Properties

Label 1305.4.a.p.1.3
Level $1305$
Weight $4$
Character 1305.1
Self dual yes
Analytic conductor $76.997$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1305,4,Mod(1,1305)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1305.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1305 = 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1305.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(76.9974925575\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 43x^{6} + 117x^{5} + 586x^{4} - 701x^{3} - 1792x^{2} + 924x + 1424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.81879\) of defining polynomial
Character \(\chi\) \(=\) 1305.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.818792 q^{2} -7.32958 q^{4} +5.00000 q^{5} +13.8632 q^{7} +12.5517 q^{8} -4.09396 q^{10} -71.7303 q^{11} -78.8785 q^{13} -11.3510 q^{14} +48.3594 q^{16} -93.8775 q^{17} -15.4555 q^{19} -36.6479 q^{20} +58.7322 q^{22} +187.363 q^{23} +25.0000 q^{25} +64.5851 q^{26} -101.611 q^{28} -29.0000 q^{29} -73.3710 q^{31} -140.010 q^{32} +76.8662 q^{34} +69.3158 q^{35} -127.123 q^{37} +12.6549 q^{38} +62.7587 q^{40} +124.177 q^{41} -41.9717 q^{43} +525.753 q^{44} -153.411 q^{46} +588.328 q^{47} -150.813 q^{49} -20.4698 q^{50} +578.146 q^{52} +125.128 q^{53} -358.651 q^{55} +174.007 q^{56} +23.7450 q^{58} +55.2122 q^{59} +259.660 q^{61} +60.0755 q^{62} -272.236 q^{64} -394.392 q^{65} -664.277 q^{67} +688.083 q^{68} -56.7552 q^{70} -265.186 q^{71} -5.27903 q^{73} +104.087 q^{74} +113.283 q^{76} -994.408 q^{77} -792.533 q^{79} +241.797 q^{80} -101.675 q^{82} -1424.74 q^{83} -469.388 q^{85} +34.3661 q^{86} -900.339 q^{88} +1499.69 q^{89} -1093.50 q^{91} -1373.29 q^{92} -481.718 q^{94} -77.2777 q^{95} +764.065 q^{97} +123.484 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 38 q^{4} + 40 q^{5} - q^{7} + 9 q^{8} + 20 q^{10} - 11 q^{11} - 97 q^{13} + 69 q^{14} + 242 q^{16} + 119 q^{17} + 220 q^{19} + 190 q^{20} - 129 q^{22} + 262 q^{23} + 200 q^{25} - 43 q^{26}+ \cdots + 7677 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.818792 −0.289487 −0.144743 0.989469i \(-0.546236\pi\)
−0.144743 + 0.989469i \(0.546236\pi\)
\(3\) 0 0
\(4\) −7.32958 −0.916198
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 13.8632 0.748540 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(8\) 12.5517 0.554714
\(9\) 0 0
\(10\) −4.09396 −0.129462
\(11\) −71.7303 −1.96614 −0.983068 0.183243i \(-0.941340\pi\)
−0.983068 + 0.183243i \(0.941340\pi\)
\(12\) 0 0
\(13\) −78.8785 −1.68284 −0.841421 0.540379i \(-0.818281\pi\)
−0.841421 + 0.540379i \(0.818281\pi\)
\(14\) −11.3510 −0.216692
\(15\) 0 0
\(16\) 48.3594 0.755615
\(17\) −93.8775 −1.33933 −0.669666 0.742662i \(-0.733563\pi\)
−0.669666 + 0.742662i \(0.733563\pi\)
\(18\) 0 0
\(19\) −15.4555 −0.186618 −0.0933091 0.995637i \(-0.529744\pi\)
−0.0933091 + 0.995637i \(0.529744\pi\)
\(20\) −36.6479 −0.409736
\(21\) 0 0
\(22\) 58.7322 0.569170
\(23\) 187.363 1.69860 0.849301 0.527909i \(-0.177024\pi\)
0.849301 + 0.527909i \(0.177024\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 64.5851 0.487161
\(27\) 0 0
\(28\) −101.611 −0.685811
\(29\) −29.0000 −0.185695
\(30\) 0 0
\(31\) −73.3710 −0.425091 −0.212545 0.977151i \(-0.568175\pi\)
−0.212545 + 0.977151i \(0.568175\pi\)
\(32\) −140.010 −0.773454
\(33\) 0 0
\(34\) 76.8662 0.387719
\(35\) 69.3158 0.334757
\(36\) 0 0
\(37\) −127.123 −0.564836 −0.282418 0.959291i \(-0.591137\pi\)
−0.282418 + 0.959291i \(0.591137\pi\)
\(38\) 12.6549 0.0540235
\(39\) 0 0
\(40\) 62.7587 0.248075
\(41\) 124.177 0.473004 0.236502 0.971631i \(-0.423999\pi\)
0.236502 + 0.971631i \(0.423999\pi\)
\(42\) 0 0
\(43\) −41.9717 −0.148852 −0.0744258 0.997227i \(-0.523712\pi\)
−0.0744258 + 0.997227i \(0.523712\pi\)
\(44\) 525.753 1.80137
\(45\) 0 0
\(46\) −153.411 −0.491723
\(47\) 588.328 1.82588 0.912941 0.408093i \(-0.133806\pi\)
0.912941 + 0.408093i \(0.133806\pi\)
\(48\) 0 0
\(49\) −150.813 −0.439688
\(50\) −20.4698 −0.0578973
\(51\) 0 0
\(52\) 578.146 1.54182
\(53\) 125.128 0.324294 0.162147 0.986767i \(-0.448158\pi\)
0.162147 + 0.986767i \(0.448158\pi\)
\(54\) 0 0
\(55\) −358.651 −0.879282
\(56\) 174.007 0.415225
\(57\) 0 0
\(58\) 23.7450 0.0537563
\(59\) 55.2122 0.121831 0.0609154 0.998143i \(-0.480598\pi\)
0.0609154 + 0.998143i \(0.480598\pi\)
\(60\) 0 0
\(61\) 259.660 0.545018 0.272509 0.962153i \(-0.412147\pi\)
0.272509 + 0.962153i \(0.412147\pi\)
\(62\) 60.0755 0.123058
\(63\) 0 0
\(64\) −272.236 −0.531711
\(65\) −394.392 −0.752590
\(66\) 0 0
\(67\) −664.277 −1.21126 −0.605630 0.795747i \(-0.707079\pi\)
−0.605630 + 0.795747i \(0.707079\pi\)
\(68\) 688.083 1.22709
\(69\) 0 0
\(70\) −56.7552 −0.0969078
\(71\) −265.186 −0.443264 −0.221632 0.975130i \(-0.571138\pi\)
−0.221632 + 0.975130i \(0.571138\pi\)
\(72\) 0 0
\(73\) −5.27903 −0.00846388 −0.00423194 0.999991i \(-0.501347\pi\)
−0.00423194 + 0.999991i \(0.501347\pi\)
\(74\) 104.087 0.163512
\(75\) 0 0
\(76\) 113.283 0.170979
\(77\) −994.408 −1.47173
\(78\) 0 0
\(79\) −792.533 −1.12870 −0.564348 0.825537i \(-0.690872\pi\)
−0.564348 + 0.825537i \(0.690872\pi\)
\(80\) 241.797 0.337921
\(81\) 0 0
\(82\) −101.675 −0.136928
\(83\) −1424.74 −1.88416 −0.942081 0.335385i \(-0.891134\pi\)
−0.942081 + 0.335385i \(0.891134\pi\)
\(84\) 0 0
\(85\) −469.388 −0.598968
\(86\) 34.3661 0.0430906
\(87\) 0 0
\(88\) −900.339 −1.09064
\(89\) 1499.69 1.78614 0.893071 0.449916i \(-0.148546\pi\)
0.893071 + 0.449916i \(0.148546\pi\)
\(90\) 0 0
\(91\) −1093.50 −1.25968
\(92\) −1373.29 −1.55626
\(93\) 0 0
\(94\) −481.718 −0.528568
\(95\) −77.2777 −0.0834582
\(96\) 0 0
\(97\) 764.065 0.799784 0.399892 0.916562i \(-0.369048\pi\)
0.399892 + 0.916562i \(0.369048\pi\)
\(98\) 123.484 0.127284
\(99\) 0 0
\(100\) −183.240 −0.183240
\(101\) 1545.45 1.52256 0.761279 0.648425i \(-0.224572\pi\)
0.761279 + 0.648425i \(0.224572\pi\)
\(102\) 0 0
\(103\) 204.337 0.195475 0.0977374 0.995212i \(-0.468839\pi\)
0.0977374 + 0.995212i \(0.468839\pi\)
\(104\) −990.062 −0.933496
\(105\) 0 0
\(106\) −102.454 −0.0938789
\(107\) 342.888 0.309797 0.154898 0.987930i \(-0.450495\pi\)
0.154898 + 0.987930i \(0.450495\pi\)
\(108\) 0 0
\(109\) 1312.12 1.15301 0.576504 0.817094i \(-0.304416\pi\)
0.576504 + 0.817094i \(0.304416\pi\)
\(110\) 293.661 0.254540
\(111\) 0 0
\(112\) 670.414 0.565608
\(113\) −39.3605 −0.0327675 −0.0163837 0.999866i \(-0.505215\pi\)
−0.0163837 + 0.999866i \(0.505215\pi\)
\(114\) 0 0
\(115\) 936.814 0.759638
\(116\) 212.558 0.170134
\(117\) 0 0
\(118\) −45.2073 −0.0352684
\(119\) −1301.44 −1.00254
\(120\) 0 0
\(121\) 3814.23 2.86569
\(122\) −212.608 −0.157775
\(123\) 0 0
\(124\) 537.778 0.389467
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1843.60 −1.28813 −0.644066 0.764970i \(-0.722754\pi\)
−0.644066 + 0.764970i \(0.722754\pi\)
\(128\) 1342.99 0.927377
\(129\) 0 0
\(130\) 322.925 0.217865
\(131\) 2280.13 1.52073 0.760366 0.649494i \(-0.225019\pi\)
0.760366 + 0.649494i \(0.225019\pi\)
\(132\) 0 0
\(133\) −214.263 −0.139691
\(134\) 543.905 0.350643
\(135\) 0 0
\(136\) −1178.33 −0.742946
\(137\) −1201.01 −0.748975 −0.374487 0.927232i \(-0.622181\pi\)
−0.374487 + 0.927232i \(0.622181\pi\)
\(138\) 0 0
\(139\) −9.65588 −0.00589209 −0.00294605 0.999996i \(-0.500938\pi\)
−0.00294605 + 0.999996i \(0.500938\pi\)
\(140\) −508.056 −0.306704
\(141\) 0 0
\(142\) 217.132 0.128319
\(143\) 5657.98 3.30870
\(144\) 0 0
\(145\) −145.000 −0.0830455
\(146\) 4.32242 0.00245018
\(147\) 0 0
\(148\) 931.760 0.517501
\(149\) 564.420 0.310329 0.155165 0.987889i \(-0.450409\pi\)
0.155165 + 0.987889i \(0.450409\pi\)
\(150\) 0 0
\(151\) 635.922 0.342719 0.171359 0.985209i \(-0.445184\pi\)
0.171359 + 0.985209i \(0.445184\pi\)
\(152\) −193.994 −0.103520
\(153\) 0 0
\(154\) 814.213 0.426046
\(155\) −366.855 −0.190106
\(156\) 0 0
\(157\) −573.022 −0.291288 −0.145644 0.989337i \(-0.546525\pi\)
−0.145644 + 0.989337i \(0.546525\pi\)
\(158\) 648.920 0.326742
\(159\) 0 0
\(160\) −700.051 −0.345899
\(161\) 2597.44 1.27147
\(162\) 0 0
\(163\) −3278.02 −1.57518 −0.787591 0.616199i \(-0.788672\pi\)
−0.787591 + 0.616199i \(0.788672\pi\)
\(164\) −910.164 −0.433365
\(165\) 0 0
\(166\) 1166.57 0.545440
\(167\) 3924.81 1.81863 0.909314 0.416112i \(-0.136607\pi\)
0.909314 + 0.416112i \(0.136607\pi\)
\(168\) 0 0
\(169\) 4024.82 1.83196
\(170\) 384.331 0.173393
\(171\) 0 0
\(172\) 307.635 0.136378
\(173\) 2409.34 1.05884 0.529419 0.848361i \(-0.322410\pi\)
0.529419 + 0.848361i \(0.322410\pi\)
\(174\) 0 0
\(175\) 346.579 0.149708
\(176\) −3468.83 −1.48564
\(177\) 0 0
\(178\) −1227.93 −0.517064
\(179\) 270.657 0.113016 0.0565081 0.998402i \(-0.482003\pi\)
0.0565081 + 0.998402i \(0.482003\pi\)
\(180\) 0 0
\(181\) −176.505 −0.0724837 −0.0362418 0.999343i \(-0.511539\pi\)
−0.0362418 + 0.999343i \(0.511539\pi\)
\(182\) 895.353 0.364659
\(183\) 0 0
\(184\) 2351.73 0.942238
\(185\) −635.616 −0.252602
\(186\) 0 0
\(187\) 6733.86 2.63331
\(188\) −4312.19 −1.67287
\(189\) 0 0
\(190\) 63.2744 0.0241600
\(191\) −2520.29 −0.954774 −0.477387 0.878693i \(-0.658416\pi\)
−0.477387 + 0.878693i \(0.658416\pi\)
\(192\) 0 0
\(193\) 1493.85 0.557150 0.278575 0.960414i \(-0.410138\pi\)
0.278575 + 0.960414i \(0.410138\pi\)
\(194\) −625.610 −0.231527
\(195\) 0 0
\(196\) 1105.40 0.402841
\(197\) 3155.05 1.14106 0.570528 0.821278i \(-0.306739\pi\)
0.570528 + 0.821278i \(0.306739\pi\)
\(198\) 0 0
\(199\) 5460.52 1.94516 0.972578 0.232575i \(-0.0747152\pi\)
0.972578 + 0.232575i \(0.0747152\pi\)
\(200\) 313.793 0.110943
\(201\) 0 0
\(202\) −1265.40 −0.440760
\(203\) −402.032 −0.139000
\(204\) 0 0
\(205\) 620.884 0.211534
\(206\) −167.309 −0.0565873
\(207\) 0 0
\(208\) −3814.52 −1.27158
\(209\) 1108.63 0.366917
\(210\) 0 0
\(211\) 2596.75 0.847241 0.423621 0.905840i \(-0.360759\pi\)
0.423621 + 0.905840i \(0.360759\pi\)
\(212\) −917.133 −0.297118
\(213\) 0 0
\(214\) −280.754 −0.0896820
\(215\) −209.858 −0.0665685
\(216\) 0 0
\(217\) −1017.15 −0.318197
\(218\) −1074.35 −0.333781
\(219\) 0 0
\(220\) 2628.76 0.805596
\(221\) 7404.92 2.25389
\(222\) 0 0
\(223\) −1578.45 −0.473995 −0.236998 0.971510i \(-0.576163\pi\)
−0.236998 + 0.971510i \(0.576163\pi\)
\(224\) −1940.98 −0.578961
\(225\) 0 0
\(226\) 32.2281 0.00948575
\(227\) 2428.63 0.710106 0.355053 0.934846i \(-0.384463\pi\)
0.355053 + 0.934846i \(0.384463\pi\)
\(228\) 0 0
\(229\) −4621.51 −1.33362 −0.666808 0.745229i \(-0.732340\pi\)
−0.666808 + 0.745229i \(0.732340\pi\)
\(230\) −767.056 −0.219905
\(231\) 0 0
\(232\) −364.000 −0.103008
\(233\) −3337.50 −0.938398 −0.469199 0.883092i \(-0.655457\pi\)
−0.469199 + 0.883092i \(0.655457\pi\)
\(234\) 0 0
\(235\) 2941.64 0.816559
\(236\) −404.682 −0.111621
\(237\) 0 0
\(238\) 1065.61 0.290223
\(239\) 757.216 0.204938 0.102469 0.994736i \(-0.467326\pi\)
0.102469 + 0.994736i \(0.467326\pi\)
\(240\) 0 0
\(241\) −480.856 −0.128525 −0.0642627 0.997933i \(-0.520470\pi\)
−0.0642627 + 0.997933i \(0.520470\pi\)
\(242\) −3123.06 −0.829578
\(243\) 0 0
\(244\) −1903.20 −0.499344
\(245\) −754.065 −0.196634
\(246\) 0 0
\(247\) 1219.11 0.314049
\(248\) −920.933 −0.235804
\(249\) 0 0
\(250\) −102.349 −0.0258925
\(251\) −2236.26 −0.562356 −0.281178 0.959656i \(-0.590725\pi\)
−0.281178 + 0.959656i \(0.590725\pi\)
\(252\) 0 0
\(253\) −13439.6 −3.33968
\(254\) 1509.52 0.372897
\(255\) 0 0
\(256\) 1078.26 0.263247
\(257\) 6940.70 1.68463 0.842314 0.538988i \(-0.181193\pi\)
0.842314 + 0.538988i \(0.181193\pi\)
\(258\) 0 0
\(259\) −1762.33 −0.422802
\(260\) 2890.73 0.689521
\(261\) 0 0
\(262\) −1866.95 −0.440232
\(263\) −5980.13 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(264\) 0 0
\(265\) 625.638 0.145029
\(266\) 175.436 0.0404387
\(267\) 0 0
\(268\) 4868.87 1.10975
\(269\) −1822.34 −0.413049 −0.206525 0.978441i \(-0.566215\pi\)
−0.206525 + 0.978441i \(0.566215\pi\)
\(270\) 0 0
\(271\) 3201.60 0.717651 0.358826 0.933405i \(-0.383177\pi\)
0.358826 + 0.933405i \(0.383177\pi\)
\(272\) −4539.86 −1.01202
\(273\) 0 0
\(274\) 983.380 0.216818
\(275\) −1793.26 −0.393227
\(276\) 0 0
\(277\) 924.254 0.200480 0.100240 0.994963i \(-0.468039\pi\)
0.100240 + 0.994963i \(0.468039\pi\)
\(278\) 7.90616 0.00170568
\(279\) 0 0
\(280\) 870.033 0.185694
\(281\) −3105.33 −0.659247 −0.329623 0.944113i \(-0.606922\pi\)
−0.329623 + 0.944113i \(0.606922\pi\)
\(282\) 0 0
\(283\) −10.5568 −0.00221745 −0.00110873 0.999999i \(-0.500353\pi\)
−0.00110873 + 0.999999i \(0.500353\pi\)
\(284\) 1943.70 0.406117
\(285\) 0 0
\(286\) −4632.70 −0.957823
\(287\) 1721.48 0.354063
\(288\) 0 0
\(289\) 3899.99 0.793811
\(290\) 118.725 0.0240406
\(291\) 0 0
\(292\) 38.6930 0.00775459
\(293\) 2892.07 0.576643 0.288322 0.957534i \(-0.406903\pi\)
0.288322 + 0.957534i \(0.406903\pi\)
\(294\) 0 0
\(295\) 276.061 0.0544844
\(296\) −1595.62 −0.313322
\(297\) 0 0
\(298\) −462.142 −0.0898362
\(299\) −14778.9 −2.85848
\(300\) 0 0
\(301\) −581.860 −0.111421
\(302\) −520.687 −0.0992125
\(303\) 0 0
\(304\) −747.420 −0.141012
\(305\) 1298.30 0.243739
\(306\) 0 0
\(307\) 6869.50 1.27708 0.638539 0.769590i \(-0.279539\pi\)
0.638539 + 0.769590i \(0.279539\pi\)
\(308\) 7288.59 1.34840
\(309\) 0 0
\(310\) 300.378 0.0550332
\(311\) 3754.87 0.684627 0.342313 0.939586i \(-0.388790\pi\)
0.342313 + 0.939586i \(0.388790\pi\)
\(312\) 0 0
\(313\) 1004.33 0.181368 0.0906839 0.995880i \(-0.471095\pi\)
0.0906839 + 0.995880i \(0.471095\pi\)
\(314\) 469.186 0.0843239
\(315\) 0 0
\(316\) 5808.94 1.03411
\(317\) 4555.66 0.807165 0.403582 0.914943i \(-0.367765\pi\)
0.403582 + 0.914943i \(0.367765\pi\)
\(318\) 0 0
\(319\) 2080.18 0.365102
\(320\) −1361.18 −0.237788
\(321\) 0 0
\(322\) −2126.76 −0.368074
\(323\) 1450.93 0.249944
\(324\) 0 0
\(325\) −1971.96 −0.336569
\(326\) 2684.02 0.455994
\(327\) 0 0
\(328\) 1558.64 0.262382
\(329\) 8156.08 1.36675
\(330\) 0 0
\(331\) −4344.37 −0.721414 −0.360707 0.932679i \(-0.617465\pi\)
−0.360707 + 0.932679i \(0.617465\pi\)
\(332\) 10442.7 1.72626
\(333\) 0 0
\(334\) −3213.60 −0.526468
\(335\) −3321.39 −0.541692
\(336\) 0 0
\(337\) 8112.36 1.31130 0.655650 0.755065i \(-0.272394\pi\)
0.655650 + 0.755065i \(0.272394\pi\)
\(338\) −3295.49 −0.530328
\(339\) 0 0
\(340\) 3440.41 0.548773
\(341\) 5262.92 0.835786
\(342\) 0 0
\(343\) −6845.81 −1.07766
\(344\) −526.817 −0.0825700
\(345\) 0 0
\(346\) −1972.75 −0.306519
\(347\) 10739.1 1.66139 0.830696 0.556726i \(-0.187943\pi\)
0.830696 + 0.556726i \(0.187943\pi\)
\(348\) 0 0
\(349\) −7695.17 −1.18027 −0.590134 0.807306i \(-0.700925\pi\)
−0.590134 + 0.807306i \(0.700925\pi\)
\(350\) −283.776 −0.0433385
\(351\) 0 0
\(352\) 10043.0 1.52072
\(353\) 6621.09 0.998315 0.499157 0.866511i \(-0.333643\pi\)
0.499157 + 0.866511i \(0.333643\pi\)
\(354\) 0 0
\(355\) −1325.93 −0.198234
\(356\) −10992.1 −1.63646
\(357\) 0 0
\(358\) −221.612 −0.0327167
\(359\) −2419.99 −0.355772 −0.177886 0.984051i \(-0.556926\pi\)
−0.177886 + 0.984051i \(0.556926\pi\)
\(360\) 0 0
\(361\) −6620.13 −0.965174
\(362\) 144.521 0.0209831
\(363\) 0 0
\(364\) 8014.93 1.15411
\(365\) −26.3951 −0.00378516
\(366\) 0 0
\(367\) 5254.54 0.747369 0.373685 0.927556i \(-0.378094\pi\)
0.373685 + 0.927556i \(0.378094\pi\)
\(368\) 9060.75 1.28349
\(369\) 0 0
\(370\) 520.437 0.0731250
\(371\) 1734.66 0.242747
\(372\) 0 0
\(373\) −6000.18 −0.832916 −0.416458 0.909155i \(-0.636729\pi\)
−0.416458 + 0.909155i \(0.636729\pi\)
\(374\) −5513.63 −0.762308
\(375\) 0 0
\(376\) 7384.53 1.01284
\(377\) 2287.48 0.312496
\(378\) 0 0
\(379\) 9449.12 1.28066 0.640328 0.768101i \(-0.278798\pi\)
0.640328 + 0.768101i \(0.278798\pi\)
\(380\) 566.413 0.0764642
\(381\) 0 0
\(382\) 2063.59 0.276394
\(383\) 856.748 0.114302 0.0571511 0.998366i \(-0.481798\pi\)
0.0571511 + 0.998366i \(0.481798\pi\)
\(384\) 0 0
\(385\) −4972.04 −0.658178
\(386\) −1223.16 −0.161288
\(387\) 0 0
\(388\) −5600.28 −0.732760
\(389\) 172.900 0.0225356 0.0112678 0.999937i \(-0.496413\pi\)
0.0112678 + 0.999937i \(0.496413\pi\)
\(390\) 0 0
\(391\) −17589.2 −2.27499
\(392\) −1892.96 −0.243901
\(393\) 0 0
\(394\) −2583.33 −0.330320
\(395\) −3962.67 −0.504768
\(396\) 0 0
\(397\) −9250.58 −1.16945 −0.584727 0.811230i \(-0.698798\pi\)
−0.584727 + 0.811230i \(0.698798\pi\)
\(398\) −4471.03 −0.563097
\(399\) 0 0
\(400\) 1208.98 0.151123
\(401\) −9906.64 −1.23370 −0.616851 0.787080i \(-0.711592\pi\)
−0.616851 + 0.787080i \(0.711592\pi\)
\(402\) 0 0
\(403\) 5787.39 0.715361
\(404\) −11327.5 −1.39496
\(405\) 0 0
\(406\) 329.180 0.0402388
\(407\) 9118.58 1.11054
\(408\) 0 0
\(409\) −9457.67 −1.14340 −0.571702 0.820462i \(-0.693716\pi\)
−0.571702 + 0.820462i \(0.693716\pi\)
\(410\) −508.375 −0.0612362
\(411\) 0 0
\(412\) −1497.70 −0.179094
\(413\) 765.415 0.0911952
\(414\) 0 0
\(415\) −7123.70 −0.842623
\(416\) 11043.8 1.30160
\(417\) 0 0
\(418\) −907.737 −0.106217
\(419\) −4924.06 −0.574119 −0.287060 0.957913i \(-0.592678\pi\)
−0.287060 + 0.957913i \(0.592678\pi\)
\(420\) 0 0
\(421\) −13100.9 −1.51663 −0.758314 0.651889i \(-0.773977\pi\)
−0.758314 + 0.651889i \(0.773977\pi\)
\(422\) −2126.20 −0.245265
\(423\) 0 0
\(424\) 1570.57 0.179891
\(425\) −2346.94 −0.267866
\(426\) 0 0
\(427\) 3599.71 0.407968
\(428\) −2513.23 −0.283835
\(429\) 0 0
\(430\) 171.830 0.0192707
\(431\) 12506.6 1.39774 0.698868 0.715251i \(-0.253688\pi\)
0.698868 + 0.715251i \(0.253688\pi\)
\(432\) 0 0
\(433\) 3714.42 0.412249 0.206124 0.978526i \(-0.433915\pi\)
0.206124 + 0.978526i \(0.433915\pi\)
\(434\) 832.837 0.0921139
\(435\) 0 0
\(436\) −9617.26 −1.05638
\(437\) −2895.79 −0.316990
\(438\) 0 0
\(439\) 9298.90 1.01096 0.505481 0.862838i \(-0.331315\pi\)
0.505481 + 0.862838i \(0.331315\pi\)
\(440\) −4501.70 −0.487750
\(441\) 0 0
\(442\) −6063.09 −0.652470
\(443\) 10321.3 1.10696 0.553478 0.832864i \(-0.313300\pi\)
0.553478 + 0.832864i \(0.313300\pi\)
\(444\) 0 0
\(445\) 7498.44 0.798787
\(446\) 1292.42 0.137215
\(447\) 0 0
\(448\) −3774.05 −0.398007
\(449\) −7340.29 −0.771514 −0.385757 0.922600i \(-0.626060\pi\)
−0.385757 + 0.922600i \(0.626060\pi\)
\(450\) 0 0
\(451\) −8907.24 −0.929990
\(452\) 288.496 0.0300215
\(453\) 0 0
\(454\) −1988.54 −0.205566
\(455\) −5467.52 −0.563344
\(456\) 0 0
\(457\) 1423.35 0.145692 0.0728462 0.997343i \(-0.476792\pi\)
0.0728462 + 0.997343i \(0.476792\pi\)
\(458\) 3784.06 0.386064
\(459\) 0 0
\(460\) −6866.45 −0.695978
\(461\) 7865.08 0.794606 0.397303 0.917687i \(-0.369946\pi\)
0.397303 + 0.917687i \(0.369946\pi\)
\(462\) 0 0
\(463\) 6096.09 0.611899 0.305950 0.952048i \(-0.401026\pi\)
0.305950 + 0.952048i \(0.401026\pi\)
\(464\) −1402.42 −0.140314
\(465\) 0 0
\(466\) 2732.72 0.271654
\(467\) 7535.45 0.746679 0.373339 0.927695i \(-0.378213\pi\)
0.373339 + 0.927695i \(0.378213\pi\)
\(468\) 0 0
\(469\) −9208.98 −0.906676
\(470\) −2408.59 −0.236383
\(471\) 0 0
\(472\) 693.009 0.0675812
\(473\) 3010.64 0.292663
\(474\) 0 0
\(475\) −386.389 −0.0373236
\(476\) 9539.00 0.918528
\(477\) 0 0
\(478\) −620.002 −0.0593269
\(479\) −16971.5 −1.61889 −0.809444 0.587197i \(-0.800232\pi\)
−0.809444 + 0.587197i \(0.800232\pi\)
\(480\) 0 0
\(481\) 10027.3 0.950530
\(482\) 393.721 0.0372064
\(483\) 0 0
\(484\) −27956.7 −2.62554
\(485\) 3820.33 0.357674
\(486\) 0 0
\(487\) 17333.1 1.61281 0.806405 0.591364i \(-0.201410\pi\)
0.806405 + 0.591364i \(0.201410\pi\)
\(488\) 3259.19 0.302329
\(489\) 0 0
\(490\) 617.422 0.0569230
\(491\) −2468.47 −0.226885 −0.113442 0.993545i \(-0.536188\pi\)
−0.113442 + 0.993545i \(0.536188\pi\)
\(492\) 0 0
\(493\) 2722.45 0.248708
\(494\) −998.197 −0.0909130
\(495\) 0 0
\(496\) −3548.17 −0.321205
\(497\) −3676.31 −0.331801
\(498\) 0 0
\(499\) 9085.35 0.815062 0.407531 0.913191i \(-0.366390\pi\)
0.407531 + 0.913191i \(0.366390\pi\)
\(500\) −916.198 −0.0819472
\(501\) 0 0
\(502\) 1831.03 0.162795
\(503\) −4534.24 −0.401932 −0.200966 0.979598i \(-0.564408\pi\)
−0.200966 + 0.979598i \(0.564408\pi\)
\(504\) 0 0
\(505\) 7727.26 0.680908
\(506\) 11004.2 0.966793
\(507\) 0 0
\(508\) 13512.8 1.18018
\(509\) 13065.3 1.13774 0.568871 0.822426i \(-0.307380\pi\)
0.568871 + 0.822426i \(0.307380\pi\)
\(510\) 0 0
\(511\) −73.1840 −0.00633555
\(512\) −11626.8 −1.00358
\(513\) 0 0
\(514\) −5682.99 −0.487677
\(515\) 1021.68 0.0874190
\(516\) 0 0
\(517\) −42200.9 −3.58993
\(518\) 1442.98 0.122396
\(519\) 0 0
\(520\) −4950.31 −0.417472
\(521\) −11144.0 −0.937101 −0.468550 0.883437i \(-0.655224\pi\)
−0.468550 + 0.883437i \(0.655224\pi\)
\(522\) 0 0
\(523\) −4525.71 −0.378385 −0.189193 0.981940i \(-0.560587\pi\)
−0.189193 + 0.981940i \(0.560587\pi\)
\(524\) −16712.4 −1.39329
\(525\) 0 0
\(526\) 4896.49 0.405888
\(527\) 6887.89 0.569338
\(528\) 0 0
\(529\) 22937.8 1.88525
\(530\) −512.268 −0.0419839
\(531\) 0 0
\(532\) 1570.45 0.127985
\(533\) −9794.88 −0.795992
\(534\) 0 0
\(535\) 1714.44 0.138545
\(536\) −8337.83 −0.671902
\(537\) 0 0
\(538\) 1492.12 0.119572
\(539\) 10817.9 0.864486
\(540\) 0 0
\(541\) 12028.0 0.955864 0.477932 0.878397i \(-0.341387\pi\)
0.477932 + 0.878397i \(0.341387\pi\)
\(542\) −2621.45 −0.207750
\(543\) 0 0
\(544\) 13143.8 1.03591
\(545\) 6560.58 0.515641
\(546\) 0 0
\(547\) 861.602 0.0673482 0.0336741 0.999433i \(-0.489279\pi\)
0.0336741 + 0.999433i \(0.489279\pi\)
\(548\) 8802.93 0.686209
\(549\) 0 0
\(550\) 1468.30 0.113834
\(551\) 448.211 0.0346541
\(552\) 0 0
\(553\) −10987.0 −0.844874
\(554\) −756.772 −0.0580364
\(555\) 0 0
\(556\) 70.7736 0.00539832
\(557\) −26268.4 −1.99826 −0.999129 0.0417358i \(-0.986711\pi\)
−0.999129 + 0.0417358i \(0.986711\pi\)
\(558\) 0 0
\(559\) 3310.66 0.250494
\(560\) 3352.07 0.252948
\(561\) 0 0
\(562\) 2542.62 0.190843
\(563\) −24246.0 −1.81501 −0.907503 0.420045i \(-0.862014\pi\)
−0.907503 + 0.420045i \(0.862014\pi\)
\(564\) 0 0
\(565\) −196.803 −0.0146541
\(566\) 8.64386 0.000641923 0
\(567\) 0 0
\(568\) −3328.54 −0.245885
\(569\) 16401.5 1.20841 0.604206 0.796828i \(-0.293490\pi\)
0.604206 + 0.796828i \(0.293490\pi\)
\(570\) 0 0
\(571\) 13490.3 0.988704 0.494352 0.869262i \(-0.335405\pi\)
0.494352 + 0.869262i \(0.335405\pi\)
\(572\) −41470.6 −3.03142
\(573\) 0 0
\(574\) −1409.54 −0.102496
\(575\) 4684.07 0.339720
\(576\) 0 0
\(577\) 25614.9 1.84811 0.924057 0.382254i \(-0.124852\pi\)
0.924057 + 0.382254i \(0.124852\pi\)
\(578\) −3193.28 −0.229798
\(579\) 0 0
\(580\) 1062.79 0.0760861
\(581\) −19751.4 −1.41037
\(582\) 0 0
\(583\) −8975.44 −0.637607
\(584\) −66.2609 −0.00469503
\(585\) 0 0
\(586\) −2368.00 −0.166930
\(587\) 389.674 0.0273996 0.0136998 0.999906i \(-0.495639\pi\)
0.0136998 + 0.999906i \(0.495639\pi\)
\(588\) 0 0
\(589\) 1133.99 0.0793296
\(590\) −226.036 −0.0157725
\(591\) 0 0
\(592\) −6147.60 −0.426799
\(593\) −3592.08 −0.248750 −0.124375 0.992235i \(-0.539693\pi\)
−0.124375 + 0.992235i \(0.539693\pi\)
\(594\) 0 0
\(595\) −6507.19 −0.448351
\(596\) −4136.96 −0.284323
\(597\) 0 0
\(598\) 12100.8 0.827492
\(599\) −6355.87 −0.433546 −0.216773 0.976222i \(-0.569553\pi\)
−0.216773 + 0.976222i \(0.569553\pi\)
\(600\) 0 0
\(601\) −24779.9 −1.68185 −0.840927 0.541149i \(-0.817990\pi\)
−0.840927 + 0.541149i \(0.817990\pi\)
\(602\) 476.422 0.0322550
\(603\) 0 0
\(604\) −4661.04 −0.313998
\(605\) 19071.2 1.28157
\(606\) 0 0
\(607\) 14087.1 0.941971 0.470986 0.882141i \(-0.343898\pi\)
0.470986 + 0.882141i \(0.343898\pi\)
\(608\) 2163.93 0.144341
\(609\) 0 0
\(610\) −1063.04 −0.0705593
\(611\) −46406.4 −3.07267
\(612\) 0 0
\(613\) −18561.9 −1.22302 −0.611508 0.791238i \(-0.709437\pi\)
−0.611508 + 0.791238i \(0.709437\pi\)
\(614\) −5624.69 −0.369697
\(615\) 0 0
\(616\) −12481.5 −0.816389
\(617\) 21599.2 1.40932 0.704661 0.709544i \(-0.251099\pi\)
0.704661 + 0.709544i \(0.251099\pi\)
\(618\) 0 0
\(619\) −14290.1 −0.927893 −0.463947 0.885863i \(-0.653567\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(620\) 2688.89 0.174175
\(621\) 0 0
\(622\) −3074.45 −0.198190
\(623\) 20790.4 1.33700
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −822.338 −0.0525036
\(627\) 0 0
\(628\) 4200.01 0.266877
\(629\) 11934.0 0.756503
\(630\) 0 0
\(631\) 21344.9 1.34664 0.673318 0.739353i \(-0.264869\pi\)
0.673318 + 0.739353i \(0.264869\pi\)
\(632\) −9947.67 −0.626103
\(633\) 0 0
\(634\) −3730.14 −0.233663
\(635\) −9217.98 −0.576070
\(636\) 0 0
\(637\) 11895.9 0.739926
\(638\) −1703.23 −0.105692
\(639\) 0 0
\(640\) 6714.93 0.414736
\(641\) −24178.6 −1.48985 −0.744927 0.667146i \(-0.767516\pi\)
−0.744927 + 0.667146i \(0.767516\pi\)
\(642\) 0 0
\(643\) 11994.8 0.735658 0.367829 0.929893i \(-0.380101\pi\)
0.367829 + 0.929893i \(0.380101\pi\)
\(644\) −19038.1 −1.16492
\(645\) 0 0
\(646\) −1188.01 −0.0723553
\(647\) −5641.51 −0.342798 −0.171399 0.985202i \(-0.554829\pi\)
−0.171399 + 0.985202i \(0.554829\pi\)
\(648\) 0 0
\(649\) −3960.39 −0.239536
\(650\) 1614.63 0.0974321
\(651\) 0 0
\(652\) 24026.5 1.44318
\(653\) −21090.4 −1.26390 −0.631952 0.775008i \(-0.717746\pi\)
−0.631952 + 0.775008i \(0.717746\pi\)
\(654\) 0 0
\(655\) 11400.7 0.680092
\(656\) 6005.12 0.357409
\(657\) 0 0
\(658\) −6678.13 −0.395654
\(659\) 13160.3 0.777926 0.388963 0.921253i \(-0.372833\pi\)
0.388963 + 0.921253i \(0.372833\pi\)
\(660\) 0 0
\(661\) 32282.2 1.89959 0.949796 0.312869i \(-0.101290\pi\)
0.949796 + 0.312869i \(0.101290\pi\)
\(662\) 3557.13 0.208840
\(663\) 0 0
\(664\) −17883.0 −1.04517
\(665\) −1071.31 −0.0624718
\(666\) 0 0
\(667\) −5433.52 −0.315423
\(668\) −28767.2 −1.66622
\(669\) 0 0
\(670\) 2719.52 0.156813
\(671\) −18625.5 −1.07158
\(672\) 0 0
\(673\) −2556.97 −0.146455 −0.0732273 0.997315i \(-0.523330\pi\)
−0.0732273 + 0.997315i \(0.523330\pi\)
\(674\) −6642.33 −0.379604
\(675\) 0 0
\(676\) −29500.2 −1.67844
\(677\) −24565.3 −1.39457 −0.697284 0.716795i \(-0.745608\pi\)
−0.697284 + 0.716795i \(0.745608\pi\)
\(678\) 0 0
\(679\) 10592.4 0.598670
\(680\) −5891.63 −0.332255
\(681\) 0 0
\(682\) −4309.23 −0.241949
\(683\) 2925.25 0.163882 0.0819411 0.996637i \(-0.473888\pi\)
0.0819411 + 0.996637i \(0.473888\pi\)
\(684\) 0 0
\(685\) −6005.07 −0.334952
\(686\) 5605.29 0.311969
\(687\) 0 0
\(688\) −2029.72 −0.112475
\(689\) −9869.88 −0.545737
\(690\) 0 0
\(691\) −3667.88 −0.201929 −0.100964 0.994890i \(-0.532193\pi\)
−0.100964 + 0.994890i \(0.532193\pi\)
\(692\) −17659.5 −0.970104
\(693\) 0 0
\(694\) −8793.06 −0.480951
\(695\) −48.2794 −0.00263502
\(696\) 0 0
\(697\) −11657.4 −0.633510
\(698\) 6300.74 0.341672
\(699\) 0 0
\(700\) −2540.28 −0.137162
\(701\) −13843.7 −0.745891 −0.372946 0.927853i \(-0.621652\pi\)
−0.372946 + 0.927853i \(0.621652\pi\)
\(702\) 0 0
\(703\) 1964.76 0.105409
\(704\) 19527.6 1.04542
\(705\) 0 0
\(706\) −5421.30 −0.288999
\(707\) 21424.9 1.13970
\(708\) 0 0
\(709\) 23902.3 1.26610 0.633052 0.774109i \(-0.281802\pi\)
0.633052 + 0.774109i \(0.281802\pi\)
\(710\) 1085.66 0.0573860
\(711\) 0 0
\(712\) 18823.7 0.990797
\(713\) −13747.0 −0.722060
\(714\) 0 0
\(715\) 28289.9 1.47969
\(716\) −1983.81 −0.103545
\(717\) 0 0
\(718\) 1981.47 0.102991
\(719\) −16629.2 −0.862537 −0.431269 0.902224i \(-0.641934\pi\)
−0.431269 + 0.902224i \(0.641934\pi\)
\(720\) 0 0
\(721\) 2832.75 0.146321
\(722\) 5420.51 0.279405
\(723\) 0 0
\(724\) 1293.71 0.0664094
\(725\) −725.000 −0.0371391
\(726\) 0 0
\(727\) −8889.10 −0.453478 −0.226739 0.973956i \(-0.572806\pi\)
−0.226739 + 0.973956i \(0.572806\pi\)
\(728\) −13725.4 −0.698759
\(729\) 0 0
\(730\) 21.6121 0.00109575
\(731\) 3940.20 0.199362
\(732\) 0 0
\(733\) −17622.0 −0.887973 −0.443987 0.896033i \(-0.646436\pi\)
−0.443987 + 0.896033i \(0.646436\pi\)
\(734\) −4302.37 −0.216353
\(735\) 0 0
\(736\) −26232.7 −1.31379
\(737\) 47648.8 2.38150
\(738\) 0 0
\(739\) −25697.3 −1.27915 −0.639573 0.768730i \(-0.720889\pi\)
−0.639573 + 0.768730i \(0.720889\pi\)
\(740\) 4658.80 0.231434
\(741\) 0 0
\(742\) −1420.33 −0.0702721
\(743\) 35603.8 1.75798 0.878989 0.476843i \(-0.158219\pi\)
0.878989 + 0.476843i \(0.158219\pi\)
\(744\) 0 0
\(745\) 2822.10 0.138784
\(746\) 4912.90 0.241118
\(747\) 0 0
\(748\) −49356.4 −2.41263
\(749\) 4753.51 0.231895
\(750\) 0 0
\(751\) −890.657 −0.0432763 −0.0216382 0.999766i \(-0.506888\pi\)
−0.0216382 + 0.999766i \(0.506888\pi\)
\(752\) 28451.2 1.37966
\(753\) 0 0
\(754\) −1872.97 −0.0904634
\(755\) 3179.61 0.153269
\(756\) 0 0
\(757\) −27316.1 −1.31152 −0.655761 0.754969i \(-0.727652\pi\)
−0.655761 + 0.754969i \(0.727652\pi\)
\(758\) −7736.86 −0.370733
\(759\) 0 0
\(760\) −969.969 −0.0462954
\(761\) 19155.6 0.912472 0.456236 0.889859i \(-0.349197\pi\)
0.456236 + 0.889859i \(0.349197\pi\)
\(762\) 0 0
\(763\) 18190.1 0.863073
\(764\) 18472.7 0.874762
\(765\) 0 0
\(766\) −701.498 −0.0330890
\(767\) −4355.06 −0.205022
\(768\) 0 0
\(769\) −6601.93 −0.309586 −0.154793 0.987947i \(-0.549471\pi\)
−0.154793 + 0.987947i \(0.549471\pi\)
\(770\) 4071.06 0.190534
\(771\) 0 0
\(772\) −10949.3 −0.510460
\(773\) −10501.3 −0.488622 −0.244311 0.969697i \(-0.578562\pi\)
−0.244311 + 0.969697i \(0.578562\pi\)
\(774\) 0 0
\(775\) −1834.27 −0.0850181
\(776\) 9590.34 0.443651
\(777\) 0 0
\(778\) −141.569 −0.00652376
\(779\) −1919.22 −0.0882711
\(780\) 0 0
\(781\) 19021.8 0.871517
\(782\) 14401.9 0.658580
\(783\) 0 0
\(784\) −7293.22 −0.332235
\(785\) −2865.11 −0.130268
\(786\) 0 0
\(787\) 27169.2 1.23059 0.615297 0.788296i \(-0.289036\pi\)
0.615297 + 0.788296i \(0.289036\pi\)
\(788\) −23125.2 −1.04543
\(789\) 0 0
\(790\) 3244.60 0.146124
\(791\) −545.661 −0.0245278
\(792\) 0 0
\(793\) −20481.6 −0.917180
\(794\) 7574.30 0.338541
\(795\) 0 0
\(796\) −40023.3 −1.78215
\(797\) −3072.45 −0.136552 −0.0682759 0.997666i \(-0.521750\pi\)
−0.0682759 + 0.997666i \(0.521750\pi\)
\(798\) 0 0
\(799\) −55230.8 −2.44546
\(800\) −3500.25 −0.154691
\(801\) 0 0
\(802\) 8111.48 0.357140
\(803\) 378.666 0.0166411
\(804\) 0 0
\(805\) 12987.2 0.568619
\(806\) −4738.67 −0.207087
\(807\) 0 0
\(808\) 19398.1 0.844583
\(809\) 149.629 0.00650269 0.00325134 0.999995i \(-0.498965\pi\)
0.00325134 + 0.999995i \(0.498965\pi\)
\(810\) 0 0
\(811\) −10550.4 −0.456813 −0.228406 0.973566i \(-0.573351\pi\)
−0.228406 + 0.973566i \(0.573351\pi\)
\(812\) 2946.72 0.127352
\(813\) 0 0
\(814\) −7466.22 −0.321488
\(815\) −16390.1 −0.704442
\(816\) 0 0
\(817\) 648.695 0.0277784
\(818\) 7743.86 0.331000
\(819\) 0 0
\(820\) −4550.82 −0.193807
\(821\) −29361.9 −1.24816 −0.624078 0.781362i \(-0.714525\pi\)
−0.624078 + 0.781362i \(0.714525\pi\)
\(822\) 0 0
\(823\) 23398.7 0.991042 0.495521 0.868596i \(-0.334977\pi\)
0.495521 + 0.868596i \(0.334977\pi\)
\(824\) 2564.78 0.108433
\(825\) 0 0
\(826\) −626.716 −0.0263998
\(827\) −15323.5 −0.644317 −0.322158 0.946686i \(-0.604408\pi\)
−0.322158 + 0.946686i \(0.604408\pi\)
\(828\) 0 0
\(829\) 10782.3 0.451730 0.225865 0.974159i \(-0.427479\pi\)
0.225865 + 0.974159i \(0.427479\pi\)
\(830\) 5832.83 0.243928
\(831\) 0 0
\(832\) 21473.6 0.894786
\(833\) 14157.9 0.588888
\(834\) 0 0
\(835\) 19624.0 0.813315
\(836\) −8125.79 −0.336168
\(837\) 0 0
\(838\) 4031.78 0.166200
\(839\) −41081.5 −1.69045 −0.845227 0.534408i \(-0.820535\pi\)
−0.845227 + 0.534408i \(0.820535\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 10726.9 0.439044
\(843\) 0 0
\(844\) −19033.1 −0.776240
\(845\) 20124.1 0.819278
\(846\) 0 0
\(847\) 52877.3 2.14508
\(848\) 6051.10 0.245042
\(849\) 0 0
\(850\) 1921.65 0.0775437
\(851\) −23818.2 −0.959432
\(852\) 0 0
\(853\) −23051.2 −0.925274 −0.462637 0.886548i \(-0.653097\pi\)
−0.462637 + 0.886548i \(0.653097\pi\)
\(854\) −2947.41 −0.118101
\(855\) 0 0
\(856\) 4303.84 0.171848
\(857\) −1000.28 −0.0398704 −0.0199352 0.999801i \(-0.506346\pi\)
−0.0199352 + 0.999801i \(0.506346\pi\)
\(858\) 0 0
\(859\) −16370.6 −0.650242 −0.325121 0.945672i \(-0.605405\pi\)
−0.325121 + 0.945672i \(0.605405\pi\)
\(860\) 1538.17 0.0609899
\(861\) 0 0
\(862\) −10240.3 −0.404626
\(863\) −16312.7 −0.643441 −0.321721 0.946835i \(-0.604261\pi\)
−0.321721 + 0.946835i \(0.604261\pi\)
\(864\) 0 0
\(865\) 12046.7 0.473526
\(866\) −3041.34 −0.119340
\(867\) 0 0
\(868\) 7455.30 0.291532
\(869\) 56848.6 2.21917
\(870\) 0 0
\(871\) 52397.2 2.03836
\(872\) 16469.3 0.639589
\(873\) 0 0
\(874\) 2371.05 0.0917644
\(875\) 1732.89 0.0669515
\(876\) 0 0
\(877\) −15674.8 −0.603534 −0.301767 0.953382i \(-0.597576\pi\)
−0.301767 + 0.953382i \(0.597576\pi\)
\(878\) −7613.86 −0.292660
\(879\) 0 0
\(880\) −17344.2 −0.664399
\(881\) 14789.4 0.565569 0.282784 0.959184i \(-0.408742\pi\)
0.282784 + 0.959184i \(0.408742\pi\)
\(882\) 0 0
\(883\) 5049.14 0.192432 0.0962158 0.995360i \(-0.469326\pi\)
0.0962158 + 0.995360i \(0.469326\pi\)
\(884\) −54274.9 −2.06500
\(885\) 0 0
\(886\) −8451.03 −0.320449
\(887\) 37670.6 1.42599 0.712997 0.701167i \(-0.247337\pi\)
0.712997 + 0.701167i \(0.247337\pi\)
\(888\) 0 0
\(889\) −25558.1 −0.964218
\(890\) −6139.66 −0.231238
\(891\) 0 0
\(892\) 11569.4 0.434273
\(893\) −9092.92 −0.340743
\(894\) 0 0
\(895\) 1353.29 0.0505423
\(896\) 18618.0 0.694179
\(897\) 0 0
\(898\) 6010.17 0.223343
\(899\) 2127.76 0.0789374
\(900\) 0 0
\(901\) −11746.7 −0.434338
\(902\) 7293.17 0.269220
\(903\) 0 0
\(904\) −494.043 −0.0181766
\(905\) −882.527 −0.0324157
\(906\) 0 0
\(907\) −29554.5 −1.08196 −0.540981 0.841035i \(-0.681947\pi\)
−0.540981 + 0.841035i \(0.681947\pi\)
\(908\) −17800.9 −0.650597
\(909\) 0 0
\(910\) 4476.76 0.163081
\(911\) −898.948 −0.0326932 −0.0163466 0.999866i \(-0.505204\pi\)
−0.0163466 + 0.999866i \(0.505204\pi\)
\(912\) 0 0
\(913\) 102197. 3.70452
\(914\) −1165.43 −0.0421760
\(915\) 0 0
\(916\) 33873.7 1.22186
\(917\) 31609.8 1.13833
\(918\) 0 0
\(919\) −36963.4 −1.32678 −0.663390 0.748274i \(-0.730883\pi\)
−0.663390 + 0.748274i \(0.730883\pi\)
\(920\) 11758.6 0.421381
\(921\) 0 0
\(922\) −6439.87 −0.230028
\(923\) 20917.4 0.745944
\(924\) 0 0
\(925\) −3178.08 −0.112967
\(926\) −4991.43 −0.177137
\(927\) 0 0
\(928\) 4060.29 0.143627
\(929\) 35541.5 1.25520 0.627600 0.778536i \(-0.284037\pi\)
0.627600 + 0.778536i \(0.284037\pi\)
\(930\) 0 0
\(931\) 2330.90 0.0820537
\(932\) 24462.5 0.859758
\(933\) 0 0
\(934\) −6169.96 −0.216154
\(935\) 33669.3 1.17765
\(936\) 0 0
\(937\) 17380.4 0.605968 0.302984 0.952996i \(-0.402017\pi\)
0.302984 + 0.952996i \(0.402017\pi\)
\(938\) 7540.24 0.262471
\(939\) 0 0
\(940\) −21561.0 −0.748129
\(941\) −12456.3 −0.431525 −0.215763 0.976446i \(-0.569224\pi\)
−0.215763 + 0.976446i \(0.569224\pi\)
\(942\) 0 0
\(943\) 23266.1 0.803446
\(944\) 2670.03 0.0920572
\(945\) 0 0
\(946\) −2465.09 −0.0847219
\(947\) 36639.9 1.25727 0.628636 0.777700i \(-0.283614\pi\)
0.628636 + 0.777700i \(0.283614\pi\)
\(948\) 0 0
\(949\) 416.402 0.0142434
\(950\) 316.372 0.0108047
\(951\) 0 0
\(952\) −16335.3 −0.556125
\(953\) −4554.66 −0.154816 −0.0774082 0.996999i \(-0.524664\pi\)
−0.0774082 + 0.996999i \(0.524664\pi\)
\(954\) 0 0
\(955\) −12601.5 −0.426988
\(956\) −5550.07 −0.187764
\(957\) 0 0
\(958\) 13896.1 0.468647
\(959\) −16649.8 −0.560638
\(960\) 0 0
\(961\) −24407.7 −0.819298
\(962\) −8210.26 −0.275166
\(963\) 0 0
\(964\) 3524.47 0.117755
\(965\) 7469.27 0.249165
\(966\) 0 0
\(967\) 13804.0 0.459056 0.229528 0.973302i \(-0.426282\pi\)
0.229528 + 0.973302i \(0.426282\pi\)
\(968\) 47875.2 1.58964
\(969\) 0 0
\(970\) −3128.05 −0.103542
\(971\) 24931.6 0.823988 0.411994 0.911187i \(-0.364832\pi\)
0.411994 + 0.911187i \(0.364832\pi\)
\(972\) 0 0
\(973\) −133.861 −0.00441047
\(974\) −14192.2 −0.466887
\(975\) 0 0
\(976\) 12557.0 0.411824
\(977\) 24423.4 0.799770 0.399885 0.916565i \(-0.369050\pi\)
0.399885 + 0.916565i \(0.369050\pi\)
\(978\) 0 0
\(979\) −107573. −3.51180
\(980\) 5526.98 0.180156
\(981\) 0 0
\(982\) 2021.16 0.0656801
\(983\) −52340.5 −1.69827 −0.849136 0.528174i \(-0.822877\pi\)
−0.849136 + 0.528174i \(0.822877\pi\)
\(984\) 0 0
\(985\) 15775.2 0.510296
\(986\) −2229.12 −0.0719976
\(987\) 0 0
\(988\) −8935.56 −0.287731
\(989\) −7863.93 −0.252840
\(990\) 0 0
\(991\) 6746.36 0.216251 0.108126 0.994137i \(-0.465515\pi\)
0.108126 + 0.994137i \(0.465515\pi\)
\(992\) 10272.7 0.328788
\(993\) 0 0
\(994\) 3010.13 0.0960519
\(995\) 27302.6 0.869901
\(996\) 0 0
\(997\) 15842.8 0.503257 0.251629 0.967824i \(-0.419034\pi\)
0.251629 + 0.967824i \(0.419034\pi\)
\(998\) −7439.01 −0.235950
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1305.4.a.p.1.3 8
3.2 odd 2 435.4.a.k.1.6 8
15.14 odd 2 2175.4.a.o.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.k.1.6 8 3.2 odd 2
1305.4.a.p.1.3 8 1.1 even 1 trivial
2175.4.a.o.1.3 8 15.14 odd 2