Properties

Label 1040.2.bg.f.593.1
Level $1040$
Weight $2$
Character 1040.593
Analytic conductor $8.304$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1040,2,Mod(577,1040)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1040, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1040.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1040.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.30444181021\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1040.593
Dual form 1040.2.bg.f.577.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{3} +(1.00000 - 2.00000i) q^{5} -2.00000i q^{7} -1.00000i q^{9} +(-1.00000 + 1.00000i) q^{11} +(-3.00000 + 2.00000i) q^{13} +(3.00000 - 1.00000i) q^{15} +(5.00000 + 5.00000i) q^{17} +(3.00000 - 3.00000i) q^{19} +(2.00000 - 2.00000i) q^{21} +(5.00000 - 5.00000i) q^{23} +(-3.00000 - 4.00000i) q^{25} +(4.00000 - 4.00000i) q^{27} -4.00000i q^{29} +(-1.00000 - 1.00000i) q^{31} -2.00000 q^{33} +(-4.00000 - 2.00000i) q^{35} -8.00000i q^{37} +(-5.00000 - 1.00000i) q^{39} +(1.00000 + 1.00000i) q^{41} +(-5.00000 + 5.00000i) q^{43} +(-2.00000 - 1.00000i) q^{45} -2.00000i q^{47} +3.00000 q^{49} +10.0000i q^{51} +(-1.00000 - 1.00000i) q^{53} +(1.00000 + 3.00000i) q^{55} +6.00000 q^{57} +(-3.00000 - 3.00000i) q^{59} +2.00000 q^{61} -2.00000 q^{63} +(1.00000 + 8.00000i) q^{65} +12.0000 q^{67} +10.0000 q^{69} +(-1.00000 - 1.00000i) q^{71} -6.00000 q^{73} +(1.00000 - 7.00000i) q^{75} +(2.00000 + 2.00000i) q^{77} +14.0000i q^{79} +5.00000 q^{81} +6.00000i q^{83} +(15.0000 - 5.00000i) q^{85} +(4.00000 - 4.00000i) q^{87} +(-7.00000 - 7.00000i) q^{89} +(4.00000 + 6.00000i) q^{91} -2.00000i q^{93} +(-3.00000 - 9.00000i) q^{95} -2.00000 q^{97} +(1.00000 + 1.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} - 2 q^{11} - 6 q^{13} + 6 q^{15} + 10 q^{17} + 6 q^{19} + 4 q^{21} + 10 q^{23} - 6 q^{25} + 8 q^{27} - 2 q^{31} - 4 q^{33} - 8 q^{35} - 10 q^{39} + 2 q^{41} - 10 q^{43} - 4 q^{45}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 1.00000i 0.577350 + 0.577350i 0.934172 0.356822i \(-0.116140\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(4\) 0 0
\(5\) 1.00000 2.00000i 0.447214 0.894427i
\(6\) 0 0
\(7\) 2.00000i 0.755929i −0.925820 0.377964i \(-0.876624\pi\)
0.925820 0.377964i \(-0.123376\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) −1.00000 + 1.00000i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) −3.00000 + 2.00000i −0.832050 + 0.554700i
\(14\) 0 0
\(15\) 3.00000 1.00000i 0.774597 0.258199i
\(16\) 0 0
\(17\) 5.00000 + 5.00000i 1.21268 + 1.21268i 0.970143 + 0.242536i \(0.0779791\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 3.00000 3.00000i 0.688247 0.688247i −0.273597 0.961844i \(-0.588214\pi\)
0.961844 + 0.273597i \(0.0882135\pi\)
\(20\) 0 0
\(21\) 2.00000 2.00000i 0.436436 0.436436i
\(22\) 0 0
\(23\) 5.00000 5.00000i 1.04257 1.04257i 0.0435195 0.999053i \(-0.486143\pi\)
0.999053 0.0435195i \(-0.0138571\pi\)
\(24\) 0 0
\(25\) −3.00000 4.00000i −0.600000 0.800000i
\(26\) 0 0
\(27\) 4.00000 4.00000i 0.769800 0.769800i
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) −1.00000 1.00000i −0.179605 0.179605i 0.611578 0.791184i \(-0.290535\pi\)
−0.791184 + 0.611578i \(0.790535\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) −4.00000 2.00000i −0.676123 0.338062i
\(36\) 0 0
\(37\) 8.00000i 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 0 0
\(39\) −5.00000 1.00000i −0.800641 0.160128i
\(40\) 0 0
\(41\) 1.00000 + 1.00000i 0.156174 + 0.156174i 0.780869 0.624695i \(-0.214777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) −5.00000 + 5.00000i −0.762493 + 0.762493i −0.976772 0.214280i \(-0.931260\pi\)
0.214280 + 0.976772i \(0.431260\pi\)
\(44\) 0 0
\(45\) −2.00000 1.00000i −0.298142 0.149071i
\(46\) 0 0
\(47\) 2.00000i 0.291730i −0.989305 0.145865i \(-0.953403\pi\)
0.989305 0.145865i \(-0.0465965\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 10.0000i 1.40028i
\(52\) 0 0
\(53\) −1.00000 1.00000i −0.137361 0.137361i 0.635083 0.772444i \(-0.280966\pi\)
−0.772444 + 0.635083i \(0.780966\pi\)
\(54\) 0 0
\(55\) 1.00000 + 3.00000i 0.134840 + 0.404520i
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −3.00000 3.00000i −0.390567 0.390567i 0.484323 0.874889i \(-0.339066\pi\)
−0.874889 + 0.484323i \(0.839066\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 1.00000 + 8.00000i 0.124035 + 0.992278i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 10.0000 1.20386
\(70\) 0 0
\(71\) −1.00000 1.00000i −0.118678 0.118678i 0.645273 0.763952i \(-0.276743\pi\)
−0.763952 + 0.645273i \(0.776743\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 1.00000 7.00000i 0.115470 0.808290i
\(76\) 0 0
\(77\) 2.00000 + 2.00000i 0.227921 + 0.227921i
\(78\) 0 0
\(79\) 14.0000i 1.57512i 0.616236 + 0.787562i \(0.288657\pi\)
−0.616236 + 0.787562i \(0.711343\pi\)
\(80\) 0 0
\(81\) 5.00000 0.555556
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 15.0000 5.00000i 1.62698 0.542326i
\(86\) 0 0
\(87\) 4.00000 4.00000i 0.428845 0.428845i
\(88\) 0 0
\(89\) −7.00000 7.00000i −0.741999 0.741999i 0.230964 0.972962i \(-0.425812\pi\)
−0.972962 + 0.230964i \(0.925812\pi\)
\(90\) 0 0
\(91\) 4.00000 + 6.00000i 0.419314 + 0.628971i
\(92\) 0 0
\(93\) 2.00000i 0.207390i
\(94\) 0 0
\(95\) −3.00000 9.00000i −0.307794 0.923381i
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 1.00000 + 1.00000i 0.100504 + 0.100504i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 5.00000 5.00000i 0.492665 0.492665i −0.416480 0.909145i \(-0.636736\pi\)
0.909145 + 0.416480i \(0.136736\pi\)
\(104\) 0 0
\(105\) −2.00000 6.00000i −0.195180 0.585540i
\(106\) 0 0
\(107\) −13.0000 + 13.0000i −1.25676 + 1.25676i −0.304125 + 0.952632i \(0.598364\pi\)
−0.952632 + 0.304125i \(0.901636\pi\)
\(108\) 0 0
\(109\) −13.0000 + 13.0000i −1.24517 + 1.24517i −0.287348 + 0.957826i \(0.592774\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 8.00000 8.00000i 0.759326 0.759326i
\(112\) 0 0
\(113\) 9.00000 + 9.00000i 0.846649 + 0.846649i 0.989713 0.143065i \(-0.0456957\pi\)
−0.143065 + 0.989713i \(0.545696\pi\)
\(114\) 0 0
\(115\) −5.00000 15.0000i −0.466252 1.39876i
\(116\) 0 0
\(117\) 2.00000 + 3.00000i 0.184900 + 0.277350i
\(118\) 0 0
\(119\) 10.0000 10.0000i 0.916698 0.916698i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 0 0
\(123\) 2.00000i 0.180334i
\(124\) 0 0
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 15.0000 + 15.0000i 1.33103 + 1.33103i 0.904445 + 0.426589i \(0.140285\pi\)
0.426589 + 0.904445i \(0.359715\pi\)
\(128\) 0 0
\(129\) −10.0000 −0.880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −6.00000 6.00000i −0.520266 0.520266i
\(134\) 0 0
\(135\) −4.00000 12.0000i −0.344265 1.03280i
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) 14.0000i 1.18746i 0.804663 + 0.593732i \(0.202346\pi\)
−0.804663 + 0.593732i \(0.797654\pi\)
\(140\) 0 0
\(141\) 2.00000 2.00000i 0.168430 0.168430i
\(142\) 0 0
\(143\) 1.00000 5.00000i 0.0836242 0.418121i
\(144\) 0 0
\(145\) −8.00000 4.00000i −0.664364 0.332182i
\(146\) 0 0
\(147\) 3.00000 + 3.00000i 0.247436 + 0.247436i
\(148\) 0 0
\(149\) −13.0000 + 13.0000i −1.06500 + 1.06500i −0.0672664 + 0.997735i \(0.521428\pi\)
−0.997735 + 0.0672664i \(0.978572\pi\)
\(150\) 0 0
\(151\) 9.00000 9.00000i 0.732410 0.732410i −0.238687 0.971097i \(-0.576717\pi\)
0.971097 + 0.238687i \(0.0767170\pi\)
\(152\) 0 0
\(153\) 5.00000 5.00000i 0.404226 0.404226i
\(154\) 0 0
\(155\) −3.00000 + 1.00000i −0.240966 + 0.0803219i
\(156\) 0 0
\(157\) 3.00000 3.00000i 0.239426 0.239426i −0.577186 0.816612i \(-0.695849\pi\)
0.816612 + 0.577186i \(0.195849\pi\)
\(158\) 0 0
\(159\) 2.00000i 0.158610i
\(160\) 0 0
\(161\) −10.0000 10.0000i −0.788110 0.788110i
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) 0 0
\(165\) −2.00000 + 4.00000i −0.155700 + 0.311400i
\(166\) 0 0
\(167\) 2.00000i 0.154765i −0.997001 0.0773823i \(-0.975344\pi\)
0.997001 0.0773823i \(-0.0246562\pi\)
\(168\) 0 0
\(169\) 5.00000 12.0000i 0.384615 0.923077i
\(170\) 0 0
\(171\) −3.00000 3.00000i −0.229416 0.229416i
\(172\) 0 0
\(173\) 15.0000 15.0000i 1.14043 1.14043i 0.152057 0.988372i \(-0.451410\pi\)
0.988372 0.152057i \(-0.0485898\pi\)
\(174\) 0 0
\(175\) −8.00000 + 6.00000i −0.604743 + 0.453557i
\(176\) 0 0
\(177\) 6.00000i 0.450988i
\(178\) 0 0
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 2.00000 + 2.00000i 0.147844 + 0.147844i
\(184\) 0 0
\(185\) −16.0000 8.00000i −1.17634 0.588172i
\(186\) 0 0
\(187\) −10.0000 −0.731272
\(188\) 0 0
\(189\) −8.00000 8.00000i −0.581914 0.581914i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) −7.00000 + 9.00000i −0.501280 + 0.644503i
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 12.0000 + 12.0000i 0.846415 + 0.846415i
\(202\) 0 0
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) 3.00000 1.00000i 0.209529 0.0698430i
\(206\) 0 0
\(207\) −5.00000 5.00000i −0.347524 0.347524i
\(208\) 0 0
\(209\) 6.00000i 0.415029i
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) 2.00000i 0.137038i
\(214\) 0 0
\(215\) 5.00000 + 15.0000i 0.340997 + 1.02299i
\(216\) 0 0
\(217\) −2.00000 + 2.00000i −0.135769 + 0.135769i
\(218\) 0 0
\(219\) −6.00000 6.00000i −0.405442 0.405442i
\(220\) 0 0
\(221\) −25.0000 5.00000i −1.68168 0.336336i
\(222\) 0 0
\(223\) 6.00000i 0.401790i 0.979613 + 0.200895i \(0.0643850\pi\)
−0.979613 + 0.200895i \(0.935615\pi\)
\(224\) 0 0
\(225\) −4.00000 + 3.00000i −0.266667 + 0.200000i
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 3.00000 + 3.00000i 0.198246 + 0.198246i 0.799248 0.601002i \(-0.205232\pi\)
−0.601002 + 0.799248i \(0.705232\pi\)
\(230\) 0 0
\(231\) 4.00000i 0.263181i
\(232\) 0 0
\(233\) 5.00000 5.00000i 0.327561 0.327561i −0.524097 0.851658i \(-0.675597\pi\)
0.851658 + 0.524097i \(0.175597\pi\)
\(234\) 0 0
\(235\) −4.00000 2.00000i −0.260931 0.130466i
\(236\) 0 0
\(237\) −14.0000 + 14.0000i −0.909398 + 0.909398i
\(238\) 0 0
\(239\) −7.00000 + 7.00000i −0.452792 + 0.452792i −0.896280 0.443488i \(-0.853741\pi\)
0.443488 + 0.896280i \(0.353741\pi\)
\(240\) 0 0
\(241\) 1.00000 1.00000i 0.0644157 0.0644157i −0.674165 0.738581i \(-0.735496\pi\)
0.738581 + 0.674165i \(0.235496\pi\)
\(242\) 0 0
\(243\) −7.00000 7.00000i −0.449050 0.449050i
\(244\) 0 0
\(245\) 3.00000 6.00000i 0.191663 0.383326i
\(246\) 0 0
\(247\) −3.00000 + 15.0000i −0.190885 + 0.954427i
\(248\) 0 0
\(249\) −6.00000 + 6.00000i −0.380235 + 0.380235i
\(250\) 0 0
\(251\) 30.0000i 1.89358i 0.321847 + 0.946792i \(0.395696\pi\)
−0.321847 + 0.946792i \(0.604304\pi\)
\(252\) 0 0
\(253\) 10.0000i 0.628695i
\(254\) 0 0
\(255\) 20.0000 + 10.0000i 1.25245 + 0.626224i
\(256\) 0 0
\(257\) −15.0000 15.0000i −0.935674 0.935674i 0.0623783 0.998053i \(-0.480131\pi\)
−0.998053 + 0.0623783i \(0.980131\pi\)
\(258\) 0 0
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) −4.00000 −0.247594
\(262\) 0 0
\(263\) −9.00000 9.00000i −0.554964 0.554964i 0.372906 0.927869i \(-0.378362\pi\)
−0.927869 + 0.372906i \(0.878362\pi\)
\(264\) 0 0
\(265\) −3.00000 + 1.00000i −0.184289 + 0.0614295i
\(266\) 0 0
\(267\) 14.0000i 0.856786i
\(268\) 0 0
\(269\) 16.0000i 0.975537i 0.872973 + 0.487769i \(0.162189\pi\)
−0.872973 + 0.487769i \(0.837811\pi\)
\(270\) 0 0
\(271\) 9.00000 9.00000i 0.546711 0.546711i −0.378777 0.925488i \(-0.623655\pi\)
0.925488 + 0.378777i \(0.123655\pi\)
\(272\) 0 0
\(273\) −2.00000 + 10.0000i −0.121046 + 0.605228i
\(274\) 0 0
\(275\) 7.00000 + 1.00000i 0.422116 + 0.0603023i
\(276\) 0 0
\(277\) −5.00000 5.00000i −0.300421 0.300421i 0.540758 0.841178i \(-0.318138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) −1.00000 + 1.00000i −0.0598684 + 0.0598684i
\(280\) 0 0
\(281\) 21.0000 21.0000i 1.25275 1.25275i 0.298275 0.954480i \(-0.403589\pi\)
0.954480 0.298275i \(-0.0964112\pi\)
\(282\) 0 0
\(283\) 15.0000 15.0000i 0.891657 0.891657i −0.103022 0.994679i \(-0.532851\pi\)
0.994679 + 0.103022i \(0.0328511\pi\)
\(284\) 0 0
\(285\) 6.00000 12.0000i 0.355409 0.710819i
\(286\) 0 0
\(287\) 2.00000 2.00000i 0.118056 0.118056i
\(288\) 0 0
\(289\) 33.0000i 1.94118i
\(290\) 0 0
\(291\) −2.00000 2.00000i −0.117242 0.117242i
\(292\) 0 0
\(293\) −26.0000 −1.51894 −0.759468 0.650545i \(-0.774541\pi\)
−0.759468 + 0.650545i \(0.774541\pi\)
\(294\) 0 0
\(295\) −9.00000 + 3.00000i −0.524000 + 0.174667i
\(296\) 0 0
\(297\) 8.00000i 0.464207i
\(298\) 0 0
\(299\) −5.00000 + 25.0000i −0.289157 + 1.44579i
\(300\) 0 0
\(301\) 10.0000 + 10.0000i 0.576390 + 0.576390i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.00000 4.00000i 0.114520 0.229039i
\(306\) 0 0
\(307\) 2.00000i 0.114146i −0.998370 0.0570730i \(-0.981823\pi\)
0.998370 0.0570730i \(-0.0181768\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) 10.0000i 0.567048i −0.958965 0.283524i \(-0.908496\pi\)
0.958965 0.283524i \(-0.0915036\pi\)
\(312\) 0 0
\(313\) 9.00000 + 9.00000i 0.508710 + 0.508710i 0.914130 0.405420i \(-0.132875\pi\)
−0.405420 + 0.914130i \(0.632875\pi\)
\(314\) 0 0
\(315\) −2.00000 + 4.00000i −0.112687 + 0.225374i
\(316\) 0 0
\(317\) −2.00000 −0.112331 −0.0561656 0.998421i \(-0.517887\pi\)
−0.0561656 + 0.998421i \(0.517887\pi\)
\(318\) 0 0
\(319\) 4.00000 + 4.00000i 0.223957 + 0.223957i
\(320\) 0 0
\(321\) −26.0000 −1.45118
\(322\) 0 0
\(323\) 30.0000 1.66924
\(324\) 0 0
\(325\) 17.0000 + 6.00000i 0.942990 + 0.332820i
\(326\) 0 0
\(327\) −26.0000 −1.43780
\(328\) 0 0
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) 9.00000 + 9.00000i 0.494685 + 0.494685i 0.909779 0.415094i \(-0.136251\pi\)
−0.415094 + 0.909779i \(0.636251\pi\)
\(332\) 0 0
\(333\) −8.00000 −0.438397
\(334\) 0 0
\(335\) 12.0000 24.0000i 0.655630 1.31126i
\(336\) 0 0
\(337\) 5.00000 + 5.00000i 0.272367 + 0.272367i 0.830053 0.557685i \(-0.188310\pi\)
−0.557685 + 0.830053i \(0.688310\pi\)
\(338\) 0 0
\(339\) 18.0000i 0.977626i
\(340\) 0 0
\(341\) 2.00000 0.108306
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 10.0000 20.0000i 0.538382 1.07676i
\(346\) 0 0
\(347\) 7.00000 7.00000i 0.375780 0.375780i −0.493797 0.869577i \(-0.664392\pi\)
0.869577 + 0.493797i \(0.164392\pi\)
\(348\) 0 0
\(349\) 3.00000 + 3.00000i 0.160586 + 0.160586i 0.782826 0.622240i \(-0.213777\pi\)
−0.622240 + 0.782826i \(0.713777\pi\)
\(350\) 0 0
\(351\) −4.00000 + 20.0000i −0.213504 + 1.06752i
\(352\) 0 0
\(353\) 16.0000i 0.851594i −0.904819 0.425797i \(-0.859994\pi\)
0.904819 0.425797i \(-0.140006\pi\)
\(354\) 0 0
\(355\) −3.00000 + 1.00000i −0.159223 + 0.0530745i
\(356\) 0 0
\(357\) 20.0000 1.05851
\(358\) 0 0
\(359\) −13.0000 13.0000i −0.686114 0.686114i 0.275257 0.961371i \(-0.411237\pi\)
−0.961371 + 0.275257i \(0.911237\pi\)
\(360\) 0 0
\(361\) 1.00000i 0.0526316i
\(362\) 0 0
\(363\) −9.00000 + 9.00000i −0.472377 + 0.472377i
\(364\) 0 0
\(365\) −6.00000 + 12.0000i −0.314054 + 0.628109i
\(366\) 0 0
\(367\) −3.00000 + 3.00000i −0.156599 + 0.156599i −0.781058 0.624459i \(-0.785320\pi\)
0.624459 + 0.781058i \(0.285320\pi\)
\(368\) 0 0
\(369\) 1.00000 1.00000i 0.0520579 0.0520579i
\(370\) 0 0
\(371\) −2.00000 + 2.00000i −0.103835 + 0.103835i
\(372\) 0 0
\(373\) −1.00000 1.00000i −0.0517780 0.0517780i 0.680744 0.732522i \(-0.261657\pi\)
−0.732522 + 0.680744i \(0.761657\pi\)
\(374\) 0 0
\(375\) −13.0000 9.00000i −0.671317 0.464758i
\(376\) 0 0
\(377\) 8.00000 + 12.0000i 0.412021 + 0.618031i
\(378\) 0 0
\(379\) −17.0000 + 17.0000i −0.873231 + 0.873231i −0.992823 0.119592i \(-0.961841\pi\)
0.119592 + 0.992823i \(0.461841\pi\)
\(380\) 0 0
\(381\) 30.0000i 1.53695i
\(382\) 0 0
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) 0 0
\(385\) 6.00000 2.00000i 0.305788 0.101929i
\(386\) 0 0
\(387\) 5.00000 + 5.00000i 0.254164 + 0.254164i
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) 50.0000 2.52861
\(392\) 0 0
\(393\) −12.0000 12.0000i −0.605320 0.605320i
\(394\) 0 0
\(395\) 28.0000 + 14.0000i 1.40883 + 0.704416i
\(396\) 0 0
\(397\) 8.00000i 0.401508i −0.979642 0.200754i \(-0.935661\pi\)
0.979642 0.200754i \(-0.0643393\pi\)
\(398\) 0 0
\(399\) 12.0000i 0.600751i
\(400\) 0 0
\(401\) 1.00000 1.00000i 0.0499376 0.0499376i −0.681697 0.731635i \(-0.738758\pi\)
0.731635 + 0.681697i \(0.238758\pi\)
\(402\) 0 0
\(403\) 5.00000 + 1.00000i 0.249068 + 0.0498135i
\(404\) 0 0
\(405\) 5.00000 10.0000i 0.248452 0.496904i
\(406\) 0 0
\(407\) 8.00000 + 8.00000i 0.396545 + 0.396545i
\(408\) 0 0
\(409\) −3.00000 + 3.00000i −0.148340 + 0.148340i −0.777376 0.629036i \(-0.783450\pi\)
0.629036 + 0.777376i \(0.283450\pi\)
\(410\) 0 0
\(411\) −12.0000 + 12.0000i −0.591916 + 0.591916i
\(412\) 0 0
\(413\) −6.00000 + 6.00000i −0.295241 + 0.295241i
\(414\) 0 0
\(415\) 12.0000 + 6.00000i 0.589057 + 0.294528i
\(416\) 0 0
\(417\) −14.0000 + 14.0000i −0.685583 + 0.685583i
\(418\) 0 0
\(419\) 26.0000i 1.27018i −0.772437 0.635092i \(-0.780962\pi\)
0.772437 0.635092i \(-0.219038\pi\)
\(420\) 0 0
\(421\) −9.00000 9.00000i −0.438633 0.438633i 0.452919 0.891552i \(-0.350383\pi\)
−0.891552 + 0.452919i \(0.850383\pi\)
\(422\) 0 0
\(423\) −2.00000 −0.0972433
\(424\) 0 0
\(425\) 5.00000 35.0000i 0.242536 1.69775i
\(426\) 0 0
\(427\) 4.00000i 0.193574i
\(428\) 0 0
\(429\) 6.00000 4.00000i 0.289683 0.193122i
\(430\) 0 0
\(431\) −21.0000 21.0000i −1.01153 1.01153i −0.999933 0.0116017i \(-0.996307\pi\)
−0.0116017 0.999933i \(-0.503693\pi\)
\(432\) 0 0
\(433\) −15.0000 + 15.0000i −0.720854 + 0.720854i −0.968779 0.247925i \(-0.920251\pi\)
0.247925 + 0.968779i \(0.420251\pi\)
\(434\) 0 0
\(435\) −4.00000 12.0000i −0.191785 0.575356i
\(436\) 0 0
\(437\) 30.0000i 1.43509i
\(438\) 0 0
\(439\) −40.0000 −1.90910 −0.954548 0.298057i \(-0.903661\pi\)
−0.954548 + 0.298057i \(0.903661\pi\)
\(440\) 0 0
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) −19.0000 19.0000i −0.902717 0.902717i 0.0929532 0.995670i \(-0.470369\pi\)
−0.995670 + 0.0929532i \(0.970369\pi\)
\(444\) 0 0
\(445\) −21.0000 + 7.00000i −0.995495 + 0.331832i
\(446\) 0 0
\(447\) −26.0000 −1.22976
\(448\) 0 0
\(449\) −7.00000 7.00000i −0.330350 0.330350i 0.522369 0.852720i \(-0.325048\pi\)
−0.852720 + 0.522369i \(0.825048\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 18.0000 0.845714
\(454\) 0 0
\(455\) 16.0000 2.00000i 0.750092 0.0937614i
\(456\) 0 0
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 0 0
\(459\) 40.0000 1.86704
\(460\) 0 0
\(461\) 11.0000 + 11.0000i 0.512321 + 0.512321i 0.915237 0.402916i \(-0.132003\pi\)
−0.402916 + 0.915237i \(0.632003\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) −4.00000 2.00000i −0.185496 0.0927478i
\(466\) 0 0
\(467\) 5.00000 + 5.00000i 0.231372 + 0.231372i 0.813265 0.581893i \(-0.197688\pi\)
−0.581893 + 0.813265i \(0.697688\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 6.00000 0.276465
\(472\) 0 0
\(473\) 10.0000i 0.459800i
\(474\) 0 0
\(475\) −21.0000 3.00000i −0.963546 0.137649i
\(476\) 0 0
\(477\) −1.00000 + 1.00000i −0.0457869 + 0.0457869i
\(478\) 0 0
\(479\) −13.0000 13.0000i −0.593985 0.593985i 0.344720 0.938705i \(-0.387974\pi\)
−0.938705 + 0.344720i \(0.887974\pi\)
\(480\) 0 0
\(481\) 16.0000 + 24.0000i 0.729537 + 1.09431i
\(482\) 0 0
\(483\) 20.0000i 0.910032i
\(484\) 0 0
\(485\) −2.00000 + 4.00000i −0.0908153 + 0.181631i
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 0 0
\(489\) −4.00000 4.00000i −0.180886 0.180886i
\(490\) 0 0
\(491\) 10.0000i 0.451294i −0.974209 0.225647i \(-0.927550\pi\)
0.974209 0.225647i \(-0.0724495\pi\)
\(492\) 0 0
\(493\) 20.0000 20.0000i 0.900755 0.900755i
\(494\) 0 0
\(495\) 3.00000 1.00000i 0.134840 0.0449467i
\(496\) 0 0
\(497\) −2.00000 + 2.00000i −0.0897123 + 0.0897123i
\(498\) 0 0
\(499\) 23.0000 23.0000i 1.02962 1.02962i 0.0300737 0.999548i \(-0.490426\pi\)
0.999548 0.0300737i \(-0.00957421\pi\)
\(500\) 0 0
\(501\) 2.00000 2.00000i 0.0893534 0.0893534i
\(502\) 0 0
\(503\) −9.00000 9.00000i −0.401290 0.401290i 0.477397 0.878688i \(-0.341580\pi\)
−0.878688 + 0.477397i \(0.841580\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 17.0000 7.00000i 0.754997 0.310881i
\(508\) 0 0
\(509\) −13.0000 + 13.0000i −0.576215 + 0.576215i −0.933858 0.357643i \(-0.883580\pi\)
0.357643 + 0.933858i \(0.383580\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 0 0
\(513\) 24.0000i 1.05963i
\(514\) 0 0
\(515\) −5.00000 15.0000i −0.220326 0.660979i
\(516\) 0 0
\(517\) 2.00000 + 2.00000i 0.0879599 + 0.0879599i
\(518\) 0 0
\(519\) 30.0000 1.31685
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 21.0000 + 21.0000i 0.918266 + 0.918266i 0.996903 0.0786374i \(-0.0250569\pi\)
−0.0786374 + 0.996903i \(0.525057\pi\)
\(524\) 0 0
\(525\) −14.0000 2.00000i −0.611010 0.0872872i
\(526\) 0 0
\(527\) 10.0000i 0.435607i
\(528\) 0 0
\(529\) 27.0000i 1.17391i
\(530\) 0 0
\(531\) −3.00000 + 3.00000i −0.130189 + 0.130189i
\(532\) 0 0
\(533\) −5.00000 1.00000i −0.216574 0.0433148i
\(534\) 0 0
\(535\) 13.0000 + 39.0000i 0.562039 + 1.68612i
\(536\) 0 0
\(537\) −20.0000 20.0000i −0.863064 0.863064i
\(538\) 0 0
\(539\) −3.00000 + 3.00000i −0.129219 + 0.129219i
\(540\) 0 0
\(541\) −9.00000 + 9.00000i −0.386940 + 0.386940i −0.873595 0.486654i \(-0.838217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(542\) 0 0
\(543\) −20.0000 + 20.0000i −0.858282 + 0.858282i
\(544\) 0 0
\(545\) 13.0000 + 39.0000i 0.556859 + 1.67058i
\(546\) 0 0
\(547\) 7.00000 7.00000i 0.299298 0.299298i −0.541441 0.840739i \(-0.682121\pi\)
0.840739 + 0.541441i \(0.182121\pi\)
\(548\) 0 0
\(549\) 2.00000i 0.0853579i
\(550\) 0 0
\(551\) −12.0000 12.0000i −0.511217 0.511217i
\(552\) 0 0
\(553\) 28.0000 1.19068
\(554\) 0 0
\(555\) −8.00000 24.0000i −0.339581 1.01874i
\(556\) 0 0
\(557\) 8.00000i 0.338971i −0.985533 0.169485i \(-0.945789\pi\)
0.985533 0.169485i \(-0.0542106\pi\)
\(558\) 0 0
\(559\) 5.00000 25.0000i 0.211477 1.05739i
\(560\) 0 0
\(561\) −10.0000 10.0000i −0.422200 0.422200i
\(562\) 0 0
\(563\) −5.00000 + 5.00000i −0.210725 + 0.210725i −0.804575 0.593851i \(-0.797607\pi\)
0.593851 + 0.804575i \(0.297607\pi\)
\(564\) 0 0
\(565\) 27.0000 9.00000i 1.13590 0.378633i
\(566\) 0 0
\(567\) 10.0000i 0.419961i
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 10.0000i 0.418487i −0.977864 0.209243i \(-0.932900\pi\)
0.977864 0.209243i \(-0.0671001\pi\)
\(572\) 0 0
\(573\) 8.00000 + 8.00000i 0.334205 + 0.334205i
\(574\) 0 0
\(575\) −35.0000 5.00000i −1.45960 0.208514i
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) 14.0000 + 14.0000i 0.581820 + 0.581820i
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 2.00000 0.0828315
\(584\) 0 0
\(585\) 8.00000 1.00000i 0.330759 0.0413449i
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −6.00000 −0.247226
\(590\) 0 0
\(591\) 18.0000 + 18.0000i 0.740421 + 0.740421i
\(592\) 0 0
\(593\) 14.0000 0.574911 0.287456 0.957794i \(-0.407191\pi\)
0.287456 + 0.957794i \(0.407191\pi\)
\(594\) 0 0
\(595\) −10.0000 30.0000i −0.409960 1.22988i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 14.0000i 0.572024i 0.958226 + 0.286012i \(0.0923298\pi\)
−0.958226 + 0.286012i \(0.907670\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 12.0000i 0.488678i
\(604\) 0 0
\(605\) 18.0000 + 9.00000i 0.731804 + 0.365902i
\(606\) 0 0
\(607\) −3.00000 + 3.00000i −0.121766 + 0.121766i −0.765364 0.643598i \(-0.777441\pi\)
0.643598 + 0.765364i \(0.277441\pi\)
\(608\) 0 0
\(609\) −8.00000 8.00000i −0.324176 0.324176i
\(610\) 0 0
\(611\) 4.00000 + 6.00000i 0.161823 + 0.242734i
\(612\) 0 0
\(613\) 4.00000i 0.161558i 0.996732 + 0.0807792i \(0.0257409\pi\)
−0.996732 + 0.0807792i \(0.974259\pi\)
\(614\) 0 0
\(615\) 4.00000 + 2.00000i 0.161296 + 0.0806478i
\(616\) 0 0
\(617\) 38.0000 1.52982 0.764911 0.644136i \(-0.222783\pi\)
0.764911 + 0.644136i \(0.222783\pi\)
\(618\) 0 0
\(619\) −3.00000 3.00000i −0.120580 0.120580i 0.644242 0.764822i \(-0.277173\pi\)
−0.764822 + 0.644242i \(0.777173\pi\)
\(620\) 0 0
\(621\) 40.0000i 1.60514i
\(622\) 0 0
\(623\) −14.0000 + 14.0000i −0.560898 + 0.560898i
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) −6.00000 + 6.00000i −0.239617 + 0.239617i
\(628\) 0 0
\(629\) 40.0000 40.0000i 1.59490 1.59490i
\(630\) 0 0
\(631\) −11.0000 + 11.0000i −0.437903 + 0.437903i −0.891306 0.453403i \(-0.850210\pi\)
0.453403 + 0.891306i \(0.350210\pi\)
\(632\) 0 0
\(633\) −12.0000 12.0000i −0.476957 0.476957i
\(634\) 0 0
\(635\) 45.0000 15.0000i 1.78577 0.595257i
\(636\) 0 0
\(637\) −9.00000 + 6.00000i −0.356593 + 0.237729i
\(638\) 0 0
\(639\) −1.00000 + 1.00000i −0.0395594 + 0.0395594i
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 46.0000i 1.81406i 0.421063 + 0.907031i \(0.361657\pi\)
−0.421063 + 0.907031i \(0.638343\pi\)
\(644\) 0 0
\(645\) −10.0000 + 20.0000i −0.393750 + 0.787499i
\(646\) 0 0
\(647\) −5.00000 5.00000i −0.196570 0.196570i 0.601958 0.798528i \(-0.294388\pi\)
−0.798528 + 0.601958i \(0.794388\pi\)
\(648\) 0 0
\(649\) 6.00000 0.235521
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 0 0
\(653\) −21.0000 21.0000i −0.821794 0.821794i 0.164572 0.986365i \(-0.447376\pi\)
−0.986365 + 0.164572i \(0.947376\pi\)
\(654\) 0 0
\(655\) −12.0000 + 24.0000i −0.468879 + 0.937758i
\(656\) 0 0
\(657\) 6.00000i 0.234082i
\(658\) 0 0
\(659\) 14.0000i 0.545363i 0.962104 + 0.272681i \(0.0879105\pi\)
−0.962104 + 0.272681i \(0.912090\pi\)
\(660\) 0 0
\(661\) 31.0000 31.0000i 1.20576 1.20576i 0.233373 0.972387i \(-0.425024\pi\)
0.972387 0.233373i \(-0.0749763\pi\)
\(662\) 0 0
\(663\) −20.0000 30.0000i −0.776736 1.16510i
\(664\) 0 0
\(665\) −18.0000 + 6.00000i −0.698010 + 0.232670i
\(666\) 0 0
\(667\) −20.0000 20.0000i −0.774403 0.774403i
\(668\) 0 0
\(669\) −6.00000 + 6.00000i −0.231973 + 0.231973i
\(670\) 0 0
\(671\) −2.00000 + 2.00000i −0.0772091 + 0.0772091i
\(672\) 0 0
\(673\) 5.00000 5.00000i 0.192736 0.192736i −0.604141 0.796877i \(-0.706484\pi\)
0.796877 + 0.604141i \(0.206484\pi\)
\(674\) 0 0
\(675\) −28.0000 4.00000i −1.07772 0.153960i
\(676\) 0 0
\(677\) 23.0000 23.0000i 0.883962 0.883962i −0.109973 0.993935i \(-0.535076\pi\)
0.993935 + 0.109973i \(0.0350764\pi\)
\(678\) 0 0
\(679\) 4.00000i 0.153506i
\(680\) 0 0
\(681\) 12.0000 + 12.0000i 0.459841 + 0.459841i
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) 0 0
\(687\) 6.00000i 0.228914i
\(688\) 0 0
\(689\) 5.00000 + 1.00000i 0.190485 + 0.0380970i
\(690\) 0 0
\(691\) 9.00000 + 9.00000i 0.342376 + 0.342376i 0.857260 0.514884i \(-0.172165\pi\)
−0.514884 + 0.857260i \(0.672165\pi\)
\(692\) 0 0
\(693\) 2.00000 2.00000i 0.0759737 0.0759737i
\(694\) 0 0
\(695\) 28.0000 + 14.0000i 1.06210 + 0.531050i
\(696\) 0 0
\(697\) 10.0000i 0.378777i
\(698\) 0 0
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) −24.0000 24.0000i −0.905177 0.905177i
\(704\) 0 0
\(705\) −2.00000 6.00000i −0.0753244 0.225973i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.00000 + 3.00000i 0.112667 + 0.112667i 0.761193 0.648526i \(-0.224614\pi\)
−0.648526 + 0.761193i \(0.724614\pi\)
\(710\) 0 0
\(711\) 14.0000 0.525041
\(712\) 0 0
\(713\) −10.0000 −0.374503
\(714\) 0 0
\(715\) −9.00000 7.00000i −0.336581 0.261785i
\(716\) 0 0
\(717\) −14.0000 −0.522840
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −10.0000 10.0000i −0.372419 0.372419i
\(722\) 0 0
\(723\) 2.00000 0.0743808
\(724\) 0 0
\(725\) −16.0000 + 12.0000i −0.594225 + 0.445669i
\(726\) 0 0
\(727\) 35.0000 + 35.0000i 1.29808 + 1.29808i 0.929660 + 0.368418i \(0.120100\pi\)
0.368418 + 0.929660i \(0.379900\pi\)
\(728\) 0 0
\(729\) 29.0000i 1.07407i
\(730\) 0 0
\(731\) −50.0000 −1.84932
\(732\) 0 0
\(733\) 44.0000i 1.62518i 0.582838 + 0.812589i \(0.301942\pi\)
−0.582838 + 0.812589i \(0.698058\pi\)
\(734\) 0 0
\(735\) 9.00000 3.00000i 0.331970 0.110657i
\(736\) 0 0
\(737\) −12.0000 + 12.0000i −0.442026 + 0.442026i
\(738\) 0 0
\(739\) 37.0000 + 37.0000i 1.36107 + 1.36107i 0.872560 + 0.488507i \(0.162458\pi\)
0.488507 + 0.872560i \(0.337542\pi\)
\(740\) 0 0
\(741\) −18.0000 + 12.0000i −0.661247 + 0.440831i
\(742\) 0 0
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 0 0
\(745\) 13.0000 + 39.0000i 0.476283 + 1.42885i
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) 26.0000 + 26.0000i 0.950019 + 0.950019i
\(750\) 0 0
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 0 0
\(753\) −30.0000 + 30.0000i −1.09326 + 1.09326i
\(754\) 0 0
\(755\) −9.00000 27.0000i −0.327544 0.982631i
\(756\) 0 0
\(757\) −17.0000 + 17.0000i −0.617876 + 0.617876i −0.944986 0.327111i \(-0.893925\pi\)
0.327111 + 0.944986i \(0.393925\pi\)
\(758\) 0 0
\(759\) −10.0000 + 10.0000i −0.362977 + 0.362977i
\(760\) 0 0
\(761\) −19.0000 + 19.0000i −0.688749 + 0.688749i −0.961956 0.273206i \(-0.911916\pi\)
0.273206 + 0.961956i \(0.411916\pi\)
\(762\) 0 0
\(763\) 26.0000 + 26.0000i 0.941263 + 0.941263i
\(764\) 0 0
\(765\) −5.00000 15.0000i −0.180775 0.542326i
\(766\) 0 0
\(767\) 15.0000 + 3.00000i 0.541619 + 0.108324i
\(768\) 0 0
\(769\) −23.0000 + 23.0000i −0.829401 + 0.829401i −0.987434 0.158033i \(-0.949485\pi\)
0.158033 + 0.987434i \(0.449485\pi\)
\(770\) 0 0
\(771\) 30.0000i 1.08042i
\(772\) 0 0
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) 0 0
\(775\) −1.00000 + 7.00000i −0.0359211 + 0.251447i
\(776\) 0 0
\(777\) −16.0000 16.0000i −0.573997 0.573997i
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 2.00000 0.0715656
\(782\) 0 0
\(783\) −16.0000 16.0000i −0.571793 0.571793i
\(784\) 0 0
\(785\) −3.00000 9.00000i −0.107075 0.321224i
\(786\) 0 0
\(787\) 42.0000i 1.49714i −0.663057 0.748569i \(-0.730741\pi\)
0.663057 0.748569i \(-0.269259\pi\)
\(788\) 0 0
\(789\) 18.0000i 0.640817i
\(790\) 0 0
\(791\) 18.0000 18.0000i 0.640006 0.640006i
\(792\) 0 0
\(793\) −6.00000 + 4.00000i −0.213066 + 0.142044i
\(794\) 0 0
\(795\) −4.00000 2.00000i −0.141865 0.0709327i
\(796\) 0 0
\(797\) −5.00000 5.00000i −0.177109 0.177109i 0.612985 0.790094i \(-0.289968\pi\)
−0.790094 + 0.612985i \(0.789968\pi\)
\(798\) 0 0
\(799\) 10.0000 10.0000i 0.353775 0.353775i
\(800\) 0 0
\(801\) −7.00000 + 7.00000i −0.247333 + 0.247333i
\(802\) 0 0
\(803\) 6.00000 6.00000i 0.211735 0.211735i
\(804\) 0 0
\(805\) −30.0000 + 10.0000i −1.05736 + 0.352454i
\(806\) 0 0
\(807\) −16.0000 + 16.0000i −0.563227 + 0.563227i
\(808\) 0 0
\(809\) 36.0000i 1.26569i 0.774277 + 0.632846i \(0.218114\pi\)
−0.774277 + 0.632846i \(0.781886\pi\)
\(810\) 0 0
\(811\) −11.0000 11.0000i −0.386262 0.386262i 0.487090 0.873352i \(-0.338058\pi\)
−0.873352 + 0.487090i \(0.838058\pi\)
\(812\) 0 0
\(813\) 18.0000 0.631288
\(814\) 0 0
\(815\) −4.00000 + 8.00000i −0.140114 + 0.280228i
\(816\) 0 0
\(817\) 30.0000i 1.04957i
\(818\) 0 0
\(819\) 6.00000 4.00000i 0.209657 0.139771i
\(820\) 0 0
\(821\) −29.0000 29.0000i −1.01211 1.01211i −0.999926 0.0121812i \(-0.996123\pi\)
−0.0121812 0.999926i \(-0.503877\pi\)
\(822\) 0 0
\(823\) −15.0000 + 15.0000i −0.522867 + 0.522867i −0.918436 0.395569i \(-0.870547\pi\)
0.395569 + 0.918436i \(0.370547\pi\)
\(824\) 0 0
\(825\) 6.00000 + 8.00000i 0.208893 + 0.278524i
\(826\) 0 0
\(827\) 2.00000i 0.0695468i −0.999395 0.0347734i \(-0.988929\pi\)
0.999395 0.0347734i \(-0.0110710\pi\)
\(828\) 0 0
\(829\) −30.0000 −1.04194 −0.520972 0.853574i \(-0.674430\pi\)
−0.520972 + 0.853574i \(0.674430\pi\)
\(830\) 0 0
\(831\) 10.0000i 0.346896i
\(832\) 0 0
\(833\) 15.0000 + 15.0000i 0.519719 + 0.519719i
\(834\) 0 0
\(835\) −4.00000 2.00000i −0.138426 0.0692129i
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) −13.0000 13.0000i −0.448810 0.448810i 0.446149 0.894959i \(-0.352795\pi\)
−0.894959 + 0.446149i \(0.852795\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) 42.0000 1.44656
\(844\) 0 0
\(845\) −19.0000 22.0000i −0.653620 0.756823i
\(846\) 0 0
\(847\) 18.0000 0.618487
\(848\) 0 0
\(849\) 30.0000 1.02960
\(850\) 0 0
\(851\) −40.0000 40.0000i −1.37118 1.37118i
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) −9.00000 + 3.00000i −0.307794 + 0.102598i
\(856\) 0 0
\(857\) 5.00000 + 5.00000i 0.170797 + 0.170797i 0.787329 0.616533i \(-0.211463\pi\)
−0.616533 + 0.787329i \(0.711463\pi\)
\(858\) 0 0
\(859\) 26.0000i 0.887109i −0.896248 0.443554i \(-0.853717\pi\)
0.896248 0.443554i \(-0.146283\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 46.0000i 1.56586i 0.622111 + 0.782929i \(0.286275\pi\)
−0.622111 + 0.782929i \(0.713725\pi\)
\(864\) 0 0
\(865\) −15.0000 45.0000i −0.510015 1.53005i
\(866\) 0 0
\(867\) −33.0000 + 33.0000i −1.12074 + 1.12074i
\(868\) 0 0
\(869\) −14.0000 14.0000i −0.474917 0.474917i
\(870\) 0 0
\(871\) −36.0000 + 24.0000i −1.21981 + 0.813209i
\(872\) 0 0
\(873\) 2.00000i 0.0676897i
\(874\) 0 0
\(875\) 4.00000 + 22.0000i 0.135225 + 0.743736i
\(876\) 0 0
\(877\) 18.0000 0.607817 0.303908 0.952701i \(-0.401708\pi\)
0.303908 + 0.952701i \(0.401708\pi\)
\(878\) 0 0
\(879\) −26.0000 26.0000i −0.876958 0.876958i
\(880\) 0 0
\(881\) 20.0000i 0.673817i −0.941537 0.336909i \(-0.890619\pi\)
0.941537 0.336909i \(-0.109381\pi\)
\(882\) 0 0
\(883\) −5.00000 + 5.00000i −0.168263 + 0.168263i −0.786216 0.617952i \(-0.787963\pi\)
0.617952 + 0.786216i \(0.287963\pi\)
\(884\) 0 0
\(885\) −12.0000 6.00000i −0.403376 0.201688i
\(886\) 0 0
\(887\) −23.0000 + 23.0000i −0.772264 + 0.772264i −0.978502 0.206238i \(-0.933878\pi\)
0.206238 + 0.978502i \(0.433878\pi\)
\(888\) 0 0
\(889\) 30.0000 30.0000i 1.00617 1.00617i
\(890\) 0 0
\(891\) −5.00000 + 5.00000i −0.167506 + 0.167506i
\(892\) 0 0
\(893\) −6.00000 6.00000i −0.200782 0.200782i
\(894\) 0 0
\(895\) −20.0000 + 40.0000i −0.668526 + 1.33705i
\(896\) 0 0
\(897\) −30.0000 + 20.0000i −1.00167 + 0.667781i
\(898\) 0 0
\(899\) −4.00000 + 4.00000i −0.133407 + 0.133407i
\(900\) 0 0
\(901\) 10.0000i 0.333148i
\(902\) 0 0
\(903\) 20.0000i 0.665558i
\(904\) 0 0
\(905\) 40.0000 + 20.0000i 1.32964 + 0.664822i
\(906\) 0 0
\(907\) −35.0000 35.0000i −1.16216 1.16216i −0.984003 0.178153i \(-0.942988\pi\)
−0.178153 0.984003i \(-0.557012\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) 0 0
\(913\) −6.00000 6.00000i −0.198571 0.198571i
\(914\) 0 0
\(915\) 6.00000 2.00000i 0.198354 0.0661180i
\(916\) 0 0
\(917\) 24.0000i 0.792550i
\(918\) 0 0
\(919\) 14.0000i 0.461817i 0.972975 + 0.230909i \(0.0741699\pi\)
−0.972975 + 0.230909i \(0.925830\pi\)
\(920\) 0 0
\(921\) 2.00000 2.00000i 0.0659022 0.0659022i
\(922\) 0 0
\(923\) 5.00000 + 1.00000i 0.164577 + 0.0329154i
\(924\) 0 0
\(925\) −32.0000 + 24.0000i −1.05215 + 0.789115i
\(926\) 0 0
\(927\) −5.00000 5.00000i −0.164222 0.164222i
\(928\) 0 0
\(929\) 17.0000 17.0000i 0.557752 0.557752i −0.370915 0.928667i \(-0.620956\pi\)
0.928667 + 0.370915i \(0.120956\pi\)
\(930\) 0 0
\(931\) 9.00000 9.00000i 0.294963 0.294963i
\(932\) 0 0
\(933\) 10.0000 10.0000i 0.327385 0.327385i
\(934\) 0 0
\(935\) −10.0000 + 20.0000i −0.327035 + 0.654070i
\(936\) 0 0
\(937\) 33.0000 33.0000i 1.07806 1.07806i 0.0813798 0.996683i \(-0.474067\pi\)
0.996683 0.0813798i \(-0.0259327\pi\)
\(938\) 0 0
\(939\) 18.0000i 0.587408i
\(940\) 0 0
\(941\) −29.0000 29.0000i −0.945373 0.945373i 0.0532103 0.998583i \(-0.483055\pi\)
−0.998583 + 0.0532103i \(0.983055\pi\)
\(942\) 0 0
\(943\) 10.0000 0.325645
\(944\) 0 0
\(945\) −24.0000 + 8.00000i −0.780720 + 0.260240i
\(946\) 0 0
\(947\) 38.0000i 1.23483i 0.786636 + 0.617417i \(0.211821\pi\)
−0.786636 + 0.617417i \(0.788179\pi\)
\(948\) 0 0
\(949\) 18.0000 12.0000i 0.584305 0.389536i
\(950\) 0 0
\(951\) −2.00000 2.00000i −0.0648544 0.0648544i
\(952\) 0 0
\(953\) −35.0000 + 35.0000i −1.13376 + 1.13376i −0.144215 + 0.989546i \(0.546066\pi\)
−0.989546 + 0.144215i \(0.953934\pi\)
\(954\) 0 0
\(955\) 8.00000 16.0000i 0.258874 0.517748i
\(956\) 0 0
\(957\) 8.00000i 0.258603i
\(958\) 0 0
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 29.0000i 0.935484i
\(962\) 0 0
\(963\) 13.0000 + 13.0000i 0.418919 + 0.418919i
\(964\) 0 0
\(965\) 14.0000 28.0000i 0.450676 0.901352i
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 30.0000 + 30.0000i 0.963739 + 0.963739i
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 28.0000 0.897639
\(974\) 0 0
\(975\) 11.0000 + 23.0000i 0.352282 + 0.736590i
\(976\) 0 0
\(977\) −22.0000 −0.703842 −0.351921 0.936030i \(-0.614471\pi\)
−0.351921 + 0.936030i \(0.614471\pi\)
\(978\) 0 0
\(979\) 14.0000 0.447442
\(980\) 0 0
\(981\) 13.0000 + 13.0000i 0.415058 + 0.415058i
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) 18.0000 36.0000i 0.573528 1.14706i
\(986\) 0 0
\(987\) −4.00000 4.00000i −0.127321 0.127321i
\(988\) 0 0
\(989\) 50.0000i 1.58991i
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 0 0
\(993\) 18.0000i 0.571213i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −17.0000 + 17.0000i −0.538395 + 0.538395i −0.923057 0.384662i \(-0.874318\pi\)
0.384662 + 0.923057i \(0.374318\pi\)
\(998\) 0 0
\(999\) −32.0000 32.0000i −1.01244 1.01244i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.2.bg.f.593.1 2
4.3 odd 2 130.2.g.c.73.1 yes 2
5.2 odd 4 1040.2.cd.e.177.1 2
12.11 even 2 1170.2.m.a.73.1 2
13.5 odd 4 1040.2.cd.e.993.1 2
20.3 even 4 650.2.j.d.307.1 2
20.7 even 4 130.2.j.b.47.1 yes 2
20.19 odd 2 650.2.g.b.593.1 2
52.31 even 4 130.2.j.b.83.1 yes 2
60.47 odd 4 1170.2.w.c.307.1 2
65.57 even 4 inner 1040.2.bg.f.577.1 2
156.83 odd 4 1170.2.w.c.343.1 2
260.83 odd 4 650.2.g.b.57.1 2
260.187 odd 4 130.2.g.c.57.1 2
260.239 even 4 650.2.j.d.343.1 2
780.707 even 4 1170.2.m.a.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.g.c.57.1 2 260.187 odd 4
130.2.g.c.73.1 yes 2 4.3 odd 2
130.2.j.b.47.1 yes 2 20.7 even 4
130.2.j.b.83.1 yes 2 52.31 even 4
650.2.g.b.57.1 2 260.83 odd 4
650.2.g.b.593.1 2 20.19 odd 2
650.2.j.d.307.1 2 20.3 even 4
650.2.j.d.343.1 2 260.239 even 4
1040.2.bg.f.577.1 2 65.57 even 4 inner
1040.2.bg.f.593.1 2 1.1 even 1 trivial
1040.2.cd.e.177.1 2 5.2 odd 4
1040.2.cd.e.993.1 2 13.5 odd 4
1170.2.m.a.73.1 2 12.11 even 2
1170.2.m.a.577.1 2 780.707 even 4
1170.2.w.c.307.1 2 60.47 odd 4
1170.2.w.c.343.1 2 156.83 odd 4