Properties

Label 1305.2.f.l.289.8
Level $1305$
Weight $2$
Character 1305.289
Analytic conductor $10.420$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,2,Mod(289,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1305.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.4204774638\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.8
Root \(-2.21342 - 2.00212i\) of defining polynomial
Character \(\chi\) \(=\) 1305.289
Dual form 1305.2.f.l.289.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.334522 q^{2} -1.88809 q^{4} +(-1.95387 + 1.08739i) q^{5} +0.275019i q^{7} -1.30066 q^{8} +O(q^{10})\) \(q+0.334522 q^{2} -1.88809 q^{4} +(-1.95387 + 1.08739i) q^{5} +0.275019i q^{7} -1.30066 q^{8} +(-0.653612 + 0.363756i) q^{10} +0.541705i q^{11} -5.03697i q^{13} +0.0920000i q^{14} +3.34109 q^{16} -3.32386 q^{17} +6.31271i q^{19} +(3.68908 - 2.05309i) q^{20} +0.181212i q^{22} +6.93673i q^{23} +(2.63518 - 4.24922i) q^{25} -1.68498i q^{26} -0.519262i q^{28} +(-2.25292 - 4.89125i) q^{29} -10.1057i q^{31} +3.71898 q^{32} -1.11191 q^{34} +(-0.299052 - 0.537350i) q^{35} +4.07094 q^{37} +2.11174i q^{38} +(2.54130 - 1.41432i) q^{40} -8.49843i q^{41} +5.97627 q^{43} -1.02279i q^{44} +2.32049i q^{46} +12.4310 q^{47} +6.92436 q^{49} +(0.881526 - 1.42146i) q^{50} +9.51028i q^{52} -3.98569i q^{53} +(-0.589043 - 1.05842i) q^{55} -0.357705i q^{56} +(-0.753651 - 1.63623i) q^{58} +8.01554 q^{59} -4.84022i q^{61} -3.38058i q^{62} -5.43810 q^{64} +(5.47714 + 9.84156i) q^{65} +12.1664i q^{67} +6.27576 q^{68} +(-0.100040 - 0.179756i) q^{70} +7.20182 q^{71} +1.23869 q^{73} +1.36182 q^{74} -11.9190i q^{76} -0.148979 q^{77} -2.36972i q^{79} +(-6.52804 + 3.63306i) q^{80} -2.84292i q^{82} -10.3724i q^{83} +(6.49437 - 3.61432i) q^{85} +1.99920 q^{86} -0.704571i q^{88} -2.50630i q^{89} +1.38526 q^{91} -13.0972i q^{92} +4.15845 q^{94} +(-6.86436 - 12.3342i) q^{95} -17.8627 q^{97} +2.31636 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 16 q^{4} + 6 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 16 q^{4} + 6 q^{5} + 2 q^{10} + 32 q^{16} + 8 q^{17} + 20 q^{20} + 12 q^{25} - 8 q^{29} + 40 q^{32} - 52 q^{34} - 14 q^{35} + 20 q^{37} - 22 q^{40} + 44 q^{43} + 32 q^{47} - 4 q^{49} - 24 q^{50} + 42 q^{55} - 24 q^{58} + 28 q^{59} - 4 q^{64} - 22 q^{65} - 16 q^{68} - 26 q^{70} + 16 q^{71} - 36 q^{73} + 28 q^{74} + 22 q^{80} + 30 q^{85} + 16 q^{86} + 24 q^{91} - 28 q^{94} - 16 q^{95} - 40 q^{97} + 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1305\mathbb{Z}\right)^\times\).

\(n\) \(146\) \(262\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.334522 0.236543 0.118272 0.992981i \(-0.462265\pi\)
0.118272 + 0.992981i \(0.462265\pi\)
\(3\) 0 0
\(4\) −1.88809 −0.944047
\(5\) −1.95387 + 1.08739i −0.873795 + 0.486294i
\(6\) 0 0
\(7\) 0.275019i 0.103947i 0.998648 + 0.0519737i \(0.0165512\pi\)
−0.998648 + 0.0519737i \(0.983449\pi\)
\(8\) −1.30066 −0.459851
\(9\) 0 0
\(10\) −0.653612 + 0.363756i −0.206690 + 0.115030i
\(11\) 0.541705i 0.163330i 0.996660 + 0.0816650i \(0.0260238\pi\)
−0.996660 + 0.0816650i \(0.973976\pi\)
\(12\) 0 0
\(13\) 5.03697i 1.39700i −0.715608 0.698502i \(-0.753850\pi\)
0.715608 0.698502i \(-0.246150\pi\)
\(14\) 0.0920000i 0.0245880i
\(15\) 0 0
\(16\) 3.34109 0.835273
\(17\) −3.32386 −0.806154 −0.403077 0.915166i \(-0.632059\pi\)
−0.403077 + 0.915166i \(0.632059\pi\)
\(18\) 0 0
\(19\) 6.31271i 1.44824i 0.689676 + 0.724118i \(0.257753\pi\)
−0.689676 + 0.724118i \(0.742247\pi\)
\(20\) 3.68908 2.05309i 0.824904 0.459085i
\(21\) 0 0
\(22\) 0.181212i 0.0386346i
\(23\) 6.93673i 1.44641i 0.690635 + 0.723204i \(0.257331\pi\)
−0.690635 + 0.723204i \(0.742669\pi\)
\(24\) 0 0
\(25\) 2.63518 4.24922i 0.527036 0.849843i
\(26\) 1.68498i 0.330452i
\(27\) 0 0
\(28\) 0.519262i 0.0981312i
\(29\) −2.25292 4.89125i −0.418356 0.908283i
\(30\) 0 0
\(31\) 10.1057i 1.81504i −0.420012 0.907518i \(-0.637974\pi\)
0.420012 0.907518i \(-0.362026\pi\)
\(32\) 3.71898 0.657429
\(33\) 0 0
\(34\) −1.11191 −0.190690
\(35\) −0.299052 0.537350i −0.0505490 0.0908287i
\(36\) 0 0
\(37\) 4.07094 0.669259 0.334629 0.942350i \(-0.391389\pi\)
0.334629 + 0.942350i \(0.391389\pi\)
\(38\) 2.11174i 0.342570i
\(39\) 0 0
\(40\) 2.54130 1.41432i 0.401816 0.223623i
\(41\) 8.49843i 1.32723i −0.748073 0.663616i \(-0.769021\pi\)
0.748073 0.663616i \(-0.230979\pi\)
\(42\) 0 0
\(43\) 5.97627 0.911372 0.455686 0.890140i \(-0.349394\pi\)
0.455686 + 0.890140i \(0.349394\pi\)
\(44\) 1.02279i 0.154191i
\(45\) 0 0
\(46\) 2.32049i 0.342138i
\(47\) 12.4310 1.81325 0.906624 0.421939i \(-0.138651\pi\)
0.906624 + 0.421939i \(0.138651\pi\)
\(48\) 0 0
\(49\) 6.92436 0.989195
\(50\) 0.881526 1.42146i 0.124667 0.201025i
\(51\) 0 0
\(52\) 9.51028i 1.31884i
\(53\) 3.98569i 0.547477i −0.961804 0.273739i \(-0.911740\pi\)
0.961804 0.273739i \(-0.0882603\pi\)
\(54\) 0 0
\(55\) −0.589043 1.05842i −0.0794265 0.142717i
\(56\) 0.357705i 0.0478003i
\(57\) 0 0
\(58\) −0.753651 1.63623i −0.0989593 0.214848i
\(59\) 8.01554 1.04353 0.521767 0.853088i \(-0.325273\pi\)
0.521767 + 0.853088i \(0.325273\pi\)
\(60\) 0 0
\(61\) 4.84022i 0.619726i −0.950781 0.309863i \(-0.899717\pi\)
0.950781 0.309863i \(-0.100283\pi\)
\(62\) 3.38058i 0.429334i
\(63\) 0 0
\(64\) −5.43810 −0.679762
\(65\) 5.47714 + 9.84156i 0.679355 + 1.22070i
\(66\) 0 0
\(67\) 12.1664i 1.48636i 0.669090 + 0.743182i \(0.266684\pi\)
−0.669090 + 0.743182i \(0.733316\pi\)
\(68\) 6.27576 0.761048
\(69\) 0 0
\(70\) −0.100040 0.179756i −0.0119570 0.0214849i
\(71\) 7.20182 0.854698 0.427349 0.904087i \(-0.359447\pi\)
0.427349 + 0.904087i \(0.359447\pi\)
\(72\) 0 0
\(73\) 1.23869 0.144977 0.0724886 0.997369i \(-0.476906\pi\)
0.0724886 + 0.997369i \(0.476906\pi\)
\(74\) 1.36182 0.158309
\(75\) 0 0
\(76\) 11.9190i 1.36720i
\(77\) −0.148979 −0.0169777
\(78\) 0 0
\(79\) 2.36972i 0.266614i −0.991075 0.133307i \(-0.957440\pi\)
0.991075 0.133307i \(-0.0425597\pi\)
\(80\) −6.52804 + 3.63306i −0.729857 + 0.406188i
\(81\) 0 0
\(82\) 2.84292i 0.313948i
\(83\) 10.3724i 1.13852i −0.822159 0.569258i \(-0.807230\pi\)
0.822159 0.569258i \(-0.192770\pi\)
\(84\) 0 0
\(85\) 6.49437 3.61432i 0.704413 0.392028i
\(86\) 1.99920 0.215579
\(87\) 0 0
\(88\) 0.704571i 0.0751075i
\(89\) 2.50630i 0.265667i −0.991138 0.132833i \(-0.957592\pi\)
0.991138 0.132833i \(-0.0424076\pi\)
\(90\) 0 0
\(91\) 1.38526 0.145215
\(92\) 13.0972i 1.36548i
\(93\) 0 0
\(94\) 4.15845 0.428911
\(95\) −6.86436 12.3342i −0.704269 1.26546i
\(96\) 0 0
\(97\) −17.8627 −1.81368 −0.906840 0.421476i \(-0.861512\pi\)
−0.906840 + 0.421476i \(0.861512\pi\)
\(98\) 2.31636 0.233987
\(99\) 0 0
\(100\) −4.97546 + 8.02292i −0.497546 + 0.802292i
\(101\) 13.6767i 1.36088i −0.732803 0.680441i \(-0.761788\pi\)
0.732803 0.680441i \(-0.238212\pi\)
\(102\) 0 0
\(103\) 10.6870i 1.05302i 0.850168 + 0.526511i \(0.176500\pi\)
−0.850168 + 0.526511i \(0.823500\pi\)
\(104\) 6.55136i 0.642414i
\(105\) 0 0
\(106\) 1.33330i 0.129502i
\(107\) 4.59224i 0.443948i 0.975053 + 0.221974i \(0.0712501\pi\)
−0.975053 + 0.221974i \(0.928750\pi\)
\(108\) 0 0
\(109\) −13.1473 −1.25928 −0.629639 0.776888i \(-0.716797\pi\)
−0.629639 + 0.776888i \(0.716797\pi\)
\(110\) −0.197048 0.354065i −0.0187878 0.0337587i
\(111\) 0 0
\(112\) 0.918863i 0.0868244i
\(113\) 12.4441 1.17065 0.585323 0.810800i \(-0.300968\pi\)
0.585323 + 0.810800i \(0.300968\pi\)
\(114\) 0 0
\(115\) −7.54291 13.5534i −0.703380 1.26386i
\(116\) 4.25372 + 9.23515i 0.394948 + 0.857462i
\(117\) 0 0
\(118\) 2.68138 0.246841
\(119\) 0.914124i 0.0837976i
\(120\) 0 0
\(121\) 10.7066 0.973323
\(122\) 1.61916i 0.146592i
\(123\) 0 0
\(124\) 19.0805i 1.71348i
\(125\) −0.528238 + 11.1679i −0.0472470 + 0.998883i
\(126\) 0 0
\(127\) −10.3846 −0.921487 −0.460744 0.887533i \(-0.652417\pi\)
−0.460744 + 0.887533i \(0.652417\pi\)
\(128\) −9.25713 −0.818222
\(129\) 0 0
\(130\) 1.83223 + 3.29222i 0.160697 + 0.288747i
\(131\) 3.80784i 0.332693i −0.986067 0.166346i \(-0.946803\pi\)
0.986067 0.166346i \(-0.0531970\pi\)
\(132\) 0 0
\(133\) −1.73611 −0.150540
\(134\) 4.06994i 0.351589i
\(135\) 0 0
\(136\) 4.32319 0.370711
\(137\) −9.05968 −0.774021 −0.387010 0.922075i \(-0.626492\pi\)
−0.387010 + 0.922075i \(0.626492\pi\)
\(138\) 0 0
\(139\) 1.41853 0.120318 0.0601591 0.998189i \(-0.480839\pi\)
0.0601591 + 0.998189i \(0.480839\pi\)
\(140\) 0.564638 + 1.01457i 0.0477207 + 0.0857466i
\(141\) 0 0
\(142\) 2.40917 0.202173
\(143\) 2.72855 0.228173
\(144\) 0 0
\(145\) 9.72058 + 7.10706i 0.807251 + 0.590209i
\(146\) 0.414368 0.0342933
\(147\) 0 0
\(148\) −7.68632 −0.631812
\(149\) −4.70591 −0.385523 −0.192762 0.981246i \(-0.561744\pi\)
−0.192762 + 0.981246i \(0.561744\pi\)
\(150\) 0 0
\(151\) −5.99181 −0.487606 −0.243803 0.969825i \(-0.578395\pi\)
−0.243803 + 0.969825i \(0.578395\pi\)
\(152\) 8.21066i 0.665973i
\(153\) 0 0
\(154\) −0.0498368 −0.00401596
\(155\) 10.9888 + 19.7452i 0.882642 + 1.58597i
\(156\) 0 0
\(157\) 11.2728 0.899664 0.449832 0.893113i \(-0.351484\pi\)
0.449832 + 0.893113i \(0.351484\pi\)
\(158\) 0.792725i 0.0630658i
\(159\) 0 0
\(160\) −7.26639 + 4.04397i −0.574458 + 0.319704i
\(161\) −1.90773 −0.150350
\(162\) 0 0
\(163\) −11.2859 −0.883980 −0.441990 0.897020i \(-0.645727\pi\)
−0.441990 + 0.897020i \(0.645727\pi\)
\(164\) 16.0458i 1.25297i
\(165\) 0 0
\(166\) 3.46980i 0.269308i
\(167\) 9.11150i 0.705069i −0.935799 0.352535i \(-0.885320\pi\)
0.935799 0.352535i \(-0.114680\pi\)
\(168\) 0 0
\(169\) −12.3711 −0.951621
\(170\) 2.17251 1.20907i 0.166624 0.0927316i
\(171\) 0 0
\(172\) −11.2838 −0.860379
\(173\) 6.68099i 0.507946i 0.967211 + 0.253973i \(0.0817374\pi\)
−0.967211 + 0.253973i \(0.918263\pi\)
\(174\) 0 0
\(175\) 1.16861 + 0.724723i 0.0883389 + 0.0547839i
\(176\) 1.80988i 0.136425i
\(177\) 0 0
\(178\) 0.838413i 0.0628417i
\(179\) −17.6127 −1.31644 −0.658218 0.752827i \(-0.728690\pi\)
−0.658218 + 0.752827i \(0.728690\pi\)
\(180\) 0 0
\(181\) 0.799278 0.0594099 0.0297049 0.999559i \(-0.490543\pi\)
0.0297049 + 0.999559i \(0.490543\pi\)
\(182\) 0.463401 0.0343496
\(183\) 0 0
\(184\) 9.02229i 0.665132i
\(185\) −7.95407 + 4.42669i −0.584795 + 0.325457i
\(186\) 0 0
\(187\) 1.80055i 0.131669i
\(188\) −23.4709 −1.71179
\(189\) 0 0
\(190\) −2.29628 4.12606i −0.166590 0.299336i
\(191\) 14.0344i 1.01549i −0.861506 0.507747i \(-0.830478\pi\)
0.861506 0.507747i \(-0.169522\pi\)
\(192\) 0 0
\(193\) 22.3693 1.61018 0.805089 0.593154i \(-0.202117\pi\)
0.805089 + 0.593154i \(0.202117\pi\)
\(194\) −5.97546 −0.429013
\(195\) 0 0
\(196\) −13.0739 −0.933847
\(197\) 4.66274i 0.332207i −0.986108 0.166103i \(-0.946881\pi\)
0.986108 0.166103i \(-0.0531186\pi\)
\(198\) 0 0
\(199\) 14.9769 1.06169 0.530843 0.847470i \(-0.321876\pi\)
0.530843 + 0.847470i \(0.321876\pi\)
\(200\) −3.42746 + 5.52676i −0.242358 + 0.390801i
\(201\) 0 0
\(202\) 4.57516i 0.321907i
\(203\) 1.34519 0.619595i 0.0944136 0.0434870i
\(204\) 0 0
\(205\) 9.24109 + 16.6048i 0.645426 + 1.15973i
\(206\) 3.57504i 0.249085i
\(207\) 0 0
\(208\) 16.8290i 1.16688i
\(209\) −3.41963 −0.236540
\(210\) 0 0
\(211\) 15.8960i 1.09432i −0.837027 0.547162i \(-0.815708\pi\)
0.837027 0.547162i \(-0.184292\pi\)
\(212\) 7.52537i 0.516844i
\(213\) 0 0
\(214\) 1.53621i 0.105013i
\(215\) −11.6768 + 6.49852i −0.796353 + 0.443195i
\(216\) 0 0
\(217\) 2.77926 0.188668
\(218\) −4.39805 −0.297874
\(219\) 0 0
\(220\) 1.11217 + 1.99839i 0.0749824 + 0.134732i
\(221\) 16.7422i 1.12620i
\(222\) 0 0
\(223\) 7.51910i 0.503516i 0.967790 + 0.251758i \(0.0810087\pi\)
−0.967790 + 0.251758i \(0.918991\pi\)
\(224\) 1.02279i 0.0683380i
\(225\) 0 0
\(226\) 4.16284 0.276908
\(227\) 14.9639i 0.993187i 0.867983 + 0.496594i \(0.165416\pi\)
−0.867983 + 0.496594i \(0.834584\pi\)
\(228\) 0 0
\(229\) 12.3067i 0.813247i −0.913596 0.406623i \(-0.866706\pi\)
0.913596 0.406623i \(-0.133294\pi\)
\(230\) −2.52327 4.53393i −0.166380 0.298958i
\(231\) 0 0
\(232\) 2.93027 + 6.36183i 0.192382 + 0.417675i
\(233\) 10.7500i 0.704258i 0.935951 + 0.352129i \(0.114542\pi\)
−0.935951 + 0.352129i \(0.885458\pi\)
\(234\) 0 0
\(235\) −24.2885 + 13.5173i −1.58441 + 0.881772i
\(236\) −15.1341 −0.985146
\(237\) 0 0
\(238\) 0.305795i 0.0198217i
\(239\) 6.04481 0.391006 0.195503 0.980703i \(-0.437366\pi\)
0.195503 + 0.980703i \(0.437366\pi\)
\(240\) 0 0
\(241\) 24.1998 1.55885 0.779423 0.626498i \(-0.215512\pi\)
0.779423 + 0.626498i \(0.215512\pi\)
\(242\) 3.58158 0.230233
\(243\) 0 0
\(244\) 9.13879i 0.585051i
\(245\) −13.5293 + 7.52947i −0.864354 + 0.481040i
\(246\) 0 0
\(247\) 31.7969 2.02319
\(248\) 13.1440i 0.834647i
\(249\) 0 0
\(250\) −0.176707 + 3.73590i −0.0111760 + 0.236279i
\(251\) 26.0151i 1.64206i −0.570886 0.821030i \(-0.693400\pi\)
0.570886 0.821030i \(-0.306600\pi\)
\(252\) 0 0
\(253\) −3.75766 −0.236242
\(254\) −3.47389 −0.217971
\(255\) 0 0
\(256\) 7.77948 0.486218
\(257\) 3.58709i 0.223757i 0.993722 + 0.111878i \(0.0356867\pi\)
−0.993722 + 0.111878i \(0.964313\pi\)
\(258\) 0 0
\(259\) 1.11959i 0.0695677i
\(260\) −10.3414 18.5818i −0.641344 1.15239i
\(261\) 0 0
\(262\) 1.27381i 0.0786962i
\(263\) −3.92407 −0.241969 −0.120984 0.992654i \(-0.538605\pi\)
−0.120984 + 0.992654i \(0.538605\pi\)
\(264\) 0 0
\(265\) 4.33399 + 7.78751i 0.266235 + 0.478383i
\(266\) −0.580769 −0.0356093
\(267\) 0 0
\(268\) 22.9713i 1.40320i
\(269\) 13.8826i 0.846437i 0.906028 + 0.423218i \(0.139100\pi\)
−0.906028 + 0.423218i \(0.860900\pi\)
\(270\) 0 0
\(271\) 13.3880i 0.813265i −0.913592 0.406632i \(-0.866703\pi\)
0.913592 0.406632i \(-0.133297\pi\)
\(272\) −11.1053 −0.673358
\(273\) 0 0
\(274\) −3.03067 −0.183089
\(275\) 2.30182 + 1.42749i 0.138805 + 0.0860808i
\(276\) 0 0
\(277\) 9.91356i 0.595648i −0.954621 0.297824i \(-0.903739\pi\)
0.954621 0.297824i \(-0.0962609\pi\)
\(278\) 0.474530 0.0284604
\(279\) 0 0
\(280\) 0.388963 + 0.698907i 0.0232450 + 0.0417677i
\(281\) 18.7167 1.11654 0.558271 0.829658i \(-0.311465\pi\)
0.558271 + 0.829658i \(0.311465\pi\)
\(282\) 0 0
\(283\) 18.9462i 1.12624i −0.826377 0.563118i \(-0.809602\pi\)
0.826377 0.563118i \(-0.190398\pi\)
\(284\) −13.5977 −0.806876
\(285\) 0 0
\(286\) 0.912761 0.0539727
\(287\) 2.33723 0.137962
\(288\) 0 0
\(289\) −5.95197 −0.350116
\(290\) 3.25175 + 2.37747i 0.190950 + 0.139610i
\(291\) 0 0
\(292\) −2.33875 −0.136865
\(293\) 7.13932 0.417083 0.208542 0.978013i \(-0.433128\pi\)
0.208542 + 0.978013i \(0.433128\pi\)
\(294\) 0 0
\(295\) −15.6613 + 8.71600i −0.911835 + 0.507465i
\(296\) −5.29489 −0.307759
\(297\) 0 0
\(298\) −1.57423 −0.0911929
\(299\) 34.9401 2.02064
\(300\) 0 0
\(301\) 1.64359i 0.0947347i
\(302\) −2.00439 −0.115340
\(303\) 0 0
\(304\) 21.0913i 1.20967i
\(305\) 5.26319 + 9.45713i 0.301369 + 0.541514i
\(306\) 0 0
\(307\) 10.0637 0.574368 0.287184 0.957875i \(-0.407281\pi\)
0.287184 + 0.957875i \(0.407281\pi\)
\(308\) 0.281286 0.0160278
\(309\) 0 0
\(310\) 3.67600 + 6.60520i 0.208783 + 0.375150i
\(311\) 16.2493i 0.921412i 0.887553 + 0.460706i \(0.152404\pi\)
−0.887553 + 0.460706i \(0.847596\pi\)
\(312\) 0 0
\(313\) 21.4838i 1.21434i 0.794573 + 0.607168i \(0.207695\pi\)
−0.794573 + 0.607168i \(0.792305\pi\)
\(314\) 3.77099 0.212809
\(315\) 0 0
\(316\) 4.47426i 0.251697i
\(317\) 24.4204 1.37159 0.685794 0.727796i \(-0.259455\pi\)
0.685794 + 0.727796i \(0.259455\pi\)
\(318\) 0 0
\(319\) 2.64961 1.22042i 0.148350 0.0683302i
\(320\) 10.6253 5.91332i 0.593973 0.330565i
\(321\) 0 0
\(322\) −0.638179 −0.0355643
\(323\) 20.9826i 1.16750i
\(324\) 0 0
\(325\) −21.4032 13.2733i −1.18723 0.736271i
\(326\) −3.77539 −0.209099
\(327\) 0 0
\(328\) 11.0535i 0.610329i
\(329\) 3.41876i 0.188482i
\(330\) 0 0
\(331\) 0.627675i 0.0345001i 0.999851 + 0.0172501i \(0.00549114\pi\)
−0.999851 + 0.0172501i \(0.994509\pi\)
\(332\) 19.5840i 1.07481i
\(333\) 0 0
\(334\) 3.04800i 0.166779i
\(335\) −13.2296 23.7715i −0.722810 1.29878i
\(336\) 0 0
\(337\) −27.2068 −1.48205 −0.741024 0.671479i \(-0.765659\pi\)
−0.741024 + 0.671479i \(0.765659\pi\)
\(338\) −4.13840 −0.225099
\(339\) 0 0
\(340\) −12.2620 + 6.82418i −0.665000 + 0.370093i
\(341\) 5.47430 0.296450
\(342\) 0 0
\(343\) 3.82946i 0.206772i
\(344\) −7.77306 −0.419096
\(345\) 0 0
\(346\) 2.23494i 0.120151i
\(347\) 13.0161i 0.698739i −0.936985 0.349369i \(-0.886396\pi\)
0.936985 0.349369i \(-0.113604\pi\)
\(348\) 0 0
\(349\) 23.2480 1.24444 0.622218 0.782844i \(-0.286232\pi\)
0.622218 + 0.782844i \(0.286232\pi\)
\(350\) 0.390928 + 0.242436i 0.0208960 + 0.0129588i
\(351\) 0 0
\(352\) 2.01459i 0.107378i
\(353\) 33.0268i 1.75784i −0.476969 0.878920i \(-0.658265\pi\)
0.476969 0.878920i \(-0.341735\pi\)
\(354\) 0 0
\(355\) −14.0714 + 7.83116i −0.746831 + 0.415635i
\(356\) 4.73213i 0.250802i
\(357\) 0 0
\(358\) −5.89185 −0.311394
\(359\) 30.0802i 1.58757i −0.608195 0.793787i \(-0.708106\pi\)
0.608195 0.793787i \(-0.291894\pi\)
\(360\) 0 0
\(361\) −20.8503 −1.09739
\(362\) 0.267376 0.0140530
\(363\) 0 0
\(364\) −2.61551 −0.137090
\(365\) −2.42022 + 1.34693i −0.126680 + 0.0705016i
\(366\) 0 0
\(367\) −3.89299 −0.203213 −0.101606 0.994825i \(-0.532398\pi\)
−0.101606 + 0.994825i \(0.532398\pi\)
\(368\) 23.1762i 1.20814i
\(369\) 0 0
\(370\) −2.66082 + 1.48083i −0.138329 + 0.0769845i
\(371\) 1.09614 0.0569088
\(372\) 0 0
\(373\) 1.78697i 0.0925260i −0.998929 0.0462630i \(-0.985269\pi\)
0.998929 0.0462630i \(-0.0147312\pi\)
\(374\) 0.602324i 0.0311454i
\(375\) 0 0
\(376\) −16.1684 −0.833824
\(377\) −24.6371 + 11.3479i −1.26888 + 0.584445i
\(378\) 0 0
\(379\) 18.4165i 0.945993i 0.881064 + 0.472996i \(0.156828\pi\)
−0.881064 + 0.472996i \(0.843172\pi\)
\(380\) 12.9606 + 23.2881i 0.664863 + 1.19466i
\(381\) 0 0
\(382\) 4.69482i 0.240208i
\(383\) 28.3971i 1.45102i −0.688210 0.725512i \(-0.741603\pi\)
0.688210 0.725512i \(-0.258397\pi\)
\(384\) 0 0
\(385\) 0.291085 0.161998i 0.0148351 0.00825617i
\(386\) 7.48304 0.380877
\(387\) 0 0
\(388\) 33.7264 1.71220
\(389\) 8.49677i 0.430803i −0.976526 0.215402i \(-0.930894\pi\)
0.976526 0.215402i \(-0.0691061\pi\)
\(390\) 0 0
\(391\) 23.0567i 1.16603i
\(392\) −9.00621 −0.454882
\(393\) 0 0
\(394\) 1.55979i 0.0785812i
\(395\) 2.57680 + 4.63011i 0.129653 + 0.232966i
\(396\) 0 0
\(397\) 1.07708i 0.0540571i 0.999635 + 0.0270286i \(0.00860451\pi\)
−0.999635 + 0.0270286i \(0.991395\pi\)
\(398\) 5.01011 0.251134
\(399\) 0 0
\(400\) 8.80437 14.1970i 0.440218 0.709851i
\(401\) −18.2009 −0.908910 −0.454455 0.890770i \(-0.650166\pi\)
−0.454455 + 0.890770i \(0.650166\pi\)
\(402\) 0 0
\(403\) −50.9021 −2.53561
\(404\) 25.8229i 1.28474i
\(405\) 0 0
\(406\) 0.449995 0.207268i 0.0223329 0.0102866i
\(407\) 2.20525i 0.109310i
\(408\) 0 0
\(409\) 29.4035i 1.45391i −0.686684 0.726956i \(-0.740934\pi\)
0.686684 0.726956i \(-0.259066\pi\)
\(410\) 3.09135 + 5.55468i 0.152671 + 0.274326i
\(411\) 0 0
\(412\) 20.1781i 0.994103i
\(413\) 2.20442i 0.108473i
\(414\) 0 0
\(415\) 11.2788 + 20.2662i 0.553654 + 0.994830i
\(416\) 18.7324i 0.918431i
\(417\) 0 0
\(418\) −1.14394 −0.0559520
\(419\) 7.33375 0.358277 0.179139 0.983824i \(-0.442669\pi\)
0.179139 + 0.983824i \(0.442669\pi\)
\(420\) 0 0
\(421\) 21.0761i 1.02718i 0.858034 + 0.513592i \(0.171686\pi\)
−0.858034 + 0.513592i \(0.828314\pi\)
\(422\) 5.31756i 0.258855i
\(423\) 0 0
\(424\) 5.18401i 0.251758i
\(425\) −8.75896 + 14.1238i −0.424872 + 0.685105i
\(426\) 0 0
\(427\) 1.33115 0.0644189
\(428\) 8.67058i 0.419108i
\(429\) 0 0
\(430\) −3.90616 + 2.17390i −0.188372 + 0.104835i
\(431\) 10.6334 0.512195 0.256098 0.966651i \(-0.417563\pi\)
0.256098 + 0.966651i \(0.417563\pi\)
\(432\) 0 0
\(433\) −12.7281 −0.611674 −0.305837 0.952084i \(-0.598936\pi\)
−0.305837 + 0.952084i \(0.598936\pi\)
\(434\) 0.929724 0.0446282
\(435\) 0 0
\(436\) 24.8233 1.18882
\(437\) −43.7896 −2.09474
\(438\) 0 0
\(439\) −4.48366 −0.213994 −0.106997 0.994259i \(-0.534123\pi\)
−0.106997 + 0.994259i \(0.534123\pi\)
\(440\) 0.766141 + 1.37664i 0.0365244 + 0.0656286i
\(441\) 0 0
\(442\) 5.60063i 0.266395i
\(443\) 12.8049 0.608379 0.304189 0.952612i \(-0.401614\pi\)
0.304189 + 0.952612i \(0.401614\pi\)
\(444\) 0 0
\(445\) 2.72532 + 4.89697i 0.129192 + 0.232138i
\(446\) 2.51531i 0.119103i
\(447\) 0 0
\(448\) 1.49558i 0.0706595i
\(449\) 22.1787i 1.04668i 0.852124 + 0.523340i \(0.175314\pi\)
−0.852124 + 0.523340i \(0.824686\pi\)
\(450\) 0 0
\(451\) 4.60364 0.216777
\(452\) −23.4957 −1.10515
\(453\) 0 0
\(454\) 5.00575i 0.234932i
\(455\) −2.70661 + 1.50632i −0.126888 + 0.0706172i
\(456\) 0 0
\(457\) 12.2239i 0.571808i −0.958258 0.285904i \(-0.907706\pi\)
0.958258 0.285904i \(-0.0922939\pi\)
\(458\) 4.11685i 0.192368i
\(459\) 0 0
\(460\) 14.2417 + 25.5902i 0.664024 + 1.19315i
\(461\) 26.1495i 1.21790i 0.793207 + 0.608952i \(0.208410\pi\)
−0.793207 + 0.608952i \(0.791590\pi\)
\(462\) 0 0
\(463\) 23.5519i 1.09455i 0.836953 + 0.547275i \(0.184335\pi\)
−0.836953 + 0.547275i \(0.815665\pi\)
\(464\) −7.52720 16.3421i −0.349442 0.758664i
\(465\) 0 0
\(466\) 3.59613i 0.166587i
\(467\) 12.7060 0.587963 0.293981 0.955811i \(-0.405020\pi\)
0.293981 + 0.955811i \(0.405020\pi\)
\(468\) 0 0
\(469\) −3.34599 −0.154503
\(470\) −8.12505 + 4.52185i −0.374781 + 0.208577i
\(471\) 0 0
\(472\) −10.4255 −0.479870
\(473\) 3.23737i 0.148855i
\(474\) 0 0
\(475\) 26.8241 + 16.6351i 1.23077 + 0.763272i
\(476\) 1.72595i 0.0791089i
\(477\) 0 0
\(478\) 2.02212 0.0924898
\(479\) 14.2867i 0.652775i −0.945236 0.326388i \(-0.894169\pi\)
0.945236 0.326388i \(-0.105831\pi\)
\(480\) 0 0
\(481\) 20.5052i 0.934957i
\(482\) 8.09538 0.368734
\(483\) 0 0
\(484\) −20.2150 −0.918863
\(485\) 34.9012 19.4236i 1.58478 0.881982i
\(486\) 0 0
\(487\) 34.4239i 1.55990i −0.625844 0.779948i \(-0.715246\pi\)
0.625844 0.779948i \(-0.284754\pi\)
\(488\) 6.29545i 0.284982i
\(489\) 0 0
\(490\) −4.52585 + 2.51878i −0.204457 + 0.113787i
\(491\) 20.5793i 0.928733i 0.885643 + 0.464366i \(0.153718\pi\)
−0.885643 + 0.464366i \(0.846282\pi\)
\(492\) 0 0
\(493\) 7.48838 + 16.2578i 0.337260 + 0.732216i
\(494\) 10.6368 0.478572
\(495\) 0 0
\(496\) 33.7641i 1.51605i
\(497\) 1.98064i 0.0888436i
\(498\) 0 0
\(499\) −19.5569 −0.875487 −0.437743 0.899100i \(-0.644222\pi\)
−0.437743 + 0.899100i \(0.644222\pi\)
\(500\) 0.997363 21.0860i 0.0446034 0.942993i
\(501\) 0 0
\(502\) 8.70264i 0.388418i
\(503\) 38.5345 1.71817 0.859084 0.511835i \(-0.171034\pi\)
0.859084 + 0.511835i \(0.171034\pi\)
\(504\) 0 0
\(505\) 14.8719 + 26.7224i 0.661790 + 1.18913i
\(506\) −1.25702 −0.0558814
\(507\) 0 0
\(508\) 19.6072 0.869928
\(509\) −9.66065 −0.428201 −0.214100 0.976812i \(-0.568682\pi\)
−0.214100 + 0.976812i \(0.568682\pi\)
\(510\) 0 0
\(511\) 0.340662i 0.0150700i
\(512\) 21.1167 0.933234
\(513\) 0 0
\(514\) 1.19996i 0.0529281i
\(515\) −11.6209 20.8810i −0.512079 0.920126i
\(516\) 0 0
\(517\) 6.73393i 0.296158i
\(518\) 0.374527i 0.0164557i
\(519\) 0 0
\(520\) −7.12387 12.8005i −0.312402 0.561338i
\(521\) −20.3242 −0.890421 −0.445211 0.895426i \(-0.646871\pi\)
−0.445211 + 0.895426i \(0.646871\pi\)
\(522\) 0 0
\(523\) 40.6870i 1.77912i 0.456820 + 0.889559i \(0.348988\pi\)
−0.456820 + 0.889559i \(0.651012\pi\)
\(524\) 7.18957i 0.314078i
\(525\) 0 0
\(526\) −1.31269 −0.0572360
\(527\) 33.5899i 1.46320i
\(528\) 0 0
\(529\) −25.1182 −1.09209
\(530\) 1.44982 + 2.60510i 0.0629761 + 0.113158i
\(531\) 0 0
\(532\) 3.27795 0.142117
\(533\) −42.8064 −1.85415
\(534\) 0 0
\(535\) −4.99354 8.97261i −0.215890 0.387920i
\(536\) 15.8243i 0.683506i
\(537\) 0 0
\(538\) 4.64404i 0.200219i
\(539\) 3.75096i 0.161565i
\(540\) 0 0
\(541\) 5.02402i 0.216000i −0.994151 0.108000i \(-0.965555\pi\)
0.994151 0.108000i \(-0.0344446\pi\)
\(542\) 4.47860i 0.192372i
\(543\) 0 0
\(544\) −12.3614 −0.529989
\(545\) 25.6880 14.2962i 1.10035 0.612380i
\(546\) 0 0
\(547\) 8.61344i 0.368284i 0.982900 + 0.184142i \(0.0589506\pi\)
−0.982900 + 0.184142i \(0.941049\pi\)
\(548\) 17.1055 0.730712
\(549\) 0 0
\(550\) 0.770011 + 0.477527i 0.0328334 + 0.0203618i
\(551\) 30.8771 14.2220i 1.31541 0.605878i
\(552\) 0 0
\(553\) 0.651718 0.0277139
\(554\) 3.31631i 0.140896i
\(555\) 0 0
\(556\) −2.67832 −0.113586
\(557\) 0.455853i 0.0193151i 0.999953 + 0.00965755i \(0.00307414\pi\)
−0.999953 + 0.00965755i \(0.996926\pi\)
\(558\) 0 0
\(559\) 30.1023i 1.27319i
\(560\) −0.999160 1.79533i −0.0422222 0.0758667i
\(561\) 0 0
\(562\) 6.26114 0.264110
\(563\) −0.120515 −0.00507911 −0.00253956 0.999997i \(-0.500808\pi\)
−0.00253956 + 0.999997i \(0.500808\pi\)
\(564\) 0 0
\(565\) −24.3142 + 13.5316i −1.02290 + 0.569279i
\(566\) 6.33794i 0.266403i
\(567\) 0 0
\(568\) −9.36708 −0.393034
\(569\) 22.7315i 0.952954i −0.879187 0.476477i \(-0.841914\pi\)
0.879187 0.476477i \(-0.158086\pi\)
\(570\) 0 0
\(571\) 26.7167 1.11806 0.559030 0.829147i \(-0.311174\pi\)
0.559030 + 0.829147i \(0.311174\pi\)
\(572\) −5.15176 −0.215406
\(573\) 0 0
\(574\) 0.781856 0.0326340
\(575\) 29.4756 + 18.2795i 1.22922 + 0.762308i
\(576\) 0 0
\(577\) 15.3024 0.637049 0.318524 0.947915i \(-0.396813\pi\)
0.318524 + 0.947915i \(0.396813\pi\)
\(578\) −1.99107 −0.0828175
\(579\) 0 0
\(580\) −18.3534 13.4188i −0.762083 0.557185i
\(581\) 2.85260 0.118346
\(582\) 0 0
\(583\) 2.15907 0.0894195
\(584\) −1.61110 −0.0666679
\(585\) 0 0
\(586\) 2.38826 0.0986582
\(587\) 41.6229i 1.71796i 0.512009 + 0.858980i \(0.328902\pi\)
−0.512009 + 0.858980i \(0.671098\pi\)
\(588\) 0 0
\(589\) 63.7944 2.62860
\(590\) −5.23905 + 2.91570i −0.215688 + 0.120037i
\(591\) 0 0
\(592\) 13.6014 0.559013
\(593\) 11.7493i 0.482487i −0.970465 0.241244i \(-0.922445\pi\)
0.970465 0.241244i \(-0.0775553\pi\)
\(594\) 0 0
\(595\) 0.994006 + 1.78607i 0.0407503 + 0.0732219i
\(596\) 8.88521 0.363952
\(597\) 0 0
\(598\) 11.6882 0.477968
\(599\) 8.86844i 0.362354i −0.983450 0.181177i \(-0.942009\pi\)
0.983450 0.181177i \(-0.0579908\pi\)
\(600\) 0 0
\(601\) 0.339050i 0.0138301i −0.999976 0.00691506i \(-0.997799\pi\)
0.999976 0.00691506i \(-0.00220115\pi\)
\(602\) 0.549817i 0.0224089i
\(603\) 0 0
\(604\) 11.3131 0.460324
\(605\) −20.9192 + 11.6422i −0.850485 + 0.473322i
\(606\) 0 0
\(607\) −8.27856 −0.336017 −0.168008 0.985786i \(-0.553734\pi\)
−0.168008 + 0.985786i \(0.553734\pi\)
\(608\) 23.4769i 0.952112i
\(609\) 0 0
\(610\) 1.76066 + 3.16362i 0.0712869 + 0.128091i
\(611\) 62.6146i 2.53312i
\(612\) 0 0
\(613\) 42.0873i 1.69989i −0.526870 0.849946i \(-0.676635\pi\)
0.526870 0.849946i \(-0.323365\pi\)
\(614\) 3.36655 0.135863
\(615\) 0 0
\(616\) 0.193770 0.00780723
\(617\) 28.7087 1.15577 0.577884 0.816119i \(-0.303879\pi\)
0.577884 + 0.816119i \(0.303879\pi\)
\(618\) 0 0
\(619\) 8.90716i 0.358009i 0.983848 + 0.179005i \(0.0572877\pi\)
−0.983848 + 0.179005i \(0.942712\pi\)
\(620\) −20.7479 37.2807i −0.833256 1.49723i
\(621\) 0 0
\(622\) 5.43575i 0.217954i
\(623\) 0.689279 0.0276154
\(624\) 0 0
\(625\) −11.1117 22.3949i −0.444467 0.895795i
\(626\) 7.18681i 0.287243i
\(627\) 0 0
\(628\) −21.2840 −0.849325
\(629\) −13.5312 −0.539525
\(630\) 0 0
\(631\) 17.9351 0.713986 0.356993 0.934107i \(-0.383802\pi\)
0.356993 + 0.934107i \(0.383802\pi\)
\(632\) 3.08219i 0.122603i
\(633\) 0 0
\(634\) 8.16918 0.324440
\(635\) 20.2902 11.2921i 0.805191 0.448114i
\(636\) 0 0
\(637\) 34.8778i 1.38191i
\(638\) 0.886356 0.408256i 0.0350912 0.0161630i
\(639\) 0 0
\(640\) 18.0872 10.0661i 0.714958 0.397897i
\(641\) 0.220741i 0.00871875i −0.999990 0.00435938i \(-0.998612\pi\)
0.999990 0.00435938i \(-0.00138764\pi\)
\(642\) 0 0
\(643\) 6.25440i 0.246650i 0.992366 + 0.123325i \(0.0393557\pi\)
−0.992366 + 0.123325i \(0.960644\pi\)
\(644\) 3.60198 0.141938
\(645\) 0 0
\(646\) 7.01914i 0.276164i
\(647\) 24.3697i 0.958071i 0.877796 + 0.479035i \(0.159013\pi\)
−0.877796 + 0.479035i \(0.840987\pi\)
\(648\) 0 0
\(649\) 4.34205i 0.170441i
\(650\) −7.15984 4.44022i −0.280832 0.174160i
\(651\) 0 0
\(652\) 21.3088 0.834519
\(653\) −41.1834 −1.61163 −0.805815 0.592167i \(-0.798273\pi\)
−0.805815 + 0.592167i \(0.798273\pi\)
\(654\) 0 0
\(655\) 4.14060 + 7.44001i 0.161787 + 0.290705i
\(656\) 28.3940i 1.10860i
\(657\) 0 0
\(658\) 1.14365i 0.0445842i
\(659\) 4.18021i 0.162838i −0.996680 0.0814190i \(-0.974055\pi\)
0.996680 0.0814190i \(-0.0259452\pi\)
\(660\) 0 0
\(661\) −8.11965 −0.315818 −0.157909 0.987454i \(-0.550475\pi\)
−0.157909 + 0.987454i \(0.550475\pi\)
\(662\) 0.209971i 0.00816077i
\(663\) 0 0
\(664\) 13.4909i 0.523548i
\(665\) 3.39213 1.88783i 0.131541 0.0732069i
\(666\) 0 0
\(667\) 33.9293 15.6279i 1.31375 0.605113i
\(668\) 17.2034i 0.665619i
\(669\) 0 0
\(670\) −4.42560 7.95211i −0.170976 0.307217i
\(671\) 2.62197 0.101220
\(672\) 0 0
\(673\) 33.1749i 1.27880i −0.768875 0.639399i \(-0.779183\pi\)
0.768875 0.639399i \(-0.220817\pi\)
\(674\) −9.10128 −0.350568
\(675\) 0 0
\(676\) 23.3577 0.898375
\(677\) 14.7844 0.568212 0.284106 0.958793i \(-0.408303\pi\)
0.284106 + 0.958793i \(0.408303\pi\)
\(678\) 0 0
\(679\) 4.91257i 0.188527i
\(680\) −8.44694 + 4.70099i −0.323925 + 0.180275i
\(681\) 0 0
\(682\) 1.83128 0.0701232
\(683\) 33.5573i 1.28404i 0.766690 + 0.642018i \(0.221902\pi\)
−0.766690 + 0.642018i \(0.778098\pi\)
\(684\) 0 0
\(685\) 17.7014 9.85138i 0.676336 0.376402i
\(686\) 1.28104i 0.0489104i
\(687\) 0 0
\(688\) 19.9673 0.761245
\(689\) −20.0758 −0.764828
\(690\) 0 0
\(691\) −11.4767 −0.436596 −0.218298 0.975882i \(-0.570050\pi\)
−0.218298 + 0.975882i \(0.570050\pi\)
\(692\) 12.6143i 0.479525i
\(693\) 0 0
\(694\) 4.35417i 0.165282i
\(695\) −2.77162 + 1.54249i −0.105133 + 0.0585101i
\(696\) 0 0
\(697\) 28.2476i 1.06995i
\(698\) 7.77697 0.294363
\(699\) 0 0
\(700\) −2.20645 1.36835i −0.0833962 0.0517186i
\(701\) −11.0065 −0.415711 −0.207855 0.978160i \(-0.566648\pi\)
−0.207855 + 0.978160i \(0.566648\pi\)
\(702\) 0 0
\(703\) 25.6987i 0.969244i
\(704\) 2.94584i 0.111026i
\(705\) 0 0
\(706\) 11.0482i 0.415805i
\(707\) 3.76135 0.141460
\(708\) 0 0
\(709\) 21.4248 0.804624 0.402312 0.915503i \(-0.368207\pi\)
0.402312 + 0.915503i \(0.368207\pi\)
\(710\) −4.70719 + 2.61970i −0.176658 + 0.0983156i
\(711\) 0 0
\(712\) 3.25983i 0.122167i
\(713\) 70.1005 2.62528
\(714\) 0 0
\(715\) −5.33122 + 2.96699i −0.199376 + 0.110959i
\(716\) 33.2545 1.24278
\(717\) 0 0
\(718\) 10.0625i 0.375530i
\(719\) 21.8797 0.815977 0.407988 0.912987i \(-0.366230\pi\)
0.407988 + 0.912987i \(0.366230\pi\)
\(720\) 0 0
\(721\) −2.93913 −0.109459
\(722\) −6.97491 −0.259579
\(723\) 0 0
\(724\) −1.50911 −0.0560857
\(725\) −26.7208 3.31619i −0.992387 0.123160i
\(726\) 0 0
\(727\) 36.6219 1.35823 0.679115 0.734032i \(-0.262364\pi\)
0.679115 + 0.734032i \(0.262364\pi\)
\(728\) −1.80175 −0.0667772
\(729\) 0 0
\(730\) −0.809619 + 0.450579i −0.0299654 + 0.0166767i
\(731\) −19.8643 −0.734707
\(732\) 0 0
\(733\) −7.68719 −0.283933 −0.141966 0.989871i \(-0.545342\pi\)
−0.141966 + 0.989871i \(0.545342\pi\)
\(734\) −1.30229 −0.0480686
\(735\) 0 0
\(736\) 25.7975i 0.950910i
\(737\) −6.59060 −0.242768
\(738\) 0 0
\(739\) 26.2160i 0.964371i −0.876069 0.482186i \(-0.839843\pi\)
0.876069 0.482186i \(-0.160157\pi\)
\(740\) 15.0180 8.35801i 0.552074 0.307247i
\(741\) 0 0
\(742\) 0.366684 0.0134614
\(743\) −7.62063 −0.279574 −0.139787 0.990182i \(-0.544642\pi\)
−0.139787 + 0.990182i \(0.544642\pi\)
\(744\) 0 0
\(745\) 9.19472 5.11715i 0.336868 0.187478i
\(746\) 0.597783i 0.0218864i
\(747\) 0 0
\(748\) 3.39961i 0.124302i
\(749\) −1.26295 −0.0461472
\(750\) 0 0
\(751\) 28.5397i 1.04143i −0.853731 0.520714i \(-0.825666\pi\)
0.853731 0.520714i \(-0.174334\pi\)
\(752\) 41.5331 1.51456
\(753\) 0 0
\(754\) −8.24166 + 3.79612i −0.300144 + 0.138247i
\(755\) 11.7072 6.51542i 0.426068 0.237120i
\(756\) 0 0
\(757\) −19.8761 −0.722408 −0.361204 0.932487i \(-0.617634\pi\)
−0.361204 + 0.932487i \(0.617634\pi\)
\(758\) 6.16074i 0.223768i
\(759\) 0 0
\(760\) 8.92817 + 16.0425i 0.323859 + 0.581924i
\(761\) −33.8887 −1.22847 −0.614233 0.789125i \(-0.710535\pi\)
−0.614233 + 0.789125i \(0.710535\pi\)
\(762\) 0 0
\(763\) 3.61574i 0.130899i
\(764\) 26.4983i 0.958674i
\(765\) 0 0
\(766\) 9.49947i 0.343230i
\(767\) 40.3740i 1.45782i
\(768\) 0 0
\(769\) 37.6604i 1.35807i 0.734107 + 0.679034i \(0.237601\pi\)
−0.734107 + 0.679034i \(0.762399\pi\)
\(770\) 0.0973744 0.0541919i 0.00350913 0.00195294i
\(771\) 0 0
\(772\) −42.2354 −1.52008
\(773\) −23.1391 −0.832255 −0.416127 0.909306i \(-0.636613\pi\)
−0.416127 + 0.909306i \(0.636613\pi\)
\(774\) 0 0
\(775\) −42.9413 26.6303i −1.54250 0.956589i
\(776\) 23.2332 0.834022
\(777\) 0 0
\(778\) 2.84236i 0.101904i
\(779\) 53.6482 1.92214
\(780\) 0 0
\(781\) 3.90126i 0.139598i
\(782\) 7.71298i 0.275816i
\(783\) 0 0
\(784\) 23.1349 0.826248
\(785\) −22.0254 + 12.2579i −0.786122 + 0.437502i
\(786\) 0 0
\(787\) 11.0598i 0.394238i −0.980380 0.197119i \(-0.936841\pi\)
0.980380 0.197119i \(-0.0631586\pi\)
\(788\) 8.80370i 0.313619i
\(789\) 0 0
\(790\) 0.861999 + 1.54888i 0.0306685 + 0.0551066i
\(791\) 3.42237i 0.121686i
\(792\) 0 0
\(793\) −24.3800 −0.865760
\(794\) 0.360308i 0.0127868i
\(795\) 0 0
\(796\) −28.2778 −1.00228
\(797\) 11.5108 0.407733 0.203866 0.978999i \(-0.434649\pi\)
0.203866 + 0.978999i \(0.434649\pi\)
\(798\) 0 0
\(799\) −41.3189 −1.46176
\(800\) 9.80017 15.8028i 0.346488 0.558712i
\(801\) 0 0
\(802\) −6.08861 −0.214996
\(803\) 0.671001i 0.0236791i
\(804\) 0 0
\(805\) 3.72745 2.07444i 0.131375 0.0731145i
\(806\) −17.0279 −0.599782
\(807\) 0 0
\(808\) 17.7887i 0.625803i
\(809\) 26.4897i 0.931330i 0.884961 + 0.465665i \(0.154185\pi\)
−0.884961 + 0.465665i \(0.845815\pi\)
\(810\) 0 0
\(811\) −40.5686 −1.42455 −0.712277 0.701898i \(-0.752336\pi\)
−0.712277 + 0.701898i \(0.752336\pi\)
\(812\) −2.53984 + 1.16985i −0.0891309 + 0.0410538i
\(813\) 0 0
\(814\) 0.737705i 0.0258565i
\(815\) 22.0511 12.2721i 0.772417 0.429874i
\(816\) 0 0
\(817\) 37.7265i 1.31988i
\(818\) 9.83615i 0.343913i
\(819\) 0 0
\(820\) −17.4480 31.3514i −0.609312 1.09484i
\(821\) 34.6649 1.20981 0.604906 0.796297i \(-0.293211\pi\)
0.604906 + 0.796297i \(0.293211\pi\)
\(822\) 0 0
\(823\) 37.6231 1.31146 0.655729 0.754996i \(-0.272361\pi\)
0.655729 + 0.754996i \(0.272361\pi\)
\(824\) 13.9001i 0.484233i
\(825\) 0 0
\(826\) 0.737429i 0.0256585i
\(827\) −45.0238 −1.56563 −0.782816 0.622253i \(-0.786217\pi\)
−0.782816 + 0.622253i \(0.786217\pi\)
\(828\) 0 0
\(829\) 12.5148i 0.434656i 0.976099 + 0.217328i \(0.0697341\pi\)
−0.976099 + 0.217328i \(0.930266\pi\)
\(830\) 3.77301 + 6.77951i 0.130963 + 0.235320i
\(831\) 0 0
\(832\) 27.3915i 0.949631i
\(833\) −23.0156 −0.797443
\(834\) 0 0
\(835\) 9.90773 + 17.8026i 0.342871 + 0.616086i
\(836\) 6.45658 0.223305
\(837\) 0 0
\(838\) 2.45330 0.0847480
\(839\) 35.4253i 1.22302i −0.791238 0.611508i \(-0.790563\pi\)
0.791238 0.611508i \(-0.209437\pi\)
\(840\) 0 0
\(841\) −18.8487 + 22.0392i −0.649956 + 0.759972i
\(842\) 7.05042i 0.242973i
\(843\) 0 0
\(844\) 30.0131i 1.03309i
\(845\) 24.1714 13.4521i 0.831521 0.462768i
\(846\) 0 0
\(847\) 2.94450i 0.101174i
\(848\) 13.3166i 0.457293i
\(849\) 0 0
\(850\) −2.93007 + 4.72473i −0.100501 + 0.162057i
\(851\) 28.2390i 0.968021i
\(852\) 0 0
\(853\) −4.63924 −0.158844 −0.0794222 0.996841i \(-0.525308\pi\)
−0.0794222 + 0.996841i \(0.525308\pi\)
\(854\) 0.445300 0.0152379
\(855\) 0 0
\(856\) 5.97292i 0.204150i
\(857\) 52.9487i 1.80869i −0.426800 0.904346i \(-0.640359\pi\)
0.426800 0.904346i \(-0.359641\pi\)
\(858\) 0 0
\(859\) 37.3538i 1.27450i −0.770658 0.637248i \(-0.780073\pi\)
0.770658 0.637248i \(-0.219927\pi\)
\(860\) 22.0469 12.2698i 0.751795 0.418397i
\(861\) 0 0
\(862\) 3.55713 0.121156
\(863\) 10.2002i 0.347219i 0.984815 + 0.173609i \(0.0555431\pi\)
−0.984815 + 0.173609i \(0.944457\pi\)
\(864\) 0 0
\(865\) −7.26482 13.0537i −0.247011 0.443841i
\(866\) −4.25784 −0.144687
\(867\) 0 0
\(868\) −5.24750 −0.178112
\(869\) 1.28369 0.0435461
\(870\) 0 0
\(871\) 61.2818 2.07646
\(872\) 17.1000 0.579081
\(873\) 0 0
\(874\) −14.6486 −0.495496
\(875\) −3.07137 0.145275i −0.103831 0.00491120i
\(876\) 0 0
\(877\) 8.25649i 0.278802i −0.990236 0.139401i \(-0.955482\pi\)
0.990236 0.139401i \(-0.0445177\pi\)
\(878\) −1.49989 −0.0506187
\(879\) 0 0
\(880\) −1.96805 3.53627i −0.0663428 0.119208i
\(881\) 4.94367i 0.166556i 0.996526 + 0.0832782i \(0.0265390\pi\)
−0.996526 + 0.0832782i \(0.973461\pi\)
\(882\) 0 0
\(883\) 35.6378i 1.19931i −0.800259 0.599654i \(-0.795305\pi\)
0.800259 0.599654i \(-0.204695\pi\)
\(884\) 31.6108i 1.06319i
\(885\) 0 0
\(886\) 4.28352 0.143908
\(887\) −2.14284 −0.0719497 −0.0359748 0.999353i \(-0.511454\pi\)
−0.0359748 + 0.999353i \(0.511454\pi\)
\(888\) 0 0
\(889\) 2.85597i 0.0957862i
\(890\) 0.911679 + 1.63815i 0.0305596 + 0.0549108i
\(891\) 0 0
\(892\) 14.1968i 0.475343i
\(893\) 78.4733i 2.62601i
\(894\) 0 0
\(895\) 34.4129 19.1519i 1.15030 0.640176i
\(896\) 2.54588i 0.0850520i
\(897\) 0 0
\(898\) 7.41929i 0.247585i
\(899\) −49.4295 + 22.7673i −1.64857 + 0.759332i
\(900\) 0 0
\(901\) 13.2479i 0.441351i
\(902\) 1.54002 0.0512771
\(903\) 0 0
\(904\) −16.1855 −0.538323
\(905\) −1.56168 + 0.869125i −0.0519120 + 0.0288907i
\(906\) 0 0
\(907\) −27.7834 −0.922533 −0.461266 0.887262i \(-0.652605\pi\)
−0.461266 + 0.887262i \(0.652605\pi\)
\(908\) 28.2532i 0.937616i
\(909\) 0 0
\(910\) −0.905423 + 0.503897i −0.0300145 + 0.0167040i
\(911\) 7.92701i 0.262634i −0.991340 0.131317i \(-0.958080\pi\)
0.991340 0.131317i \(-0.0419205\pi\)
\(912\) 0 0
\(913\) 5.61877 0.185954
\(914\) 4.08916i 0.135257i
\(915\) 0 0
\(916\) 23.2361i 0.767743i
\(917\) 1.04723 0.0345825
\(918\) 0 0
\(919\) 24.5480 0.809764 0.404882 0.914369i \(-0.367313\pi\)
0.404882 + 0.914369i \(0.367313\pi\)
\(920\) 9.81072 + 17.6283i 0.323450 + 0.581189i
\(921\) 0 0
\(922\) 8.74760i 0.288087i
\(923\) 36.2753i 1.19402i
\(924\) 0 0
\(925\) 10.7277 17.2983i 0.352723 0.568765i
\(926\) 7.87864i 0.258908i
\(927\) 0 0
\(928\) −8.37855 18.1905i −0.275040 0.597132i
\(929\) −2.45572 −0.0805695 −0.0402847 0.999188i \(-0.512827\pi\)
−0.0402847 + 0.999188i \(0.512827\pi\)
\(930\) 0 0
\(931\) 43.7115i 1.43259i
\(932\) 20.2971i 0.664853i
\(933\) 0 0
\(934\) 4.25044 0.139079
\(935\) 1.95789 + 3.51803i 0.0640300 + 0.115052i
\(936\) 0 0
\(937\) 39.7814i 1.29960i 0.760104 + 0.649801i \(0.225148\pi\)
−0.760104 + 0.649801i \(0.774852\pi\)
\(938\) −1.11931 −0.0365467
\(939\) 0 0
\(940\) 45.8590 25.5220i 1.49576 0.832435i
\(941\) −33.7621 −1.10061 −0.550306 0.834963i \(-0.685489\pi\)
−0.550306 + 0.834963i \(0.685489\pi\)
\(942\) 0 0
\(943\) 58.9513 1.91972
\(944\) 26.7806 0.871636
\(945\) 0 0
\(946\) 1.08297i 0.0352105i
\(947\) 1.32780 0.0431476 0.0215738 0.999767i \(-0.493132\pi\)
0.0215738 + 0.999767i \(0.493132\pi\)
\(948\) 0 0
\(949\) 6.23922i 0.202534i
\(950\) 8.97326 + 5.56482i 0.291131 + 0.180547i
\(951\) 0 0
\(952\) 1.18896i 0.0385344i
\(953\) 21.2315i 0.687755i −0.939014 0.343878i \(-0.888259\pi\)
0.939014 0.343878i \(-0.111741\pi\)
\(954\) 0 0
\(955\) 15.2608 + 27.4213i 0.493829 + 0.887333i
\(956\) −11.4132 −0.369128
\(957\) 0 0
\(958\) 4.77922i 0.154409i
\(959\) 2.49158i 0.0804574i
\(960\) 0 0
\(961\) −71.1251 −2.29436
\(962\) 6.85945i 0.221158i
\(963\) 0 0
\(964\) −45.6915 −1.47162
\(965\) −43.7066 + 24.3241i −1.40697 + 0.783021i
\(966\) 0 0
\(967\) −8.54151 −0.274677 −0.137338 0.990524i \(-0.543855\pi\)
−0.137338 + 0.990524i \(0.543855\pi\)
\(968\) −13.9255 −0.447584
\(969\) 0 0
\(970\) 11.6753 6.49764i 0.374870 0.208627i
\(971\) 18.0454i 0.579104i 0.957162 + 0.289552i \(0.0935063\pi\)
−0.957162 + 0.289552i \(0.906494\pi\)
\(972\) 0 0
\(973\) 0.390123i 0.0125068i
\(974\) 11.5156i 0.368983i
\(975\) 0 0
\(976\) 16.1716i 0.517641i
\(977\) 15.2948i 0.489324i −0.969608 0.244662i \(-0.921323\pi\)
0.969608 0.244662i \(-0.0786770\pi\)
\(978\) 0 0
\(979\) 1.35767 0.0433914
\(980\) 25.5446 14.2163i 0.815991 0.454124i
\(981\) 0 0
\(982\) 6.88425i 0.219685i
\(983\) 38.2643 1.22044 0.610221 0.792231i \(-0.291081\pi\)
0.610221 + 0.792231i \(0.291081\pi\)
\(984\) 0 0
\(985\) 5.07021 + 9.11037i 0.161550 + 0.290281i
\(986\) 2.50503 + 5.43861i 0.0797764 + 0.173201i
\(987\) 0 0
\(988\) −60.0356 −1.90999
\(989\) 41.4557i 1.31822i
\(990\) 0 0
\(991\) 22.5768 0.717174 0.358587 0.933496i \(-0.383259\pi\)
0.358587 + 0.933496i \(0.383259\pi\)
\(992\) 37.5829i 1.19326i
\(993\) 0 0
\(994\) 0.662567i 0.0210153i
\(995\) −29.2629 + 16.2857i −0.927695 + 0.516292i
\(996\) 0 0
\(997\) −28.4370 −0.900608 −0.450304 0.892875i \(-0.648684\pi\)
−0.450304 + 0.892875i \(0.648684\pi\)
\(998\) −6.54222 −0.207090
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.2.f.l.289.8 12
3.2 odd 2 435.2.f.f.289.5 yes 12
5.4 even 2 1305.2.f.k.289.5 12
15.2 even 4 2175.2.d.j.376.13 24
15.8 even 4 2175.2.d.j.376.12 24
15.14 odd 2 435.2.f.e.289.8 yes 12
29.28 even 2 1305.2.f.k.289.6 12
87.86 odd 2 435.2.f.e.289.7 12
145.144 even 2 inner 1305.2.f.l.289.7 12
435.173 even 4 2175.2.d.j.376.11 24
435.347 even 4 2175.2.d.j.376.14 24
435.434 odd 2 435.2.f.f.289.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.f.e.289.7 12 87.86 odd 2
435.2.f.e.289.8 yes 12 15.14 odd 2
435.2.f.f.289.5 yes 12 3.2 odd 2
435.2.f.f.289.6 yes 12 435.434 odd 2
1305.2.f.k.289.5 12 5.4 even 2
1305.2.f.k.289.6 12 29.28 even 2
1305.2.f.l.289.7 12 145.144 even 2 inner
1305.2.f.l.289.8 12 1.1 even 1 trivial
2175.2.d.j.376.11 24 435.173 even 4
2175.2.d.j.376.12 24 15.8 even 4
2175.2.d.j.376.13 24 15.2 even 4
2175.2.d.j.376.14 24 435.347 even 4