Properties

Label 435.4.a.f.1.2
Level $435$
Weight $4$
Character 435.1
Self dual yes
Analytic conductor $25.666$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [435,4,Mod(1,435)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(435, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("435.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 435 = 3 \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 435.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.6658308525\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 23x^{3} + 38x^{2} + 90x - 116 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.12043\) of defining polynomial
Character \(\chi\) \(=\) 435.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12043 q^{2} -3.00000 q^{3} -3.50376 q^{4} -5.00000 q^{5} +6.36130 q^{6} -1.40136 q^{7} +24.3930 q^{8} +9.00000 q^{9} +10.6022 q^{10} -24.5188 q^{11} +10.5113 q^{12} -32.6137 q^{13} +2.97148 q^{14} +15.0000 q^{15} -23.6935 q^{16} -73.4147 q^{17} -19.0839 q^{18} -63.9410 q^{19} +17.5188 q^{20} +4.20407 q^{21} +51.9905 q^{22} -118.222 q^{23} -73.1789 q^{24} +25.0000 q^{25} +69.1552 q^{26} -27.0000 q^{27} +4.91002 q^{28} -29.0000 q^{29} -31.8065 q^{30} -267.895 q^{31} -144.903 q^{32} +73.5565 q^{33} +155.671 q^{34} +7.00678 q^{35} -31.5339 q^{36} +288.463 q^{37} +135.583 q^{38} +97.8411 q^{39} -121.965 q^{40} +492.803 q^{41} -8.91444 q^{42} -31.1238 q^{43} +85.9082 q^{44} -45.0000 q^{45} +250.681 q^{46} +233.499 q^{47} +71.0806 q^{48} -341.036 q^{49} -53.0108 q^{50} +220.244 q^{51} +114.271 q^{52} +6.75576 q^{53} +57.2517 q^{54} +122.594 q^{55} -34.1832 q^{56} +191.823 q^{57} +61.4926 q^{58} +0.170156 q^{59} -52.5565 q^{60} -253.626 q^{61} +568.054 q^{62} -12.6122 q^{63} +496.806 q^{64} +163.069 q^{65} -155.972 q^{66} -188.557 q^{67} +257.228 q^{68} +354.665 q^{69} -14.8574 q^{70} +671.359 q^{71} +219.537 q^{72} +290.796 q^{73} -611.666 q^{74} -75.0000 q^{75} +224.034 q^{76} +34.3596 q^{77} -207.465 q^{78} -350.592 q^{79} +118.468 q^{80} +81.0000 q^{81} -1044.96 q^{82} +1019.19 q^{83} -14.7301 q^{84} +367.073 q^{85} +65.9959 q^{86} +87.0000 q^{87} -598.087 q^{88} -1008.83 q^{89} +95.4195 q^{90} +45.7034 q^{91} +414.221 q^{92} +803.686 q^{93} -495.119 q^{94} +319.705 q^{95} +434.709 q^{96} -346.423 q^{97} +723.144 q^{98} -220.669 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} - 15 q^{3} + 10 q^{4} - 25 q^{5} - 6 q^{6} - 29 q^{7} + 45 q^{9} - 10 q^{10} + 15 q^{11} - 30 q^{12} - 31 q^{13} - 114 q^{14} + 75 q^{15} - 102 q^{16} + 119 q^{17} + 18 q^{18} + 46 q^{19}+ \cdots + 135 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12043 −0.749686 −0.374843 0.927088i \(-0.622303\pi\)
−0.374843 + 0.927088i \(0.622303\pi\)
\(3\) −3.00000 −0.577350
\(4\) −3.50376 −0.437971
\(5\) −5.00000 −0.447214
\(6\) 6.36130 0.432832
\(7\) −1.40136 −0.0756661 −0.0378330 0.999284i \(-0.512046\pi\)
−0.0378330 + 0.999284i \(0.512046\pi\)
\(8\) 24.3930 1.07803
\(9\) 9.00000 0.333333
\(10\) 10.6022 0.335270
\(11\) −24.5188 −0.672064 −0.336032 0.941851i \(-0.609085\pi\)
−0.336032 + 0.941851i \(0.609085\pi\)
\(12\) 10.5113 0.252862
\(13\) −32.6137 −0.695801 −0.347901 0.937531i \(-0.613105\pi\)
−0.347901 + 0.937531i \(0.613105\pi\)
\(14\) 2.97148 0.0567258
\(15\) 15.0000 0.258199
\(16\) −23.6935 −0.370211
\(17\) −73.4147 −1.04739 −0.523696 0.851905i \(-0.675447\pi\)
−0.523696 + 0.851905i \(0.675447\pi\)
\(18\) −19.0839 −0.249895
\(19\) −63.9410 −0.772056 −0.386028 0.922487i \(-0.626153\pi\)
−0.386028 + 0.922487i \(0.626153\pi\)
\(20\) 17.5188 0.195866
\(21\) 4.20407 0.0436858
\(22\) 51.9905 0.503837
\(23\) −118.222 −1.07178 −0.535890 0.844288i \(-0.680024\pi\)
−0.535890 + 0.844288i \(0.680024\pi\)
\(24\) −73.1789 −0.622399
\(25\) 25.0000 0.200000
\(26\) 69.1552 0.521632
\(27\) −27.0000 −0.192450
\(28\) 4.91002 0.0331395
\(29\) −29.0000 −0.185695
\(30\) −31.8065 −0.193568
\(31\) −267.895 −1.55211 −0.776055 0.630665i \(-0.782782\pi\)
−0.776055 + 0.630665i \(0.782782\pi\)
\(32\) −144.903 −0.800484
\(33\) 73.5565 0.388016
\(34\) 155.671 0.785216
\(35\) 7.00678 0.0338389
\(36\) −31.5339 −0.145990
\(37\) 288.463 1.28170 0.640851 0.767665i \(-0.278582\pi\)
0.640851 + 0.767665i \(0.278582\pi\)
\(38\) 135.583 0.578800
\(39\) 97.8411 0.401721
\(40\) −121.965 −0.482108
\(41\) 492.803 1.87714 0.938572 0.345083i \(-0.112149\pi\)
0.938572 + 0.345083i \(0.112149\pi\)
\(42\) −8.91444 −0.0327507
\(43\) −31.1238 −0.110380 −0.0551899 0.998476i \(-0.517576\pi\)
−0.0551899 + 0.998476i \(0.517576\pi\)
\(44\) 85.9082 0.294344
\(45\) −45.0000 −0.149071
\(46\) 250.681 0.803498
\(47\) 233.499 0.724667 0.362333 0.932049i \(-0.381980\pi\)
0.362333 + 0.932049i \(0.381980\pi\)
\(48\) 71.0806 0.213742
\(49\) −341.036 −0.994275
\(50\) −53.0108 −0.149937
\(51\) 220.244 0.604712
\(52\) 114.271 0.304740
\(53\) 6.75576 0.0175090 0.00875448 0.999962i \(-0.497213\pi\)
0.00875448 + 0.999962i \(0.497213\pi\)
\(54\) 57.2517 0.144277
\(55\) 122.594 0.300556
\(56\) −34.1832 −0.0815700
\(57\) 191.823 0.445747
\(58\) 61.4926 0.139213
\(59\) 0.170156 0.000375465 0 0.000187732 1.00000i \(-0.499940\pi\)
0.000187732 1.00000i \(0.499940\pi\)
\(60\) −52.5565 −0.113083
\(61\) −253.626 −0.532352 −0.266176 0.963925i \(-0.585760\pi\)
−0.266176 + 0.963925i \(0.585760\pi\)
\(62\) 568.054 1.16360
\(63\) −12.6122 −0.0252220
\(64\) 496.806 0.970323
\(65\) 163.069 0.311172
\(66\) −155.972 −0.290890
\(67\) −188.557 −0.343820 −0.171910 0.985113i \(-0.554994\pi\)
−0.171910 + 0.985113i \(0.554994\pi\)
\(68\) 257.228 0.458727
\(69\) 354.665 0.618792
\(70\) −14.8574 −0.0253686
\(71\) 671.359 1.12219 0.561096 0.827751i \(-0.310380\pi\)
0.561096 + 0.827751i \(0.310380\pi\)
\(72\) 219.537 0.359342
\(73\) 290.796 0.466235 0.233117 0.972449i \(-0.425107\pi\)
0.233117 + 0.972449i \(0.425107\pi\)
\(74\) −611.666 −0.960874
\(75\) −75.0000 −0.115470
\(76\) 224.034 0.338138
\(77\) 34.3596 0.0508524
\(78\) −207.465 −0.301165
\(79\) −350.592 −0.499300 −0.249650 0.968336i \(-0.580316\pi\)
−0.249650 + 0.968336i \(0.580316\pi\)
\(80\) 118.468 0.165564
\(81\) 81.0000 0.111111
\(82\) −1044.96 −1.40727
\(83\) 1019.19 1.34784 0.673920 0.738804i \(-0.264609\pi\)
0.673920 + 0.738804i \(0.264609\pi\)
\(84\) −14.7301 −0.0191331
\(85\) 367.073 0.468408
\(86\) 65.9959 0.0827503
\(87\) 87.0000 0.107211
\(88\) −598.087 −0.724503
\(89\) −1008.83 −1.20152 −0.600761 0.799429i \(-0.705136\pi\)
−0.600761 + 0.799429i \(0.705136\pi\)
\(90\) 95.4195 0.111757
\(91\) 45.7034 0.0526485
\(92\) 414.221 0.469408
\(93\) 803.686 0.896112
\(94\) −495.119 −0.543273
\(95\) 319.705 0.345274
\(96\) 434.709 0.462160
\(97\) −346.423 −0.362617 −0.181309 0.983426i \(-0.558033\pi\)
−0.181309 + 0.983426i \(0.558033\pi\)
\(98\) 723.144 0.745394
\(99\) −220.669 −0.224021
\(100\) −87.5941 −0.0875941
\(101\) 1015.12 1.00008 0.500039 0.866003i \(-0.333319\pi\)
0.500039 + 0.866003i \(0.333319\pi\)
\(102\) −467.013 −0.453345
\(103\) 1741.22 1.66571 0.832853 0.553494i \(-0.186706\pi\)
0.832853 + 0.553494i \(0.186706\pi\)
\(104\) −795.545 −0.750092
\(105\) −21.0203 −0.0195369
\(106\) −14.3251 −0.0131262
\(107\) 1773.14 1.60201 0.801007 0.598655i \(-0.204298\pi\)
0.801007 + 0.598655i \(0.204298\pi\)
\(108\) 94.6016 0.0842875
\(109\) −900.555 −0.791354 −0.395677 0.918390i \(-0.629490\pi\)
−0.395677 + 0.918390i \(0.629490\pi\)
\(110\) −259.953 −0.225323
\(111\) −865.388 −0.739991
\(112\) 33.2030 0.0280124
\(113\) 959.629 0.798887 0.399444 0.916758i \(-0.369203\pi\)
0.399444 + 0.916758i \(0.369203\pi\)
\(114\) −406.748 −0.334170
\(115\) 591.108 0.479314
\(116\) 101.609 0.0813291
\(117\) −293.523 −0.231934
\(118\) −0.360804 −0.000281481 0
\(119\) 102.880 0.0792521
\(120\) 365.894 0.278345
\(121\) −729.827 −0.548330
\(122\) 537.796 0.399097
\(123\) −1478.41 −1.08377
\(124\) 938.642 0.679779
\(125\) −125.000 −0.0894427
\(126\) 26.7433 0.0189086
\(127\) 90.2767 0.0630769 0.0315384 0.999503i \(-0.489959\pi\)
0.0315384 + 0.999503i \(0.489959\pi\)
\(128\) 105.782 0.0730462
\(129\) 93.3714 0.0637278
\(130\) −345.776 −0.233281
\(131\) 45.1795 0.0301324 0.0150662 0.999886i \(-0.495204\pi\)
0.0150662 + 0.999886i \(0.495204\pi\)
\(132\) −257.724 −0.169940
\(133\) 89.6041 0.0584185
\(134\) 399.823 0.257757
\(135\) 135.000 0.0860663
\(136\) −1790.80 −1.12912
\(137\) 1963.31 1.22436 0.612178 0.790720i \(-0.290294\pi\)
0.612178 + 0.790720i \(0.290294\pi\)
\(138\) −752.043 −0.463900
\(139\) 210.722 0.128584 0.0642920 0.997931i \(-0.479521\pi\)
0.0642920 + 0.997931i \(0.479521\pi\)
\(140\) −24.5501 −0.0148204
\(141\) −700.497 −0.418386
\(142\) −1423.57 −0.841292
\(143\) 799.649 0.467623
\(144\) −213.242 −0.123404
\(145\) 145.000 0.0830455
\(146\) −616.614 −0.349530
\(147\) 1023.11 0.574045
\(148\) −1010.70 −0.561347
\(149\) −1384.22 −0.761074 −0.380537 0.924766i \(-0.624261\pi\)
−0.380537 + 0.924766i \(0.624261\pi\)
\(150\) 159.032 0.0865663
\(151\) −1229.18 −0.662446 −0.331223 0.943553i \(-0.607461\pi\)
−0.331223 + 0.943553i \(0.607461\pi\)
\(152\) −1559.71 −0.832298
\(153\) −660.732 −0.349131
\(154\) −72.8572 −0.0381234
\(155\) 1339.48 0.694125
\(156\) −342.812 −0.175942
\(157\) 1084.39 0.551236 0.275618 0.961267i \(-0.411118\pi\)
0.275618 + 0.961267i \(0.411118\pi\)
\(158\) 743.408 0.374319
\(159\) −20.2673 −0.0101088
\(160\) 724.516 0.357987
\(161\) 165.671 0.0810973
\(162\) −171.755 −0.0832985
\(163\) −3602.58 −1.73114 −0.865569 0.500790i \(-0.833043\pi\)
−0.865569 + 0.500790i \(0.833043\pi\)
\(164\) −1726.67 −0.822134
\(165\) −367.782 −0.173526
\(166\) −2161.13 −1.01046
\(167\) −2664.11 −1.23446 −0.617231 0.786782i \(-0.711745\pi\)
−0.617231 + 0.786782i \(0.711745\pi\)
\(168\) 102.550 0.0470945
\(169\) −1133.35 −0.515861
\(170\) −778.355 −0.351159
\(171\) −575.469 −0.257352
\(172\) 109.050 0.0483431
\(173\) 2832.16 1.24465 0.622326 0.782758i \(-0.286188\pi\)
0.622326 + 0.782758i \(0.286188\pi\)
\(174\) −184.478 −0.0803748
\(175\) −35.0339 −0.0151332
\(176\) 580.937 0.248806
\(177\) −0.510468 −0.000216775 0
\(178\) 2139.15 0.900765
\(179\) −2060.93 −0.860565 −0.430283 0.902694i \(-0.641586\pi\)
−0.430283 + 0.902694i \(0.641586\pi\)
\(180\) 157.669 0.0652888
\(181\) 4334.37 1.77995 0.889976 0.456007i \(-0.150721\pi\)
0.889976 + 0.456007i \(0.150721\pi\)
\(182\) −96.9110 −0.0394699
\(183\) 760.877 0.307353
\(184\) −2883.78 −1.15541
\(185\) −1442.31 −0.573194
\(186\) −1704.16 −0.671803
\(187\) 1800.04 0.703915
\(188\) −818.125 −0.317383
\(189\) 37.8366 0.0145619
\(190\) −677.913 −0.258847
\(191\) 1785.57 0.676438 0.338219 0.941067i \(-0.390176\pi\)
0.338219 + 0.941067i \(0.390176\pi\)
\(192\) −1490.42 −0.560217
\(193\) 1099.28 0.409990 0.204995 0.978763i \(-0.434282\pi\)
0.204995 + 0.978763i \(0.434282\pi\)
\(194\) 734.566 0.271849
\(195\) −489.206 −0.179655
\(196\) 1194.91 0.435463
\(197\) 3189.78 1.15362 0.576808 0.816880i \(-0.304298\pi\)
0.576808 + 0.816880i \(0.304298\pi\)
\(198\) 467.915 0.167946
\(199\) −1103.24 −0.392997 −0.196499 0.980504i \(-0.562957\pi\)
−0.196499 + 0.980504i \(0.562957\pi\)
\(200\) 609.824 0.215605
\(201\) 565.672 0.198505
\(202\) −2152.49 −0.749745
\(203\) 40.6393 0.0140508
\(204\) −771.683 −0.264846
\(205\) −2464.02 −0.839484
\(206\) −3692.15 −1.24876
\(207\) −1063.99 −0.357260
\(208\) 772.734 0.257593
\(209\) 1567.76 0.518871
\(210\) 44.5722 0.0146465
\(211\) −4741.90 −1.54714 −0.773569 0.633712i \(-0.781530\pi\)
−0.773569 + 0.633712i \(0.781530\pi\)
\(212\) −23.6706 −0.00766841
\(213\) −2014.08 −0.647898
\(214\) −3759.82 −1.20101
\(215\) 155.619 0.0493634
\(216\) −658.610 −0.207466
\(217\) 375.417 0.117442
\(218\) 1909.57 0.593267
\(219\) −872.389 −0.269181
\(220\) −429.541 −0.131635
\(221\) 2394.32 0.728777
\(222\) 1835.00 0.554761
\(223\) −2999.28 −0.900658 −0.450329 0.892863i \(-0.648693\pi\)
−0.450329 + 0.892863i \(0.648693\pi\)
\(224\) 203.061 0.0605695
\(225\) 225.000 0.0666667
\(226\) −2034.83 −0.598915
\(227\) −1943.66 −0.568305 −0.284152 0.958779i \(-0.591712\pi\)
−0.284152 + 0.958779i \(0.591712\pi\)
\(228\) −672.103 −0.195224
\(229\) −3785.56 −1.09239 −0.546194 0.837658i \(-0.683924\pi\)
−0.546194 + 0.837658i \(0.683924\pi\)
\(230\) −1253.41 −0.359335
\(231\) −103.079 −0.0293597
\(232\) −707.396 −0.200185
\(233\) −2799.88 −0.787237 −0.393619 0.919274i \(-0.628777\pi\)
−0.393619 + 0.919274i \(0.628777\pi\)
\(234\) 622.396 0.173877
\(235\) −1167.49 −0.324081
\(236\) −0.596187 −0.000164443 0
\(237\) 1051.78 0.288271
\(238\) −218.150 −0.0594142
\(239\) 1280.17 0.346473 0.173236 0.984880i \(-0.444578\pi\)
0.173236 + 0.984880i \(0.444578\pi\)
\(240\) −355.403 −0.0955882
\(241\) 4966.48 1.32746 0.663732 0.747970i \(-0.268971\pi\)
0.663732 + 0.747970i \(0.268971\pi\)
\(242\) 1547.55 0.411076
\(243\) −243.000 −0.0641500
\(244\) 888.645 0.233154
\(245\) 1705.18 0.444653
\(246\) 3134.87 0.812487
\(247\) 2085.35 0.537198
\(248\) −6534.76 −1.67322
\(249\) −3057.57 −0.778176
\(250\) 265.054 0.0670540
\(251\) 6716.64 1.68904 0.844522 0.535520i \(-0.179884\pi\)
0.844522 + 0.535520i \(0.179884\pi\)
\(252\) 44.1902 0.0110465
\(253\) 2898.66 0.720304
\(254\) −191.426 −0.0472879
\(255\) −1101.22 −0.270436
\(256\) −4198.75 −1.02509
\(257\) 6324.65 1.53510 0.767550 0.640989i \(-0.221475\pi\)
0.767550 + 0.640989i \(0.221475\pi\)
\(258\) −197.988 −0.0477759
\(259\) −404.239 −0.0969813
\(260\) −571.354 −0.136284
\(261\) −261.000 −0.0618984
\(262\) −95.8000 −0.0225899
\(263\) −615.504 −0.144310 −0.0721551 0.997393i \(-0.522988\pi\)
−0.0721551 + 0.997393i \(0.522988\pi\)
\(264\) 1794.26 0.418292
\(265\) −33.7788 −0.00783025
\(266\) −189.999 −0.0437955
\(267\) 3026.48 0.693699
\(268\) 660.660 0.150583
\(269\) −5700.55 −1.29208 −0.646038 0.763305i \(-0.723575\pi\)
−0.646038 + 0.763305i \(0.723575\pi\)
\(270\) −286.258 −0.0645227
\(271\) 4219.97 0.945923 0.472961 0.881083i \(-0.343185\pi\)
0.472961 + 0.881083i \(0.343185\pi\)
\(272\) 1739.45 0.387757
\(273\) −137.110 −0.0303966
\(274\) −4163.07 −0.917883
\(275\) −612.971 −0.134413
\(276\) −1242.66 −0.271013
\(277\) 1981.60 0.429829 0.214915 0.976633i \(-0.431053\pi\)
0.214915 + 0.976633i \(0.431053\pi\)
\(278\) −446.821 −0.0963977
\(279\) −2411.06 −0.517370
\(280\) 170.916 0.0364792
\(281\) −1504.70 −0.319442 −0.159721 0.987162i \(-0.551059\pi\)
−0.159721 + 0.987162i \(0.551059\pi\)
\(282\) 1485.36 0.313659
\(283\) 5801.55 1.21861 0.609305 0.792936i \(-0.291449\pi\)
0.609305 + 0.792936i \(0.291449\pi\)
\(284\) −2352.28 −0.491487
\(285\) −959.115 −0.199344
\(286\) −1695.60 −0.350570
\(287\) −690.592 −0.142036
\(288\) −1304.13 −0.266828
\(289\) 476.715 0.0970313
\(290\) −307.463 −0.0622581
\(291\) 1039.27 0.209357
\(292\) −1018.88 −0.204197
\(293\) −726.374 −0.144830 −0.0724151 0.997375i \(-0.523071\pi\)
−0.0724151 + 0.997375i \(0.523071\pi\)
\(294\) −2169.43 −0.430353
\(295\) −0.850780 −0.000167913 0
\(296\) 7036.46 1.38171
\(297\) 662.008 0.129339
\(298\) 2935.15 0.570567
\(299\) 3855.65 0.745745
\(300\) 262.782 0.0505725
\(301\) 43.6155 0.00835201
\(302\) 2606.40 0.496627
\(303\) −3045.35 −0.577395
\(304\) 1514.99 0.285824
\(305\) 1268.13 0.238075
\(306\) 1401.04 0.261739
\(307\) −405.295 −0.0753467 −0.0376733 0.999290i \(-0.511995\pi\)
−0.0376733 + 0.999290i \(0.511995\pi\)
\(308\) −120.388 −0.0222719
\(309\) −5223.67 −0.961696
\(310\) −2840.27 −0.520376
\(311\) −1618.01 −0.295013 −0.147507 0.989061i \(-0.547125\pi\)
−0.147507 + 0.989061i \(0.547125\pi\)
\(312\) 2386.63 0.433066
\(313\) 5620.47 1.01498 0.507488 0.861659i \(-0.330574\pi\)
0.507488 + 0.861659i \(0.330574\pi\)
\(314\) −2299.38 −0.413254
\(315\) 63.0610 0.0112796
\(316\) 1228.39 0.218679
\(317\) 2250.61 0.398759 0.199380 0.979922i \(-0.436107\pi\)
0.199380 + 0.979922i \(0.436107\pi\)
\(318\) 42.9754 0.00757843
\(319\) 711.046 0.124799
\(320\) −2484.03 −0.433942
\(321\) −5319.41 −0.924924
\(322\) −351.293 −0.0607975
\(323\) 4694.21 0.808646
\(324\) −283.805 −0.0486634
\(325\) −815.343 −0.139160
\(326\) 7639.02 1.29781
\(327\) 2701.67 0.456888
\(328\) 12020.9 2.02361
\(329\) −327.215 −0.0548327
\(330\) 779.858 0.130090
\(331\) 5451.78 0.905307 0.452654 0.891686i \(-0.350477\pi\)
0.452654 + 0.891686i \(0.350477\pi\)
\(332\) −3571.00 −0.590314
\(333\) 2596.16 0.427234
\(334\) 5649.07 0.925459
\(335\) 942.786 0.153761
\(336\) −99.6091 −0.0161730
\(337\) 1521.29 0.245904 0.122952 0.992413i \(-0.460764\pi\)
0.122952 + 0.992413i \(0.460764\pi\)
\(338\) 2403.19 0.386734
\(339\) −2878.89 −0.461238
\(340\) −1286.14 −0.205149
\(341\) 6568.48 1.04312
\(342\) 1220.24 0.192933
\(343\) 958.578 0.150899
\(344\) −759.201 −0.118992
\(345\) −1773.32 −0.276732
\(346\) −6005.40 −0.933099
\(347\) −11163.3 −1.72703 −0.863515 0.504323i \(-0.831742\pi\)
−0.863515 + 0.504323i \(0.831742\pi\)
\(348\) −304.827 −0.0469554
\(349\) −3430.69 −0.526191 −0.263095 0.964770i \(-0.584743\pi\)
−0.263095 + 0.964770i \(0.584743\pi\)
\(350\) 74.2870 0.0113452
\(351\) 880.570 0.133907
\(352\) 3552.85 0.537977
\(353\) 10103.1 1.52333 0.761663 0.647973i \(-0.224383\pi\)
0.761663 + 0.647973i \(0.224383\pi\)
\(354\) 1.08241 0.000162513 0
\(355\) −3356.79 −0.501860
\(356\) 3534.69 0.526231
\(357\) −308.640 −0.0457562
\(358\) 4370.06 0.645154
\(359\) −8241.29 −1.21158 −0.605792 0.795623i \(-0.707144\pi\)
−0.605792 + 0.795623i \(0.707144\pi\)
\(360\) −1097.68 −0.160703
\(361\) −2770.55 −0.403929
\(362\) −9190.75 −1.33441
\(363\) 2189.48 0.316579
\(364\) −160.134 −0.0230585
\(365\) −1453.98 −0.208507
\(366\) −1613.39 −0.230419
\(367\) 1511.51 0.214987 0.107493 0.994206i \(-0.465718\pi\)
0.107493 + 0.994206i \(0.465718\pi\)
\(368\) 2801.09 0.396785
\(369\) 4435.23 0.625715
\(370\) 3058.33 0.429716
\(371\) −9.46722 −0.00132483
\(372\) −2815.93 −0.392470
\(373\) 273.737 0.0379988 0.0189994 0.999819i \(-0.493952\pi\)
0.0189994 + 0.999819i \(0.493952\pi\)
\(374\) −3816.87 −0.527715
\(375\) 375.000 0.0516398
\(376\) 5695.73 0.781210
\(377\) 945.797 0.129207
\(378\) −80.2300 −0.0109169
\(379\) 13732.5 1.86118 0.930592 0.366057i \(-0.119293\pi\)
0.930592 + 0.366057i \(0.119293\pi\)
\(380\) −1120.17 −0.151220
\(381\) −270.830 −0.0364174
\(382\) −3786.19 −0.507116
\(383\) −8317.66 −1.10969 −0.554846 0.831953i \(-0.687223\pi\)
−0.554846 + 0.831953i \(0.687223\pi\)
\(384\) −317.347 −0.0421732
\(385\) −171.798 −0.0227419
\(386\) −2330.95 −0.307364
\(387\) −280.114 −0.0367933
\(388\) 1213.78 0.158816
\(389\) 12184.5 1.58813 0.794063 0.607835i \(-0.207962\pi\)
0.794063 + 0.607835i \(0.207962\pi\)
\(390\) 1037.33 0.134685
\(391\) 8679.20 1.12257
\(392\) −8318.88 −1.07185
\(393\) −135.538 −0.0173970
\(394\) −6763.71 −0.864850
\(395\) 1752.96 0.223294
\(396\) 773.173 0.0981147
\(397\) 10293.0 1.30123 0.650617 0.759406i \(-0.274510\pi\)
0.650617 + 0.759406i \(0.274510\pi\)
\(398\) 2339.34 0.294625
\(399\) −268.812 −0.0337279
\(400\) −592.338 −0.0740423
\(401\) −12177.3 −1.51647 −0.758236 0.651980i \(-0.773938\pi\)
−0.758236 + 0.651980i \(0.773938\pi\)
\(402\) −1199.47 −0.148816
\(403\) 8737.06 1.07996
\(404\) −3556.73 −0.438005
\(405\) −405.000 −0.0496904
\(406\) −86.1729 −0.0105337
\(407\) −7072.76 −0.861385
\(408\) 5372.40 0.651896
\(409\) 10320.0 1.24765 0.623826 0.781563i \(-0.285577\pi\)
0.623826 + 0.781563i \(0.285577\pi\)
\(410\) 5224.78 0.629350
\(411\) −5889.93 −0.706882
\(412\) −6100.84 −0.729531
\(413\) −0.238449 −2.84100e−5 0
\(414\) 2256.13 0.267833
\(415\) −5095.95 −0.602772
\(416\) 4725.83 0.556978
\(417\) −632.165 −0.0742380
\(418\) −3324.33 −0.388991
\(419\) −1416.16 −0.165117 −0.0825583 0.996586i \(-0.526309\pi\)
−0.0825583 + 0.996586i \(0.526309\pi\)
\(420\) 73.6503 0.00855658
\(421\) 1770.07 0.204912 0.102456 0.994738i \(-0.467330\pi\)
0.102456 + 0.994738i \(0.467330\pi\)
\(422\) 10054.9 1.15987
\(423\) 2101.49 0.241556
\(424\) 164.793 0.0188751
\(425\) −1835.37 −0.209479
\(426\) 4270.71 0.485720
\(427\) 355.420 0.0402809
\(428\) −6212.65 −0.701635
\(429\) −2398.95 −0.269982
\(430\) −329.980 −0.0370070
\(431\) 8676.34 0.969662 0.484831 0.874608i \(-0.338881\pi\)
0.484831 + 0.874608i \(0.338881\pi\)
\(432\) 639.725 0.0712472
\(433\) −10365.6 −1.15043 −0.575217 0.818001i \(-0.695082\pi\)
−0.575217 + 0.818001i \(0.695082\pi\)
\(434\) −796.046 −0.0880448
\(435\) −435.000 −0.0479463
\(436\) 3155.33 0.346589
\(437\) 7559.21 0.827474
\(438\) 1849.84 0.201801
\(439\) −6186.08 −0.672541 −0.336270 0.941765i \(-0.609166\pi\)
−0.336270 + 0.941765i \(0.609166\pi\)
\(440\) 2990.43 0.324008
\(441\) −3069.33 −0.331425
\(442\) −5077.00 −0.546354
\(443\) 7340.11 0.787221 0.393611 0.919277i \(-0.371226\pi\)
0.393611 + 0.919277i \(0.371226\pi\)
\(444\) 3032.11 0.324094
\(445\) 5044.14 0.537337
\(446\) 6359.78 0.675211
\(447\) 4152.67 0.439406
\(448\) −696.201 −0.0734206
\(449\) −4998.65 −0.525392 −0.262696 0.964879i \(-0.584612\pi\)
−0.262696 + 0.964879i \(0.584612\pi\)
\(450\) −477.097 −0.0499791
\(451\) −12083.0 −1.26156
\(452\) −3362.31 −0.349889
\(453\) 3687.54 0.382463
\(454\) 4121.40 0.426050
\(455\) −228.517 −0.0235451
\(456\) 4679.13 0.480527
\(457\) −2458.87 −0.251687 −0.125844 0.992050i \(-0.540164\pi\)
−0.125844 + 0.992050i \(0.540164\pi\)
\(458\) 8027.03 0.818949
\(459\) 1982.20 0.201571
\(460\) −2071.10 −0.209925
\(461\) 8913.54 0.900532 0.450266 0.892895i \(-0.351329\pi\)
0.450266 + 0.892895i \(0.351329\pi\)
\(462\) 218.572 0.0220105
\(463\) −4530.84 −0.454787 −0.227393 0.973803i \(-0.573020\pi\)
−0.227393 + 0.973803i \(0.573020\pi\)
\(464\) 687.112 0.0687465
\(465\) −4018.43 −0.400753
\(466\) 5936.96 0.590181
\(467\) 7900.81 0.782882 0.391441 0.920203i \(-0.371977\pi\)
0.391441 + 0.920203i \(0.371977\pi\)
\(468\) 1028.44 0.101580
\(469\) 264.236 0.0260155
\(470\) 2475.59 0.242959
\(471\) −3253.18 −0.318256
\(472\) 4.15061 0.000404761 0
\(473\) 763.119 0.0741823
\(474\) −2230.22 −0.216113
\(475\) −1598.53 −0.154411
\(476\) −360.467 −0.0347101
\(477\) 60.8018 0.00583632
\(478\) −2714.50 −0.259746
\(479\) −20336.4 −1.93986 −0.969931 0.243381i \(-0.921744\pi\)
−0.969931 + 0.243381i \(0.921744\pi\)
\(480\) −2173.55 −0.206684
\(481\) −9407.83 −0.891809
\(482\) −10531.1 −0.995182
\(483\) −497.012 −0.0468216
\(484\) 2557.14 0.240152
\(485\) 1732.11 0.162167
\(486\) 515.265 0.0480924
\(487\) −11847.3 −1.10236 −0.551181 0.834385i \(-0.685823\pi\)
−0.551181 + 0.834385i \(0.685823\pi\)
\(488\) −6186.68 −0.573889
\(489\) 10807.7 0.999473
\(490\) −3615.72 −0.333350
\(491\) 12022.9 1.10506 0.552529 0.833493i \(-0.313663\pi\)
0.552529 + 0.833493i \(0.313663\pi\)
\(492\) 5180.00 0.474659
\(493\) 2129.03 0.194496
\(494\) −4421.85 −0.402730
\(495\) 1103.35 0.100185
\(496\) 6347.39 0.574609
\(497\) −940.812 −0.0849119
\(498\) 6483.38 0.583388
\(499\) 293.738 0.0263518 0.0131759 0.999913i \(-0.495806\pi\)
0.0131759 + 0.999913i \(0.495806\pi\)
\(500\) 437.971 0.0391733
\(501\) 7992.33 0.712717
\(502\) −14242.2 −1.26625
\(503\) −4957.94 −0.439491 −0.219745 0.975557i \(-0.570523\pi\)
−0.219745 + 0.975557i \(0.570523\pi\)
\(504\) −307.649 −0.0271900
\(505\) −5075.58 −0.447249
\(506\) −6146.40 −0.540002
\(507\) 3400.04 0.297832
\(508\) −316.308 −0.0276258
\(509\) 7023.72 0.611633 0.305816 0.952091i \(-0.401071\pi\)
0.305816 + 0.952091i \(0.401071\pi\)
\(510\) 2335.06 0.202742
\(511\) −407.509 −0.0352781
\(512\) 8056.91 0.695446
\(513\) 1726.41 0.148582
\(514\) −13411.0 −1.15084
\(515\) −8706.12 −0.744927
\(516\) −327.151 −0.0279109
\(517\) −5725.12 −0.487022
\(518\) 857.161 0.0727056
\(519\) −8496.47 −0.718600
\(520\) 3977.72 0.335451
\(521\) −17727.1 −1.49067 −0.745333 0.666692i \(-0.767710\pi\)
−0.745333 + 0.666692i \(0.767710\pi\)
\(522\) 553.433 0.0464044
\(523\) −5487.13 −0.458768 −0.229384 0.973336i \(-0.573671\pi\)
−0.229384 + 0.973336i \(0.573671\pi\)
\(524\) −158.298 −0.0131971
\(525\) 105.102 0.00873716
\(526\) 1305.13 0.108187
\(527\) 19667.5 1.62567
\(528\) −1742.81 −0.143648
\(529\) 1809.36 0.148710
\(530\) 71.6257 0.00587023
\(531\) 1.53140 0.000125155 0
\(532\) −313.951 −0.0255856
\(533\) −16072.1 −1.30612
\(534\) −6417.45 −0.520057
\(535\) −8865.68 −0.716443
\(536\) −4599.47 −0.370647
\(537\) 6182.79 0.496848
\(538\) 12087.6 0.968652
\(539\) 8361.81 0.668216
\(540\) −473.008 −0.0376945
\(541\) 4243.99 0.337270 0.168635 0.985679i \(-0.446064\pi\)
0.168635 + 0.985679i \(0.446064\pi\)
\(542\) −8948.17 −0.709145
\(543\) −13003.1 −1.02766
\(544\) 10638.0 0.838421
\(545\) 4502.78 0.353904
\(546\) 290.733 0.0227879
\(547\) −22519.2 −1.76024 −0.880119 0.474753i \(-0.842537\pi\)
−0.880119 + 0.474753i \(0.842537\pi\)
\(548\) −6878.97 −0.536232
\(549\) −2282.63 −0.177451
\(550\) 1299.76 0.100767
\(551\) 1854.29 0.143367
\(552\) 8651.33 0.667074
\(553\) 491.304 0.0377801
\(554\) −4201.85 −0.322237
\(555\) 4326.94 0.330934
\(556\) −738.319 −0.0563160
\(557\) −23665.3 −1.80024 −0.900119 0.435644i \(-0.856521\pi\)
−0.900119 + 0.435644i \(0.856521\pi\)
\(558\) 5112.49 0.387865
\(559\) 1015.06 0.0768024
\(560\) −166.015 −0.0125275
\(561\) −5400.12 −0.406405
\(562\) 3190.62 0.239481
\(563\) 5688.95 0.425863 0.212931 0.977067i \(-0.431699\pi\)
0.212931 + 0.977067i \(0.431699\pi\)
\(564\) 2454.38 0.183241
\(565\) −4798.14 −0.357273
\(566\) −12301.8 −0.913574
\(567\) −113.510 −0.00840734
\(568\) 16376.4 1.20975
\(569\) −5181.22 −0.381736 −0.190868 0.981616i \(-0.561130\pi\)
−0.190868 + 0.981616i \(0.561130\pi\)
\(570\) 2033.74 0.149446
\(571\) −10124.7 −0.742040 −0.371020 0.928625i \(-0.620992\pi\)
−0.371020 + 0.928625i \(0.620992\pi\)
\(572\) −2801.78 −0.204805
\(573\) −5356.72 −0.390542
\(574\) 1464.35 0.106483
\(575\) −2955.54 −0.214356
\(576\) 4471.25 0.323441
\(577\) −1502.64 −0.108416 −0.0542079 0.998530i \(-0.517263\pi\)
−0.0542079 + 0.998530i \(0.517263\pi\)
\(578\) −1010.84 −0.0727431
\(579\) −3297.84 −0.236708
\(580\) −508.046 −0.0363715
\(581\) −1428.25 −0.101986
\(582\) −2203.70 −0.156952
\(583\) −165.643 −0.0117671
\(584\) 7093.38 0.502613
\(585\) 1467.62 0.103724
\(586\) 1540.23 0.108577
\(587\) −10571.9 −0.743351 −0.371675 0.928363i \(-0.621217\pi\)
−0.371675 + 0.928363i \(0.621217\pi\)
\(588\) −3584.73 −0.251415
\(589\) 17129.5 1.19832
\(590\) 1.80402 0.000125882 0
\(591\) −9569.34 −0.666040
\(592\) −6834.70 −0.474500
\(593\) −6095.11 −0.422085 −0.211042 0.977477i \(-0.567686\pi\)
−0.211042 + 0.977477i \(0.567686\pi\)
\(594\) −1403.74 −0.0969635
\(595\) −514.400 −0.0354426
\(596\) 4849.99 0.333328
\(597\) 3309.71 0.226897
\(598\) −8175.64 −0.559075
\(599\) −6143.32 −0.419047 −0.209524 0.977804i \(-0.567191\pi\)
−0.209524 + 0.977804i \(0.567191\pi\)
\(600\) −1829.47 −0.124480
\(601\) 17150.2 1.16401 0.582007 0.813184i \(-0.302268\pi\)
0.582007 + 0.813184i \(0.302268\pi\)
\(602\) −92.4837 −0.00626139
\(603\) −1697.02 −0.114607
\(604\) 4306.76 0.290132
\(605\) 3649.14 0.245221
\(606\) 6457.46 0.432865
\(607\) −6196.83 −0.414368 −0.207184 0.978302i \(-0.566430\pi\)
−0.207184 + 0.978302i \(0.566430\pi\)
\(608\) 9265.25 0.618019
\(609\) −121.918 −0.00811225
\(610\) −2688.98 −0.178481
\(611\) −7615.27 −0.504224
\(612\) 2315.05 0.152909
\(613\) 15766.1 1.03881 0.519403 0.854530i \(-0.326154\pi\)
0.519403 + 0.854530i \(0.326154\pi\)
\(614\) 859.401 0.0564864
\(615\) 7392.05 0.484677
\(616\) 838.132 0.0548203
\(617\) 18677.5 1.21868 0.609340 0.792909i \(-0.291434\pi\)
0.609340 + 0.792909i \(0.291434\pi\)
\(618\) 11076.4 0.720971
\(619\) 14341.9 0.931263 0.465631 0.884979i \(-0.345827\pi\)
0.465631 + 0.884979i \(0.345827\pi\)
\(620\) −4693.21 −0.304006
\(621\) 3191.98 0.206264
\(622\) 3430.89 0.221167
\(623\) 1413.73 0.0909144
\(624\) −2318.20 −0.148722
\(625\) 625.000 0.0400000
\(626\) −11917.8 −0.760914
\(627\) −4703.27 −0.299570
\(628\) −3799.46 −0.241425
\(629\) −21177.4 −1.34244
\(630\) −133.717 −0.00845618
\(631\) −11850.5 −0.747638 −0.373819 0.927502i \(-0.621952\pi\)
−0.373819 + 0.927502i \(0.621952\pi\)
\(632\) −8551.99 −0.538259
\(633\) 14225.7 0.893240
\(634\) −4772.26 −0.298944
\(635\) −451.384 −0.0282088
\(636\) 71.0118 0.00442736
\(637\) 11122.5 0.691817
\(638\) −1507.72 −0.0935602
\(639\) 6042.23 0.374064
\(640\) −528.911 −0.0326672
\(641\) 3014.56 0.185753 0.0928767 0.995678i \(-0.470394\pi\)
0.0928767 + 0.995678i \(0.470394\pi\)
\(642\) 11279.4 0.693402
\(643\) −21475.3 −1.31711 −0.658555 0.752533i \(-0.728832\pi\)
−0.658555 + 0.752533i \(0.728832\pi\)
\(644\) −580.470 −0.0355182
\(645\) −466.857 −0.0285000
\(646\) −9953.75 −0.606231
\(647\) −24199.3 −1.47044 −0.735218 0.677831i \(-0.762920\pi\)
−0.735218 + 0.677831i \(0.762920\pi\)
\(648\) 1975.83 0.119781
\(649\) −4.17203 −0.000252336 0
\(650\) 1728.88 0.104326
\(651\) −1126.25 −0.0678052
\(652\) 12622.6 0.758187
\(653\) −8138.48 −0.487723 −0.243862 0.969810i \(-0.578414\pi\)
−0.243862 + 0.969810i \(0.578414\pi\)
\(654\) −5728.70 −0.342523
\(655\) −225.897 −0.0134756
\(656\) −11676.2 −0.694940
\(657\) 2617.17 0.155412
\(658\) 693.838 0.0411073
\(659\) −24406.8 −1.44272 −0.721360 0.692560i \(-0.756483\pi\)
−0.721360 + 0.692560i \(0.756483\pi\)
\(660\) 1288.62 0.0759993
\(661\) 11235.2 0.661115 0.330557 0.943786i \(-0.392763\pi\)
0.330557 + 0.943786i \(0.392763\pi\)
\(662\) −11560.1 −0.678697
\(663\) −7182.97 −0.420760
\(664\) 24861.1 1.45301
\(665\) −448.020 −0.0261255
\(666\) −5504.99 −0.320291
\(667\) 3428.43 0.199024
\(668\) 9334.41 0.540658
\(669\) 8997.85 0.519995
\(670\) −1999.12 −0.115272
\(671\) 6218.60 0.357774
\(672\) −609.182 −0.0349698
\(673\) 19425.6 1.11263 0.556315 0.830971i \(-0.312215\pi\)
0.556315 + 0.830971i \(0.312215\pi\)
\(674\) −3225.78 −0.184351
\(675\) −675.000 −0.0384900
\(676\) 3970.98 0.225932
\(677\) 24093.6 1.36779 0.683894 0.729582i \(-0.260285\pi\)
0.683894 + 0.729582i \(0.260285\pi\)
\(678\) 6104.48 0.345784
\(679\) 485.461 0.0274378
\(680\) 8954.01 0.504957
\(681\) 5830.98 0.328111
\(682\) −13928.0 −0.782011
\(683\) −30150.8 −1.68915 −0.844574 0.535438i \(-0.820146\pi\)
−0.844574 + 0.535438i \(0.820146\pi\)
\(684\) 2016.31 0.112713
\(685\) −9816.55 −0.547549
\(686\) −2032.60 −0.113127
\(687\) 11356.7 0.630691
\(688\) 737.432 0.0408639
\(689\) −220.330 −0.0121828
\(690\) 3760.22 0.207462
\(691\) −6867.54 −0.378080 −0.189040 0.981969i \(-0.560538\pi\)
−0.189040 + 0.981969i \(0.560538\pi\)
\(692\) −9923.21 −0.545121
\(693\) 309.236 0.0169508
\(694\) 23671.1 1.29473
\(695\) −1053.61 −0.0575045
\(696\) 2122.19 0.115577
\(697\) −36179.0 −1.96611
\(698\) 7274.54 0.394478
\(699\) 8399.64 0.454512
\(700\) 122.750 0.00662790
\(701\) 35818.0 1.92985 0.964926 0.262521i \(-0.0845539\pi\)
0.964926 + 0.262521i \(0.0845539\pi\)
\(702\) −1867.19 −0.100388
\(703\) −18444.6 −0.989546
\(704\) −12181.1 −0.652119
\(705\) 3502.48 0.187108
\(706\) −21423.0 −1.14202
\(707\) −1422.54 −0.0756720
\(708\) 1.78856 9.49409e−5 0
\(709\) −11409.3 −0.604354 −0.302177 0.953252i \(-0.597713\pi\)
−0.302177 + 0.953252i \(0.597713\pi\)
\(710\) 7117.86 0.376237
\(711\) −3155.33 −0.166433
\(712\) −24608.3 −1.29527
\(713\) 31671.0 1.66352
\(714\) 654.451 0.0343028
\(715\) −3998.25 −0.209127
\(716\) 7221.01 0.376902
\(717\) −3840.50 −0.200036
\(718\) 17475.1 0.908308
\(719\) 18782.0 0.974200 0.487100 0.873346i \(-0.338055\pi\)
0.487100 + 0.873346i \(0.338055\pi\)
\(720\) 1066.21 0.0551878
\(721\) −2440.07 −0.126037
\(722\) 5874.76 0.302820
\(723\) −14899.4 −0.766412
\(724\) −15186.6 −0.779567
\(725\) −725.000 −0.0371391
\(726\) −4642.65 −0.237335
\(727\) 1658.12 0.0845889 0.0422945 0.999105i \(-0.486533\pi\)
0.0422945 + 0.999105i \(0.486533\pi\)
\(728\) 1114.84 0.0567565
\(729\) 729.000 0.0370370
\(730\) 3083.07 0.156314
\(731\) 2284.94 0.115611
\(732\) −2665.93 −0.134612
\(733\) 21347.6 1.07570 0.537852 0.843039i \(-0.319236\pi\)
0.537852 + 0.843039i \(0.319236\pi\)
\(734\) −3205.05 −0.161172
\(735\) −5115.54 −0.256721
\(736\) 17130.7 0.857942
\(737\) 4623.20 0.231069
\(738\) −9404.60 −0.469090
\(739\) 27818.5 1.38474 0.692369 0.721543i \(-0.256567\pi\)
0.692369 + 0.721543i \(0.256567\pi\)
\(740\) 5053.52 0.251042
\(741\) −6256.06 −0.310151
\(742\) 20.0746 0.000993210 0
\(743\) 29021.0 1.43295 0.716473 0.697615i \(-0.245755\pi\)
0.716473 + 0.697615i \(0.245755\pi\)
\(744\) 19604.3 0.966032
\(745\) 6921.12 0.340363
\(746\) −580.441 −0.0284872
\(747\) 9172.72 0.449280
\(748\) −6306.92 −0.308294
\(749\) −2484.79 −0.121218
\(750\) −795.162 −0.0387136
\(751\) −27505.6 −1.33648 −0.668239 0.743947i \(-0.732952\pi\)
−0.668239 + 0.743947i \(0.732952\pi\)
\(752\) −5532.41 −0.268280
\(753\) −20149.9 −0.975170
\(754\) −2005.50 −0.0968647
\(755\) 6145.90 0.296255
\(756\) −132.570 −0.00637770
\(757\) 31401.4 1.50767 0.753833 0.657066i \(-0.228203\pi\)
0.753833 + 0.657066i \(0.228203\pi\)
\(758\) −29118.8 −1.39530
\(759\) −8695.97 −0.415868
\(760\) 7798.55 0.372215
\(761\) −31623.5 −1.50638 −0.753188 0.657805i \(-0.771485\pi\)
−0.753188 + 0.657805i \(0.771485\pi\)
\(762\) 574.277 0.0273017
\(763\) 1262.00 0.0598786
\(764\) −6256.23 −0.296260
\(765\) 3303.66 0.156136
\(766\) 17637.0 0.831921
\(767\) −5.54942 −0.000261249 0
\(768\) 12596.2 0.591833
\(769\) −24813.8 −1.16360 −0.581801 0.813331i \(-0.697652\pi\)
−0.581801 + 0.813331i \(0.697652\pi\)
\(770\) 364.286 0.0170493
\(771\) −18974.0 −0.886291
\(772\) −3851.62 −0.179563
\(773\) −29837.7 −1.38834 −0.694170 0.719811i \(-0.744228\pi\)
−0.694170 + 0.719811i \(0.744228\pi\)
\(774\) 593.963 0.0275834
\(775\) −6697.39 −0.310422
\(776\) −8450.27 −0.390911
\(777\) 1212.72 0.0559922
\(778\) −25836.5 −1.19060
\(779\) −31510.3 −1.44926
\(780\) 1714.06 0.0786836
\(781\) −16460.9 −0.754185
\(782\) −18403.7 −0.841578
\(783\) 783.000 0.0357371
\(784\) 8080.35 0.368092
\(785\) −5421.97 −0.246520
\(786\) 287.400 0.0130423
\(787\) 28836.1 1.30609 0.653046 0.757318i \(-0.273491\pi\)
0.653046 + 0.757318i \(0.273491\pi\)
\(788\) −11176.2 −0.505250
\(789\) 1846.51 0.0833175
\(790\) −3717.04 −0.167400
\(791\) −1344.78 −0.0604487
\(792\) −5382.78 −0.241501
\(793\) 8271.67 0.370411
\(794\) −21825.6 −0.975517
\(795\) 101.336 0.00452080
\(796\) 3865.49 0.172121
\(797\) 25155.7 1.11802 0.559010 0.829161i \(-0.311181\pi\)
0.559010 + 0.829161i \(0.311181\pi\)
\(798\) 569.998 0.0252854
\(799\) −17142.3 −0.759010
\(800\) −3622.58 −0.160097
\(801\) −9079.44 −0.400507
\(802\) 25821.1 1.13688
\(803\) −7129.98 −0.313340
\(804\) −1981.98 −0.0869391
\(805\) −828.353 −0.0362678
\(806\) −18526.4 −0.809631
\(807\) 17101.6 0.745981
\(808\) 24761.7 1.07811
\(809\) −11402.5 −0.495537 −0.247769 0.968819i \(-0.579697\pi\)
−0.247769 + 0.968819i \(0.579697\pi\)
\(810\) 858.775 0.0372522
\(811\) −36317.0 −1.57246 −0.786229 0.617935i \(-0.787969\pi\)
−0.786229 + 0.617935i \(0.787969\pi\)
\(812\) −142.391 −0.00615385
\(813\) −12659.9 −0.546129
\(814\) 14997.3 0.645769
\(815\) 18012.9 0.774189
\(816\) −5218.36 −0.223871
\(817\) 1990.09 0.0852195
\(818\) −21882.8 −0.935348
\(819\) 411.330 0.0175495
\(820\) 8633.33 0.367669
\(821\) 32017.0 1.36103 0.680513 0.732736i \(-0.261757\pi\)
0.680513 + 0.732736i \(0.261757\pi\)
\(822\) 12489.2 0.529940
\(823\) −31912.4 −1.35163 −0.675817 0.737069i \(-0.736209\pi\)
−0.675817 + 0.737069i \(0.736209\pi\)
\(824\) 42473.6 1.79568
\(825\) 1838.91 0.0776032
\(826\) 0.505615 2.12986e−5 0
\(827\) 17534.8 0.737295 0.368648 0.929569i \(-0.379821\pi\)
0.368648 + 0.929569i \(0.379821\pi\)
\(828\) 3727.99 0.156469
\(829\) 39507.3 1.65518 0.827592 0.561331i \(-0.189710\pi\)
0.827592 + 0.561331i \(0.189710\pi\)
\(830\) 10805.6 0.451890
\(831\) −5944.79 −0.248162
\(832\) −16202.7 −0.675152
\(833\) 25037.1 1.04140
\(834\) 1340.46 0.0556552
\(835\) 13320.6 0.552068
\(836\) −5493.05 −0.227250
\(837\) 7233.18 0.298704
\(838\) 3002.87 0.123786
\(839\) 12398.1 0.510168 0.255084 0.966919i \(-0.417897\pi\)
0.255084 + 0.966919i \(0.417897\pi\)
\(840\) −512.748 −0.0210613
\(841\) 841.000 0.0344828
\(842\) −3753.31 −0.153620
\(843\) 4514.11 0.184430
\(844\) 16614.5 0.677601
\(845\) 5666.73 0.230700
\(846\) −4456.07 −0.181091
\(847\) 1022.75 0.0414900
\(848\) −160.068 −0.00648202
\(849\) −17404.7 −0.703564
\(850\) 3891.77 0.157043
\(851\) −34102.5 −1.37370
\(852\) 7056.85 0.283760
\(853\) 9946.94 0.399269 0.199635 0.979870i \(-0.436024\pi\)
0.199635 + 0.979870i \(0.436024\pi\)
\(854\) −753.644 −0.0301981
\(855\) 2877.35 0.115091
\(856\) 43252.0 1.72701
\(857\) −1305.42 −0.0520328 −0.0260164 0.999662i \(-0.508282\pi\)
−0.0260164 + 0.999662i \(0.508282\pi\)
\(858\) 5086.81 0.202402
\(859\) 38980.3 1.54830 0.774151 0.633001i \(-0.218177\pi\)
0.774151 + 0.633001i \(0.218177\pi\)
\(860\) −545.252 −0.0216197
\(861\) 2071.78 0.0820046
\(862\) −18397.6 −0.726942
\(863\) 31555.2 1.24467 0.622336 0.782750i \(-0.286184\pi\)
0.622336 + 0.782750i \(0.286184\pi\)
\(864\) 3912.39 0.154053
\(865\) −14160.8 −0.556625
\(866\) 21979.5 0.862465
\(867\) −1430.14 −0.0560211
\(868\) −1315.37 −0.0514362
\(869\) 8596.11 0.335562
\(870\) 922.388 0.0359447
\(871\) 6149.55 0.239230
\(872\) −21967.2 −0.853100
\(873\) −3117.80 −0.120872
\(874\) −16028.8 −0.620346
\(875\) 175.169 0.00676778
\(876\) 3056.64 0.117893
\(877\) −35538.1 −1.36834 −0.684171 0.729322i \(-0.739836\pi\)
−0.684171 + 0.729322i \(0.739836\pi\)
\(878\) 13117.2 0.504195
\(879\) 2179.12 0.0836178
\(880\) −2904.69 −0.111269
\(881\) −2301.79 −0.0880242 −0.0440121 0.999031i \(-0.514014\pi\)
−0.0440121 + 0.999031i \(0.514014\pi\)
\(882\) 6508.30 0.248465
\(883\) −33464.5 −1.27539 −0.637695 0.770289i \(-0.720112\pi\)
−0.637695 + 0.770289i \(0.720112\pi\)
\(884\) −8389.15 −0.319183
\(885\) 2.55234 9.69446e−5 0
\(886\) −15564.2 −0.590169
\(887\) 17351.4 0.656825 0.328412 0.944534i \(-0.393486\pi\)
0.328412 + 0.944534i \(0.393486\pi\)
\(888\) −21109.4 −0.797730
\(889\) −126.510 −0.00477278
\(890\) −10695.8 −0.402834
\(891\) −1986.02 −0.0746738
\(892\) 10508.8 0.394462
\(893\) −14930.2 −0.559484
\(894\) −8805.46 −0.329417
\(895\) 10304.7 0.384856
\(896\) −148.238 −0.00552712
\(897\) −11566.9 −0.430556
\(898\) 10599.3 0.393879
\(899\) 7768.97 0.288220
\(900\) −788.347 −0.0291980
\(901\) −495.972 −0.0183388
\(902\) 25621.1 0.945775
\(903\) −130.846 −0.00482203
\(904\) 23408.2 0.861222
\(905\) −21671.9 −0.796019
\(906\) −7819.19 −0.286727
\(907\) 13518.7 0.494908 0.247454 0.968900i \(-0.420406\pi\)
0.247454 + 0.968900i \(0.420406\pi\)
\(908\) 6810.12 0.248901
\(909\) 9136.05 0.333359
\(910\) 484.555 0.0176515
\(911\) 32678.5 1.18846 0.594230 0.804295i \(-0.297457\pi\)
0.594230 + 0.804295i \(0.297457\pi\)
\(912\) −4544.96 −0.165021
\(913\) −24989.4 −0.905835
\(914\) 5213.87 0.188687
\(915\) −3804.39 −0.137453
\(916\) 13263.7 0.478434
\(917\) −63.3125 −0.00228000
\(918\) −4203.11 −0.151115
\(919\) 30621.0 1.09912 0.549562 0.835453i \(-0.314795\pi\)
0.549562 + 0.835453i \(0.314795\pi\)
\(920\) 14418.9 0.516714
\(921\) 1215.89 0.0435014
\(922\) −18900.6 −0.675116
\(923\) −21895.5 −0.780822
\(924\) 361.164 0.0128587
\(925\) 7211.57 0.256340
\(926\) 9607.35 0.340947
\(927\) 15671.0 0.555236
\(928\) 4202.19 0.148646
\(929\) 45355.7 1.60180 0.800900 0.598798i \(-0.204355\pi\)
0.800900 + 0.598798i \(0.204355\pi\)
\(930\) 8520.81 0.300439
\(931\) 21806.2 0.767636
\(932\) 9810.12 0.344787
\(933\) 4854.04 0.170326
\(934\) −16753.1 −0.586916
\(935\) −9000.21 −0.314800
\(936\) −7159.90 −0.250031
\(937\) 16518.2 0.575907 0.287953 0.957644i \(-0.407025\pi\)
0.287953 + 0.957644i \(0.407025\pi\)
\(938\) −560.294 −0.0195035
\(939\) −16861.4 −0.585997
\(940\) 4090.63 0.141938
\(941\) −22774.4 −0.788975 −0.394487 0.918901i \(-0.629078\pi\)
−0.394487 + 0.918901i \(0.629078\pi\)
\(942\) 6898.15 0.238592
\(943\) −58260.0 −2.01188
\(944\) −4.03160 −0.000139001 0
\(945\) −189.183 −0.00651230
\(946\) −1618.14 −0.0556135
\(947\) 42834.2 1.46983 0.734913 0.678162i \(-0.237223\pi\)
0.734913 + 0.678162i \(0.237223\pi\)
\(948\) −3685.18 −0.126254
\(949\) −9483.94 −0.324407
\(950\) 3389.57 0.115760
\(951\) −6751.82 −0.230224
\(952\) 2509.55 0.0854359
\(953\) −11113.4 −0.377754 −0.188877 0.982001i \(-0.560485\pi\)
−0.188877 + 0.982001i \(0.560485\pi\)
\(954\) −128.926 −0.00437541
\(955\) −8927.87 −0.302512
\(956\) −4485.40 −0.151745
\(957\) −2133.14 −0.0720528
\(958\) 43122.0 1.45429
\(959\) −2751.29 −0.0926422
\(960\) 7452.08 0.250536
\(961\) 41977.0 1.40905
\(962\) 19948.7 0.668577
\(963\) 15958.2 0.534005
\(964\) −17401.4 −0.581390
\(965\) −5496.40 −0.183353
\(966\) 1053.88 0.0351015
\(967\) −27959.0 −0.929784 −0.464892 0.885367i \(-0.653907\pi\)
−0.464892 + 0.885367i \(0.653907\pi\)
\(968\) −17802.7 −0.591115
\(969\) −14082.6 −0.466872
\(970\) −3672.83 −0.121575
\(971\) −37840.3 −1.25062 −0.625311 0.780375i \(-0.715028\pi\)
−0.625311 + 0.780375i \(0.715028\pi\)
\(972\) 851.415 0.0280958
\(973\) −295.296 −0.00972945
\(974\) 25121.3 0.826426
\(975\) 2446.03 0.0803442
\(976\) 6009.29 0.197083
\(977\) −40258.4 −1.31830 −0.659150 0.752011i \(-0.729084\pi\)
−0.659150 + 0.752011i \(0.729084\pi\)
\(978\) −22917.1 −0.749291
\(979\) 24735.2 0.807500
\(980\) −5974.55 −0.194745
\(981\) −8105.00 −0.263785
\(982\) −25493.7 −0.828447
\(983\) 13109.2 0.425348 0.212674 0.977123i \(-0.431783\pi\)
0.212674 + 0.977123i \(0.431783\pi\)
\(984\) −36062.8 −1.16833
\(985\) −15948.9 −0.515913
\(986\) −4514.46 −0.145811
\(987\) 981.645 0.0316577
\(988\) −7306.58 −0.235277
\(989\) 3679.51 0.118303
\(990\) −2339.57 −0.0751076
\(991\) −14404.6 −0.461732 −0.230866 0.972986i \(-0.574156\pi\)
−0.230866 + 0.972986i \(0.574156\pi\)
\(992\) 38818.9 1.24244
\(993\) −16355.3 −0.522679
\(994\) 1994.93 0.0636573
\(995\) 5516.19 0.175754
\(996\) 10713.0 0.340818
\(997\) 30046.1 0.954432 0.477216 0.878786i \(-0.341646\pi\)
0.477216 + 0.878786i \(0.341646\pi\)
\(998\) −622.853 −0.0197556
\(999\) −7788.49 −0.246664
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 435.4.a.f.1.2 5
3.2 odd 2 1305.4.a.g.1.4 5
5.4 even 2 2175.4.a.j.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.f.1.2 5 1.1 even 1 trivial
1305.4.a.g.1.4 5 3.2 odd 2
2175.4.a.j.1.4 5 5.4 even 2