Properties

Label 2175.2.d.j.376.13
Level $2175$
Weight $2$
Character 2175.376
Analytic conductor $17.367$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,2,Mod(376,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2175.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.3674624396\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 435)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 376.13
Character \(\chi\) \(=\) 2175.376
Dual form 2175.2.d.j.376.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.334522i q^{2} -1.00000i q^{3} +1.88809 q^{4} -0.334522 q^{6} -0.275019 q^{7} -1.30066i q^{8} -1.00000 q^{9} +O(q^{10})\) \(q-0.334522i q^{2} -1.00000i q^{3} +1.88809 q^{4} -0.334522 q^{6} -0.275019 q^{7} -1.30066i q^{8} -1.00000 q^{9} -0.541705i q^{11} -1.88809i q^{12} -5.03697 q^{13} +0.0920000i q^{14} +3.34109 q^{16} +3.32386i q^{17} +0.334522i q^{18} -6.31271i q^{19} +0.275019i q^{21} -0.181212 q^{22} -6.93673 q^{23} -1.30066 q^{24} +1.68498i q^{26} +1.00000i q^{27} -0.519262 q^{28} +(-2.25292 - 4.89125i) q^{29} -10.1057i q^{31} -3.71898i q^{32} -0.541705 q^{33} +1.11191 q^{34} -1.88809 q^{36} +4.07094i q^{37} -2.11174 q^{38} +5.03697i q^{39} +8.49843i q^{41} +0.0920000 q^{42} -5.97627i q^{43} -1.02279i q^{44} +2.32049i q^{46} -12.4310i q^{47} -3.34109i q^{48} -6.92436 q^{49} +3.32386 q^{51} -9.51028 q^{52} +3.98569 q^{53} +0.334522 q^{54} +0.357705i q^{56} -6.31271 q^{57} +(-1.63623 + 0.753651i) q^{58} +8.01554 q^{59} -4.84022i q^{61} -3.38058 q^{62} +0.275019 q^{63} +5.43810 q^{64} +0.181212i q^{66} -12.1664 q^{67} +6.27576i q^{68} +6.93673i q^{69} -7.20182 q^{71} +1.30066i q^{72} -1.23869i q^{73} +1.36182 q^{74} -11.9190i q^{76} +0.148979i q^{77} +1.68498 q^{78} +2.36972i q^{79} +1.00000 q^{81} +2.84292 q^{82} +10.3724 q^{83} +0.519262i q^{84} -1.99920 q^{86} +(-4.89125 + 2.25292i) q^{87} -0.704571 q^{88} -2.50630i q^{89} +1.38526 q^{91} -13.0972 q^{92} -10.1057 q^{93} -4.15845 q^{94} -3.71898 q^{96} -17.8627i q^{97} +2.31636i q^{98} +0.541705i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 32 q^{4} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 32 q^{4} - 24 q^{9} + 64 q^{16} - 16 q^{29} + 104 q^{34} + 32 q^{36} + 8 q^{49} - 16 q^{51} + 56 q^{59} + 8 q^{64} - 32 q^{71} + 56 q^{74} + 24 q^{81} - 32 q^{86} + 48 q^{91} + 56 q^{94} - 80 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2175\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1451\) \(2002\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.334522i 0.236543i −0.992981 0.118272i \(-0.962265\pi\)
0.992981 0.118272i \(-0.0377353\pi\)
\(3\) 1.00000i 0.577350i
\(4\) 1.88809 0.944047
\(5\) 0 0
\(6\) −0.334522 −0.136568
\(7\) −0.275019 −0.103947 −0.0519737 0.998648i \(-0.516551\pi\)
−0.0519737 + 0.998648i \(0.516551\pi\)
\(8\) 1.30066i 0.459851i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 0.541705i 0.163330i −0.996660 0.0816650i \(-0.973976\pi\)
0.996660 0.0816650i \(-0.0260238\pi\)
\(12\) 1.88809i 0.545046i
\(13\) −5.03697 −1.39700 −0.698502 0.715608i \(-0.746150\pi\)
−0.698502 + 0.715608i \(0.746150\pi\)
\(14\) 0.0920000i 0.0245880i
\(15\) 0 0
\(16\) 3.34109 0.835273
\(17\) 3.32386i 0.806154i 0.915166 + 0.403077i \(0.132059\pi\)
−0.915166 + 0.403077i \(0.867941\pi\)
\(18\) 0.334522i 0.0788477i
\(19\) 6.31271i 1.44824i −0.689676 0.724118i \(-0.742247\pi\)
0.689676 0.724118i \(-0.257753\pi\)
\(20\) 0 0
\(21\) 0.275019i 0.0600140i
\(22\) −0.181212 −0.0386346
\(23\) −6.93673 −1.44641 −0.723204 0.690635i \(-0.757331\pi\)
−0.723204 + 0.690635i \(0.757331\pi\)
\(24\) −1.30066 −0.265495
\(25\) 0 0
\(26\) 1.68498i 0.330452i
\(27\) 1.00000i 0.192450i
\(28\) −0.519262 −0.0981312
\(29\) −2.25292 4.89125i −0.418356 0.908283i
\(30\) 0 0
\(31\) 10.1057i 1.81504i −0.420012 0.907518i \(-0.637974\pi\)
0.420012 0.907518i \(-0.362026\pi\)
\(32\) 3.71898i 0.657429i
\(33\) −0.541705 −0.0942987
\(34\) 1.11191 0.190690
\(35\) 0 0
\(36\) −1.88809 −0.314682
\(37\) 4.07094i 0.669259i 0.942350 + 0.334629i \(0.108611\pi\)
−0.942350 + 0.334629i \(0.891389\pi\)
\(38\) −2.11174 −0.342570
\(39\) 5.03697i 0.806561i
\(40\) 0 0
\(41\) 8.49843i 1.32723i 0.748073 + 0.663616i \(0.230979\pi\)
−0.748073 + 0.663616i \(0.769021\pi\)
\(42\) 0.0920000 0.0141959
\(43\) 5.97627i 0.911372i −0.890140 0.455686i \(-0.849394\pi\)
0.890140 0.455686i \(-0.150606\pi\)
\(44\) 1.02279i 0.154191i
\(45\) 0 0
\(46\) 2.32049i 0.342138i
\(47\) 12.4310i 1.81325i −0.421939 0.906624i \(-0.638651\pi\)
0.421939 0.906624i \(-0.361349\pi\)
\(48\) 3.34109i 0.482245i
\(49\) −6.92436 −0.989195
\(50\) 0 0
\(51\) 3.32386 0.465433
\(52\) −9.51028 −1.31884
\(53\) 3.98569 0.547477 0.273739 0.961804i \(-0.411740\pi\)
0.273739 + 0.961804i \(0.411740\pi\)
\(54\) 0.334522 0.0455227
\(55\) 0 0
\(56\) 0.357705i 0.0478003i
\(57\) −6.31271 −0.836139
\(58\) −1.63623 + 0.753651i −0.214848 + 0.0989593i
\(59\) 8.01554 1.04353 0.521767 0.853088i \(-0.325273\pi\)
0.521767 + 0.853088i \(0.325273\pi\)
\(60\) 0 0
\(61\) 4.84022i 0.619726i −0.950781 0.309863i \(-0.899717\pi\)
0.950781 0.309863i \(-0.100283\pi\)
\(62\) −3.38058 −0.429334
\(63\) 0.275019 0.0346491
\(64\) 5.43810 0.679762
\(65\) 0 0
\(66\) 0.181212i 0.0223057i
\(67\) −12.1664 −1.48636 −0.743182 0.669090i \(-0.766684\pi\)
−0.743182 + 0.669090i \(0.766684\pi\)
\(68\) 6.27576i 0.761048i
\(69\) 6.93673i 0.835084i
\(70\) 0 0
\(71\) −7.20182 −0.854698 −0.427349 0.904087i \(-0.640553\pi\)
−0.427349 + 0.904087i \(0.640553\pi\)
\(72\) 1.30066i 0.153284i
\(73\) 1.23869i 0.144977i −0.997369 0.0724886i \(-0.976906\pi\)
0.997369 0.0724886i \(-0.0230941\pi\)
\(74\) 1.36182 0.158309
\(75\) 0 0
\(76\) 11.9190i 1.36720i
\(77\) 0.148979i 0.0169777i
\(78\) 1.68498 0.190786
\(79\) 2.36972i 0.266614i 0.991075 + 0.133307i \(0.0425597\pi\)
−0.991075 + 0.133307i \(0.957440\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 2.84292 0.313948
\(83\) 10.3724 1.13852 0.569258 0.822159i \(-0.307230\pi\)
0.569258 + 0.822159i \(0.307230\pi\)
\(84\) 0.519262i 0.0566561i
\(85\) 0 0
\(86\) −1.99920 −0.215579
\(87\) −4.89125 + 2.25292i −0.524397 + 0.241538i
\(88\) −0.704571 −0.0751075
\(89\) 2.50630i 0.265667i −0.991138 0.132833i \(-0.957592\pi\)
0.991138 0.132833i \(-0.0424076\pi\)
\(90\) 0 0
\(91\) 1.38526 0.145215
\(92\) −13.0972 −1.36548
\(93\) −10.1057 −1.04791
\(94\) −4.15845 −0.428911
\(95\) 0 0
\(96\) −3.71898 −0.379567
\(97\) 17.8627i 1.81368i −0.421476 0.906840i \(-0.638488\pi\)
0.421476 0.906840i \(-0.361512\pi\)
\(98\) 2.31636i 0.233987i
\(99\) 0.541705i 0.0544434i
\(100\) 0 0
\(101\) 13.6767i 1.36088i 0.732803 + 0.680441i \(0.238212\pi\)
−0.732803 + 0.680441i \(0.761788\pi\)
\(102\) 1.11191i 0.110095i
\(103\) 10.6870 1.05302 0.526511 0.850168i \(-0.323500\pi\)
0.526511 + 0.850168i \(0.323500\pi\)
\(104\) 6.55136i 0.642414i
\(105\) 0 0
\(106\) 1.33330i 0.129502i
\(107\) 4.59224 0.443948 0.221974 0.975053i \(-0.428750\pi\)
0.221974 + 0.975053i \(0.428750\pi\)
\(108\) 1.88809i 0.181682i
\(109\) 13.1473 1.25928 0.629639 0.776888i \(-0.283203\pi\)
0.629639 + 0.776888i \(0.283203\pi\)
\(110\) 0 0
\(111\) 4.07094 0.386397
\(112\) −0.918863 −0.0868244
\(113\) 12.4441i 1.17065i 0.810800 + 0.585323i \(0.199032\pi\)
−0.810800 + 0.585323i \(0.800968\pi\)
\(114\) 2.11174i 0.197783i
\(115\) 0 0
\(116\) −4.25372 9.23515i −0.394948 0.857462i
\(117\) 5.03697 0.465668
\(118\) 2.68138i 0.246841i
\(119\) 0.914124i 0.0837976i
\(120\) 0 0
\(121\) 10.7066 0.973323
\(122\) −1.61916 −0.146592
\(123\) 8.49843 0.766278
\(124\) 19.0805i 1.71348i
\(125\) 0 0
\(126\) 0.0920000i 0.00819601i
\(127\) 10.3846i 0.921487i −0.887533 0.460744i \(-0.847583\pi\)
0.887533 0.460744i \(-0.152417\pi\)
\(128\) 9.25713i 0.818222i
\(129\) −5.97627 −0.526181
\(130\) 0 0
\(131\) 3.80784i 0.332693i 0.986067 + 0.166346i \(0.0531970\pi\)
−0.986067 + 0.166346i \(0.946803\pi\)
\(132\) −1.02279 −0.0890224
\(133\) 1.73611i 0.150540i
\(134\) 4.06994i 0.351589i
\(135\) 0 0
\(136\) 4.32319 0.370711
\(137\) 9.05968i 0.774021i 0.922075 + 0.387010i \(0.126492\pi\)
−0.922075 + 0.387010i \(0.873508\pi\)
\(138\) 2.32049 0.197533
\(139\) −1.41853 −0.120318 −0.0601591 0.998189i \(-0.519161\pi\)
−0.0601591 + 0.998189i \(0.519161\pi\)
\(140\) 0 0
\(141\) −12.4310 −1.04688
\(142\) 2.40917i 0.202173i
\(143\) 2.72855i 0.228173i
\(144\) −3.34109 −0.278424
\(145\) 0 0
\(146\) −0.414368 −0.0342933
\(147\) 6.92436i 0.571112i
\(148\) 7.68632i 0.631812i
\(149\) −4.70591 −0.385523 −0.192762 0.981246i \(-0.561744\pi\)
−0.192762 + 0.981246i \(0.561744\pi\)
\(150\) 0 0
\(151\) −5.99181 −0.487606 −0.243803 0.969825i \(-0.578395\pi\)
−0.243803 + 0.969825i \(0.578395\pi\)
\(152\) −8.21066 −0.665973
\(153\) 3.32386i 0.268718i
\(154\) 0.0498368 0.00401596
\(155\) 0 0
\(156\) 9.51028i 0.761432i
\(157\) 11.2728i 0.899664i 0.893113 + 0.449832i \(0.148516\pi\)
−0.893113 + 0.449832i \(0.851484\pi\)
\(158\) 0.792725 0.0630658
\(159\) 3.98569i 0.316086i
\(160\) 0 0
\(161\) 1.90773 0.150350
\(162\) 0.334522i 0.0262826i
\(163\) 11.2859i 0.883980i 0.897020 + 0.441990i \(0.145727\pi\)
−0.897020 + 0.441990i \(0.854273\pi\)
\(164\) 16.0458i 1.25297i
\(165\) 0 0
\(166\) 3.46980i 0.269308i
\(167\) −9.11150 −0.705069 −0.352535 0.935799i \(-0.614680\pi\)
−0.352535 + 0.935799i \(0.614680\pi\)
\(168\) 0.357705 0.0275975
\(169\) 12.3711 0.951621
\(170\) 0 0
\(171\) 6.31271i 0.482745i
\(172\) 11.2838i 0.860379i
\(173\) −6.68099 −0.507946 −0.253973 0.967211i \(-0.581737\pi\)
−0.253973 + 0.967211i \(0.581737\pi\)
\(174\) 0.753651 + 1.63623i 0.0571342 + 0.124043i
\(175\) 0 0
\(176\) 1.80988i 0.136425i
\(177\) 8.01554i 0.602485i
\(178\) −0.838413 −0.0628417
\(179\) −17.6127 −1.31644 −0.658218 0.752827i \(-0.728690\pi\)
−0.658218 + 0.752827i \(0.728690\pi\)
\(180\) 0 0
\(181\) 0.799278 0.0594099 0.0297049 0.999559i \(-0.490543\pi\)
0.0297049 + 0.999559i \(0.490543\pi\)
\(182\) 0.463401i 0.0343496i
\(183\) −4.84022 −0.357799
\(184\) 9.02229i 0.665132i
\(185\) 0 0
\(186\) 3.38058i 0.247876i
\(187\) 1.80055 0.131669
\(188\) 23.4709i 1.71179i
\(189\) 0.275019i 0.0200047i
\(190\) 0 0
\(191\) 14.0344i 1.01549i 0.861506 + 0.507747i \(0.169522\pi\)
−0.861506 + 0.507747i \(0.830478\pi\)
\(192\) 5.43810i 0.392461i
\(193\) 22.3693i 1.61018i −0.593154 0.805089i \(-0.702117\pi\)
0.593154 0.805089i \(-0.297883\pi\)
\(194\) −5.97546 −0.429013
\(195\) 0 0
\(196\) −13.0739 −0.933847
\(197\) −4.66274 −0.332207 −0.166103 0.986108i \(-0.553119\pi\)
−0.166103 + 0.986108i \(0.553119\pi\)
\(198\) 0.181212 0.0128782
\(199\) −14.9769 −1.06169 −0.530843 0.847470i \(-0.678124\pi\)
−0.530843 + 0.847470i \(0.678124\pi\)
\(200\) 0 0
\(201\) 12.1664i 0.858152i
\(202\) 4.57516 0.321907
\(203\) 0.619595 + 1.34519i 0.0434870 + 0.0944136i
\(204\) 6.27576 0.439391
\(205\) 0 0
\(206\) 3.57504i 0.249085i
\(207\) 6.93673 0.482136
\(208\) −16.8290 −1.16688
\(209\) −3.41963 −0.236540
\(210\) 0 0
\(211\) 15.8960i 1.09432i −0.837027 0.547162i \(-0.815708\pi\)
0.837027 0.547162i \(-0.184292\pi\)
\(212\) 7.52537 0.516844
\(213\) 7.20182i 0.493460i
\(214\) 1.53621i 0.105013i
\(215\) 0 0
\(216\) 1.30066 0.0884984
\(217\) 2.77926i 0.188668i
\(218\) 4.39805i 0.297874i
\(219\) −1.23869 −0.0837026
\(220\) 0 0
\(221\) 16.7422i 1.12620i
\(222\) 1.36182i 0.0913995i
\(223\) 7.51910 0.503516 0.251758 0.967790i \(-0.418991\pi\)
0.251758 + 0.967790i \(0.418991\pi\)
\(224\) 1.02279i 0.0683380i
\(225\) 0 0
\(226\) 4.16284 0.276908
\(227\) 14.9639 0.993187 0.496594 0.867983i \(-0.334584\pi\)
0.496594 + 0.867983i \(0.334584\pi\)
\(228\) −11.9190 −0.789355
\(229\) 12.3067i 0.813247i 0.913596 + 0.406623i \(0.133294\pi\)
−0.913596 + 0.406623i \(0.866706\pi\)
\(230\) 0 0
\(231\) 0.148979 0.00980210
\(232\) −6.36183 + 2.93027i −0.417675 + 0.192382i
\(233\) −10.7500 −0.704258 −0.352129 0.935951i \(-0.614542\pi\)
−0.352129 + 0.935951i \(0.614542\pi\)
\(234\) 1.68498i 0.110151i
\(235\) 0 0
\(236\) 15.1341 0.985146
\(237\) 2.36972 0.153930
\(238\) −0.305795 −0.0198217
\(239\) 6.04481 0.391006 0.195503 0.980703i \(-0.437366\pi\)
0.195503 + 0.980703i \(0.437366\pi\)
\(240\) 0 0
\(241\) 24.1998 1.55885 0.779423 0.626498i \(-0.215512\pi\)
0.779423 + 0.626498i \(0.215512\pi\)
\(242\) 3.58158i 0.230233i
\(243\) 1.00000i 0.0641500i
\(244\) 9.13879i 0.585051i
\(245\) 0 0
\(246\) 2.84292i 0.181258i
\(247\) 31.7969i 2.02319i
\(248\) −13.1440 −0.834647
\(249\) 10.3724i 0.657323i
\(250\) 0 0
\(251\) 26.0151i 1.64206i 0.570886 + 0.821030i \(0.306600\pi\)
−0.570886 + 0.821030i \(0.693400\pi\)
\(252\) 0.519262 0.0327104
\(253\) 3.75766i 0.236242i
\(254\) −3.47389 −0.217971
\(255\) 0 0
\(256\) 7.77948 0.486218
\(257\) 3.58709 0.223757 0.111878 0.993722i \(-0.464313\pi\)
0.111878 + 0.993722i \(0.464313\pi\)
\(258\) 1.99920i 0.124465i
\(259\) 1.11959i 0.0695677i
\(260\) 0 0
\(261\) 2.25292 + 4.89125i 0.139452 + 0.302761i
\(262\) 1.27381 0.0786962
\(263\) 3.92407i 0.241969i −0.992654 0.120984i \(-0.961395\pi\)
0.992654 0.120984i \(-0.0386051\pi\)
\(264\) 0.704571i 0.0433633i
\(265\) 0 0
\(266\) 0.580769 0.0356093
\(267\) −2.50630 −0.153383
\(268\) −22.9713 −1.40320
\(269\) 13.8826i 0.846437i 0.906028 + 0.423218i \(0.139100\pi\)
−0.906028 + 0.423218i \(0.860900\pi\)
\(270\) 0 0
\(271\) 13.3880i 0.813265i −0.913592 0.406632i \(-0.866703\pi\)
0.913592 0.406632i \(-0.133297\pi\)
\(272\) 11.1053i 0.673358i
\(273\) 1.38526i 0.0838398i
\(274\) 3.03067 0.183089
\(275\) 0 0
\(276\) 13.0972i 0.788359i
\(277\) 9.91356 0.595648 0.297824 0.954621i \(-0.403739\pi\)
0.297824 + 0.954621i \(0.403739\pi\)
\(278\) 0.474530i 0.0284604i
\(279\) 10.1057i 0.605012i
\(280\) 0 0
\(281\) −18.7167 −1.11654 −0.558271 0.829658i \(-0.688535\pi\)
−0.558271 + 0.829658i \(0.688535\pi\)
\(282\) 4.15845i 0.247632i
\(283\) −18.9462 −1.12624 −0.563118 0.826377i \(-0.690398\pi\)
−0.563118 + 0.826377i \(0.690398\pi\)
\(284\) −13.5977 −0.806876
\(285\) 0 0
\(286\) 0.912761 0.0539727
\(287\) 2.33723i 0.137962i
\(288\) 3.71898i 0.219143i
\(289\) 5.95197 0.350116
\(290\) 0 0
\(291\) −17.8627 −1.04713
\(292\) 2.33875i 0.136865i
\(293\) 7.13932i 0.417083i 0.978013 + 0.208542i \(0.0668717\pi\)
−0.978013 + 0.208542i \(0.933128\pi\)
\(294\) 2.31636 0.135093
\(295\) 0 0
\(296\) 5.29489 0.307759
\(297\) 0.541705 0.0314329
\(298\) 1.57423i 0.0911929i
\(299\) 34.9401 2.02064
\(300\) 0 0
\(301\) 1.64359i 0.0947347i
\(302\) 2.00439i 0.115340i
\(303\) 13.6767 0.785706
\(304\) 21.0913i 1.20967i
\(305\) 0 0
\(306\) −1.11191 −0.0635634
\(307\) 10.0637i 0.574368i 0.957875 + 0.287184i \(0.0927192\pi\)
−0.957875 + 0.287184i \(0.907281\pi\)
\(308\) 0.281286i 0.0160278i
\(309\) 10.6870i 0.607963i
\(310\) 0 0
\(311\) 16.2493i 0.921412i −0.887553 0.460706i \(-0.847596\pi\)
0.887553 0.460706i \(-0.152404\pi\)
\(312\) 6.55136 0.370898
\(313\) 21.4838 1.21434 0.607168 0.794573i \(-0.292305\pi\)
0.607168 + 0.794573i \(0.292305\pi\)
\(314\) 3.77099 0.212809
\(315\) 0 0
\(316\) 4.47426i 0.251697i
\(317\) 24.4204i 1.37159i −0.727796 0.685794i \(-0.759455\pi\)
0.727796 0.685794i \(-0.240545\pi\)
\(318\) −1.33330 −0.0747680
\(319\) −2.64961 + 1.22042i −0.148350 + 0.0683302i
\(320\) 0 0
\(321\) 4.59224i 0.256314i
\(322\) 0.638179i 0.0355643i
\(323\) 20.9826 1.16750
\(324\) 1.88809 0.104894
\(325\) 0 0
\(326\) 3.77539 0.209099
\(327\) 13.1473i 0.727045i
\(328\) 11.0535 0.610329
\(329\) 3.41876i 0.188482i
\(330\) 0 0
\(331\) 0.627675i 0.0345001i 0.999851 + 0.0172501i \(0.00549114\pi\)
−0.999851 + 0.0172501i \(0.994509\pi\)
\(332\) 19.5840 1.07481
\(333\) 4.07094i 0.223086i
\(334\) 3.04800i 0.166779i
\(335\) 0 0
\(336\) 0.918863i 0.0501281i
\(337\) 27.2068i 1.48205i −0.671479 0.741024i \(-0.734341\pi\)
0.671479 0.741024i \(-0.265659\pi\)
\(338\) 4.13840i 0.225099i
\(339\) 12.4441 0.675873
\(340\) 0 0
\(341\) −5.47430 −0.296450
\(342\) 2.11174 0.114190
\(343\) 3.82946 0.206772
\(344\) −7.77306 −0.419096
\(345\) 0 0
\(346\) 2.23494i 0.120151i
\(347\) −13.0161 −0.698739 −0.349369 0.936985i \(-0.613604\pi\)
−0.349369 + 0.936985i \(0.613604\pi\)
\(348\) −9.23515 + 4.25372i −0.495056 + 0.228023i
\(349\) −23.2480 −1.24444 −0.622218 0.782844i \(-0.713768\pi\)
−0.622218 + 0.782844i \(0.713768\pi\)
\(350\) 0 0
\(351\) 5.03697i 0.268854i
\(352\) −2.01459 −0.107378
\(353\) 33.0268 1.75784 0.878920 0.476969i \(-0.158265\pi\)
0.878920 + 0.476969i \(0.158265\pi\)
\(354\) −2.68138 −0.142514
\(355\) 0 0
\(356\) 4.73213i 0.250802i
\(357\) −0.914124 −0.0483805
\(358\) 5.89185i 0.311394i
\(359\) 30.0802i 1.58757i −0.608195 0.793787i \(-0.708106\pi\)
0.608195 0.793787i \(-0.291894\pi\)
\(360\) 0 0
\(361\) −20.8503 −1.09739
\(362\) 0.267376i 0.0140530i
\(363\) 10.7066i 0.561948i
\(364\) 2.61551 0.137090
\(365\) 0 0
\(366\) 1.61916i 0.0846349i
\(367\) 3.89299i 0.203213i −0.994825 0.101606i \(-0.967602\pi\)
0.994825 0.101606i \(-0.0323982\pi\)
\(368\) −23.1762 −1.20814
\(369\) 8.49843i 0.442411i
\(370\) 0 0
\(371\) −1.09614 −0.0569088
\(372\) −19.0805 −0.989279
\(373\) −1.78697 −0.0925260 −0.0462630 0.998929i \(-0.514731\pi\)
−0.0462630 + 0.998929i \(0.514731\pi\)
\(374\) 0.602324i 0.0311454i
\(375\) 0 0
\(376\) −16.1684 −0.833824
\(377\) 11.3479 + 24.6371i 0.584445 + 1.26888i
\(378\) −0.0920000 −0.00473197
\(379\) 18.4165i 0.945993i −0.881064 0.472996i \(-0.843172\pi\)
0.881064 0.472996i \(-0.156828\pi\)
\(380\) 0 0
\(381\) −10.3846 −0.532021
\(382\) 4.69482 0.240208
\(383\) 28.3971 1.45102 0.725512 0.688210i \(-0.241603\pi\)
0.725512 + 0.688210i \(0.241603\pi\)
\(384\) −9.25713 −0.472401
\(385\) 0 0
\(386\) −7.48304 −0.380877
\(387\) 5.97627i 0.303791i
\(388\) 33.7264i 1.71220i
\(389\) 8.49677i 0.430803i −0.976526 0.215402i \(-0.930894\pi\)
0.976526 0.215402i \(-0.0691061\pi\)
\(390\) 0 0
\(391\) 23.0567i 1.16603i
\(392\) 9.00621i 0.454882i
\(393\) 3.80784 0.192080
\(394\) 1.55979i 0.0785812i
\(395\) 0 0
\(396\) 1.02279i 0.0513971i
\(397\) −1.07708 −0.0540571 −0.0270286 0.999635i \(-0.508605\pi\)
−0.0270286 + 0.999635i \(0.508605\pi\)
\(398\) 5.01011i 0.251134i
\(399\) 1.73611 0.0869144
\(400\) 0 0
\(401\) 18.2009 0.908910 0.454455 0.890770i \(-0.349834\pi\)
0.454455 + 0.890770i \(0.349834\pi\)
\(402\) 4.06994 0.202990
\(403\) 50.9021i 2.53561i
\(404\) 25.8229i 1.28474i
\(405\) 0 0
\(406\) 0.449995 0.207268i 0.0223329 0.0102866i
\(407\) 2.20525 0.109310
\(408\) 4.32319i 0.214030i
\(409\) 29.4035i 1.45391i 0.686684 + 0.726956i \(0.259066\pi\)
−0.686684 + 0.726956i \(0.740934\pi\)
\(410\) 0 0
\(411\) 9.05968 0.446881
\(412\) 20.1781 0.994103
\(413\) −2.20442 −0.108473
\(414\) 2.32049i 0.114046i
\(415\) 0 0
\(416\) 18.7324i 0.918431i
\(417\) 1.41853i 0.0694657i
\(418\) 1.14394i 0.0559520i
\(419\) 7.33375 0.358277 0.179139 0.983824i \(-0.442669\pi\)
0.179139 + 0.983824i \(0.442669\pi\)
\(420\) 0 0
\(421\) 21.0761i 1.02718i 0.858034 + 0.513592i \(0.171686\pi\)
−0.858034 + 0.513592i \(0.828314\pi\)
\(422\) −5.31756 −0.258855
\(423\) 12.4310i 0.604416i
\(424\) 5.18401i 0.251758i
\(425\) 0 0
\(426\) 2.40917 0.116725
\(427\) 1.33115i 0.0644189i
\(428\) 8.67058 0.419108
\(429\) 2.72855 0.131736
\(430\) 0 0
\(431\) −10.6334 −0.512195 −0.256098 0.966651i \(-0.582437\pi\)
−0.256098 + 0.966651i \(0.582437\pi\)
\(432\) 3.34109i 0.160748i
\(433\) 12.7281i 0.611674i 0.952084 + 0.305837i \(0.0989363\pi\)
−0.952084 + 0.305837i \(0.901064\pi\)
\(434\) 0.929724 0.0446282
\(435\) 0 0
\(436\) 24.8233 1.18882
\(437\) 43.7896i 2.09474i
\(438\) 0.414368i 0.0197993i
\(439\) 4.48366 0.213994 0.106997 0.994259i \(-0.465877\pi\)
0.106997 + 0.994259i \(0.465877\pi\)
\(440\) 0 0
\(441\) 6.92436 0.329732
\(442\) −5.60063 −0.266395
\(443\) 12.8049i 0.608379i 0.952612 + 0.304189i \(0.0983855\pi\)
−0.952612 + 0.304189i \(0.901614\pi\)
\(444\) 7.68632 0.364777
\(445\) 0 0
\(446\) 2.51531i 0.119103i
\(447\) 4.70591i 0.222582i
\(448\) −1.49558 −0.0706595
\(449\) 22.1787i 1.04668i 0.852124 + 0.523340i \(0.175314\pi\)
−0.852124 + 0.523340i \(0.824686\pi\)
\(450\) 0 0
\(451\) 4.60364 0.216777
\(452\) 23.4957i 1.10515i
\(453\) 5.99181i 0.281520i
\(454\) 5.00575i 0.234932i
\(455\) 0 0
\(456\) 8.21066i 0.384499i
\(457\) 12.2239 0.571808 0.285904 0.958258i \(-0.407706\pi\)
0.285904 + 0.958258i \(0.407706\pi\)
\(458\) 4.11685 0.192368
\(459\) −3.32386 −0.155144
\(460\) 0 0
\(461\) 26.1495i 1.21790i −0.793207 0.608952i \(-0.791590\pi\)
0.793207 0.608952i \(-0.208410\pi\)
\(462\) 0.0498368i 0.00231862i
\(463\) 23.5519 1.09455 0.547275 0.836953i \(-0.315665\pi\)
0.547275 + 0.836953i \(0.315665\pi\)
\(464\) −7.52720 16.3421i −0.349442 0.758664i
\(465\) 0 0
\(466\) 3.59613i 0.166587i
\(467\) 12.7060i 0.587963i −0.955811 0.293981i \(-0.905020\pi\)
0.955811 0.293981i \(-0.0949804\pi\)
\(468\) 9.51028 0.439613
\(469\) 3.34599 0.154503
\(470\) 0 0
\(471\) 11.2728 0.519421
\(472\) 10.4255i 0.479870i
\(473\) −3.23737 −0.148855
\(474\) 0.792725i 0.0364111i
\(475\) 0 0
\(476\) 1.72595i 0.0791089i
\(477\) −3.98569 −0.182492
\(478\) 2.02212i 0.0924898i
\(479\) 14.2867i 0.652775i −0.945236 0.326388i \(-0.894169\pi\)
0.945236 0.326388i \(-0.105831\pi\)
\(480\) 0 0
\(481\) 20.5052i 0.934957i
\(482\) 8.09538i 0.368734i
\(483\) 1.90773i 0.0868047i
\(484\) 20.2150 0.918863
\(485\) 0 0
\(486\) −0.334522 −0.0151742
\(487\) 34.4239 1.55990 0.779948 0.625844i \(-0.215246\pi\)
0.779948 + 0.625844i \(0.215246\pi\)
\(488\) −6.29545 −0.284982
\(489\) 11.2859 0.510366
\(490\) 0 0
\(491\) 20.5793i 0.928733i −0.885643 0.464366i \(-0.846282\pi\)
0.885643 0.464366i \(-0.153718\pi\)
\(492\) 16.0458 0.723403
\(493\) 16.2578 7.48838i 0.732216 0.337260i
\(494\) 10.6368 0.478572
\(495\) 0 0
\(496\) 33.7641i 1.51605i
\(497\) 1.98064 0.0888436
\(498\) −3.46980 −0.155485
\(499\) 19.5569 0.875487 0.437743 0.899100i \(-0.355778\pi\)
0.437743 + 0.899100i \(0.355778\pi\)
\(500\) 0 0
\(501\) 9.11150i 0.407072i
\(502\) 8.70264 0.388418
\(503\) 38.5345i 1.71817i 0.511835 + 0.859084i \(0.328966\pi\)
−0.511835 + 0.859084i \(0.671034\pi\)
\(504\) 0.357705i 0.0159334i
\(505\) 0 0
\(506\) 1.25702 0.0558814
\(507\) 12.3711i 0.549418i
\(508\) 19.6072i 0.869928i
\(509\) −9.66065 −0.428201 −0.214100 0.976812i \(-0.568682\pi\)
−0.214100 + 0.976812i \(0.568682\pi\)
\(510\) 0 0
\(511\) 0.340662i 0.0150700i
\(512\) 21.1167i 0.933234i
\(513\) 6.31271 0.278713
\(514\) 1.19996i 0.0529281i
\(515\) 0 0
\(516\) −11.2838 −0.496740
\(517\) −6.73393 −0.296158
\(518\) −0.374527 −0.0164557
\(519\) 6.68099i 0.293263i
\(520\) 0 0
\(521\) 20.3242 0.890421 0.445211 0.895426i \(-0.353129\pi\)
0.445211 + 0.895426i \(0.353129\pi\)
\(522\) 1.63623 0.753651i 0.0716160 0.0329864i
\(523\) 40.6870 1.77912 0.889559 0.456820i \(-0.151012\pi\)
0.889559 + 0.456820i \(0.151012\pi\)
\(524\) 7.18957i 0.314078i
\(525\) 0 0
\(526\) −1.31269 −0.0572360
\(527\) 33.5899 1.46320
\(528\) −1.80988 −0.0787651
\(529\) 25.1182 1.09209
\(530\) 0 0
\(531\) −8.01554 −0.347845
\(532\) 3.27795i 0.142117i
\(533\) 42.8064i 1.85415i
\(534\) 0.838413i 0.0362817i
\(535\) 0 0
\(536\) 15.8243i 0.683506i
\(537\) 17.6127i 0.760045i
\(538\) 4.64404 0.200219
\(539\) 3.75096i 0.161565i
\(540\) 0 0
\(541\) 5.02402i 0.216000i −0.994151 0.108000i \(-0.965555\pi\)
0.994151 0.108000i \(-0.0344446\pi\)
\(542\) −4.47860 −0.192372
\(543\) 0.799278i 0.0343003i
\(544\) 12.3614 0.529989
\(545\) 0 0
\(546\) −0.463401 −0.0198317
\(547\) −8.61344 −0.368284 −0.184142 0.982900i \(-0.558951\pi\)
−0.184142 + 0.982900i \(0.558951\pi\)
\(548\) 17.1055i 0.730712i
\(549\) 4.84022i 0.206575i
\(550\) 0 0
\(551\) −30.8771 + 14.2220i −1.31541 + 0.605878i
\(552\) 9.02229 0.384014
\(553\) 0.651718i 0.0277139i
\(554\) 3.31631i 0.140896i
\(555\) 0 0
\(556\) −2.67832 −0.113586
\(557\) 0.455853 0.0193151 0.00965755 0.999953i \(-0.496926\pi\)
0.00965755 + 0.999953i \(0.496926\pi\)
\(558\) 3.38058 0.143111
\(559\) 30.1023i 1.27319i
\(560\) 0 0
\(561\) 1.80055i 0.0760192i
\(562\) 6.26114i 0.264110i
\(563\) 0.120515i 0.00507911i −0.999997 0.00253956i \(-0.999192\pi\)
0.999997 0.00253956i \(-0.000808366\pi\)
\(564\) −23.4709 −0.988304
\(565\) 0 0
\(566\) 6.33794i 0.266403i
\(567\) −0.275019 −0.0115497
\(568\) 9.36708i 0.393034i
\(569\) 22.7315i 0.952954i −0.879187 0.476477i \(-0.841914\pi\)
0.879187 0.476477i \(-0.158086\pi\)
\(570\) 0 0
\(571\) 26.7167 1.11806 0.559030 0.829147i \(-0.311174\pi\)
0.559030 + 0.829147i \(0.311174\pi\)
\(572\) 5.15176i 0.215406i
\(573\) 14.0344 0.586296
\(574\) −0.781856 −0.0326340
\(575\) 0 0
\(576\) −5.43810 −0.226587
\(577\) 15.3024i 0.637049i 0.947915 + 0.318524i \(0.103187\pi\)
−0.947915 + 0.318524i \(0.896813\pi\)
\(578\) 1.99107i 0.0828175i
\(579\) −22.3693 −0.929637
\(580\) 0 0
\(581\) −2.85260 −0.118346
\(582\) 5.97546i 0.247691i
\(583\) 2.15907i 0.0894195i
\(584\) −1.61110 −0.0666679
\(585\) 0 0
\(586\) 2.38826 0.0986582
\(587\) 41.6229 1.71796 0.858980 0.512009i \(-0.171098\pi\)
0.858980 + 0.512009i \(0.171098\pi\)
\(588\) 13.0739i 0.539157i
\(589\) −63.7944 −2.62860
\(590\) 0 0
\(591\) 4.66274i 0.191800i
\(592\) 13.6014i 0.559013i
\(593\) 11.7493 0.482487 0.241244 0.970465i \(-0.422445\pi\)
0.241244 + 0.970465i \(0.422445\pi\)
\(594\) 0.181212i 0.00743523i
\(595\) 0 0
\(596\) −8.88521 −0.363952
\(597\) 14.9769i 0.612964i
\(598\) 11.6882i 0.477968i
\(599\) 8.86844i 0.362354i −0.983450 0.181177i \(-0.942009\pi\)
0.983450 0.181177i \(-0.0579908\pi\)
\(600\) 0 0
\(601\) 0.339050i 0.0138301i −0.999976 0.00691506i \(-0.997799\pi\)
0.999976 0.00691506i \(-0.00220115\pi\)
\(602\) 0.549817 0.0224089
\(603\) 12.1664 0.495454
\(604\) −11.3131 −0.460324
\(605\) 0 0
\(606\) 4.57516i 0.185853i
\(607\) 8.27856i 0.336017i −0.985786 0.168008i \(-0.946266\pi\)
0.985786 0.168008i \(-0.0537335\pi\)
\(608\) −23.4769 −0.952112
\(609\) 1.34519 0.619595i 0.0545097 0.0251072i
\(610\) 0 0
\(611\) 62.6146i 2.53312i
\(612\) 6.27576i 0.253683i
\(613\) −42.0873 −1.69989 −0.849946 0.526870i \(-0.823365\pi\)
−0.849946 + 0.526870i \(0.823365\pi\)
\(614\) 3.36655 0.135863
\(615\) 0 0
\(616\) 0.193770 0.00780723
\(617\) 28.7087i 1.15577i −0.816119 0.577884i \(-0.803879\pi\)
0.816119 0.577884i \(-0.196121\pi\)
\(618\) −3.57504 −0.143809
\(619\) 8.90716i 0.358009i −0.983848 0.179005i \(-0.942712\pi\)
0.983848 0.179005i \(-0.0572877\pi\)
\(620\) 0 0
\(621\) 6.93673i 0.278361i
\(622\) −5.43575 −0.217954
\(623\) 0.689279i 0.0276154i
\(624\) 16.8290i 0.673698i
\(625\) 0 0
\(626\) 7.18681i 0.287243i
\(627\) 3.41963i 0.136567i
\(628\) 21.2840i 0.849325i
\(629\) −13.5312 −0.539525
\(630\) 0 0
\(631\) 17.9351 0.713986 0.356993 0.934107i \(-0.383802\pi\)
0.356993 + 0.934107i \(0.383802\pi\)
\(632\) 3.08219 0.122603
\(633\) −15.8960 −0.631809
\(634\) −8.16918 −0.324440
\(635\) 0 0
\(636\) 7.52537i 0.298400i
\(637\) 34.8778 1.38191
\(638\) 0.408256 + 0.886356i 0.0161630 + 0.0350912i
\(639\) 7.20182 0.284899
\(640\) 0 0
\(641\) 0.220741i 0.00871875i 0.999990 + 0.00435938i \(0.00138764\pi\)
−0.999990 + 0.00435938i \(0.998612\pi\)
\(642\) −1.53621 −0.0606292
\(643\) 6.25440 0.246650 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(644\) 3.60198 0.141938
\(645\) 0 0
\(646\) 7.01914i 0.276164i
\(647\) 24.3697 0.958071 0.479035 0.877796i \(-0.340987\pi\)
0.479035 + 0.877796i \(0.340987\pi\)
\(648\) 1.30066i 0.0510946i
\(649\) 4.34205i 0.170441i
\(650\) 0 0
\(651\) 2.77926 0.108928
\(652\) 21.3088i 0.834519i
\(653\) 41.1834i 1.61163i −0.592167 0.805815i \(-0.701727\pi\)
0.592167 0.805815i \(-0.298273\pi\)
\(654\) −4.39805 −0.171977
\(655\) 0 0
\(656\) 28.3940i 1.10860i
\(657\) 1.23869i 0.0483257i
\(658\) 1.14365 0.0445842
\(659\) 4.18021i 0.162838i −0.996680 0.0814190i \(-0.974055\pi\)
0.996680 0.0814190i \(-0.0259452\pi\)
\(660\) 0 0
\(661\) −8.11965 −0.315818 −0.157909 0.987454i \(-0.550475\pi\)
−0.157909 + 0.987454i \(0.550475\pi\)
\(662\) 0.209971 0.00816077
\(663\) −16.7422 −0.650212
\(664\) 13.4909i 0.523548i
\(665\) 0 0
\(666\) −1.36182 −0.0527695
\(667\) 15.6279 + 33.9293i 0.605113 + 1.31375i
\(668\) −17.2034 −0.665619
\(669\) 7.51910i 0.290705i
\(670\) 0 0
\(671\) −2.62197 −0.101220
\(672\) 1.02279 0.0394550
\(673\) −33.1749 −1.27880 −0.639399 0.768875i \(-0.720817\pi\)
−0.639399 + 0.768875i \(0.720817\pi\)
\(674\) −9.10128 −0.350568
\(675\) 0 0
\(676\) 23.3577 0.898375
\(677\) 14.7844i 0.568212i −0.958793 0.284106i \(-0.908303\pi\)
0.958793 0.284106i \(-0.0916967\pi\)
\(678\) 4.16284i 0.159873i
\(679\) 4.91257i 0.188527i
\(680\) 0 0
\(681\) 14.9639i 0.573417i
\(682\) 1.83128i 0.0701232i
\(683\) −33.5573 −1.28404 −0.642018 0.766690i \(-0.721902\pi\)
−0.642018 + 0.766690i \(0.721902\pi\)
\(684\) 11.9190i 0.455734i
\(685\) 0 0
\(686\) 1.28104i 0.0489104i
\(687\) 12.3067 0.469528
\(688\) 19.9673i 0.761245i
\(689\) −20.0758 −0.764828
\(690\) 0 0
\(691\) −11.4767 −0.436596 −0.218298 0.975882i \(-0.570050\pi\)
−0.218298 + 0.975882i \(0.570050\pi\)
\(692\) −12.6143 −0.479525
\(693\) 0.148979i 0.00565924i
\(694\) 4.35417i 0.165282i
\(695\) 0 0
\(696\) 2.93027 + 6.36183i 0.111072 + 0.241145i
\(697\) −28.2476 −1.06995
\(698\) 7.77697i 0.294363i
\(699\) 10.7500i 0.406604i
\(700\) 0 0
\(701\) 11.0065 0.415711 0.207855 0.978160i \(-0.433352\pi\)
0.207855 + 0.978160i \(0.433352\pi\)
\(702\) −1.68498 −0.0635955
\(703\) 25.6987 0.969244
\(704\) 2.94584i 0.111026i
\(705\) 0 0
\(706\) 11.0482i 0.415805i
\(707\) 3.76135i 0.141460i
\(708\) 15.1341i 0.568774i
\(709\) −21.4248 −0.804624 −0.402312 0.915503i \(-0.631793\pi\)
−0.402312 + 0.915503i \(0.631793\pi\)
\(710\) 0 0
\(711\) 2.36972i 0.0888715i
\(712\) −3.25983 −0.122167
\(713\) 70.1005i 2.62528i
\(714\) 0.305795i 0.0114441i
\(715\) 0 0
\(716\) −33.2545 −1.24278
\(717\) 6.04481i 0.225747i
\(718\) −10.0625 −0.375530
\(719\) 21.8797 0.815977 0.407988 0.912987i \(-0.366230\pi\)
0.407988 + 0.912987i \(0.366230\pi\)
\(720\) 0 0
\(721\) −2.93913 −0.109459
\(722\) 6.97491i 0.259579i
\(723\) 24.1998i 0.900000i
\(724\) 1.50911 0.0560857
\(725\) 0 0
\(726\) −3.58158 −0.132925
\(727\) 36.6219i 1.35823i 0.734032 + 0.679115i \(0.237636\pi\)
−0.734032 + 0.679115i \(0.762364\pi\)
\(728\) 1.80175i 0.0667772i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 19.8643 0.734707
\(732\) −9.13879 −0.337779
\(733\) 7.68719i 0.283933i 0.989871 + 0.141966i \(0.0453425\pi\)
−0.989871 + 0.141966i \(0.954658\pi\)
\(734\) −1.30229 −0.0480686
\(735\) 0 0
\(736\) 25.7975i 0.950910i
\(737\) 6.59060i 0.242768i
\(738\) −2.84292 −0.104649
\(739\) 26.2160i 0.964371i 0.876069 + 0.482186i \(0.160157\pi\)
−0.876069 + 0.482186i \(0.839843\pi\)
\(740\) 0 0
\(741\) 31.7969 1.16809
\(742\) 0.366684i 0.0134614i
\(743\) 7.62063i 0.279574i −0.990182 0.139787i \(-0.955358\pi\)
0.990182 0.139787i \(-0.0446417\pi\)
\(744\) 13.1440i 0.481883i
\(745\) 0 0
\(746\) 0.597783i 0.0218864i
\(747\) −10.3724 −0.379506
\(748\) 3.39961 0.124302
\(749\) −1.26295 −0.0461472
\(750\) 0 0
\(751\) 28.5397i 1.04143i −0.853731 0.520714i \(-0.825666\pi\)
0.853731 0.520714i \(-0.174334\pi\)
\(752\) 41.5331i 1.51456i
\(753\) 26.0151 0.948043
\(754\) 8.24166 3.79612i 0.300144 0.138247i
\(755\) 0 0
\(756\) 0.519262i 0.0188854i
\(757\) 19.8761i 0.722408i −0.932487 0.361204i \(-0.882366\pi\)
0.932487 0.361204i \(-0.117634\pi\)
\(758\) −6.16074 −0.223768
\(759\) 3.75766 0.136394
\(760\) 0 0
\(761\) 33.8887 1.22847 0.614233 0.789125i \(-0.289465\pi\)
0.614233 + 0.789125i \(0.289465\pi\)
\(762\) 3.47389i 0.125846i
\(763\) −3.61574 −0.130899
\(764\) 26.4983i 0.958674i
\(765\) 0 0
\(766\) 9.49947i 0.343230i
\(767\) −40.3740 −1.45782
\(768\) 7.77948i 0.280718i
\(769\) 37.6604i 1.35807i −0.734107 0.679034i \(-0.762399\pi\)
0.734107 0.679034i \(-0.237601\pi\)
\(770\) 0 0
\(771\) 3.58709i 0.129186i
\(772\) 42.2354i 1.52008i
\(773\) 23.1391i 0.832255i −0.909306 0.416127i \(-0.863387\pi\)
0.909306 0.416127i \(-0.136613\pi\)
\(774\) 1.99920 0.0718596
\(775\) 0 0
\(776\) −23.2332 −0.834022
\(777\) −1.11959 −0.0401649
\(778\) −2.84236 −0.101904
\(779\) 53.6482 1.92214
\(780\) 0 0
\(781\) 3.90126i 0.139598i
\(782\) −7.71298 −0.275816
\(783\) 4.89125 2.25292i 0.174799 0.0805127i
\(784\) −23.1349 −0.826248
\(785\) 0 0
\(786\) 1.27381i 0.0454353i
\(787\) 11.0598 0.394238 0.197119 0.980380i \(-0.436841\pi\)
0.197119 + 0.980380i \(0.436841\pi\)
\(788\) −8.80370 −0.313619
\(789\) −3.92407 −0.139701
\(790\) 0 0
\(791\) 3.42237i 0.121686i
\(792\) 0.704571 0.0250358
\(793\) 24.3800i 0.865760i
\(794\) 0.360308i 0.0127868i
\(795\) 0 0
\(796\) −28.2778 −1.00228
\(797\) 11.5108i 0.407733i −0.978999 0.203866i \(-0.934649\pi\)
0.978999 0.203866i \(-0.0653508\pi\)
\(798\) 0.580769i 0.0205590i
\(799\) 41.3189 1.46176
\(800\) 0 0
\(801\) 2.50630i 0.0885557i
\(802\) 6.08861i 0.214996i
\(803\) −0.671001 −0.0236791
\(804\) 22.9713i 0.810136i
\(805\) 0 0
\(806\) 17.0279 0.599782
\(807\) 13.8826 0.488690
\(808\) 17.7887 0.625803
\(809\) 26.4897i 0.931330i 0.884961 + 0.465665i \(0.154185\pi\)
−0.884961 + 0.465665i \(0.845815\pi\)
\(810\) 0 0
\(811\) −40.5686 −1.42455 −0.712277 0.701898i \(-0.752336\pi\)
−0.712277 + 0.701898i \(0.752336\pi\)
\(812\) 1.16985 + 2.53984i 0.0410538 + 0.0891309i
\(813\) −13.3880 −0.469539
\(814\) 0.737705i 0.0258565i
\(815\) 0 0
\(816\) 11.1053 0.388764
\(817\) −37.7265 −1.31988
\(818\) 9.83615 0.343913
\(819\) −1.38526 −0.0484050
\(820\) 0 0
\(821\) −34.6649 −1.20981 −0.604906 0.796297i \(-0.706789\pi\)
−0.604906 + 0.796297i \(0.706789\pi\)
\(822\) 3.03067i 0.105707i
\(823\) 37.6231i 1.31146i −0.754996 0.655729i \(-0.772361\pi\)
0.754996 0.655729i \(-0.227639\pi\)
\(824\) 13.9001i 0.484233i
\(825\) 0 0
\(826\) 0.737429i 0.0256585i
\(827\) 45.0238i 1.56563i 0.622253 + 0.782816i \(0.286217\pi\)
−0.622253 + 0.782816i \(0.713783\pi\)
\(828\) 13.0972 0.455159
\(829\) 12.5148i 0.434656i −0.976099 0.217328i \(-0.930266\pi\)
0.976099 0.217328i \(-0.0697341\pi\)
\(830\) 0 0
\(831\) 9.91356i 0.343898i
\(832\) −27.3915 −0.949631
\(833\) 23.0156i 0.797443i
\(834\) 0.474530 0.0164316
\(835\) 0 0
\(836\) −6.45658 −0.223305
\(837\) 10.1057 0.349304
\(838\) 2.45330i 0.0847480i
\(839\) 35.4253i 1.22302i −0.791238 0.611508i \(-0.790563\pi\)
0.791238 0.611508i \(-0.209437\pi\)
\(840\) 0 0
\(841\) −18.8487 + 22.0392i −0.649956 + 0.759972i
\(842\) 7.05042 0.242973
\(843\) 18.7167i 0.644636i
\(844\) 30.0131i 1.03309i
\(845\) 0 0
\(846\) 4.15845 0.142970
\(847\) −2.94450 −0.101174
\(848\) 13.3166 0.457293
\(849\) 18.9462i 0.650233i
\(850\) 0 0
\(851\) 28.2390i 0.968021i
\(852\) 13.5977i 0.465850i
\(853\) 4.63924i 0.158844i 0.996841 + 0.0794222i \(0.0253075\pi\)
−0.996841 + 0.0794222i \(0.974692\pi\)
\(854\) 0.445300 0.0152379
\(855\) 0 0
\(856\) 5.97292i 0.204150i
\(857\) −52.9487 −1.80869 −0.904346 0.426800i \(-0.859641\pi\)
−0.904346 + 0.426800i \(0.859641\pi\)
\(858\) 0.912761i 0.0311612i
\(859\) 37.3538i 1.27450i 0.770658 + 0.637248i \(0.219927\pi\)
−0.770658 + 0.637248i \(0.780073\pi\)
\(860\) 0 0
\(861\) −2.33723 −0.0796525
\(862\) 3.55713i 0.121156i
\(863\) −10.2002 −0.347219 −0.173609 0.984815i \(-0.555543\pi\)
−0.173609 + 0.984815i \(0.555543\pi\)
\(864\) 3.71898 0.126522
\(865\) 0 0
\(866\) 4.25784 0.144687
\(867\) 5.95197i 0.202139i
\(868\) 5.24750i 0.178112i
\(869\) 1.28369 0.0435461
\(870\) 0 0
\(871\) 61.2818 2.07646
\(872\) 17.1000i 0.579081i
\(873\) 17.8627i 0.604560i
\(874\) 14.6486 0.495496
\(875\) 0 0
\(876\) −2.33875 −0.0790192
\(877\) 8.25649 0.278802 0.139401 0.990236i \(-0.455482\pi\)
0.139401 + 0.990236i \(0.455482\pi\)
\(878\) 1.49989i 0.0506187i
\(879\) 7.13932 0.240803
\(880\) 0 0
\(881\) 4.94367i 0.166556i −0.996526 0.0832782i \(-0.973461\pi\)
0.996526 0.0832782i \(-0.0265390\pi\)
\(882\) 2.31636i 0.0779958i
\(883\) −35.6378 −1.19931 −0.599654 0.800259i \(-0.704695\pi\)
−0.599654 + 0.800259i \(0.704695\pi\)
\(884\) 31.6108i 1.06319i
\(885\) 0 0
\(886\) 4.28352 0.143908
\(887\) 2.14284i 0.0719497i 0.999353 + 0.0359748i \(0.0114536\pi\)
−0.999353 + 0.0359748i \(0.988546\pi\)
\(888\) 5.29489i 0.177685i
\(889\) 2.85597i 0.0957862i
\(890\) 0 0
\(891\) 0.541705i 0.0181478i
\(892\) 14.1968 0.475343
\(893\) −78.4733 −2.62601
\(894\) 1.57423 0.0526503
\(895\) 0 0
\(896\) 2.54588i 0.0850520i
\(897\) 34.9401i 1.16662i
\(898\) 7.41929 0.247585
\(899\) −49.4295 + 22.7673i −1.64857 + 0.759332i
\(900\) 0 0
\(901\) 13.2479i 0.441351i
\(902\) 1.54002i 0.0512771i
\(903\) 1.64359 0.0546951
\(904\) 16.1855 0.538323
\(905\) 0 0
\(906\) 2.00439 0.0665916
\(907\) 27.7834i 0.922533i −0.887262 0.461266i \(-0.847395\pi\)
0.887262 0.461266i \(-0.152605\pi\)
\(908\) 28.2532 0.937616
\(909\) 13.6767i 0.453627i
\(910\) 0 0
\(911\) 7.92701i 0.262634i 0.991340 + 0.131317i \(0.0419205\pi\)
−0.991340 + 0.131317i \(0.958080\pi\)
\(912\) −21.0913 −0.698404
\(913\) 5.61877i 0.185954i
\(914\) 4.08916i 0.135257i
\(915\) 0 0
\(916\) 23.2361i 0.767743i
\(917\) 1.04723i 0.0345825i
\(918\) 1.11191i 0.0366983i
\(919\) −24.5480 −0.809764 −0.404882 0.914369i \(-0.632687\pi\)
−0.404882 + 0.914369i \(0.632687\pi\)
\(920\) 0 0
\(921\) 10.0637 0.331612
\(922\) −8.74760 −0.288087
\(923\) 36.2753 1.19402
\(924\) 0.281286 0.00925364
\(925\) 0 0
\(926\) 7.87864i 0.258908i
\(927\) −10.6870 −0.351007
\(928\) −18.1905 + 8.37855i −0.597132 + 0.275040i
\(929\) −2.45572 −0.0805695 −0.0402847 0.999188i \(-0.512827\pi\)
−0.0402847 + 0.999188i \(0.512827\pi\)
\(930\) 0 0
\(931\) 43.7115i 1.43259i
\(932\) −20.2971 −0.664853
\(933\) −16.2493 −0.531977
\(934\) −4.25044 −0.139079
\(935\) 0 0
\(936\) 6.55136i 0.214138i
\(937\) −39.7814 −1.29960 −0.649801 0.760104i \(-0.725148\pi\)
−0.649801 + 0.760104i \(0.725148\pi\)
\(938\) 1.11931i 0.0365467i
\(939\) 21.4838i 0.701097i
\(940\) 0 0
\(941\) 33.7621 1.10061 0.550306 0.834963i \(-0.314511\pi\)
0.550306 + 0.834963i \(0.314511\pi\)
\(942\) 3.77099i 0.122866i
\(943\) 58.9513i 1.91972i
\(944\) 26.7806 0.871636
\(945\) 0 0
\(946\) 1.08297i 0.0352105i
\(947\) 1.32780i 0.0431476i −0.999767 0.0215738i \(-0.993132\pi\)
0.999767 0.0215738i \(-0.00686768\pi\)
\(948\) 4.47426 0.145317
\(949\) 6.23922i 0.202534i
\(950\) 0 0
\(951\) −24.4204 −0.791887
\(952\) −1.18896 −0.0385344
\(953\) 21.2315 0.687755 0.343878 0.939014i \(-0.388259\pi\)
0.343878 + 0.939014i \(0.388259\pi\)
\(954\) 1.33330i 0.0431673i
\(955\) 0 0
\(956\) 11.4132 0.369128
\(957\) 1.22042 + 2.64961i 0.0394504 + 0.0856499i
\(958\) −4.77922 −0.154409
\(959\) 2.49158i 0.0804574i
\(960\) 0 0
\(961\) −71.1251 −2.29436
\(962\) −6.85945 −0.221158
\(963\) −4.59224 −0.147983
\(964\) 45.6915 1.47162
\(965\) 0 0
\(966\) −0.638179 −0.0205331
\(967\) 8.54151i 0.274677i −0.990524 0.137338i \(-0.956145\pi\)
0.990524 0.137338i \(-0.0438547\pi\)
\(968\) 13.9255i 0.447584i
\(969\) 20.9826i 0.674057i
\(970\) 0 0
\(971\) 18.0454i 0.579104i −0.957162 0.289552i \(-0.906494\pi\)
0.957162 0.289552i \(-0.0935063\pi\)
\(972\) 1.88809i 0.0605607i
\(973\) 0.390123 0.0125068
\(974\) 11.5156i 0.368983i
\(975\) 0 0
\(976\) 16.1716i 0.517641i
\(977\) −15.2948 −0.489324 −0.244662 0.969608i \(-0.578677\pi\)
−0.244662 + 0.969608i \(0.578677\pi\)
\(978\) 3.77539i 0.120724i
\(979\) −1.35767 −0.0433914
\(980\) 0 0
\(981\) −13.1473 −0.419760
\(982\) −6.88425 −0.219685
\(983\) 38.2643i 1.22044i 0.792231 + 0.610221i \(0.208919\pi\)
−0.792231 + 0.610221i \(0.791081\pi\)
\(984\) 11.0535i 0.352374i
\(985\) 0 0
\(986\) −2.50503 5.43861i −0.0797764 0.173201i
\(987\) 3.41876 0.108820
\(988\) 60.0356i 1.90999i
\(989\) 41.4557i 1.31822i
\(990\) 0 0
\(991\) 22.5768 0.717174 0.358587 0.933496i \(-0.383259\pi\)
0.358587 + 0.933496i \(0.383259\pi\)
\(992\) −37.5829 −1.19326
\(993\) 0.627675 0.0199187
\(994\) 0.662567i 0.0210153i
\(995\) 0 0
\(996\) 19.5840i 0.620544i
\(997\) 28.4370i 0.900608i −0.892875 0.450304i \(-0.851316\pi\)
0.892875 0.450304i \(-0.148684\pi\)
\(998\) 6.54222i 0.207090i
\(999\) −4.07094 −0.128799
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.2.d.j.376.13 24
5.2 odd 4 435.2.f.e.289.8 yes 12
5.3 odd 4 435.2.f.f.289.5 yes 12
5.4 even 2 inner 2175.2.d.j.376.12 24
15.2 even 4 1305.2.f.k.289.5 12
15.8 even 4 1305.2.f.l.289.8 12
29.28 even 2 inner 2175.2.d.j.376.14 24
145.28 odd 4 435.2.f.e.289.7 12
145.57 odd 4 435.2.f.f.289.6 yes 12
145.144 even 2 inner 2175.2.d.j.376.11 24
435.173 even 4 1305.2.f.k.289.6 12
435.347 even 4 1305.2.f.l.289.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.2.f.e.289.7 12 145.28 odd 4
435.2.f.e.289.8 yes 12 5.2 odd 4
435.2.f.f.289.5 yes 12 5.3 odd 4
435.2.f.f.289.6 yes 12 145.57 odd 4
1305.2.f.k.289.5 12 15.2 even 4
1305.2.f.k.289.6 12 435.173 even 4
1305.2.f.l.289.7 12 435.347 even 4
1305.2.f.l.289.8 12 15.8 even 4
2175.2.d.j.376.11 24 145.144 even 2 inner
2175.2.d.j.376.12 24 5.4 even 2 inner
2175.2.d.j.376.13 24 1.1 even 1 trivial
2175.2.d.j.376.14 24 29.28 even 2 inner