Properties

Label 1305.4.a.g.1.4
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 23x^{3} + 38x^{2} + 90x - 116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.12043\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.12043 q^{2} -3.50376 q^{4} +5.00000 q^{5} -1.40136 q^{7} -24.3930 q^{8} +10.6022 q^{10} +24.5188 q^{11} -32.6137 q^{13} -2.97148 q^{14} -23.6935 q^{16} +73.4147 q^{17} -63.9410 q^{19} -17.5188 q^{20} +51.9905 q^{22} +118.222 q^{23} +25.0000 q^{25} -69.1552 q^{26} +4.91002 q^{28} +29.0000 q^{29} -267.895 q^{31} +144.903 q^{32} +155.671 q^{34} -7.00678 q^{35} +288.463 q^{37} -135.583 q^{38} -121.965 q^{40} -492.803 q^{41} -31.1238 q^{43} -85.9082 q^{44} +250.681 q^{46} -233.499 q^{47} -341.036 q^{49} +53.0108 q^{50} +114.271 q^{52} -6.75576 q^{53} +122.594 q^{55} +34.1832 q^{56} +61.4926 q^{58} -0.170156 q^{59} -253.626 q^{61} -568.054 q^{62} +496.806 q^{64} -163.069 q^{65} -188.557 q^{67} -257.228 q^{68} -14.8574 q^{70} -671.359 q^{71} +290.796 q^{73} +611.666 q^{74} +224.034 q^{76} -34.3596 q^{77} -350.592 q^{79} -118.468 q^{80} -1044.96 q^{82} -1019.19 q^{83} +367.073 q^{85} -65.9959 q^{86} -598.087 q^{88} +1008.83 q^{89} +45.7034 q^{91} -414.221 q^{92} -495.119 q^{94} -319.705 q^{95} -346.423 q^{97} -723.144 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 10 q^{4} + 25 q^{5} - 29 q^{7} - 10 q^{10} - 15 q^{11} - 31 q^{13} + 114 q^{14} - 102 q^{16} - 119 q^{17} + 46 q^{19} + 50 q^{20} + 66 q^{22} - 170 q^{23} + 125 q^{25} - 138 q^{26} + 32 q^{28}+ \cdots - 1780 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.12043 0.749686 0.374843 0.927088i \(-0.377697\pi\)
0.374843 + 0.927088i \(0.377697\pi\)
\(3\) 0 0
\(4\) −3.50376 −0.437971
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −1.40136 −0.0756661 −0.0378330 0.999284i \(-0.512046\pi\)
−0.0378330 + 0.999284i \(0.512046\pi\)
\(8\) −24.3930 −1.07803
\(9\) 0 0
\(10\) 10.6022 0.335270
\(11\) 24.5188 0.672064 0.336032 0.941851i \(-0.390915\pi\)
0.336032 + 0.941851i \(0.390915\pi\)
\(12\) 0 0
\(13\) −32.6137 −0.695801 −0.347901 0.937531i \(-0.613105\pi\)
−0.347901 + 0.937531i \(0.613105\pi\)
\(14\) −2.97148 −0.0567258
\(15\) 0 0
\(16\) −23.6935 −0.370211
\(17\) 73.4147 1.04739 0.523696 0.851905i \(-0.324553\pi\)
0.523696 + 0.851905i \(0.324553\pi\)
\(18\) 0 0
\(19\) −63.9410 −0.772056 −0.386028 0.922487i \(-0.626153\pi\)
−0.386028 + 0.922487i \(0.626153\pi\)
\(20\) −17.5188 −0.195866
\(21\) 0 0
\(22\) 51.9905 0.503837
\(23\) 118.222 1.07178 0.535890 0.844288i \(-0.319976\pi\)
0.535890 + 0.844288i \(0.319976\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −69.1552 −0.521632
\(27\) 0 0
\(28\) 4.91002 0.0331395
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −267.895 −1.55211 −0.776055 0.630665i \(-0.782782\pi\)
−0.776055 + 0.630665i \(0.782782\pi\)
\(32\) 144.903 0.800484
\(33\) 0 0
\(34\) 155.671 0.785216
\(35\) −7.00678 −0.0338389
\(36\) 0 0
\(37\) 288.463 1.28170 0.640851 0.767665i \(-0.278582\pi\)
0.640851 + 0.767665i \(0.278582\pi\)
\(38\) −135.583 −0.578800
\(39\) 0 0
\(40\) −121.965 −0.482108
\(41\) −492.803 −1.87714 −0.938572 0.345083i \(-0.887851\pi\)
−0.938572 + 0.345083i \(0.887851\pi\)
\(42\) 0 0
\(43\) −31.1238 −0.110380 −0.0551899 0.998476i \(-0.517576\pi\)
−0.0551899 + 0.998476i \(0.517576\pi\)
\(44\) −85.9082 −0.294344
\(45\) 0 0
\(46\) 250.681 0.803498
\(47\) −233.499 −0.724667 −0.362333 0.932049i \(-0.618020\pi\)
−0.362333 + 0.932049i \(0.618020\pi\)
\(48\) 0 0
\(49\) −341.036 −0.994275
\(50\) 53.0108 0.149937
\(51\) 0 0
\(52\) 114.271 0.304740
\(53\) −6.75576 −0.0175090 −0.00875448 0.999962i \(-0.502787\pi\)
−0.00875448 + 0.999962i \(0.502787\pi\)
\(54\) 0 0
\(55\) 122.594 0.300556
\(56\) 34.1832 0.0815700
\(57\) 0 0
\(58\) 61.4926 0.139213
\(59\) −0.170156 −0.000375465 0 −0.000187732 1.00000i \(-0.500060\pi\)
−0.000187732 1.00000i \(0.500060\pi\)
\(60\) 0 0
\(61\) −253.626 −0.532352 −0.266176 0.963925i \(-0.585760\pi\)
−0.266176 + 0.963925i \(0.585760\pi\)
\(62\) −568.054 −1.16360
\(63\) 0 0
\(64\) 496.806 0.970323
\(65\) −163.069 −0.311172
\(66\) 0 0
\(67\) −188.557 −0.343820 −0.171910 0.985113i \(-0.554994\pi\)
−0.171910 + 0.985113i \(0.554994\pi\)
\(68\) −257.228 −0.458727
\(69\) 0 0
\(70\) −14.8574 −0.0253686
\(71\) −671.359 −1.12219 −0.561096 0.827751i \(-0.689620\pi\)
−0.561096 + 0.827751i \(0.689620\pi\)
\(72\) 0 0
\(73\) 290.796 0.466235 0.233117 0.972449i \(-0.425107\pi\)
0.233117 + 0.972449i \(0.425107\pi\)
\(74\) 611.666 0.960874
\(75\) 0 0
\(76\) 224.034 0.338138
\(77\) −34.3596 −0.0508524
\(78\) 0 0
\(79\) −350.592 −0.499300 −0.249650 0.968336i \(-0.580316\pi\)
−0.249650 + 0.968336i \(0.580316\pi\)
\(80\) −118.468 −0.165564
\(81\) 0 0
\(82\) −1044.96 −1.40727
\(83\) −1019.19 −1.34784 −0.673920 0.738804i \(-0.735391\pi\)
−0.673920 + 0.738804i \(0.735391\pi\)
\(84\) 0 0
\(85\) 367.073 0.468408
\(86\) −65.9959 −0.0827503
\(87\) 0 0
\(88\) −598.087 −0.724503
\(89\) 1008.83 1.20152 0.600761 0.799429i \(-0.294864\pi\)
0.600761 + 0.799429i \(0.294864\pi\)
\(90\) 0 0
\(91\) 45.7034 0.0526485
\(92\) −414.221 −0.469408
\(93\) 0 0
\(94\) −495.119 −0.543273
\(95\) −319.705 −0.345274
\(96\) 0 0
\(97\) −346.423 −0.362617 −0.181309 0.983426i \(-0.558033\pi\)
−0.181309 + 0.983426i \(0.558033\pi\)
\(98\) −723.144 −0.745394
\(99\) 0 0
\(100\) −87.5941 −0.0875941
\(101\) −1015.12 −1.00008 −0.500039 0.866003i \(-0.666681\pi\)
−0.500039 + 0.866003i \(0.666681\pi\)
\(102\) 0 0
\(103\) 1741.22 1.66571 0.832853 0.553494i \(-0.186706\pi\)
0.832853 + 0.553494i \(0.186706\pi\)
\(104\) 795.545 0.750092
\(105\) 0 0
\(106\) −14.3251 −0.0131262
\(107\) −1773.14 −1.60201 −0.801007 0.598655i \(-0.795702\pi\)
−0.801007 + 0.598655i \(0.795702\pi\)
\(108\) 0 0
\(109\) −900.555 −0.791354 −0.395677 0.918390i \(-0.629490\pi\)
−0.395677 + 0.918390i \(0.629490\pi\)
\(110\) 259.953 0.225323
\(111\) 0 0
\(112\) 33.2030 0.0280124
\(113\) −959.629 −0.798887 −0.399444 0.916758i \(-0.630797\pi\)
−0.399444 + 0.916758i \(0.630797\pi\)
\(114\) 0 0
\(115\) 591.108 0.479314
\(116\) −101.609 −0.0813291
\(117\) 0 0
\(118\) −0.360804 −0.000281481 0
\(119\) −102.880 −0.0792521
\(120\) 0 0
\(121\) −729.827 −0.548330
\(122\) −537.796 −0.399097
\(123\) 0 0
\(124\) 938.642 0.679779
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 90.2767 0.0630769 0.0315384 0.999503i \(-0.489959\pi\)
0.0315384 + 0.999503i \(0.489959\pi\)
\(128\) −105.782 −0.0730462
\(129\) 0 0
\(130\) −345.776 −0.233281
\(131\) −45.1795 −0.0301324 −0.0150662 0.999886i \(-0.504796\pi\)
−0.0150662 + 0.999886i \(0.504796\pi\)
\(132\) 0 0
\(133\) 89.6041 0.0584185
\(134\) −399.823 −0.257757
\(135\) 0 0
\(136\) −1790.80 −1.12912
\(137\) −1963.31 −1.22436 −0.612178 0.790720i \(-0.709706\pi\)
−0.612178 + 0.790720i \(0.709706\pi\)
\(138\) 0 0
\(139\) 210.722 0.128584 0.0642920 0.997931i \(-0.479521\pi\)
0.0642920 + 0.997931i \(0.479521\pi\)
\(140\) 24.5501 0.0148204
\(141\) 0 0
\(142\) −1423.57 −0.841292
\(143\) −799.649 −0.467623
\(144\) 0 0
\(145\) 145.000 0.0830455
\(146\) 616.614 0.349530
\(147\) 0 0
\(148\) −1010.70 −0.561347
\(149\) 1384.22 0.761074 0.380537 0.924766i \(-0.375739\pi\)
0.380537 + 0.924766i \(0.375739\pi\)
\(150\) 0 0
\(151\) −1229.18 −0.662446 −0.331223 0.943553i \(-0.607461\pi\)
−0.331223 + 0.943553i \(0.607461\pi\)
\(152\) 1559.71 0.832298
\(153\) 0 0
\(154\) −72.8572 −0.0381234
\(155\) −1339.48 −0.694125
\(156\) 0 0
\(157\) 1084.39 0.551236 0.275618 0.961267i \(-0.411118\pi\)
0.275618 + 0.961267i \(0.411118\pi\)
\(158\) −743.408 −0.374319
\(159\) 0 0
\(160\) 724.516 0.357987
\(161\) −165.671 −0.0810973
\(162\) 0 0
\(163\) −3602.58 −1.73114 −0.865569 0.500790i \(-0.833043\pi\)
−0.865569 + 0.500790i \(0.833043\pi\)
\(164\) 1726.67 0.822134
\(165\) 0 0
\(166\) −2161.13 −1.01046
\(167\) 2664.11 1.23446 0.617231 0.786782i \(-0.288255\pi\)
0.617231 + 0.786782i \(0.288255\pi\)
\(168\) 0 0
\(169\) −1133.35 −0.515861
\(170\) 778.355 0.351159
\(171\) 0 0
\(172\) 109.050 0.0483431
\(173\) −2832.16 −1.24465 −0.622326 0.782758i \(-0.713812\pi\)
−0.622326 + 0.782758i \(0.713812\pi\)
\(174\) 0 0
\(175\) −35.0339 −0.0151332
\(176\) −580.937 −0.248806
\(177\) 0 0
\(178\) 2139.15 0.900765
\(179\) 2060.93 0.860565 0.430283 0.902694i \(-0.358414\pi\)
0.430283 + 0.902694i \(0.358414\pi\)
\(180\) 0 0
\(181\) 4334.37 1.77995 0.889976 0.456007i \(-0.150721\pi\)
0.889976 + 0.456007i \(0.150721\pi\)
\(182\) 96.9110 0.0394699
\(183\) 0 0
\(184\) −2883.78 −1.15541
\(185\) 1442.31 0.573194
\(186\) 0 0
\(187\) 1800.04 0.703915
\(188\) 818.125 0.317383
\(189\) 0 0
\(190\) −677.913 −0.258847
\(191\) −1785.57 −0.676438 −0.338219 0.941067i \(-0.609824\pi\)
−0.338219 + 0.941067i \(0.609824\pi\)
\(192\) 0 0
\(193\) 1099.28 0.409990 0.204995 0.978763i \(-0.434282\pi\)
0.204995 + 0.978763i \(0.434282\pi\)
\(194\) −734.566 −0.271849
\(195\) 0 0
\(196\) 1194.91 0.435463
\(197\) −3189.78 −1.15362 −0.576808 0.816880i \(-0.695702\pi\)
−0.576808 + 0.816880i \(0.695702\pi\)
\(198\) 0 0
\(199\) −1103.24 −0.392997 −0.196499 0.980504i \(-0.562957\pi\)
−0.196499 + 0.980504i \(0.562957\pi\)
\(200\) −609.824 −0.215605
\(201\) 0 0
\(202\) −2152.49 −0.749745
\(203\) −40.6393 −0.0140508
\(204\) 0 0
\(205\) −2464.02 −0.839484
\(206\) 3692.15 1.24876
\(207\) 0 0
\(208\) 772.734 0.257593
\(209\) −1567.76 −0.518871
\(210\) 0 0
\(211\) −4741.90 −1.54714 −0.773569 0.633712i \(-0.781530\pi\)
−0.773569 + 0.633712i \(0.781530\pi\)
\(212\) 23.6706 0.00766841
\(213\) 0 0
\(214\) −3759.82 −1.20101
\(215\) −155.619 −0.0493634
\(216\) 0 0
\(217\) 375.417 0.117442
\(218\) −1909.57 −0.593267
\(219\) 0 0
\(220\) −429.541 −0.131635
\(221\) −2394.32 −0.728777
\(222\) 0 0
\(223\) −2999.28 −0.900658 −0.450329 0.892863i \(-0.648693\pi\)
−0.450329 + 0.892863i \(0.648693\pi\)
\(224\) −203.061 −0.0605695
\(225\) 0 0
\(226\) −2034.83 −0.598915
\(227\) 1943.66 0.568305 0.284152 0.958779i \(-0.408288\pi\)
0.284152 + 0.958779i \(0.408288\pi\)
\(228\) 0 0
\(229\) −3785.56 −1.09239 −0.546194 0.837658i \(-0.683924\pi\)
−0.546194 + 0.837658i \(0.683924\pi\)
\(230\) 1253.41 0.359335
\(231\) 0 0
\(232\) −707.396 −0.200185
\(233\) 2799.88 0.787237 0.393619 0.919274i \(-0.371223\pi\)
0.393619 + 0.919274i \(0.371223\pi\)
\(234\) 0 0
\(235\) −1167.49 −0.324081
\(236\) 0.596187 0.000164443 0
\(237\) 0 0
\(238\) −218.150 −0.0594142
\(239\) −1280.17 −0.346473 −0.173236 0.984880i \(-0.555422\pi\)
−0.173236 + 0.984880i \(0.555422\pi\)
\(240\) 0 0
\(241\) 4966.48 1.32746 0.663732 0.747970i \(-0.268971\pi\)
0.663732 + 0.747970i \(0.268971\pi\)
\(242\) −1547.55 −0.411076
\(243\) 0 0
\(244\) 888.645 0.233154
\(245\) −1705.18 −0.444653
\(246\) 0 0
\(247\) 2085.35 0.537198
\(248\) 6534.76 1.67322
\(249\) 0 0
\(250\) 265.054 0.0670540
\(251\) −6716.64 −1.68904 −0.844522 0.535520i \(-0.820116\pi\)
−0.844522 + 0.535520i \(0.820116\pi\)
\(252\) 0 0
\(253\) 2898.66 0.720304
\(254\) 191.426 0.0472879
\(255\) 0 0
\(256\) −4198.75 −1.02509
\(257\) −6324.65 −1.53510 −0.767550 0.640989i \(-0.778525\pi\)
−0.767550 + 0.640989i \(0.778525\pi\)
\(258\) 0 0
\(259\) −404.239 −0.0969813
\(260\) 571.354 0.136284
\(261\) 0 0
\(262\) −95.8000 −0.0225899
\(263\) 615.504 0.144310 0.0721551 0.997393i \(-0.477012\pi\)
0.0721551 + 0.997393i \(0.477012\pi\)
\(264\) 0 0
\(265\) −33.7788 −0.00783025
\(266\) 189.999 0.0437955
\(267\) 0 0
\(268\) 660.660 0.150583
\(269\) 5700.55 1.29208 0.646038 0.763305i \(-0.276425\pi\)
0.646038 + 0.763305i \(0.276425\pi\)
\(270\) 0 0
\(271\) 4219.97 0.945923 0.472961 0.881083i \(-0.343185\pi\)
0.472961 + 0.881083i \(0.343185\pi\)
\(272\) −1739.45 −0.387757
\(273\) 0 0
\(274\) −4163.07 −0.917883
\(275\) 612.971 0.134413
\(276\) 0 0
\(277\) 1981.60 0.429829 0.214915 0.976633i \(-0.431053\pi\)
0.214915 + 0.976633i \(0.431053\pi\)
\(278\) 446.821 0.0963977
\(279\) 0 0
\(280\) 170.916 0.0364792
\(281\) 1504.70 0.319442 0.159721 0.987162i \(-0.448941\pi\)
0.159721 + 0.987162i \(0.448941\pi\)
\(282\) 0 0
\(283\) 5801.55 1.21861 0.609305 0.792936i \(-0.291449\pi\)
0.609305 + 0.792936i \(0.291449\pi\)
\(284\) 2352.28 0.491487
\(285\) 0 0
\(286\) −1695.60 −0.350570
\(287\) 690.592 0.142036
\(288\) 0 0
\(289\) 476.715 0.0970313
\(290\) 307.463 0.0622581
\(291\) 0 0
\(292\) −1018.88 −0.204197
\(293\) 726.374 0.144830 0.0724151 0.997375i \(-0.476929\pi\)
0.0724151 + 0.997375i \(0.476929\pi\)
\(294\) 0 0
\(295\) −0.850780 −0.000167913 0
\(296\) −7036.46 −1.38171
\(297\) 0 0
\(298\) 2935.15 0.570567
\(299\) −3855.65 −0.745745
\(300\) 0 0
\(301\) 43.6155 0.00835201
\(302\) −2606.40 −0.496627
\(303\) 0 0
\(304\) 1514.99 0.285824
\(305\) −1268.13 −0.238075
\(306\) 0 0
\(307\) −405.295 −0.0753467 −0.0376733 0.999290i \(-0.511995\pi\)
−0.0376733 + 0.999290i \(0.511995\pi\)
\(308\) 120.388 0.0222719
\(309\) 0 0
\(310\) −2840.27 −0.520376
\(311\) 1618.01 0.295013 0.147507 0.989061i \(-0.452875\pi\)
0.147507 + 0.989061i \(0.452875\pi\)
\(312\) 0 0
\(313\) 5620.47 1.01498 0.507488 0.861659i \(-0.330574\pi\)
0.507488 + 0.861659i \(0.330574\pi\)
\(314\) 2299.38 0.413254
\(315\) 0 0
\(316\) 1228.39 0.218679
\(317\) −2250.61 −0.398759 −0.199380 0.979922i \(-0.563893\pi\)
−0.199380 + 0.979922i \(0.563893\pi\)
\(318\) 0 0
\(319\) 711.046 0.124799
\(320\) 2484.03 0.433942
\(321\) 0 0
\(322\) −351.293 −0.0607975
\(323\) −4694.21 −0.808646
\(324\) 0 0
\(325\) −815.343 −0.139160
\(326\) −7639.02 −1.29781
\(327\) 0 0
\(328\) 12020.9 2.02361
\(329\) 327.215 0.0548327
\(330\) 0 0
\(331\) 5451.78 0.905307 0.452654 0.891686i \(-0.350477\pi\)
0.452654 + 0.891686i \(0.350477\pi\)
\(332\) 3571.00 0.590314
\(333\) 0 0
\(334\) 5649.07 0.925459
\(335\) −942.786 −0.153761
\(336\) 0 0
\(337\) 1521.29 0.245904 0.122952 0.992413i \(-0.460764\pi\)
0.122952 + 0.992413i \(0.460764\pi\)
\(338\) −2403.19 −0.386734
\(339\) 0 0
\(340\) −1286.14 −0.205149
\(341\) −6568.48 −1.04312
\(342\) 0 0
\(343\) 958.578 0.150899
\(344\) 759.201 0.118992
\(345\) 0 0
\(346\) −6005.40 −0.933099
\(347\) 11163.3 1.72703 0.863515 0.504323i \(-0.168258\pi\)
0.863515 + 0.504323i \(0.168258\pi\)
\(348\) 0 0
\(349\) −3430.69 −0.526191 −0.263095 0.964770i \(-0.584743\pi\)
−0.263095 + 0.964770i \(0.584743\pi\)
\(350\) −74.2870 −0.0113452
\(351\) 0 0
\(352\) 3552.85 0.537977
\(353\) −10103.1 −1.52333 −0.761663 0.647973i \(-0.775617\pi\)
−0.761663 + 0.647973i \(0.775617\pi\)
\(354\) 0 0
\(355\) −3356.79 −0.501860
\(356\) −3534.69 −0.526231
\(357\) 0 0
\(358\) 4370.06 0.645154
\(359\) 8241.29 1.21158 0.605792 0.795623i \(-0.292856\pi\)
0.605792 + 0.795623i \(0.292856\pi\)
\(360\) 0 0
\(361\) −2770.55 −0.403929
\(362\) 9190.75 1.33441
\(363\) 0 0
\(364\) −160.134 −0.0230585
\(365\) 1453.98 0.208507
\(366\) 0 0
\(367\) 1511.51 0.214987 0.107493 0.994206i \(-0.465718\pi\)
0.107493 + 0.994206i \(0.465718\pi\)
\(368\) −2801.09 −0.396785
\(369\) 0 0
\(370\) 3058.33 0.429716
\(371\) 9.46722 0.00132483
\(372\) 0 0
\(373\) 273.737 0.0379988 0.0189994 0.999819i \(-0.493952\pi\)
0.0189994 + 0.999819i \(0.493952\pi\)
\(374\) 3816.87 0.527715
\(375\) 0 0
\(376\) 5695.73 0.781210
\(377\) −945.797 −0.129207
\(378\) 0 0
\(379\) 13732.5 1.86118 0.930592 0.366057i \(-0.119293\pi\)
0.930592 + 0.366057i \(0.119293\pi\)
\(380\) 1120.17 0.151220
\(381\) 0 0
\(382\) −3786.19 −0.507116
\(383\) 8317.66 1.10969 0.554846 0.831953i \(-0.312777\pi\)
0.554846 + 0.831953i \(0.312777\pi\)
\(384\) 0 0
\(385\) −171.798 −0.0227419
\(386\) 2330.95 0.307364
\(387\) 0 0
\(388\) 1213.78 0.158816
\(389\) −12184.5 −1.58813 −0.794063 0.607835i \(-0.792038\pi\)
−0.794063 + 0.607835i \(0.792038\pi\)
\(390\) 0 0
\(391\) 8679.20 1.12257
\(392\) 8318.88 1.07185
\(393\) 0 0
\(394\) −6763.71 −0.864850
\(395\) −1752.96 −0.223294
\(396\) 0 0
\(397\) 10293.0 1.30123 0.650617 0.759406i \(-0.274510\pi\)
0.650617 + 0.759406i \(0.274510\pi\)
\(398\) −2339.34 −0.294625
\(399\) 0 0
\(400\) −592.338 −0.0740423
\(401\) 12177.3 1.51647 0.758236 0.651980i \(-0.226062\pi\)
0.758236 + 0.651980i \(0.226062\pi\)
\(402\) 0 0
\(403\) 8737.06 1.07996
\(404\) 3556.73 0.438005
\(405\) 0 0
\(406\) −86.1729 −0.0105337
\(407\) 7072.76 0.861385
\(408\) 0 0
\(409\) 10320.0 1.24765 0.623826 0.781563i \(-0.285577\pi\)
0.623826 + 0.781563i \(0.285577\pi\)
\(410\) −5224.78 −0.629350
\(411\) 0 0
\(412\) −6100.84 −0.729531
\(413\) 0.238449 2.84100e−5 0
\(414\) 0 0
\(415\) −5095.95 −0.602772
\(416\) −4725.83 −0.556978
\(417\) 0 0
\(418\) −3324.33 −0.388991
\(419\) 1416.16 0.165117 0.0825583 0.996586i \(-0.473691\pi\)
0.0825583 + 0.996586i \(0.473691\pi\)
\(420\) 0 0
\(421\) 1770.07 0.204912 0.102456 0.994738i \(-0.467330\pi\)
0.102456 + 0.994738i \(0.467330\pi\)
\(422\) −10054.9 −1.15987
\(423\) 0 0
\(424\) 164.793 0.0188751
\(425\) 1835.37 0.209479
\(426\) 0 0
\(427\) 355.420 0.0402809
\(428\) 6212.65 0.701635
\(429\) 0 0
\(430\) −329.980 −0.0370070
\(431\) −8676.34 −0.969662 −0.484831 0.874608i \(-0.661119\pi\)
−0.484831 + 0.874608i \(0.661119\pi\)
\(432\) 0 0
\(433\) −10365.6 −1.15043 −0.575217 0.818001i \(-0.695082\pi\)
−0.575217 + 0.818001i \(0.695082\pi\)
\(434\) 796.046 0.0880448
\(435\) 0 0
\(436\) 3155.33 0.346589
\(437\) −7559.21 −0.827474
\(438\) 0 0
\(439\) −6186.08 −0.672541 −0.336270 0.941765i \(-0.609166\pi\)
−0.336270 + 0.941765i \(0.609166\pi\)
\(440\) −2990.43 −0.324008
\(441\) 0 0
\(442\) −5077.00 −0.546354
\(443\) −7340.11 −0.787221 −0.393611 0.919277i \(-0.628774\pi\)
−0.393611 + 0.919277i \(0.628774\pi\)
\(444\) 0 0
\(445\) 5044.14 0.537337
\(446\) −6359.78 −0.675211
\(447\) 0 0
\(448\) −696.201 −0.0734206
\(449\) 4998.65 0.525392 0.262696 0.964879i \(-0.415388\pi\)
0.262696 + 0.964879i \(0.415388\pi\)
\(450\) 0 0
\(451\) −12083.0 −1.26156
\(452\) 3362.31 0.349889
\(453\) 0 0
\(454\) 4121.40 0.426050
\(455\) 228.517 0.0235451
\(456\) 0 0
\(457\) −2458.87 −0.251687 −0.125844 0.992050i \(-0.540164\pi\)
−0.125844 + 0.992050i \(0.540164\pi\)
\(458\) −8027.03 −0.818949
\(459\) 0 0
\(460\) −2071.10 −0.209925
\(461\) −8913.54 −0.900532 −0.450266 0.892895i \(-0.648671\pi\)
−0.450266 + 0.892895i \(0.648671\pi\)
\(462\) 0 0
\(463\) −4530.84 −0.454787 −0.227393 0.973803i \(-0.573020\pi\)
−0.227393 + 0.973803i \(0.573020\pi\)
\(464\) −687.112 −0.0687465
\(465\) 0 0
\(466\) 5936.96 0.590181
\(467\) −7900.81 −0.782882 −0.391441 0.920203i \(-0.628023\pi\)
−0.391441 + 0.920203i \(0.628023\pi\)
\(468\) 0 0
\(469\) 264.236 0.0260155
\(470\) −2475.59 −0.242959
\(471\) 0 0
\(472\) 4.15061 0.000404761 0
\(473\) −763.119 −0.0741823
\(474\) 0 0
\(475\) −1598.53 −0.154411
\(476\) 360.467 0.0347101
\(477\) 0 0
\(478\) −2714.50 −0.259746
\(479\) 20336.4 1.93986 0.969931 0.243381i \(-0.0782565\pi\)
0.969931 + 0.243381i \(0.0782565\pi\)
\(480\) 0 0
\(481\) −9407.83 −0.891809
\(482\) 10531.1 0.995182
\(483\) 0 0
\(484\) 2557.14 0.240152
\(485\) −1732.11 −0.162167
\(486\) 0 0
\(487\) −11847.3 −1.10236 −0.551181 0.834385i \(-0.685823\pi\)
−0.551181 + 0.834385i \(0.685823\pi\)
\(488\) 6186.68 0.573889
\(489\) 0 0
\(490\) −3615.72 −0.333350
\(491\) −12022.9 −1.10506 −0.552529 0.833493i \(-0.686337\pi\)
−0.552529 + 0.833493i \(0.686337\pi\)
\(492\) 0 0
\(493\) 2129.03 0.194496
\(494\) 4421.85 0.402730
\(495\) 0 0
\(496\) 6347.39 0.574609
\(497\) 940.812 0.0849119
\(498\) 0 0
\(499\) 293.738 0.0263518 0.0131759 0.999913i \(-0.495806\pi\)
0.0131759 + 0.999913i \(0.495806\pi\)
\(500\) −437.971 −0.0391733
\(501\) 0 0
\(502\) −14242.2 −1.26625
\(503\) 4957.94 0.439491 0.219745 0.975557i \(-0.429477\pi\)
0.219745 + 0.975557i \(0.429477\pi\)
\(504\) 0 0
\(505\) −5075.58 −0.447249
\(506\) 6146.40 0.540002
\(507\) 0 0
\(508\) −316.308 −0.0276258
\(509\) −7023.72 −0.611633 −0.305816 0.952091i \(-0.598929\pi\)
−0.305816 + 0.952091i \(0.598929\pi\)
\(510\) 0 0
\(511\) −407.509 −0.0352781
\(512\) −8056.91 −0.695446
\(513\) 0 0
\(514\) −13411.0 −1.15084
\(515\) 8706.12 0.744927
\(516\) 0 0
\(517\) −5725.12 −0.487022
\(518\) −857.161 −0.0727056
\(519\) 0 0
\(520\) 3977.72 0.335451
\(521\) 17727.1 1.49067 0.745333 0.666692i \(-0.232290\pi\)
0.745333 + 0.666692i \(0.232290\pi\)
\(522\) 0 0
\(523\) −5487.13 −0.458768 −0.229384 0.973336i \(-0.573671\pi\)
−0.229384 + 0.973336i \(0.573671\pi\)
\(524\) 158.298 0.0131971
\(525\) 0 0
\(526\) 1305.13 0.108187
\(527\) −19667.5 −1.62567
\(528\) 0 0
\(529\) 1809.36 0.148710
\(530\) −71.6257 −0.00587023
\(531\) 0 0
\(532\) −313.951 −0.0255856
\(533\) 16072.1 1.30612
\(534\) 0 0
\(535\) −8865.68 −0.716443
\(536\) 4599.47 0.370647
\(537\) 0 0
\(538\) 12087.6 0.968652
\(539\) −8361.81 −0.668216
\(540\) 0 0
\(541\) 4243.99 0.337270 0.168635 0.985679i \(-0.446064\pi\)
0.168635 + 0.985679i \(0.446064\pi\)
\(542\) 8948.17 0.709145
\(543\) 0 0
\(544\) 10638.0 0.838421
\(545\) −4502.78 −0.353904
\(546\) 0 0
\(547\) −22519.2 −1.76024 −0.880119 0.474753i \(-0.842537\pi\)
−0.880119 + 0.474753i \(0.842537\pi\)
\(548\) 6878.97 0.536232
\(549\) 0 0
\(550\) 1299.76 0.100767
\(551\) −1854.29 −0.143367
\(552\) 0 0
\(553\) 491.304 0.0377801
\(554\) 4201.85 0.322237
\(555\) 0 0
\(556\) −738.319 −0.0563160
\(557\) 23665.3 1.80024 0.900119 0.435644i \(-0.143479\pi\)
0.900119 + 0.435644i \(0.143479\pi\)
\(558\) 0 0
\(559\) 1015.06 0.0768024
\(560\) 166.015 0.0125275
\(561\) 0 0
\(562\) 3190.62 0.239481
\(563\) −5688.95 −0.425863 −0.212931 0.977067i \(-0.568301\pi\)
−0.212931 + 0.977067i \(0.568301\pi\)
\(564\) 0 0
\(565\) −4798.14 −0.357273
\(566\) 12301.8 0.913574
\(567\) 0 0
\(568\) 16376.4 1.20975
\(569\) 5181.22 0.381736 0.190868 0.981616i \(-0.438870\pi\)
0.190868 + 0.981616i \(0.438870\pi\)
\(570\) 0 0
\(571\) −10124.7 −0.742040 −0.371020 0.928625i \(-0.620992\pi\)
−0.371020 + 0.928625i \(0.620992\pi\)
\(572\) 2801.78 0.204805
\(573\) 0 0
\(574\) 1464.35 0.106483
\(575\) 2955.54 0.214356
\(576\) 0 0
\(577\) −1502.64 −0.108416 −0.0542079 0.998530i \(-0.517263\pi\)
−0.0542079 + 0.998530i \(0.517263\pi\)
\(578\) 1010.84 0.0727431
\(579\) 0 0
\(580\) −508.046 −0.0363715
\(581\) 1428.25 0.101986
\(582\) 0 0
\(583\) −165.643 −0.0117671
\(584\) −7093.38 −0.502613
\(585\) 0 0
\(586\) 1540.23 0.108577
\(587\) 10571.9 0.743351 0.371675 0.928363i \(-0.378783\pi\)
0.371675 + 0.928363i \(0.378783\pi\)
\(588\) 0 0
\(589\) 17129.5 1.19832
\(590\) −1.80402 −0.000125882 0
\(591\) 0 0
\(592\) −6834.70 −0.474500
\(593\) 6095.11 0.422085 0.211042 0.977477i \(-0.432314\pi\)
0.211042 + 0.977477i \(0.432314\pi\)
\(594\) 0 0
\(595\) −514.400 −0.0354426
\(596\) −4849.99 −0.333328
\(597\) 0 0
\(598\) −8175.64 −0.559075
\(599\) 6143.32 0.419047 0.209524 0.977804i \(-0.432809\pi\)
0.209524 + 0.977804i \(0.432809\pi\)
\(600\) 0 0
\(601\) 17150.2 1.16401 0.582007 0.813184i \(-0.302268\pi\)
0.582007 + 0.813184i \(0.302268\pi\)
\(602\) 92.4837 0.00626139
\(603\) 0 0
\(604\) 4306.76 0.290132
\(605\) −3649.14 −0.245221
\(606\) 0 0
\(607\) −6196.83 −0.414368 −0.207184 0.978302i \(-0.566430\pi\)
−0.207184 + 0.978302i \(0.566430\pi\)
\(608\) −9265.25 −0.618019
\(609\) 0 0
\(610\) −2688.98 −0.178481
\(611\) 7615.27 0.504224
\(612\) 0 0
\(613\) 15766.1 1.03881 0.519403 0.854530i \(-0.326154\pi\)
0.519403 + 0.854530i \(0.326154\pi\)
\(614\) −859.401 −0.0564864
\(615\) 0 0
\(616\) 838.132 0.0548203
\(617\) −18677.5 −1.21868 −0.609340 0.792909i \(-0.708566\pi\)
−0.609340 + 0.792909i \(0.708566\pi\)
\(618\) 0 0
\(619\) 14341.9 0.931263 0.465631 0.884979i \(-0.345827\pi\)
0.465631 + 0.884979i \(0.345827\pi\)
\(620\) 4693.21 0.304006
\(621\) 0 0
\(622\) 3430.89 0.221167
\(623\) −1413.73 −0.0909144
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 11917.8 0.760914
\(627\) 0 0
\(628\) −3799.46 −0.241425
\(629\) 21177.4 1.34244
\(630\) 0 0
\(631\) −11850.5 −0.747638 −0.373819 0.927502i \(-0.621952\pi\)
−0.373819 + 0.927502i \(0.621952\pi\)
\(632\) 8551.99 0.538259
\(633\) 0 0
\(634\) −4772.26 −0.298944
\(635\) 451.384 0.0282088
\(636\) 0 0
\(637\) 11122.5 0.691817
\(638\) 1507.72 0.0935602
\(639\) 0 0
\(640\) −528.911 −0.0326672
\(641\) −3014.56 −0.185753 −0.0928767 0.995678i \(-0.529606\pi\)
−0.0928767 + 0.995678i \(0.529606\pi\)
\(642\) 0 0
\(643\) −21475.3 −1.31711 −0.658555 0.752533i \(-0.728832\pi\)
−0.658555 + 0.752533i \(0.728832\pi\)
\(644\) 580.470 0.0355182
\(645\) 0 0
\(646\) −9953.75 −0.606231
\(647\) 24199.3 1.47044 0.735218 0.677831i \(-0.237080\pi\)
0.735218 + 0.677831i \(0.237080\pi\)
\(648\) 0 0
\(649\) −4.17203 −0.000252336 0
\(650\) −1728.88 −0.104326
\(651\) 0 0
\(652\) 12622.6 0.758187
\(653\) 8138.48 0.487723 0.243862 0.969810i \(-0.421586\pi\)
0.243862 + 0.969810i \(0.421586\pi\)
\(654\) 0 0
\(655\) −225.897 −0.0134756
\(656\) 11676.2 0.694940
\(657\) 0 0
\(658\) 693.838 0.0411073
\(659\) 24406.8 1.44272 0.721360 0.692560i \(-0.243517\pi\)
0.721360 + 0.692560i \(0.243517\pi\)
\(660\) 0 0
\(661\) 11235.2 0.661115 0.330557 0.943786i \(-0.392763\pi\)
0.330557 + 0.943786i \(0.392763\pi\)
\(662\) 11560.1 0.678697
\(663\) 0 0
\(664\) 24861.1 1.45301
\(665\) 448.020 0.0261255
\(666\) 0 0
\(667\) 3428.43 0.199024
\(668\) −9334.41 −0.540658
\(669\) 0 0
\(670\) −1999.12 −0.115272
\(671\) −6218.60 −0.357774
\(672\) 0 0
\(673\) 19425.6 1.11263 0.556315 0.830971i \(-0.312215\pi\)
0.556315 + 0.830971i \(0.312215\pi\)
\(674\) 3225.78 0.184351
\(675\) 0 0
\(676\) 3970.98 0.225932
\(677\) −24093.6 −1.36779 −0.683894 0.729582i \(-0.739715\pi\)
−0.683894 + 0.729582i \(0.739715\pi\)
\(678\) 0 0
\(679\) 485.461 0.0274378
\(680\) −8954.01 −0.504957
\(681\) 0 0
\(682\) −13928.0 −0.782011
\(683\) 30150.8 1.68915 0.844574 0.535438i \(-0.179854\pi\)
0.844574 + 0.535438i \(0.179854\pi\)
\(684\) 0 0
\(685\) −9816.55 −0.547549
\(686\) 2032.60 0.113127
\(687\) 0 0
\(688\) 737.432 0.0408639
\(689\) 220.330 0.0121828
\(690\) 0 0
\(691\) −6867.54 −0.378080 −0.189040 0.981969i \(-0.560538\pi\)
−0.189040 + 0.981969i \(0.560538\pi\)
\(692\) 9923.21 0.545121
\(693\) 0 0
\(694\) 23671.1 1.29473
\(695\) 1053.61 0.0575045
\(696\) 0 0
\(697\) −36179.0 −1.96611
\(698\) −7274.54 −0.394478
\(699\) 0 0
\(700\) 122.750 0.00662790
\(701\) −35818.0 −1.92985 −0.964926 0.262521i \(-0.915446\pi\)
−0.964926 + 0.262521i \(0.915446\pi\)
\(702\) 0 0
\(703\) −18444.6 −0.989546
\(704\) 12181.1 0.652119
\(705\) 0 0
\(706\) −21423.0 −1.14202
\(707\) 1422.54 0.0756720
\(708\) 0 0
\(709\) −11409.3 −0.604354 −0.302177 0.953252i \(-0.597713\pi\)
−0.302177 + 0.953252i \(0.597713\pi\)
\(710\) −7117.86 −0.376237
\(711\) 0 0
\(712\) −24608.3 −1.29527
\(713\) −31671.0 −1.66352
\(714\) 0 0
\(715\) −3998.25 −0.209127
\(716\) −7221.01 −0.376902
\(717\) 0 0
\(718\) 17475.1 0.908308
\(719\) −18782.0 −0.974200 −0.487100 0.873346i \(-0.661945\pi\)
−0.487100 + 0.873346i \(0.661945\pi\)
\(720\) 0 0
\(721\) −2440.07 −0.126037
\(722\) −5874.76 −0.302820
\(723\) 0 0
\(724\) −15186.6 −0.779567
\(725\) 725.000 0.0371391
\(726\) 0 0
\(727\) 1658.12 0.0845889 0.0422945 0.999105i \(-0.486533\pi\)
0.0422945 + 0.999105i \(0.486533\pi\)
\(728\) −1114.84 −0.0567565
\(729\) 0 0
\(730\) 3083.07 0.156314
\(731\) −2284.94 −0.115611
\(732\) 0 0
\(733\) 21347.6 1.07570 0.537852 0.843039i \(-0.319236\pi\)
0.537852 + 0.843039i \(0.319236\pi\)
\(734\) 3205.05 0.161172
\(735\) 0 0
\(736\) 17130.7 0.857942
\(737\) −4623.20 −0.231069
\(738\) 0 0
\(739\) 27818.5 1.38474 0.692369 0.721543i \(-0.256567\pi\)
0.692369 + 0.721543i \(0.256567\pi\)
\(740\) −5053.52 −0.251042
\(741\) 0 0
\(742\) 20.0746 0.000993210 0
\(743\) −29021.0 −1.43295 −0.716473 0.697615i \(-0.754245\pi\)
−0.716473 + 0.697615i \(0.754245\pi\)
\(744\) 0 0
\(745\) 6921.12 0.340363
\(746\) 580.441 0.0284872
\(747\) 0 0
\(748\) −6306.92 −0.308294
\(749\) 2484.79 0.121218
\(750\) 0 0
\(751\) −27505.6 −1.33648 −0.668239 0.743947i \(-0.732952\pi\)
−0.668239 + 0.743947i \(0.732952\pi\)
\(752\) 5532.41 0.268280
\(753\) 0 0
\(754\) −2005.50 −0.0968647
\(755\) −6145.90 −0.296255
\(756\) 0 0
\(757\) 31401.4 1.50767 0.753833 0.657066i \(-0.228203\pi\)
0.753833 + 0.657066i \(0.228203\pi\)
\(758\) 29118.8 1.39530
\(759\) 0 0
\(760\) 7798.55 0.372215
\(761\) 31623.5 1.50638 0.753188 0.657805i \(-0.228515\pi\)
0.753188 + 0.657805i \(0.228515\pi\)
\(762\) 0 0
\(763\) 1262.00 0.0598786
\(764\) 6256.23 0.296260
\(765\) 0 0
\(766\) 17637.0 0.831921
\(767\) 5.54942 0.000261249 0
\(768\) 0 0
\(769\) −24813.8 −1.16360 −0.581801 0.813331i \(-0.697652\pi\)
−0.581801 + 0.813331i \(0.697652\pi\)
\(770\) −364.286 −0.0170493
\(771\) 0 0
\(772\) −3851.62 −0.179563
\(773\) 29837.7 1.38834 0.694170 0.719811i \(-0.255772\pi\)
0.694170 + 0.719811i \(0.255772\pi\)
\(774\) 0 0
\(775\) −6697.39 −0.310422
\(776\) 8450.27 0.390911
\(777\) 0 0
\(778\) −25836.5 −1.19060
\(779\) 31510.3 1.44926
\(780\) 0 0
\(781\) −16460.9 −0.754185
\(782\) 18403.7 0.841578
\(783\) 0 0
\(784\) 8080.35 0.368092
\(785\) 5421.97 0.246520
\(786\) 0 0
\(787\) 28836.1 1.30609 0.653046 0.757318i \(-0.273491\pi\)
0.653046 + 0.757318i \(0.273491\pi\)
\(788\) 11176.2 0.505250
\(789\) 0 0
\(790\) −3717.04 −0.167400
\(791\) 1344.78 0.0604487
\(792\) 0 0
\(793\) 8271.67 0.370411
\(794\) 21825.6 0.975517
\(795\) 0 0
\(796\) 3865.49 0.172121
\(797\) −25155.7 −1.11802 −0.559010 0.829161i \(-0.688819\pi\)
−0.559010 + 0.829161i \(0.688819\pi\)
\(798\) 0 0
\(799\) −17142.3 −0.759010
\(800\) 3622.58 0.160097
\(801\) 0 0
\(802\) 25821.1 1.13688
\(803\) 7129.98 0.313340
\(804\) 0 0
\(805\) −828.353 −0.0362678
\(806\) 18526.4 0.809631
\(807\) 0 0
\(808\) 24761.7 1.07811
\(809\) 11402.5 0.495537 0.247769 0.968819i \(-0.420303\pi\)
0.247769 + 0.968819i \(0.420303\pi\)
\(810\) 0 0
\(811\) −36317.0 −1.57246 −0.786229 0.617935i \(-0.787969\pi\)
−0.786229 + 0.617935i \(0.787969\pi\)
\(812\) 142.391 0.00615385
\(813\) 0 0
\(814\) 14997.3 0.645769
\(815\) −18012.9 −0.774189
\(816\) 0 0
\(817\) 1990.09 0.0852195
\(818\) 21882.8 0.935348
\(819\) 0 0
\(820\) 8633.33 0.367669
\(821\) −32017.0 −1.36103 −0.680513 0.732736i \(-0.738243\pi\)
−0.680513 + 0.732736i \(0.738243\pi\)
\(822\) 0 0
\(823\) −31912.4 −1.35163 −0.675817 0.737069i \(-0.736209\pi\)
−0.675817 + 0.737069i \(0.736209\pi\)
\(824\) −42473.6 −1.79568
\(825\) 0 0
\(826\) 0.505615 2.12986e−5 0
\(827\) −17534.8 −0.737295 −0.368648 0.929569i \(-0.620179\pi\)
−0.368648 + 0.929569i \(0.620179\pi\)
\(828\) 0 0
\(829\) 39507.3 1.65518 0.827592 0.561331i \(-0.189710\pi\)
0.827592 + 0.561331i \(0.189710\pi\)
\(830\) −10805.6 −0.451890
\(831\) 0 0
\(832\) −16202.7 −0.675152
\(833\) −25037.1 −1.04140
\(834\) 0 0
\(835\) 13320.6 0.552068
\(836\) 5493.05 0.227250
\(837\) 0 0
\(838\) 3002.87 0.123786
\(839\) −12398.1 −0.510168 −0.255084 0.966919i \(-0.582103\pi\)
−0.255084 + 0.966919i \(0.582103\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 3753.31 0.153620
\(843\) 0 0
\(844\) 16614.5 0.677601
\(845\) −5666.73 −0.230700
\(846\) 0 0
\(847\) 1022.75 0.0414900
\(848\) 160.068 0.00648202
\(849\) 0 0
\(850\) 3891.77 0.157043
\(851\) 34102.5 1.37370
\(852\) 0 0
\(853\) 9946.94 0.399269 0.199635 0.979870i \(-0.436024\pi\)
0.199635 + 0.979870i \(0.436024\pi\)
\(854\) 753.644 0.0301981
\(855\) 0 0
\(856\) 43252.0 1.72701
\(857\) 1305.42 0.0520328 0.0260164 0.999662i \(-0.491718\pi\)
0.0260164 + 0.999662i \(0.491718\pi\)
\(858\) 0 0
\(859\) 38980.3 1.54830 0.774151 0.633001i \(-0.218177\pi\)
0.774151 + 0.633001i \(0.218177\pi\)
\(860\) 545.252 0.0216197
\(861\) 0 0
\(862\) −18397.6 −0.726942
\(863\) −31555.2 −1.24467 −0.622336 0.782750i \(-0.713816\pi\)
−0.622336 + 0.782750i \(0.713816\pi\)
\(864\) 0 0
\(865\) −14160.8 −0.556625
\(866\) −21979.5 −0.862465
\(867\) 0 0
\(868\) −1315.37 −0.0514362
\(869\) −8596.11 −0.335562
\(870\) 0 0
\(871\) 6149.55 0.239230
\(872\) 21967.2 0.853100
\(873\) 0 0
\(874\) −16028.8 −0.620346
\(875\) −175.169 −0.00676778
\(876\) 0 0
\(877\) −35538.1 −1.36834 −0.684171 0.729322i \(-0.739836\pi\)
−0.684171 + 0.729322i \(0.739836\pi\)
\(878\) −13117.2 −0.504195
\(879\) 0 0
\(880\) −2904.69 −0.111269
\(881\) 2301.79 0.0880242 0.0440121 0.999031i \(-0.485986\pi\)
0.0440121 + 0.999031i \(0.485986\pi\)
\(882\) 0 0
\(883\) −33464.5 −1.27539 −0.637695 0.770289i \(-0.720112\pi\)
−0.637695 + 0.770289i \(0.720112\pi\)
\(884\) 8389.15 0.319183
\(885\) 0 0
\(886\) −15564.2 −0.590169
\(887\) −17351.4 −0.656825 −0.328412 0.944534i \(-0.606514\pi\)
−0.328412 + 0.944534i \(0.606514\pi\)
\(888\) 0 0
\(889\) −126.510 −0.00477278
\(890\) 10695.8 0.402834
\(891\) 0 0
\(892\) 10508.8 0.394462
\(893\) 14930.2 0.559484
\(894\) 0 0
\(895\) 10304.7 0.384856
\(896\) 148.238 0.00552712
\(897\) 0 0
\(898\) 10599.3 0.393879
\(899\) −7768.97 −0.288220
\(900\) 0 0
\(901\) −495.972 −0.0183388
\(902\) −25621.1 −0.945775
\(903\) 0 0
\(904\) 23408.2 0.861222
\(905\) 21671.9 0.796019
\(906\) 0 0
\(907\) 13518.7 0.494908 0.247454 0.968900i \(-0.420406\pi\)
0.247454 + 0.968900i \(0.420406\pi\)
\(908\) −6810.12 −0.248901
\(909\) 0 0
\(910\) 484.555 0.0176515
\(911\) −32678.5 −1.18846 −0.594230 0.804295i \(-0.702543\pi\)
−0.594230 + 0.804295i \(0.702543\pi\)
\(912\) 0 0
\(913\) −24989.4 −0.905835
\(914\) −5213.87 −0.188687
\(915\) 0 0
\(916\) 13263.7 0.478434
\(917\) 63.3125 0.00228000
\(918\) 0 0
\(919\) 30621.0 1.09912 0.549562 0.835453i \(-0.314795\pi\)
0.549562 + 0.835453i \(0.314795\pi\)
\(920\) −14418.9 −0.516714
\(921\) 0 0
\(922\) −18900.6 −0.675116
\(923\) 21895.5 0.780822
\(924\) 0 0
\(925\) 7211.57 0.256340
\(926\) −9607.35 −0.340947
\(927\) 0 0
\(928\) 4202.19 0.148646
\(929\) −45355.7 −1.60180 −0.800900 0.598798i \(-0.795645\pi\)
−0.800900 + 0.598798i \(0.795645\pi\)
\(930\) 0 0
\(931\) 21806.2 0.767636
\(932\) −9810.12 −0.344787
\(933\) 0 0
\(934\) −16753.1 −0.586916
\(935\) 9000.21 0.314800
\(936\) 0 0
\(937\) 16518.2 0.575907 0.287953 0.957644i \(-0.407025\pi\)
0.287953 + 0.957644i \(0.407025\pi\)
\(938\) 560.294 0.0195035
\(939\) 0 0
\(940\) 4090.63 0.141938
\(941\) 22774.4 0.788975 0.394487 0.918901i \(-0.370922\pi\)
0.394487 + 0.918901i \(0.370922\pi\)
\(942\) 0 0
\(943\) −58260.0 −2.01188
\(944\) 4.03160 0.000139001 0
\(945\) 0 0
\(946\) −1618.14 −0.0556135
\(947\) −42834.2 −1.46983 −0.734913 0.678162i \(-0.762777\pi\)
−0.734913 + 0.678162i \(0.762777\pi\)
\(948\) 0 0
\(949\) −9483.94 −0.324407
\(950\) −3389.57 −0.115760
\(951\) 0 0
\(952\) 2509.55 0.0854359
\(953\) 11113.4 0.377754 0.188877 0.982001i \(-0.439515\pi\)
0.188877 + 0.982001i \(0.439515\pi\)
\(954\) 0 0
\(955\) −8927.87 −0.302512
\(956\) 4485.40 0.151745
\(957\) 0 0
\(958\) 43122.0 1.45429
\(959\) 2751.29 0.0926422
\(960\) 0 0
\(961\) 41977.0 1.40905
\(962\) −19948.7 −0.668577
\(963\) 0 0
\(964\) −17401.4 −0.581390
\(965\) 5496.40 0.183353
\(966\) 0 0
\(967\) −27959.0 −0.929784 −0.464892 0.885367i \(-0.653907\pi\)
−0.464892 + 0.885367i \(0.653907\pi\)
\(968\) 17802.7 0.591115
\(969\) 0 0
\(970\) −3672.83 −0.121575
\(971\) 37840.3 1.25062 0.625311 0.780375i \(-0.284972\pi\)
0.625311 + 0.780375i \(0.284972\pi\)
\(972\) 0 0
\(973\) −295.296 −0.00972945
\(974\) −25121.3 −0.826426
\(975\) 0 0
\(976\) 6009.29 0.197083
\(977\) 40258.4 1.31830 0.659150 0.752011i \(-0.270916\pi\)
0.659150 + 0.752011i \(0.270916\pi\)
\(978\) 0 0
\(979\) 24735.2 0.807500
\(980\) 5974.55 0.194745
\(981\) 0 0
\(982\) −25493.7 −0.828447
\(983\) −13109.2 −0.425348 −0.212674 0.977123i \(-0.568217\pi\)
−0.212674 + 0.977123i \(0.568217\pi\)
\(984\) 0 0
\(985\) −15948.9 −0.515913
\(986\) 4514.46 0.145811
\(987\) 0 0
\(988\) −7306.58 −0.235277
\(989\) −3679.51 −0.118303
\(990\) 0 0
\(991\) −14404.6 −0.461732 −0.230866 0.972986i \(-0.574156\pi\)
−0.230866 + 0.972986i \(0.574156\pi\)
\(992\) −38818.9 −1.24244
\(993\) 0 0
\(994\) 1994.93 0.0636573
\(995\) −5516.19 −0.175754
\(996\) 0 0
\(997\) 30046.1 0.954432 0.477216 0.878786i \(-0.341646\pi\)
0.477216 + 0.878786i \(0.341646\pi\)
\(998\) 622.853 0.0197556
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.g.1.4 5
3.2 odd 2 435.4.a.f.1.2 5
15.14 odd 2 2175.4.a.j.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.f.1.2 5 3.2 odd 2
1305.4.a.g.1.4 5 1.1 even 1 trivial
2175.4.a.j.1.4 5 15.14 odd 2