.00000 0.123091
\(265\) 1.00000 3.00000i 0.0614295 0.184289i
\(266\) −6.00000 6.00000i −0.367884 0.367884i
\(267\) −14.0000 −0.856786
\(268\) 12.0000i 0.733017i
\(269\) 16.0000i 0.975537i −0.872973 0.487769i \(-0.837811\pi\)
0.872973 0.487769i \(-0.162189\pi\)
\(270\) −4.00000 + 12.0000i −0.243432 + 0.730297i
\(271\) −9.00000 + 9.00000i −0.546711 + 0.546711i −0.925488 0.378777i \(-0.876345\pi\)
0.378777 + 0.925488i \(0.376345\pi\)
\(272\) −5.00000 + 5.00000i −0.303170 + 0.303170i
\(273\) 10.0000 + 2.00000i 0.605228 + 0.121046i
\(274\) 12.0000i 0.724947i
\(275\) −1.00000 7.00000i −0.0603023 0.422116i
\(276\) 10.0000 0.601929
\(277\) 5.00000 5.00000i 0.300421 0.300421i −0.540758 0.841178i \(-0.681862\pi\)
0.841178 + 0.540758i \(0.181862\pi\)
\(278\) −14.0000 −0.839664
\(279\) −1.00000 + 1.00000i −0.0598684 + 0.0598684i
\(280\) −2.00000 4.00000i −0.119523 0.239046i
\(281\) 21.0000 21.0000i 1.25275 1.25275i 0.298275 0.954480i \(-0.403589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 2.00000 + 2.00000i 0.119098 + 0.119098i
\(283\) 15.0000 + 15.0000i 0.891657 + 0.891657i 0.994679 0.103022i \(-0.0328511\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(284\) −1.00000 1.00000i −0.0593391 0.0593391i
\(285\) −6.00000 12.0000i −0.355409 0.710819i
\(286\) −1.00000 + 5.00000i −0.0591312 + 0.295656i
\(287\) −2.00000 2.00000i −0.118056 0.118056i
\(288\) −1.00000 −0.0589256
\(289\) 33.0000i 1.94118i
\(290\) 8.00000 4.00000i 0.469776 0.234888i
\(291\) 2.00000 + 2.00000i 0.117242 + 0.117242i
\(292\) 6.00000i 0.351123i
\(293\) 26.0000i 1.51894i 0.650545 + 0.759468i \(0.274541\pi\)
−0.650545 + 0.759468i \(0.725459\pi\)
\(294\) 3.00000 + 3.00000i 0.174964 + 0.174964i
\(295\) 9.00000 + 3.00000i 0.524000 + 0.174667i
\(296\) 8.00000i 0.464991i
\(297\) −8.00000 −0.464207
\(298\) 13.0000 + 13.0000i 0.753070 + 0.753070i
\(299\) −5.00000 + 25.0000i −0.289157 + 1.44579i
\(300\) −1.00000 7.00000i −0.0577350 0.404145i
\(301\) 10.0000 + 10.0000i 0.576390 + 0.576390i
\(302\) −9.00000 9.00000i −0.517892 0.517892i
\(303\) 0 0
\(304\) 3.00000 3.00000i 0.172062 0.172062i
\(305\) −4.00000 + 2.00000i −0.229039 + 0.114520i
\(306\) 5.00000 5.00000i 0.285831 0.285831i
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 2.00000 2.00000i 0.113961 0.113961i
\(309\) −10.0000 −0.568880
\(310\) 1.00000 3.00000i 0.0567962 0.170389i
\(311\) 10.0000i 0.567048i 0.958965 + 0.283524i \(0.0915036\pi\)
−0.958965 + 0.283524i \(0.908496\pi\)
\(312\) −1.00000 + 5.00000i −0.0566139 + 0.283069i
\(313\) 9.00000 9.00000i 0.508710 0.508710i −0.405420 0.914130i \(-0.632875\pi\)
0.914130 + 0.405420i \(0.132875\pi\)
\(314\) −3.00000 + 3.00000i −0.169300 + 0.169300i
\(315\) 2.00000 + 4.00000i 0.112687 + 0.225374i
\(316\) 14.0000i 0.787562i
\(317\) 2.00000i 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 2.00000 0.112154
\(319\) 4.00000 + 4.00000i 0.223957 + 0.223957i
\(320\) 2.00000 1.00000i 0.111803 0.0559017i
\(321\) −26.0000 −1.45118
\(322\) 10.0000 10.0000i 0.557278 0.557278i
\(323\) 30.0000i 1.66924i
\(324\) −5.00000 −0.277778
\(325\) 18.0000 + 1.00000i 0.998460 + 0.0554700i
\(326\) 4.00000 0.221540
\(327\) 26.0000i 1.43780i
\(328\) 1.00000 1.00000i 0.0552158 0.0552158i
\(329\) 4.00000 0.220527
\(330\) 4.00000 2.00000i 0.220193 0.110096i
\(331\) −9.00000 9.00000i −0.494685 0.494685i 0.415094 0.909779i \(-0.363749\pi\)
−0.909779 + 0.415094i \(0.863749\pi\)
\(332\) 6.00000 0.329293
\(333\) 8.00000i 0.438397i
\(334\) 2.00000i 0.109435i
\(335\) 12.0000 + 24.0000i 0.655630 + 1.31126i
\(336\) 2.00000 2.00000i 0.109109 0.109109i
\(337\) −5.00000 + 5.00000i −0.272367 + 0.272367i −0.830053 0.557685i \(-0.811690\pi\)
0.557685 + 0.830053i \(0.311690\pi\)
\(338\) −12.0000 5.00000i −0.652714 0.271964i
\(339\) 18.0000i 0.977626i
\(340\) −5.00000 + 15.0000i −0.271163 + 0.813489i
\(341\) 2.00000 0.108306
\(342\) −3.00000 + 3.00000i −0.162221 + 0.162221i
\(343\) 20.0000 1.07990
\(344\) −5.00000 + 5.00000i −0.269582 + 0.269582i
\(345\) 20.0000 10.0000i 1.07676 0.538382i
\(346\) 15.0000 15.0000i 0.806405 0.806405i
\(347\) −7.00000 7.00000i −0.375780 0.375780i 0.493797 0.869577i \(-0.335608\pi\)
−0.869577 + 0.493797i \(0.835608\pi\)
\(348\) 4.00000 + 4.00000i 0.214423 + 0.214423i
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) −8.00000 6.00000i −0.427618 0.320713i
\(351\) 4.00000 20.0000i 0.213504 1.06752i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) −16.0000 −0.851594 −0.425797 0.904819i \(-0.640006\pi\)
−0.425797 + 0.904819i \(0.640006\pi\)
\(354\) 6.00000i 0.318896i
\(355\) −3.00000 1.00000i −0.159223 0.0530745i
\(356\) −7.00000 7.00000i −0.370999 0.370999i
\(357\) 20.0000i 1.05851i
\(358\) 20.0000i 1.05703i
\(359\) −13.0000 13.0000i −0.686114 0.686114i 0.275257 0.961371i \(-0.411237\pi\)
−0.961371 + 0.275257i \(0.911237\pi\)
\(360\) −2.00000 + 1.00000i −0.105409 + 0.0527046i
\(361\) 1.00000i 0.0526316i
\(362\) −20.0000 −1.05118
\(363\) −9.00000 9.00000i −0.472377 0.472377i
\(364\) 4.00000 + 6.00000i 0.209657 + 0.314485i
\(365\) −6.00000 12.0000i −0.314054 0.628109i
\(366\) −2.00000 2.00000i −0.104542 0.104542i
\(367\) 3.00000 + 3.00000i 0.156599 + 0.156599i 0.781058 0.624459i \(-0.214680\pi\)
−0.624459 + 0.781058i \(0.714680\pi\)
\(368\) 5.00000 + 5.00000i 0.260643 + 0.260643i
\(369\) −1.00000 + 1.00000i −0.0520579 + 0.0520579i
\(370\) −8.00000 16.0000i −0.415900 0.831800i
\(371\) 2.00000 2.00000i 0.103835 0.103835i
\(372\) 2.00000 0.103695
\(373\) −1.00000 + 1.00000i −0.0517780 + 0.0517780i −0.732522 0.680744i \(-0.761657\pi\)
0.680744 + 0.732522i \(0.261657\pi\)
\(374\) −10.0000 −0.517088
\(375\) −9.00000 13.0000i −0.464758 0.671317i
\(376\) 2.00000i 0.103142i
\(377\) −12.0000 + 8.00000i −0.618031 + 0.412021i
\(378\) −8.00000 + 8.00000i −0.411476 + 0.411476i
\(379\) −17.0000 + 17.0000i −0.873231 + 0.873231i −0.992823 0.119592i \(-0.961841\pi\)
0.119592 + 0.992823i \(0.461841\pi\)
\(380\) 3.00000 9.00000i 0.153897 0.461690i
\(381\) 30.0000i 1.53695i
\(382\) 8.00000i 0.409316i
\(383\) −6.00000 −0.306586 −0.153293 0.988181i \(-0.548988\pi\)
−0.153293 + 0.988181i \(0.548988\pi\)
\(384\) 1.00000 + 1.00000i 0.0510310 + 0.0510310i
\(385\) 2.00000 6.00000i 0.101929 0.305788i
\(386\) 14.0000 0.712581
\(387\) 5.00000 5.00000i 0.254164 0.254164i
\(388\) 2.00000i 0.101535i
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 3.00000 + 11.0000i 0.151911 + 0.557007i
\(391\) −50.0000 −2.52861
\(392\) 3.00000i 0.151523i
\(393\) −12.0000 + 12.0000i −0.605320 + 0.605320i
\(394\) −18.0000 −0.906827
\(395\) −14.0000 28.0000i −0.704416 1.40883i
\(396\) −1.00000 1.00000i −0.0502519 0.0502519i
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) 12.0000i 0.600751i
\(400\) 3.00000 4.00000i 0.150000 0.200000i
\(401\) 1.00000 1.00000i 0.0499376 0.0499376i −0.681697 0.731635i \(-0.738758\pi\)
0.731635 + 0.681697i \(0.238758\pi\)
\(402\) −12.0000 + 12.0000i −0.598506 + 0.598506i
\(403\) −1.00000 + 5.00000i −0.0498135 + 0.249068i
\(404\) 0 0
\(405\) −10.0000 + 5.00000i −0.496904 + 0.248452i
\(406\) 8.00000 0.397033
\(407\) 8.00000 8.00000i 0.396545 0.396545i
\(408\) −10.0000 −0.495074
\(409\) 3.00000 3.00000i 0.148340 0.148340i −0.629036 0.777376i \(-0.716550\pi\)
0.777376 + 0.629036i \(0.216550\pi\)
\(410\) 1.00000 3.00000i 0.0493865 0.148159i
\(411\) 12.0000 12.0000i 0.591916 0.591916i
\(412\) −5.00000 5.00000i −0.246332 0.246332i
\(413\) 6.00000 + 6.00000i 0.295241 + 0.295241i
\(414\) −5.00000 5.00000i −0.245737 0.245737i
\(415\) 12.0000 6.00000i 0.589057 0.294528i
\(416\) −3.00000 + 2.00000i −0.147087 + 0.0980581i
\(417\) −14.0000 14.0000i −0.685583 0.685583i
\(418\) 6.00000 0.293470
\(419\) 26.0000i 1.27018i −0.772437 0.635092i \(-0.780962\pi\)
0.772437 0.635092i \(-0.219038\pi\)
\(420\) 2.00000 6.00000i 0.0975900 0.292770i
\(421\) −9.00000 9.00000i −0.438633 0.438633i 0.452919 0.891552i \(-0.350383\pi\)
−0.891552 + 0.452919i \(0.850383\pi\)
\(422\) 12.0000i 0.584151i
\(423\) 2.00000i 0.0972433i
\(424\) 1.00000 + 1.00000i 0.0485643 + 0.0485643i
\(425\) 5.00000 + 35.0000i 0.242536 + 1.69775i
\(426\) 2.00000i 0.0969003i
\(427\) −4.00000 −0.193574
\(428\) −13.0000 13.0000i −0.628379 0.628379i
\(429\) −6.00000 + 4.00000i −0.289683 + 0.193122i
\(430\) −5.00000 + 15.0000i −0.241121 + 0.723364i
\(431\) 21.0000 + 21.0000i 1.01153 + 1.01153i 0.999933 + 0.0116017i \(0.00369302\pi\)
0.0116017 + 0.999933i \(0.496307\pi\)
\(432\) −4.00000 4.00000i −0.192450 0.192450i
\(433\) 15.0000 + 15.0000i 0.720854 + 0.720854i 0.968779 0.247925i \(-0.0797487\pi\)
−0.247925 + 0.968779i \(0.579749\pi\)
\(434\) 2.00000 2.00000i 0.0960031 0.0960031i
\(435\) 12.0000 + 4.00000i 0.575356 + 0.191785i
\(436\) −13.0000 + 13.0000i −0.622587 + 0.622587i
\(437\) 30.0000 1.43509
\(438\) 6.00000 6.00000i 0.286691 0.286691i
\(439\) −40.0000 −1.90910 −0.954548 0.298057i \(-0.903661\pi\)
−0.954548 + 0.298057i \(0.903661\pi\)
\(440\) 3.00000 + 1.00000i 0.143019 + 0.0476731i
\(441\) 3.00000i 0.142857i
\(442\) 5.00000 25.0000i 0.237826 1.18913i
\(443\) 19.0000 19.0000i 0.902717 0.902717i −0.0929532 0.995670i \(-0.529631\pi\)
0.995670 + 0.0929532i \(0.0296307\pi\)
\(444\) 8.00000 8.00000i 0.379663 0.379663i
\(445\) −21.0000 7.00000i −0.995495 0.331832i
\(446\) 6.00000i 0.284108i
\(447\) 26.0000i 1.22976i
\(448\) 2.00000 0.0944911
\(449\) 7.00000 + 7.00000i 0.330350 + 0.330350i 0.852720 0.522369i \(-0.174952\pi\)
−0.522369 + 0.852720i \(0.674952\pi\)
\(450\) −3.00000 + 4.00000i −0.141421 + 0.188562i
\(451\) 2.00000 0.0941763
\(452\) −9.00000 + 9.00000i −0.423324 + 0.423324i
\(453\) 18.0000i 0.845714i
\(454\) 12.0000 0.563188
\(455\) 14.0000 + 8.00000i 0.656330 + 0.375046i
\(456\) 6.00000 0.280976
\(457\) 38.0000i 1.77757i 0.458329 + 0.888783i \(0.348448\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(458\) 3.00000 3.00000i 0.140181 0.140181i
\(459\) 40.0000 1.86704
\(460\) 15.0000 + 5.00000i 0.699379 + 0.233126i
\(461\) 11.0000 + 11.0000i 0.512321 + 0.512321i 0.915237 0.402916i \(-0.132003\pi\)
−0.402916 + 0.915237i \(0.632003\pi\)
\(462\) 4.00000 0.186097
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 4.00000i 0.185695i
\(465\) 4.00000 2.00000i 0.185496 0.0927478i
\(466\) 5.00000 5.00000i 0.231621 0.231621i
\(467\) 5.00000 5.00000i 0.231372 0.231372i −0.581893 0.813265i \(-0.697688\pi\)
0.813265 + 0.581893i \(0.197688\pi\)
\(468\) 3.00000 2.00000i 0.138675 0.0924500i
\(469\) 24.0000i 1.10822i
\(470\) 2.00000 + 4.00000i 0.0922531 + 0.184506i
\(471\) −6.00000 −0.276465
\(472\) −3.00000 + 3.00000i −0.138086 + 0.138086i
\(473\) −10.0000 −0.459800
\(474\) 14.0000 14.0000i 0.643041 0.643041i
\(475\) −3.00000 21.0000i −0.137649 0.963546i
\(476\) −10.0000 + 10.0000i −0.458349 + 0.458349i
\(477\) −1.00000 1.00000i −0.0457869 0.0457869i
\(478\) −7.00000 7.00000i −0.320173 0.320173i
\(479\) −13.0000 13.0000i −0.593985 0.593985i 0.344720 0.938705i \(-0.387974\pi\)
−0.938705 + 0.344720i \(0.887974\pi\)
\(480\) 3.00000 + 1.00000i 0.136931 + 0.0456435i
\(481\) 16.0000 + 24.0000i 0.729537 + 1.09431i
\(482\) 1.00000 + 1.00000i 0.0455488 + 0.0455488i
\(483\) 20.0000 0.910032
\(484\) 9.00000i 0.409091i
\(485\) 2.00000 + 4.00000i 0.0908153 + 0.181631i
\(486\) 7.00000 + 7.00000i 0.317526 + 0.317526i
\(487\) 32.0000i 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 2.00000i 0.0905357i
\(489\) 4.00000 + 4.00000i 0.180886 + 0.180886i
\(490\) 3.00000 + 6.00000i 0.135526 + 0.271052i
\(491\) 10.0000i 0.451294i 0.974209 + 0.225647i \(0.0724495\pi\)
−0.974209 + 0.225647i \(0.927550\pi\)
\(492\) 2.00000 0.0901670
\(493\) −20.0000 20.0000i −0.900755 0.900755i
\(494\) −3.00000 + 15.0000i −0.134976 + 0.674882i
\(495\) −3.00000 1.00000i −0.134840 0.0449467i
\(496\) 1.00000 + 1.00000i 0.0449013 + 0.0449013i
\(497\) −2.00000 2.00000i −0.0897123 0.0897123i
\(498\) 6.00000 + 6.00000i 0.268866 + 0.268866i
\(499\) 23.0000 23.0000i 1.02962 1.02962i 0.0300737 0.999548i \(-0.490426\pi\)
0.999548 0.0300737i \(-0.00957421\pi\)
\(500\) 2.00000 11.0000i 0.0894427 0.491935i
\(501\) 2.00000 2.00000i 0.0893534 0.0893534i
\(502\) 30.0000 1.33897
\(503\) 9.00000 9.00000i 0.401290 0.401290i −0.477397 0.878688i \(-0.658420\pi\)
0.878688 + 0.477397i \(0.158420\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) 10.0000i 0.444554i
\(507\) −7.00000 17.0000i −0.310881 0.754997i
\(508\) −15.0000 + 15.0000i −0.665517 + 0.665517i
\(509\) 13.0000 13.0000i 0.576215 0.576215i −0.357643 0.933858i \(-0.616420\pi\)
0.933858 + 0.357643i \(0.116420\pi\)
\(510\) −20.0000 + 10.0000i −0.885615 + 0.442807i
\(511\) 12.0000i 0.530849i
\(512\) 1.00000i 0.0441942i
\(513\) −24.0000 −1.05963
\(514\) 15.0000 + 15.0000i 0.661622 + 0.661622i
\(515\) −15.0000 5.00000i −0.660979 0.220326i
\(516\) −10.0000 −0.440225
\(517\) −2.00000 + 2.00000i −0.0879599 + 0.0879599i
\(518\) 16.0000i 0.703000i
\(519\) 30.0000 1.31685
\(520\) −4.00000 + 7.00000i −0.175412 + 0.306970i
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 4.00000i 0.175075i
\(523\) −21.0000 + 21.0000i −0.918266 + 0.918266i −0.996903 0.0786374i \(-0.974943\pi\)
0.0786374 + 0.996903i \(0.474943\pi\)
\(524\) −12.0000 −0.524222
\(525\) −2.00000 14.0000i −0.0872872 0.611010i
\(526\) 9.00000 + 9.00000i 0.392419 + 0.392419i
\(527\) −10.0000 −0.435607
\(528\) 2.00000i 0.0870388i
\(529\) 27.0000i 1.17391i
\(530\) 3.00000 + 1.00000i 0.130312 + 0.0434372i
\(531\) 3.00000 3.00000i 0.130189 0.130189i
\(532\) 6.00000 6.00000i 0.260133 0.260133i
\(533\) −1.00000 + 5.00000i −0.0433148 + 0.216574i
\(534\) 14.0000i 0.605839i
\(535\) −39.0000 13.0000i −1.68612 0.562039i
\(536\) −12.0000 −0.518321
\(537\) 20.0000 20.0000i 0.863064 0.863064i
\(538\) 16.0000 0.689809
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) −12.0000 4.00000i −0.516398 0.172133i
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) −9.00000 9.00000i −0.386583 0.386583i
\(543\) −20.0000 20.0000i −0.858282 0.858282i
\(544\) −5.00000 5.00000i −0.214373 0.214373i
\(545\) −13.0000 + 39.0000i −0.556859 + 1.67058i
\(546\) −2.00000 + 10.0000i −0.0855921 + 0.427960i
\(547\) −7.00000 7.00000i −0.299298 0.299298i 0.541441 0.840739i \(-0.317879\pi\)
−0.840739 + 0.541441i \(0.817879\pi\)
\(548\) 12.0000 0.512615
\(549\) 2.00000i 0.0853579i
\(550\) 7.00000 1.00000i 0.298481 0.0426401i
\(551\) 12.0000 + 12.0000i 0.511217 + 0.511217i
\(552\) 10.0000i 0.425628i
\(553\) 28.0000i 1.19068i
\(554\) 5.00000 + 5.00000i 0.212430 + 0.212430i
\(555\) 8.00000 24.0000i 0.339581 1.01874i
\(556\) 14.0000i 0.593732i
\(557\) 8.00000 0.338971 0.169485 0.985533i \(-0.445789\pi\)
0.169485 + 0.985533i \(0.445789\pi\)
\(558\) −1.00000 1.00000i −0.0423334 0.0423334i
\(559\) 5.00000 25.0000i 0.211477 1.05739i
\(560\) 4.00000 2.00000i 0.169031 0.0845154i
\(561\) −10.0000 10.0000i −0.422200 0.422200i
\(562\) 21.0000 + 21.0000i 0.885832 + 0.885832i
\(563\) −5.00000 5.00000i −0.210725 0.210725i 0.593851 0.804575i \(-0.297607\pi\)
−0.804575 + 0.593851i \(0.797607\pi\)
\(564\) −2.00000 + 2.00000i −0.0842152 + 0.0842152i
\(565\) −9.00000 + 27.0000i −0.378633 + 1.13590i
\(566\) −15.0000 + 15.0000i −0.630497 + 0.630497i
\(567\) −10.0000 −0.419961
\(568\) 1.00000 1.00000i 0.0419591 0.0419591i
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 12.0000 6.00000i 0.502625 0.251312i
\(571\) 10.0000i 0.418487i 0.977864 + 0.209243i \(0.0671001\pi\)
−0.977864 + 0.209243i \(0.932900\pi\)
\(572\) −5.00000 1.00000i −0.209061 0.0418121i
\(573\) 8.00000 8.00000i 0.334205 0.334205i
\(574\) 2.00000 2.00000i 0.0834784 0.0834784i
\(575\) 35.0000 5.00000i 1.45960 0.208514i
\(576\) 1.00000i 0.0416667i
\(577\) 22.0000i 0.915872i −0.888985 0.457936i \(-0.848589\pi\)
0.888985 0.457936i \(-0.151411\pi\)
\(578\) 33.0000 1.37262
\(579\) 14.0000 + 14.0000i 0.581820 + 0.581820i
\(580\) 4.00000 + 8.00000i 0.166091 + 0.332182i
\(581\) 12.0000 0.497844
\(582\) −2.00000 + 2.00000i −0.0829027 + 0.0829027i
\(583\) 2.00000i 0.0828315i
\(584\) 6.00000 0.248282
\(585\) 4.00000 7.00000i 0.165380 0.289414i
\(586\) −26.0000 −1.07405
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) −3.00000 + 3.00000i −0.123718 + 0.123718i
\(589\) 6.00000 0.247226
\(590\) −3.00000 + 9.00000i −0.123508 + 0.370524i
\(591\) −18.0000 18.0000i −0.740421 0.740421i
\(592\) 8.00000 0.328798
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) 8.00000i 0.328244i
\(595\) −10.0000 + 30.0000i −0.409960 + 1.22988i
\(596\) −13.0000 + 13.0000i −0.532501 + 0.532501i
\(597\) 0 0
\(598\) −25.0000 5.00000i −1.02233 0.204465i
\(599\) 14.0000i 0.572024i 0.958226 + 0.286012i \(0.0923298\pi\)
−0.958226 + 0.286012i \(0.907670\pi\)
\(600\) 7.00000 1.00000i 0.285774 0.0408248i
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) −10.0000 + 10.0000i −0.407570 + 0.407570i
\(603\) 12.0000 0.488678
\(604\) 9.00000 9.00000i 0.366205 0.366205i
\(605\) −9.00000 18.0000i −0.365902 0.731804i
\(606\) 0 0
\(607\) 3.00000 + 3.00000i 0.121766 + 0.121766i 0.765364 0.643598i \(-0.222559\pi\)
−0.643598 + 0.765364i \(0.722559\pi\)
\(608\) 3.00000 + 3.00000i 0.121666 + 0.121666i
\(609\) 8.00000 + 8.00000i 0.324176 + 0.324176i
\(610\) −2.00000 4.00000i −0.0809776 0.161955i
\(611\) −4.00000 6.00000i −0.161823 0.242734i
\(612\) 5.00000 + 5.00000i 0.202113 + 0.202113i
\(613\) 4.00000 0.161558 0.0807792 0.996732i \(-0.474259\pi\)
0.0807792 + 0.996732i \(0.474259\pi\)
\(614\) 2.00000i 0.0807134i
\(615\) 4.00000 2.00000i 0.161296 0.0806478i
\(616\) 2.00000 + 2.00000i 0.0805823 + 0.0805823i
\(617\) 38.0000i 1.52982i 0.644136 + 0.764911i \(0.277217\pi\)
−0.644136 + 0.764911i \(0.722783\pi\)
\(618\) 10.0000i 0.402259i
\(619\) −3.00000 3.00000i −0.120580 0.120580i 0.644242 0.764822i \(-0.277173\pi\)
−0.764822 + 0.644242i \(0.777173\pi\)
\(620\) 3.00000 + 1.00000i 0.120483 + 0.0401610i
\(621\) 40.0000i 1.60514i
\(622\) −10.0000 −0.400963
\(623\) −14.0000 14.0000i −0.560898 0.560898i
\(624\) −5.00000 1.00000i −0.200160 0.0400320i
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 9.00000 + 9.00000i 0.359712 + 0.359712i
\(627\) 6.00000 + 6.00000i 0.239617 + 0.239617i
\(628\) −3.00000 3.00000i −0.119713 0.119713i
\(629\) −40.0000 + 40.0000i −1.59490 + 1.59490i
\(630\) −4.00000 + 2.00000i −0.159364 + 0.0796819i
\(631\) 11.0000 11.0000i 0.437903 0.437903i −0.453403 0.891306i \(-0.649790\pi\)
0.891306 + 0.453403i \(0.149790\pi\)
\(632\) 14.0000 0.556890
\(633\) −12.0000 + 12.0000i −0.476957 + 0.476957i
\(634\) 2.00000 0.0794301
\(635\) −15.0000 + 45.0000i −0.595257 + 1.78577i
\(636\) 2.00000i 0.0793052i
\(637\) −6.00000 9.00000i −0.237729 0.356593i
\(638\) −4.00000 + 4.00000i −0.158362 + 0.158362i
\(639\) −1.00000 + 1.00000i −0.0395594 + 0.0395594i
\(640\) 1.00000 + 2.00000i 0.0395285 + 0.0790569i
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 26.0000i 1.02614i
\(643\) −46.0000 −1.81406 −0.907031 0.421063i \(-0.861657\pi\)
−0.907031 + 0.421063i \(0.861657\pi\)
\(644\) 10.0000 + 10.0000i 0.394055 + 0.394055i
\(645\) −20.0000 + 10.0000i −0.787499 + 0.393750i
\(646\) −30.0000 −1.18033
\(647\) −5.00000 + 5.00000i −0.196570 + 0.196570i −0.798528 0.601958i \(-0.794388\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(648\) 5.00000i 0.196419i
\(649\) −6.00000 −0.235521
\(650\) −1.00000 + 18.0000i −0.0392232 + 0.706018i
\(651\) 4.00000 0.156772
\(652\) 4.00000i 0.156652i
\(653\) −21.0000 + 21.0000i −0.821794 + 0.821794i −0.986365 0.164572i \(-0.947376\pi\)
0.164572 + 0.986365i \(0.447376\pi\)
\(654\) −26.0000 −1.01668
\(655\) −24.0000 + 12.0000i −0.937758 + 0.468879i
\(656\) 1.00000 + 1.00000i 0.0390434 + 0.0390434i
\(657\) −6.00000 −0.234082
\(658\) 4.00000i 0.155936i
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 2.00000 + 4.00000i 0.0778499 + 0.155700i
\(661\) 31.0000 31.0000i 1.20576 1.20576i 0.233373 0.972387i \(-0.425024\pi\)
0.972387 0.233373i \(-0.0749763\pi\)
\(662\) 9.00000 9.00000i 0.349795 0.349795i
\(663\) 30.0000 20.0000i 1.16510 0.776736i
\(664\) 6.00000i 0.232845i
\(665\) 6.00000 18.0000i 0.232670 0.698010i
\(666\) −8.00000 −0.309994
\(667\) −20.0000 + 20.0000i −0.774403 + 0.774403i
\(668\) 2.00000 0.0773823
\(669\) 6.00000 6.00000i 0.231973 0.231973i
\(670\) −24.0000 + 12.0000i −0.927201 + 0.463600i
\(671\) 2.00000 2.00000i 0.0772091 0.0772091i
\(672\) 2.00000 + 2.00000i 0.0771517 + 0.0771517i
\(673\) −5.00000 5.00000i −0.192736 0.192736i 0.604141 0.796877i \(-0.293516\pi\)
−0.796877 + 0.604141i \(0.793516\pi\)
\(674\) −5.00000 5.00000i −0.192593 0.192593i
\(675\) −28.0000 + 4.00000i −1.07772 + 0.153960i
\(676\) 5.00000 12.0000i 0.192308 0.461538i
\(677\) 23.0000 + 23.0000i 0.883962 + 0.883962i 0.993935 0.109973i \(-0.0350764\pi\)
−0.109973 + 0.993935i \(0.535076\pi\)
\(678\) −18.0000 −0.691286
\(679\) 4.00000i 0.153506i
\(680\) −15.0000 5.00000i −0.575224 0.191741i
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) 2.00000i 0.0765840i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) −3.00000 3.00000i −0.114708 0.114708i
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 20.0000i 0.763604i
\(687\) 6.00000 0.228914
\(688\) −5.00000 5.00000i −0.190623 0.190623i
\(689\) −5.00000 1.00000i −0.190485 0.0380970i
\(690\) 10.0000 + 20.0000i 0.380693 + 0.761387i
\(691\) −9.00000 9.00000i −0.342376 0.342376i 0.514884 0.857260i \(-0.327835\pi\)
−0.857260 + 0.514884i \(0.827835\pi\)
\(692\) 15.0000 + 15.0000i 0.570214 + 0.570214i
\(693\) −2.00000 2.00000i −0.0759737 0.0759737i
\(694\) 7.00000 7.00000i 0.265716 0.265716i
\(695\) −14.0000 28.0000i −0.531050 1.06210i
\(696\) −4.00000 + 4.00000i −0.151620 + 0.151620i
\(697\) −10.0000 −0.378777
\(698\) 3.00000 3.00000i 0.113552 0.113552i
\(699\) 10.0000 0.378235
\(700\) 6.00000 8.00000i 0.226779 0.302372i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 20.0000 + 4.00000i 0.754851 + 0.150970i
\(703\) 24.0000 24.0000i 0.905177 0.905177i
\(704\) −1.00000 + 1.00000i −0.0376889 + 0.0376889i
\(705\) −2.00000 + 6.00000i −0.0753244 + 0.225973i
\(706\) 16.0000i 0.602168i
\(707\) 0 0
\(708\) −6.00000 −0.225494
\(709\) −3.00000 3.00000i −0.112667 0.112667i 0.648526 0.761193i \(-0.275386\pi\)
−0.761193 + 0.648526i \(0.775386\pi\)
\(710\) 1.00000 3.00000i 0.0375293 0.112588i
\(711\) −14.0000 −0.525041
\(712\) 7.00000 7.00000i 0.262336 0.262336i
\(713\) 10.0000i 0.374503i
\(714\) −20.0000 −0.748481
\(715\) −11.0000 + 3.00000i −0.411377 + 0.112194i
\(716\) 20.0000 0.747435
\(717\) 14.0000i 0.522840i
\(718\) 13.0000 13.0000i 0.485156 0.485156i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −1.00000 2.00000i −0.0372678 0.0745356i
\(721\) −10.0000 10.0000i −0.372419 0.372419i
\(722\) −1.00000 −0.0372161
\(723\) 2.00000i 0.0743808i
\(724\) 20.0000i 0.743294i
\(725\) 16.0000 + 12.0000i 0.594225 + 0.445669i
\(726\) 9.00000 9.00000i 0.334021 0.334021i
\(727\) 35.0000 35.0000i 1.29808 1.29808i 0.368418 0.929660i \(-0.379900\pi\)
0.929660 0.368418i \(-0.120100\pi\)
\(728\) −6.00000 + 4.00000i −0.222375 + 0.148250i
\(729\) 29.0000i 1.07407i
\(730\) 12.0000 6.00000i 0.444140 0.222070i
\(731\) 50.0000 1.84932
\(732\) 2.00000 2.00000i 0.0739221 0.0739221i
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) −3.00000 + 3.00000i −0.110732 + 0.110732i
\(735\) −3.00000 + 9.00000i −0.110657 + 0.331970i
\(736\) −5.00000 + 5.00000i −0.184302 + 0.184302i
\(737\) −12.0000 12.0000i −0.442026 0.442026i
\(738\) −1.00000 1.00000i −0.0368105 0.0368105i
\(739\) 37.0000 + 37.0000i 1.36107 + 1.36107i 0.872560 + 0.488507i \(0.162458\pi\)
0.488507 + 0.872560i \(0.337542\pi\)
\(740\) 16.0000 8.00000i 0.588172 0.294086i
\(741\) −18.0000 + 12.0000i −0.661247 + 0.440831i
\(742\) 2.00000 + 2.00000i 0.0734223 + 0.0734223i
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 2.00000i 0.0733236i
\(745\) −13.0000 + 39.0000i −0.476283 + 1.42885i
\(746\) −1.00000 1.00000i −0.0366126 0.0366126i
\(747\) 6.00000i 0.219529i
\(748\) 10.0000i 0.365636i
\(749\) −26.0000 26.0000i −0.950019 0.950019i
\(750\) 13.0000 9.00000i 0.474693 0.328634i
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) −2.00000 −0.0729325
\(753\) 30.0000 + 30.0000i 1.09326 + 1.09326i
\(754\) −8.00000 12.0000i −0.291343 0.437014i
\(755\) 9.00000 27.0000i 0.327544 0.982631i
\(756\) −8.00000 8.00000i −0.290957 0.290957i
\(757\) −17.0000 17.0000i −0.617876 0.617876i 0.327111 0.944986i \(-0.393925\pi\)
−0.944986 + 0.327111i \(0.893925\pi\)
\(758\) −17.0000 17.0000i −0.617468 0.617468i
\(759\) −10.0000 + 10.0000i −0.362977 + 0.362977i
\(760\) 9.00000 + 3.00000i 0.326464 + 0.108821i
\(761\) −19.0000 + 19.0000i −0.688749 + 0.688749i −0.961956 0.273206i \(-0.911916\pi\)
0.273206 + 0.961956i \(0.411916\pi\)
\(762\) −30.0000 −1.08679
\(763\) −26.0000 + 26.0000i −0.941263 + 0.941263i
\(764\) 8.00000 0.289430
\(765\) 15.0000 + 5.00000i 0.542326 + 0.180775i
\(766\) 6.00000i 0.216789i
\(767\) 3.00000 15.0000i 0.108324 0.541619i
\(768\) −1.00000 + 1.00000i −0.0360844 + 0.0360844i
\(769\) 23.0000 23.0000i 0.829401 0.829401i −0.158033 0.987434i \(-0.550515\pi\)
0.987434 + 0.158033i \(0.0505151\pi\)
\(770\) 6.00000 + 2.00000i 0.216225 + 0.0720750i
\(771\) 30.0000i 1.08042i
\(772\) 14.0000i 0.503871i
\(773\) 24.0000 0.863220 0.431610 0.902060i \(-0.357946\pi\)
0.431610 + 0.902060i \(0.357946\pi\)
\(774\) 5.00000 + 5.00000i 0.179721 + 0.179721i
\(775\) 7.00000 1.00000i 0.251447 0.0359211i
\(776\) −2.00000 −0.0717958
\(777\) 16.0000 16.0000i 0.573997 0.573997i
\(778\) 10.0000i 0.358517i
\(779\) 6.00000 0.214972
\(780\) −11.0000 + 3.00000i −0.393863 + 0.107417i
\(781\) 2.00000 0.0715656
\(782\) 50.0000i 1.78800i
\(783\) 16.0000 16.0000i 0.571793 0.571793i
\(784\) −3.00000 −0.107143
\(785\) −9.00000 3.00000i −0.321224 0.107075i
\(786\) −12.0000 12.0000i −0.428026 0.428026i
\(787\) −42.0000 −1.49714 −0.748569 0.663057i \(-0.769259\pi\)
−0.748569 + 0.663057i \(0.769259\pi\)
\(788\) 18.0000i 0.641223i
\(789\) 18.0000i 0.640817i
\(790\) 28.0000 14.0000i 0.996195 0.498098i
\(791\) −18.0000 + 18.0000i −0.640006 + 0.640006i
\(792\) 1.00000 1.00000i 0.0355335 0.0355335i
\(793\) 4.00000 + 6.00000i 0.142044 + 0.213066i
\(794\) 8.00000i 0.283909i
\(795\) 2.00000 + 4.00000i 0.0709327 + 0.141865i
\(796\) 0 0
\(797\) 5.00000 5.00000i 0.177109 0.177109i −0.612985 0.790094i \(-0.710032\pi\)
0.790094 + 0.612985i \(0.210032\pi\)
\(798\) 12.0000 0.424795
\(799\) 10.0000 10.0000i 0.353775 0.353775i
\(800\) 4.00000 + 3.00000i 0.141421 + 0.106066i
\(801\) −7.00000 + 7.00000i −0.247333 + 0.247333i
\(802\) 1.00000 + 1.00000i 0.0353112 + 0.0353112i
\(803\) 6.00000 + 6.00000i 0.211735 + 0.211735i
\(804\) −12.0000 12.0000i −0.423207 0.423207i
\(805\) 30.0000 + 10.0000i 1.05736 + 0.352454i
\(806\) −5.00000 1.00000i −0.176117 0.0352235i
\(807\) 16.0000 + 16.0000i 0.563227 + 0.563227i
\(808\) 0 0
\(809\) 36.0000i 1.26569i −0.774277 0.632846i \(-0.781886\pi\)
0.774277 0.632846i \(-0.218114\pi\)
\(810\) −5.00000 10.0000i −0.175682 0.351364i
\(811\) 11.0000 + 11.0000i 0.386262 + 0.386262i 0.873352 0.487090i \(-0.161942\pi\)
−0.487090 + 0.873352i \(0.661942\pi\)
\(812\) 8.00000i 0.280745i
\(813\) 18.0000i 0.631288i
\(814\) 8.00000 + 8.00000i 0.280400 + 0.280400i
\(815\) 4.00000 + 8.00000i 0.140114 + 0.280228i
\(816\) 10.0000i 0.350070i
\(817\) −30.0000 −1.04957
\(818\) 3.00000 + 3.00000i 0.104893 + 0.104893i
\(819\) 6.00000 4.00000i 0.209657 0.139771i
\(820\) 3.00000 + 1.00000i 0.104765 + 0.0349215i
\(821\) −29.0000 29.0000i −1.01211 1.01211i −0.999926 0.0121812i \(-0.996123\pi\)
−0.0121812 0.999926i \(-0.503877\pi\)
\(822\) 12.0000 + 12.0000i 0.418548 + 0.418548i
\(823\) −15.0000 15.0000i −0.522867 0.522867i 0.395569 0.918436i \(-0.370547\pi\)
−0.918436 + 0.395569i \(0.870547\pi\)
\(824\) 5.00000 5.00000i 0.174183 0.174183i
\(825\) 8.00000 + 6.00000i 0.278524 + 0.208893i
\(826\) −6.00000 + 6.00000i −0.208767 + 0.208767i
\(827\) −2.00000 −0.0695468 −0.0347734 0.999395i \(-0.511071\pi\)
−0.0347734 + 0.999395i \(0.511071\pi\)
\(828\) 5.00000 5.00000i 0.173762 0.173762i
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 6.00000 + 12.0000i 0.208263 + 0.416526i
\(831\) 10.0000i 0.346896i
\(832\) −2.00000 3.00000i −0.0693375 0.104006i
\(833\) 15.0000 15.0000i 0.519719 0.519719i
\(834\) 14.0000 14.0000i 0.484780 0.484780i
\(835\) 4.00000 2.00000i 0.138426 0.0692129i
\(836\) 6.00000i 0.207514i
\(837\) 8.00000i 0.276520i
\(838\) 26.0000 0.898155
\(839\) −13.0000 13.0000i −0.448810 0.448810i 0.446149 0.894959i \(-0.352795\pi\)
−0.894959 + 0.446149i \(0.852795\pi\)
\(840\) 6.00000 + 2.00000i 0.207020 + 0.0690066i
\(841\) 13.0000 0.448276
\(842\) 9.00000 9.00000i 0.310160 0.310160i
\(843\) 42.0000i 1.44656i
\(844\) −12.0000 −0.413057
\(845\) −2.00000 29.0000i −0.0688021 0.997630i
\(846\) 2.00000 0.0687614
\(847\) 18.0000i 0.618487i
\(848\) −1.00000 + 1.00000i −0.0343401 + 0.0343401i
\(849\) −30.0000 −1.02960
\(850\) −35.0000 + 5.00000i −1.20049 + 0.171499i
\(851\) 40.0000 + 40.0000i 1.37118 + 1.37118i
\(852\) 2.00000 0.0685189
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) 4.00000i 0.136877i
\(855\) −9.00000 3.00000i −0.307794 0.102598i
\(856\) 13.0000 13.0000i 0.444331 0.444331i
\(857\) −5.00000 + 5.00000i −0.170797 + 0.170797i −0.787329 0.616533i \(-0.788537\pi\)
0.616533 + 0.787329i \(0.288537\pi\)
\(858\) −4.00000 6.00000i −0.136558 0.204837i
\(859\) 26.0000i 0.887109i −0.896248 0.443554i \(-0.853717\pi\)
0.896248 0.443554i \(-0.146283\pi\)
\(860\) −15.0000 5.00000i −0.511496 0.170499i
\(861\) 4.00000 0.136320
\(862\) −21.0000 + 21.0000i −0.715263 + 0.715263i
\(863\) −46.0000 −1.56586 −0.782929 0.622111i \(-0.786275\pi\)
−0.782929 + 0.622111i \(0.786275\pi\)
\(864\) 4.00000 4.00000i 0.136083 0.136083i
\(865\) 45.0000 + 15.0000i 1.53005 + 0.510015i
\(866\) −15.0000 + 15.0000i −0.509721 + 0.509721i
\(867\) 33.0000 + 33.0000i 1.12074 + 1.12074i
\(868\) 2.00000 + 2.00000i 0.0678844 + 0.0678844i
\(869\) 14.0000 + 14.0000i 0.474917 + 0.474917i
\(870\) −4.00000 + 12.0000i −0.135613 + 0.406838i
\(871\) 36.0000 24.0000i 1.21981 0.813209i
\(872\) −13.0000 13.0000i −0.440236 0.440236i
\(873\) 2.00000 0.0676897
\(874\) 30.0000i 1.01477i
\(875\) 4.00000 22.0000i 0.135225 0.743736i
\(876\) 6.00000 + 6.00000i 0.202721 + 0.202721i
\(877\) 18.0000i 0.607817i 0.952701 + 0.303908i \(0.0982917\pi\)
−0.952701 + 0.303908i \(0.901708\pi\)
\(878\) 40.0000i 1.34993i
\(879\) −26.0000 26.0000i −0.876958 0.876958i
\(880\) −1.00000 + 3.00000i −0.0337100 + 0.101130i
\(881\) 20.0000i 0.673817i −0.941537 0.336909i \(-0.890619\pi\)
0.941537 0.336909i \(-0.109381\pi\)
\(882\) 3.00000 0.101015
\(883\) −5.00000 5.00000i −0.168263 0.168263i 0.617952 0.786216i \(-0.287963\pi\)
−0.786216 + 0.617952i \(0.787963\pi\)
\(884\) 25.0000 + 5.00000i 0.840841 + 0.168168i
\(885\) −12.0000 + 6.00000i −0.403376 + 0.201688i
\(886\) 19.0000 + 19.0000i 0.638317 + 0.638317i
\(887\) 23.0000 + 23.0000i 0.772264 + 0.772264i 0.978502 0.206238i \(-0.0661220\pi\)
−0.206238 + 0.978502i \(0.566122\pi\)
\(888\) 8.00000 + 8.00000i 0.268462 + 0.268462i
\(889\) −30.0000 + 30.0000i −1.00617 + 1.00617i
\(890\) 7.00000 21.0000i 0.234641 0.703922i
\(891\) 5.00000 5.00000i 0.167506 0.167506i
\(892\) 6.00000 0.200895
\(893\) −6.00000 + 6.00000i −0.200782 + 0.200782i
\(894\) −26.0000 −0.869570
\(895\) 40.0000 20.0000i 1.33705 0.668526i
\(896\) 2.00000i 0.0668153i
\(897\) −20.0000 30.0000i −0.667781 1.00167i
\(898\) −7.00000 + 7.00000i −0.233593 + 0.233593i
\(899\) −4.00000 + 4.00000i −0.133407 + 0.133407i
\(900\) −4.00000 3.00000i −0.133333 0.100000i
\(901\) 10.0000i 0.333148i
\(902\) 2.00000i 0.0665927i
\(903\) −20.0000 −0.665558
\(904\) −9.00000 9.00000i −0.299336 0.299336i
\(905\) −20.0000 40.0000i −0.664822 1.32964i
\(906\) 18.0000 0.598010
\(907\) −35.0000 + 35.0000i −1.16216 + 1.16216i −0.178153 + 0.984003i \(0.557012\pi\)
−0.984003 + 0.178153i \(0.942988\pi\)
\(908\) 12.0000i 0.398234i
\(909\) 0 0
\(910\) −8.00000 + 14.0000i −0.265197 + 0.464095i
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 6.00000i 0.198680i
\(913\) −6.00000 + 6.00000i −0.198571 + 0.198571i
\(914\) −38.0000 −1.25693
\(915\) 2.00000 6.00000i 0.0661180 0.198354i
\(916\) 3.00000 + 3.00000i 0.0991228 + 0.0991228i
\(917\) −24.0000 −0.792550
\(918\) 40.0000i 1.32020i
\(919\) 14.0000i 0.461817i 0.972975 + 0.230909i \(0.0741699\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(920\) −5.00000 + 15.0000i −0.164845 + 0.494535i
\(921\) 2.00000 2.00000i 0.0659022 0.0659022i
\(922\) −11.0000 + 11.0000i −0.362266 + 0.362266i
\(923\) −1.00000 + 5.00000i −0.0329154 + 0.164577i
\(924\) 4.00000i 0.131590i
\(925\) 24.0000 32.0000i 0.789115 1.05215i
\(926\) −16.0000 −0.525793
\(927\) −5.00000 + 5.00000i −0.164222 + 0.164222i
\(928\) −4.00000 −0.131306
\(929\) −17.0000 + 17.0000i −0.557752 + 0.557752i −0.928667 0.370915i \(-0.879044\pi\)
0.370915 + 0.928667i \(0.379044\pi\)
\(930\) 2.00000 + 4.00000i 0.0655826 + 0.131165i
\(931\) −9.00000 + 9.00000i −0.294963 + 0.294963i
\(932\) 5.00000 + 5.00000i 0.163780 + 0.163780i
\(933\) −10.0000 10.0000i −0.327385 0.327385i
\(934\) 5.00000 + 5.00000i 0.163605 + 0.163605i
\(935\) −10.0000 20.0000i −0.327035 0.654070i
\(936\) 2.00000 + 3.00000i 0.0653720 + 0.0980581i
\(937\) 33.0000 + 33.0000i 1.07806 + 1.07806i 0.996683 + 0.0813798i \(0.0259327\pi\)
0.0813798 + 0.996683i \(0.474067\pi\)
\(938\) −24.0000 −0.783628
\(939\) 18.0000i 0.587408i
\(940\) −4.00000 + 2.00000i −0.130466 + 0.0652328i
\(941\) −29.0000 29.0000i −0.945373 0.945373i 0.0532103 0.998583i \(-0.483055\pi\)
−0.998583 + 0.0532103i \(0.983055\pi\)
\(942\) 6.00000i 0.195491i
\(943\) 10.0000i 0.325645i
\(944\) −3.00000 3.00000i −0.0976417 0.0976417i
\(945\) −24.0000 8.00000i −0.780720 0.260240i
\(946\) 10.0000i 0.325128i
\(947\) 38.0000 1.23483 0.617417 0.786636i \(-0.288179\pi\)
0.617417 + 0.786636i \(0.288179\pi\)
\(948\) 14.0000 + 14.0000i 0.454699 + 0.454699i
\(949\) −18.0000 + 12.0000i −0.584305 + 0.389536i
\(950\) 21.0000 3.00000i 0.681330 0.0973329i
\(951\) 2.00000 + 2.00000i 0.0648544 + 0.0648544i
\(952\) −10.0000 10.0000i −0.324102 0.324102i
\(953\) 35.0000 + 35.0000i 1.13376 + 1.13376i 0.989546 + 0.144215i \(0.0460656\pi\)
0.144215 + 0.989546i \(0.453934\pi\)
\(954\) 1.00000 1.00000i 0.0323762 0.0323762i
\(955\) 16.0000 8.00000i 0.517748 0.258874i
\(956\) 7.00000 7.00000i 0.226396 0.226396i
\(957\) −8.00000 −0.258603
\(958\) 13.0000 13.0000i 0.420011 0.420011i
\(959\) 24.0000 0.775000
\(960\) −1.00000 + 3.00000i −0.0322749 + 0.0968246i
\(961\) 29.0000i 0.935484i
\(962\) −24.0000 + 16.0000i −0.773791 + 0.515861i
\(963\) −13.0000 + 13.0000i −0.418919 + 0.418919i
\(964\) −1.00000 + 1.00000i −0.0322078 + 0.0322078i
\(965\) 14.0000 + 28.0000i 0.450676 + 0.901352i
\(966\) 20.0000i 0.643489i
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 9.00000 0.289271
\(969\) −30.0000 30.0000i −0.963739 0.963739i
\(970\) −4.00000 + 2.00000i −0.128432 + 0.0642161i
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) −7.00000 + 7.00000i −0.224525 + 0.224525i
\(973\) 28.0000i 0.897639i
\(974\) 32.0000 1.02535
\(975\) −19.0000 + 17.0000i −0.608487 + 0.544436i
\(976\) 2.00000 0.0640184
\(977\) 22.0000i 0.703842i −0.936030 0.351921i \(-0.885529\pi\)
0.936030 0.351921i \(-0.114471\pi\)
\(978\) −4.00000 + 4.00000i −0.127906 + 0.127906i
\(979\) 14.0000 0.447442
\(980\) −6.00000 + 3.00000i −0.191663 + 0.0958315i
\(981\) 13.0000 + 13.0000i 0.415058 + 0.415058i
\(982\) −10.0000 −0.319113
\(983\) 24.0000i 0.765481i −0.923856 0.382741i \(-0.874980\pi\)
0.923856 0.382741i \(-0.125020\pi\)
\(984\) 2.00000i 0.0637577i
\(985\) −18.0000 36.0000i −0.573528 1.14706i
\(986\) 20.0000 20.0000i 0.636930 0.636930i
\(987\) −4.00000 + 4.00000i −0.127321 + 0.127321i
\(988\) −15.0000 3.00000i −0.477214 0.0954427i
\(989\) 50.0000i 1.58991i
\(990\) 1.00000 3.00000i 0.0317821 0.0953463i
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) −1.00000 + 1.00000i −0.0317500 + 0.0317500i
\(993\) 18.0000 0.571213
\(994\) 2.00000 2.00000i 0.0634361 0.0634361i
\(995\) 0 0
\(996\) −6.00000 + 6.00000i −0.190117 + 0.190117i
\(997\) −17.0000 17.0000i −0.538395 0.538395i 0.384662 0.923057i \(-0.374318\pi\)
−0.923057 + 0.384662i \(0.874318\pi\)
\(998\) 23.0000 + 23.0000i 0.728052 + 0.728052i
\(999\) −32.0000 32.0000i −1.01244 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 130.2.j.b.47.1 yes 2
3.2 odd 2 1170.2.w.c.307.1 2
4.3 odd 2 1040.2.cd.e.177.1 2
5.2 odd 4 650.2.g.b.593.1 2
5.3 odd 4 130.2.g.c.73.1 yes 2
5.4 even 2 650.2.j.d.307.1 2
13.5 odd 4 130.2.g.c.57.1 2
15.8 even 4 1170.2.m.a.73.1 2
20.3 even 4 1040.2.bg.f.593.1 2
39.5 even 4 1170.2.m.a.577.1 2
52.31 even 4 1040.2.bg.f.577.1 2
65.18 even 4 inner 130.2.j.b.83.1 yes 2
65.44 odd 4 650.2.g.b.57.1 2
65.57 even 4 650.2.j.d.343.1 2
195.83 odd 4 1170.2.w.c.343.1 2
260.83 odd 4 1040.2.cd.e.993.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.c.57.1 2 13.5 odd 4
130.2.g.c.73.1 yes 2 5.3 odd 4
130.2.j.b.47.1 yes 2 1.1 even 1 trivial
130.2.j.b.83.1 yes 2 65.18 even 4 inner
650.2.g.b.57.1 2 65.44 odd 4
650.2.g.b.593.1 2 5.2 odd 4
650.2.j.d.307.1 2 5.4 even 2
650.2.j.d.343.1 2 65.57 even 4
1040.2.bg.f.577.1 2 52.31 even 4
1040.2.bg.f.593.1 2 20.3 even 4
1040.2.cd.e.177.1 2 4.3 odd 2
1040.2.cd.e.993.1 2 260.83 odd 4
1170.2.m.a.73.1 2 15.8 even 4
1170.2.m.a.577.1 2 39.5 even 4
1170.2.w.c.307.1 2 3.2 odd 2
1170.2.w.c.343.1 2 195.83 odd 4