Properties

Label 2175.4.a.o.1.3
Level $2175$
Weight $4$
Character 2175.1
Self dual yes
Analytic conductor $128.329$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2175,4,Mod(1,2175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2175.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2175 = 3 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(128.329154262\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 43x^{6} + 117x^{5} + 586x^{4} - 701x^{3} - 1792x^{2} + 924x + 1424 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 435)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.81879\) of defining polynomial
Character \(\chi\) \(=\) 2175.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.818792 q^{2} +3.00000 q^{3} -7.32958 q^{4} -2.45638 q^{6} -13.8632 q^{7} +12.5517 q^{8} +9.00000 q^{9} +71.7303 q^{11} -21.9887 q^{12} +78.8785 q^{13} +11.3510 q^{14} +48.3594 q^{16} -93.8775 q^{17} -7.36913 q^{18} -15.4555 q^{19} -41.5895 q^{21} -58.7322 q^{22} +187.363 q^{23} +37.6552 q^{24} -64.5851 q^{26} +27.0000 q^{27} +101.611 q^{28} +29.0000 q^{29} -73.3710 q^{31} -140.010 q^{32} +215.191 q^{33} +76.8662 q^{34} -65.9662 q^{36} +127.123 q^{37} +12.6549 q^{38} +236.635 q^{39} -124.177 q^{41} +34.0531 q^{42} +41.9717 q^{43} -525.753 q^{44} -153.411 q^{46} +588.328 q^{47} +145.078 q^{48} -150.813 q^{49} -281.633 q^{51} -578.146 q^{52} +125.128 q^{53} -22.1074 q^{54} -174.007 q^{56} -46.3666 q^{57} -23.7450 q^{58} -55.2122 q^{59} +259.660 q^{61} +60.0755 q^{62} -124.768 q^{63} -272.236 q^{64} -176.196 q^{66} +664.277 q^{67} +688.083 q^{68} +562.089 q^{69} +265.186 q^{71} +112.966 q^{72} +5.27903 q^{73} -104.087 q^{74} +113.283 q^{76} -994.408 q^{77} -193.755 q^{78} -792.533 q^{79} +81.0000 q^{81} +101.675 q^{82} -1424.74 q^{83} +304.833 q^{84} -34.3661 q^{86} +87.0000 q^{87} +900.339 q^{88} -1499.69 q^{89} -1093.50 q^{91} -1373.29 q^{92} -220.113 q^{93} -481.718 q^{94} -420.030 q^{96} -764.065 q^{97} +123.484 q^{98} +645.572 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 24 q^{3} + 38 q^{4} + 12 q^{6} + q^{7} + 9 q^{8} + 72 q^{9} + 11 q^{11} + 114 q^{12} + 97 q^{13} - 69 q^{14} + 242 q^{16} + 119 q^{17} + 36 q^{18} + 220 q^{19} + 3 q^{21} + 129 q^{22} + 262 q^{23}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.818792 −0.289487 −0.144743 0.989469i \(-0.546236\pi\)
−0.144743 + 0.989469i \(0.546236\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.32958 −0.916198
\(5\) 0 0
\(6\) −2.45638 −0.167135
\(7\) −13.8632 −0.748540 −0.374270 0.927320i \(-0.622107\pi\)
−0.374270 + 0.927320i \(0.622107\pi\)
\(8\) 12.5517 0.554714
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 71.7303 1.96614 0.983068 0.183243i \(-0.0586595\pi\)
0.983068 + 0.183243i \(0.0586595\pi\)
\(12\) −21.9887 −0.528967
\(13\) 78.8785 1.68284 0.841421 0.540379i \(-0.181719\pi\)
0.841421 + 0.540379i \(0.181719\pi\)
\(14\) 11.3510 0.216692
\(15\) 0 0
\(16\) 48.3594 0.755615
\(17\) −93.8775 −1.33933 −0.669666 0.742662i \(-0.733563\pi\)
−0.669666 + 0.742662i \(0.733563\pi\)
\(18\) −7.36913 −0.0964955
\(19\) −15.4555 −0.186618 −0.0933091 0.995637i \(-0.529744\pi\)
−0.0933091 + 0.995637i \(0.529744\pi\)
\(20\) 0 0
\(21\) −41.5895 −0.432170
\(22\) −58.7322 −0.569170
\(23\) 187.363 1.69860 0.849301 0.527909i \(-0.177024\pi\)
0.849301 + 0.527909i \(0.177024\pi\)
\(24\) 37.6552 0.320264
\(25\) 0 0
\(26\) −64.5851 −0.487161
\(27\) 27.0000 0.192450
\(28\) 101.611 0.685811
\(29\) 29.0000 0.185695
\(30\) 0 0
\(31\) −73.3710 −0.425091 −0.212545 0.977151i \(-0.568175\pi\)
−0.212545 + 0.977151i \(0.568175\pi\)
\(32\) −140.010 −0.773454
\(33\) 215.191 1.13515
\(34\) 76.8662 0.387719
\(35\) 0 0
\(36\) −65.9662 −0.305399
\(37\) 127.123 0.564836 0.282418 0.959291i \(-0.408863\pi\)
0.282418 + 0.959291i \(0.408863\pi\)
\(38\) 12.6549 0.0540235
\(39\) 236.635 0.971590
\(40\) 0 0
\(41\) −124.177 −0.473004 −0.236502 0.971631i \(-0.576001\pi\)
−0.236502 + 0.971631i \(0.576001\pi\)
\(42\) 34.0531 0.125107
\(43\) 41.9717 0.148852 0.0744258 0.997227i \(-0.476288\pi\)
0.0744258 + 0.997227i \(0.476288\pi\)
\(44\) −525.753 −1.80137
\(45\) 0 0
\(46\) −153.411 −0.491723
\(47\) 588.328 1.82588 0.912941 0.408093i \(-0.133806\pi\)
0.912941 + 0.408093i \(0.133806\pi\)
\(48\) 145.078 0.436255
\(49\) −150.813 −0.439688
\(50\) 0 0
\(51\) −281.633 −0.773264
\(52\) −578.146 −1.54182
\(53\) 125.128 0.324294 0.162147 0.986767i \(-0.448158\pi\)
0.162147 + 0.986767i \(0.448158\pi\)
\(54\) −22.1074 −0.0557117
\(55\) 0 0
\(56\) −174.007 −0.415225
\(57\) −46.3666 −0.107744
\(58\) −23.7450 −0.0537563
\(59\) −55.2122 −0.121831 −0.0609154 0.998143i \(-0.519402\pi\)
−0.0609154 + 0.998143i \(0.519402\pi\)
\(60\) 0 0
\(61\) 259.660 0.545018 0.272509 0.962153i \(-0.412147\pi\)
0.272509 + 0.962153i \(0.412147\pi\)
\(62\) 60.0755 0.123058
\(63\) −124.768 −0.249513
\(64\) −272.236 −0.531711
\(65\) 0 0
\(66\) −176.196 −0.328610
\(67\) 664.277 1.21126 0.605630 0.795747i \(-0.292921\pi\)
0.605630 + 0.795747i \(0.292921\pi\)
\(68\) 688.083 1.22709
\(69\) 562.089 0.980688
\(70\) 0 0
\(71\) 265.186 0.443264 0.221632 0.975130i \(-0.428862\pi\)
0.221632 + 0.975130i \(0.428862\pi\)
\(72\) 112.966 0.184905
\(73\) 5.27903 0.00846388 0.00423194 0.999991i \(-0.498653\pi\)
0.00423194 + 0.999991i \(0.498653\pi\)
\(74\) −104.087 −0.163512
\(75\) 0 0
\(76\) 113.283 0.170979
\(77\) −994.408 −1.47173
\(78\) −193.755 −0.281262
\(79\) −792.533 −1.12870 −0.564348 0.825537i \(-0.690872\pi\)
−0.564348 + 0.825537i \(0.690872\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 101.675 0.136928
\(83\) −1424.74 −1.88416 −0.942081 0.335385i \(-0.891134\pi\)
−0.942081 + 0.335385i \(0.891134\pi\)
\(84\) 304.833 0.395953
\(85\) 0 0
\(86\) −34.3661 −0.0430906
\(87\) 87.0000 0.107211
\(88\) 900.339 1.09064
\(89\) −1499.69 −1.78614 −0.893071 0.449916i \(-0.851454\pi\)
−0.893071 + 0.449916i \(0.851454\pi\)
\(90\) 0 0
\(91\) −1093.50 −1.25968
\(92\) −1373.29 −1.55626
\(93\) −220.113 −0.245426
\(94\) −481.718 −0.528568
\(95\) 0 0
\(96\) −420.030 −0.446554
\(97\) −764.065 −0.799784 −0.399892 0.916562i \(-0.630952\pi\)
−0.399892 + 0.916562i \(0.630952\pi\)
\(98\) 123.484 0.127284
\(99\) 645.572 0.655378
\(100\) 0 0
\(101\) −1545.45 −1.52256 −0.761279 0.648425i \(-0.775428\pi\)
−0.761279 + 0.648425i \(0.775428\pi\)
\(102\) 230.598 0.223850
\(103\) −204.337 −0.195475 −0.0977374 0.995212i \(-0.531161\pi\)
−0.0977374 + 0.995212i \(0.531161\pi\)
\(104\) 990.062 0.933496
\(105\) 0 0
\(106\) −102.454 −0.0938789
\(107\) 342.888 0.309797 0.154898 0.987930i \(-0.450495\pi\)
0.154898 + 0.987930i \(0.450495\pi\)
\(108\) −197.899 −0.176322
\(109\) 1312.12 1.15301 0.576504 0.817094i \(-0.304416\pi\)
0.576504 + 0.817094i \(0.304416\pi\)
\(110\) 0 0
\(111\) 381.370 0.326108
\(112\) −670.414 −0.565608
\(113\) −39.3605 −0.0327675 −0.0163837 0.999866i \(-0.505215\pi\)
−0.0163837 + 0.999866i \(0.505215\pi\)
\(114\) 37.9646 0.0311905
\(115\) 0 0
\(116\) −212.558 −0.170134
\(117\) 709.906 0.560948
\(118\) 45.2073 0.0352684
\(119\) 1301.44 1.00254
\(120\) 0 0
\(121\) 3814.23 2.86569
\(122\) −212.608 −0.157775
\(123\) −372.531 −0.273089
\(124\) 537.778 0.389467
\(125\) 0 0
\(126\) 102.159 0.0722308
\(127\) 1843.60 1.28813 0.644066 0.764970i \(-0.277246\pi\)
0.644066 + 0.764970i \(0.277246\pi\)
\(128\) 1342.99 0.927377
\(129\) 125.915 0.0859396
\(130\) 0 0
\(131\) −2280.13 −1.52073 −0.760366 0.649494i \(-0.774981\pi\)
−0.760366 + 0.649494i \(0.774981\pi\)
\(132\) −1577.26 −1.04002
\(133\) 214.263 0.139691
\(134\) −543.905 −0.350643
\(135\) 0 0
\(136\) −1178.33 −0.742946
\(137\) −1201.01 −0.748975 −0.374487 0.927232i \(-0.622181\pi\)
−0.374487 + 0.927232i \(0.622181\pi\)
\(138\) −460.233 −0.283896
\(139\) −9.65588 −0.00589209 −0.00294605 0.999996i \(-0.500938\pi\)
−0.00294605 + 0.999996i \(0.500938\pi\)
\(140\) 0 0
\(141\) 1764.98 1.05417
\(142\) −217.132 −0.128319
\(143\) 5657.98 3.30870
\(144\) 435.234 0.251872
\(145\) 0 0
\(146\) −4.32242 −0.00245018
\(147\) −452.439 −0.253854
\(148\) −931.760 −0.517501
\(149\) −564.420 −0.310329 −0.155165 0.987889i \(-0.549591\pi\)
−0.155165 + 0.987889i \(0.549591\pi\)
\(150\) 0 0
\(151\) 635.922 0.342719 0.171359 0.985209i \(-0.445184\pi\)
0.171359 + 0.985209i \(0.445184\pi\)
\(152\) −193.994 −0.103520
\(153\) −844.898 −0.446444
\(154\) 814.213 0.426046
\(155\) 0 0
\(156\) −1734.44 −0.890168
\(157\) 573.022 0.291288 0.145644 0.989337i \(-0.453475\pi\)
0.145644 + 0.989337i \(0.453475\pi\)
\(158\) 648.920 0.326742
\(159\) 375.383 0.187232
\(160\) 0 0
\(161\) −2597.44 −1.27147
\(162\) −66.3221 −0.0321652
\(163\) 3278.02 1.57518 0.787591 0.616199i \(-0.211328\pi\)
0.787591 + 0.616199i \(0.211328\pi\)
\(164\) 910.164 0.433365
\(165\) 0 0
\(166\) 1166.57 0.545440
\(167\) 3924.81 1.81863 0.909314 0.416112i \(-0.136607\pi\)
0.909314 + 0.416112i \(0.136607\pi\)
\(168\) −522.020 −0.239730
\(169\) 4024.82 1.83196
\(170\) 0 0
\(171\) −139.100 −0.0622060
\(172\) −307.635 −0.136378
\(173\) 2409.34 1.05884 0.529419 0.848361i \(-0.322410\pi\)
0.529419 + 0.848361i \(0.322410\pi\)
\(174\) −71.2349 −0.0310362
\(175\) 0 0
\(176\) 3468.83 1.48564
\(177\) −165.637 −0.0703390
\(178\) 1227.93 0.517064
\(179\) −270.657 −0.113016 −0.0565081 0.998402i \(-0.517997\pi\)
−0.0565081 + 0.998402i \(0.517997\pi\)
\(180\) 0 0
\(181\) −176.505 −0.0724837 −0.0362418 0.999343i \(-0.511539\pi\)
−0.0362418 + 0.999343i \(0.511539\pi\)
\(182\) 895.353 0.364659
\(183\) 778.981 0.314666
\(184\) 2351.73 0.942238
\(185\) 0 0
\(186\) 180.227 0.0710476
\(187\) −6733.86 −2.63331
\(188\) −4312.19 −1.67287
\(189\) −374.305 −0.144057
\(190\) 0 0
\(191\) 2520.29 0.954774 0.477387 0.878693i \(-0.341584\pi\)
0.477387 + 0.878693i \(0.341584\pi\)
\(192\) −816.708 −0.306983
\(193\) −1493.85 −0.557150 −0.278575 0.960414i \(-0.589862\pi\)
−0.278575 + 0.960414i \(0.589862\pi\)
\(194\) 625.610 0.231527
\(195\) 0 0
\(196\) 1105.40 0.402841
\(197\) 3155.05 1.14106 0.570528 0.821278i \(-0.306739\pi\)
0.570528 + 0.821278i \(0.306739\pi\)
\(198\) −528.589 −0.189723
\(199\) 5460.52 1.94516 0.972578 0.232575i \(-0.0747152\pi\)
0.972578 + 0.232575i \(0.0747152\pi\)
\(200\) 0 0
\(201\) 1992.83 0.699321
\(202\) 1265.40 0.440760
\(203\) −402.032 −0.139000
\(204\) 2064.25 0.708462
\(205\) 0 0
\(206\) 167.309 0.0565873
\(207\) 1686.27 0.566201
\(208\) 3814.52 1.27158
\(209\) −1108.63 −0.366917
\(210\) 0 0
\(211\) 2596.75 0.847241 0.423621 0.905840i \(-0.360759\pi\)
0.423621 + 0.905840i \(0.360759\pi\)
\(212\) −917.133 −0.297118
\(213\) 795.557 0.255919
\(214\) −280.754 −0.0896820
\(215\) 0 0
\(216\) 338.897 0.106755
\(217\) 1017.15 0.318197
\(218\) −1074.35 −0.333781
\(219\) 15.8371 0.00488662
\(220\) 0 0
\(221\) −7404.92 −2.25389
\(222\) −312.262 −0.0944040
\(223\) 1578.45 0.473995 0.236998 0.971510i \(-0.423837\pi\)
0.236998 + 0.971510i \(0.423837\pi\)
\(224\) 1940.98 0.578961
\(225\) 0 0
\(226\) 32.2281 0.00948575
\(227\) 2428.63 0.710106 0.355053 0.934846i \(-0.384463\pi\)
0.355053 + 0.934846i \(0.384463\pi\)
\(228\) 339.848 0.0987148
\(229\) −4621.51 −1.33362 −0.666808 0.745229i \(-0.732340\pi\)
−0.666808 + 0.745229i \(0.732340\pi\)
\(230\) 0 0
\(231\) −2983.22 −0.849704
\(232\) 364.000 0.103008
\(233\) −3337.50 −0.938398 −0.469199 0.883092i \(-0.655457\pi\)
−0.469199 + 0.883092i \(0.655457\pi\)
\(234\) −581.266 −0.162387
\(235\) 0 0
\(236\) 404.682 0.111621
\(237\) −2377.60 −0.651653
\(238\) −1065.61 −0.290223
\(239\) −757.216 −0.204938 −0.102469 0.994736i \(-0.532674\pi\)
−0.102469 + 0.994736i \(0.532674\pi\)
\(240\) 0 0
\(241\) −480.856 −0.128525 −0.0642627 0.997933i \(-0.520470\pi\)
−0.0642627 + 0.997933i \(0.520470\pi\)
\(242\) −3123.06 −0.829578
\(243\) 243.000 0.0641500
\(244\) −1903.20 −0.499344
\(245\) 0 0
\(246\) 305.025 0.0790556
\(247\) −1219.11 −0.314049
\(248\) −920.933 −0.235804
\(249\) −4274.22 −1.08782
\(250\) 0 0
\(251\) 2236.26 0.562356 0.281178 0.959656i \(-0.409275\pi\)
0.281178 + 0.959656i \(0.409275\pi\)
\(252\) 914.500 0.228604
\(253\) 13439.6 3.33968
\(254\) −1509.52 −0.372897
\(255\) 0 0
\(256\) 1078.26 0.263247
\(257\) 6940.70 1.68463 0.842314 0.538988i \(-0.181193\pi\)
0.842314 + 0.538988i \(0.181193\pi\)
\(258\) −103.098 −0.0248784
\(259\) −1762.33 −0.422802
\(260\) 0 0
\(261\) 261.000 0.0618984
\(262\) 1866.95 0.440232
\(263\) −5980.13 −1.40209 −0.701047 0.713115i \(-0.747284\pi\)
−0.701047 + 0.713115i \(0.747284\pi\)
\(264\) 2701.02 0.629682
\(265\) 0 0
\(266\) −175.436 −0.0404387
\(267\) −4499.06 −1.03123
\(268\) −4868.87 −1.10975
\(269\) 1822.34 0.413049 0.206525 0.978441i \(-0.433785\pi\)
0.206525 + 0.978441i \(0.433785\pi\)
\(270\) 0 0
\(271\) 3201.60 0.717651 0.358826 0.933405i \(-0.383177\pi\)
0.358826 + 0.933405i \(0.383177\pi\)
\(272\) −4539.86 −1.01202
\(273\) −3280.51 −0.727274
\(274\) 983.380 0.216818
\(275\) 0 0
\(276\) −4119.87 −0.898504
\(277\) −924.254 −0.200480 −0.100240 0.994963i \(-0.531961\pi\)
−0.100240 + 0.994963i \(0.531961\pi\)
\(278\) 7.90616 0.00170568
\(279\) −660.339 −0.141697
\(280\) 0 0
\(281\) 3105.33 0.659247 0.329623 0.944113i \(-0.393078\pi\)
0.329623 + 0.944113i \(0.393078\pi\)
\(282\) −1445.15 −0.305169
\(283\) 10.5568 0.00221745 0.00110873 0.999999i \(-0.499647\pi\)
0.00110873 + 0.999999i \(0.499647\pi\)
\(284\) −1943.70 −0.406117
\(285\) 0 0
\(286\) −4632.70 −0.957823
\(287\) 1721.48 0.354063
\(288\) −1260.09 −0.257818
\(289\) 3899.99 0.793811
\(290\) 0 0
\(291\) −2292.20 −0.461756
\(292\) −38.6930 −0.00775459
\(293\) 2892.07 0.576643 0.288322 0.957534i \(-0.406903\pi\)
0.288322 + 0.957534i \(0.406903\pi\)
\(294\) 370.453 0.0734873
\(295\) 0 0
\(296\) 1595.62 0.313322
\(297\) 1936.72 0.378383
\(298\) 462.142 0.0898362
\(299\) 14778.9 2.85848
\(300\) 0 0
\(301\) −581.860 −0.111421
\(302\) −520.687 −0.0992125
\(303\) −4636.36 −0.879049
\(304\) −747.420 −0.141012
\(305\) 0 0
\(306\) 691.795 0.129240
\(307\) −6869.50 −1.27708 −0.638539 0.769590i \(-0.720461\pi\)
−0.638539 + 0.769590i \(0.720461\pi\)
\(308\) 7288.59 1.34840
\(309\) −613.010 −0.112857
\(310\) 0 0
\(311\) −3754.87 −0.684627 −0.342313 0.939586i \(-0.611210\pi\)
−0.342313 + 0.939586i \(0.611210\pi\)
\(312\) 2970.19 0.538954
\(313\) −1004.33 −0.181368 −0.0906839 0.995880i \(-0.528905\pi\)
−0.0906839 + 0.995880i \(0.528905\pi\)
\(314\) −469.186 −0.0843239
\(315\) 0 0
\(316\) 5808.94 1.03411
\(317\) 4555.66 0.807165 0.403582 0.914943i \(-0.367765\pi\)
0.403582 + 0.914943i \(0.367765\pi\)
\(318\) −307.361 −0.0542010
\(319\) 2080.18 0.365102
\(320\) 0 0
\(321\) 1028.66 0.178861
\(322\) 2126.76 0.368074
\(323\) 1450.93 0.249944
\(324\) −593.696 −0.101800
\(325\) 0 0
\(326\) −2684.02 −0.455994
\(327\) 3936.35 0.665690
\(328\) −1558.64 −0.262382
\(329\) −8156.08 −1.36675
\(330\) 0 0
\(331\) −4344.37 −0.721414 −0.360707 0.932679i \(-0.617465\pi\)
−0.360707 + 0.932679i \(0.617465\pi\)
\(332\) 10442.7 1.72626
\(333\) 1144.11 0.188279
\(334\) −3213.60 −0.526468
\(335\) 0 0
\(336\) −2011.24 −0.326554
\(337\) −8112.36 −1.31130 −0.655650 0.755065i \(-0.727606\pi\)
−0.655650 + 0.755065i \(0.727606\pi\)
\(338\) −3295.49 −0.530328
\(339\) −118.082 −0.0189183
\(340\) 0 0
\(341\) −5262.92 −0.835786
\(342\) 113.894 0.0180078
\(343\) 6845.81 1.07766
\(344\) 526.817 0.0825700
\(345\) 0 0
\(346\) −1972.75 −0.306519
\(347\) 10739.1 1.66139 0.830696 0.556726i \(-0.187943\pi\)
0.830696 + 0.556726i \(0.187943\pi\)
\(348\) −637.673 −0.0982267
\(349\) −7695.17 −1.18027 −0.590134 0.807306i \(-0.700925\pi\)
−0.590134 + 0.807306i \(0.700925\pi\)
\(350\) 0 0
\(351\) 2129.72 0.323863
\(352\) −10043.0 −1.52072
\(353\) 6621.09 0.998315 0.499157 0.866511i \(-0.333643\pi\)
0.499157 + 0.866511i \(0.333643\pi\)
\(354\) 135.622 0.0203622
\(355\) 0 0
\(356\) 10992.1 1.63646
\(357\) 3904.32 0.578819
\(358\) 221.612 0.0327167
\(359\) 2419.99 0.355772 0.177886 0.984051i \(-0.443074\pi\)
0.177886 + 0.984051i \(0.443074\pi\)
\(360\) 0 0
\(361\) −6620.13 −0.965174
\(362\) 144.521 0.0209831
\(363\) 11442.7 1.65451
\(364\) 8014.93 1.15411
\(365\) 0 0
\(366\) −637.823 −0.0910917
\(367\) −5254.54 −0.747369 −0.373685 0.927556i \(-0.621906\pi\)
−0.373685 + 0.927556i \(0.621906\pi\)
\(368\) 9060.75 1.28349
\(369\) −1117.59 −0.157668
\(370\) 0 0
\(371\) −1734.66 −0.242747
\(372\) 1613.33 0.224859
\(373\) 6000.18 0.832916 0.416458 0.909155i \(-0.363271\pi\)
0.416458 + 0.909155i \(0.363271\pi\)
\(374\) 5513.63 0.762308
\(375\) 0 0
\(376\) 7384.53 1.01284
\(377\) 2287.48 0.312496
\(378\) 306.478 0.0417025
\(379\) 9449.12 1.28066 0.640328 0.768101i \(-0.278798\pi\)
0.640328 + 0.768101i \(0.278798\pi\)
\(380\) 0 0
\(381\) 5530.79 0.743703
\(382\) −2063.59 −0.276394
\(383\) 856.748 0.114302 0.0571511 0.998366i \(-0.481798\pi\)
0.0571511 + 0.998366i \(0.481798\pi\)
\(384\) 4028.96 0.535421
\(385\) 0 0
\(386\) 1223.16 0.161288
\(387\) 377.745 0.0496172
\(388\) 5600.28 0.732760
\(389\) −172.900 −0.0225356 −0.0112678 0.999937i \(-0.503587\pi\)
−0.0112678 + 0.999937i \(0.503587\pi\)
\(390\) 0 0
\(391\) −17589.2 −2.27499
\(392\) −1892.96 −0.243901
\(393\) −6840.39 −0.877996
\(394\) −2583.33 −0.330320
\(395\) 0 0
\(396\) −4731.77 −0.600456
\(397\) 9250.58 1.16945 0.584727 0.811230i \(-0.301202\pi\)
0.584727 + 0.811230i \(0.301202\pi\)
\(398\) −4471.03 −0.563097
\(399\) 642.788 0.0806507
\(400\) 0 0
\(401\) 9906.64 1.23370 0.616851 0.787080i \(-0.288408\pi\)
0.616851 + 0.787080i \(0.288408\pi\)
\(402\) −1631.71 −0.202444
\(403\) −5787.39 −0.715361
\(404\) 11327.5 1.39496
\(405\) 0 0
\(406\) 329.180 0.0402388
\(407\) 9118.58 1.11054
\(408\) −3534.98 −0.428940
\(409\) −9457.67 −1.14340 −0.571702 0.820462i \(-0.693716\pi\)
−0.571702 + 0.820462i \(0.693716\pi\)
\(410\) 0 0
\(411\) −3603.04 −0.432421
\(412\) 1497.70 0.179094
\(413\) 765.415 0.0911952
\(414\) −1380.70 −0.163908
\(415\) 0 0
\(416\) −11043.8 −1.30160
\(417\) −28.9676 −0.00340180
\(418\) 907.737 0.106217
\(419\) 4924.06 0.574119 0.287060 0.957913i \(-0.407322\pi\)
0.287060 + 0.957913i \(0.407322\pi\)
\(420\) 0 0
\(421\) −13100.9 −1.51663 −0.758314 0.651889i \(-0.773977\pi\)
−0.758314 + 0.651889i \(0.773977\pi\)
\(422\) −2126.20 −0.245265
\(423\) 5294.95 0.608627
\(424\) 1570.57 0.179891
\(425\) 0 0
\(426\) −651.395 −0.0740850
\(427\) −3599.71 −0.407968
\(428\) −2513.23 −0.283835
\(429\) 16973.9 1.91028
\(430\) 0 0
\(431\) −12506.6 −1.39774 −0.698868 0.715251i \(-0.746312\pi\)
−0.698868 + 0.715251i \(0.746312\pi\)
\(432\) 1305.70 0.145418
\(433\) −3714.42 −0.412249 −0.206124 0.978526i \(-0.566085\pi\)
−0.206124 + 0.978526i \(0.566085\pi\)
\(434\) −832.837 −0.0921139
\(435\) 0 0
\(436\) −9617.26 −1.05638
\(437\) −2895.79 −0.316990
\(438\) −12.9673 −0.00141461
\(439\) 9298.90 1.01096 0.505481 0.862838i \(-0.331315\pi\)
0.505481 + 0.862838i \(0.331315\pi\)
\(440\) 0 0
\(441\) −1357.32 −0.146563
\(442\) 6063.09 0.652470
\(443\) 10321.3 1.10696 0.553478 0.832864i \(-0.313300\pi\)
0.553478 + 0.832864i \(0.313300\pi\)
\(444\) −2795.28 −0.298780
\(445\) 0 0
\(446\) −1292.42 −0.137215
\(447\) −1693.26 −0.179169
\(448\) 3774.05 0.398007
\(449\) 7340.29 0.771514 0.385757 0.922600i \(-0.373940\pi\)
0.385757 + 0.922600i \(0.373940\pi\)
\(450\) 0 0
\(451\) −8907.24 −0.929990
\(452\) 288.496 0.0300215
\(453\) 1907.76 0.197869
\(454\) −1988.54 −0.205566
\(455\) 0 0
\(456\) −581.982 −0.0597671
\(457\) −1423.35 −0.145692 −0.0728462 0.997343i \(-0.523208\pi\)
−0.0728462 + 0.997343i \(0.523208\pi\)
\(458\) 3784.06 0.386064
\(459\) −2534.69 −0.257755
\(460\) 0 0
\(461\) −7865.08 −0.794606 −0.397303 0.917687i \(-0.630054\pi\)
−0.397303 + 0.917687i \(0.630054\pi\)
\(462\) 2442.64 0.245978
\(463\) −6096.09 −0.611899 −0.305950 0.952048i \(-0.598974\pi\)
−0.305950 + 0.952048i \(0.598974\pi\)
\(464\) 1402.42 0.140314
\(465\) 0 0
\(466\) 2732.72 0.271654
\(467\) 7535.45 0.746679 0.373339 0.927695i \(-0.378213\pi\)
0.373339 + 0.927695i \(0.378213\pi\)
\(468\) −5203.32 −0.513939
\(469\) −9208.98 −0.906676
\(470\) 0 0
\(471\) 1719.07 0.168175
\(472\) −693.009 −0.0675812
\(473\) 3010.64 0.292663
\(474\) 1946.76 0.188645
\(475\) 0 0
\(476\) −9539.00 −0.918528
\(477\) 1126.15 0.108098
\(478\) 620.002 0.0593269
\(479\) 16971.5 1.61889 0.809444 0.587197i \(-0.199768\pi\)
0.809444 + 0.587197i \(0.199768\pi\)
\(480\) 0 0
\(481\) 10027.3 0.950530
\(482\) 393.721 0.0372064
\(483\) −7792.32 −0.734085
\(484\) −27956.7 −2.62554
\(485\) 0 0
\(486\) −198.966 −0.0185706
\(487\) −17333.1 −1.61281 −0.806405 0.591364i \(-0.798590\pi\)
−0.806405 + 0.591364i \(0.798590\pi\)
\(488\) 3259.19 0.302329
\(489\) 9834.07 0.909431
\(490\) 0 0
\(491\) 2468.47 0.226885 0.113442 0.993545i \(-0.463812\pi\)
0.113442 + 0.993545i \(0.463812\pi\)
\(492\) 2730.49 0.250204
\(493\) −2722.45 −0.248708
\(494\) 998.197 0.0909130
\(495\) 0 0
\(496\) −3548.17 −0.321205
\(497\) −3676.31 −0.331801
\(498\) 3499.70 0.314910
\(499\) 9085.35 0.815062 0.407531 0.913191i \(-0.366390\pi\)
0.407531 + 0.913191i \(0.366390\pi\)
\(500\) 0 0
\(501\) 11774.4 1.04998
\(502\) −1831.03 −0.162795
\(503\) −4534.24 −0.401932 −0.200966 0.979598i \(-0.564408\pi\)
−0.200966 + 0.979598i \(0.564408\pi\)
\(504\) −1566.06 −0.138408
\(505\) 0 0
\(506\) −11004.2 −0.966793
\(507\) 12074.5 1.05768
\(508\) −13512.8 −1.18018
\(509\) −13065.3 −1.13774 −0.568871 0.822426i \(-0.692620\pi\)
−0.568871 + 0.822426i \(0.692620\pi\)
\(510\) 0 0
\(511\) −73.1840 −0.00633555
\(512\) −11626.8 −1.00358
\(513\) −417.300 −0.0359147
\(514\) −5682.99 −0.487677
\(515\) 0 0
\(516\) −922.904 −0.0787376
\(517\) 42200.9 3.58993
\(518\) 1442.98 0.122396
\(519\) 7228.02 0.611320
\(520\) 0 0
\(521\) 11144.0 0.937101 0.468550 0.883437i \(-0.344776\pi\)
0.468550 + 0.883437i \(0.344776\pi\)
\(522\) −213.705 −0.0179188
\(523\) 4525.71 0.378385 0.189193 0.981940i \(-0.439413\pi\)
0.189193 + 0.981940i \(0.439413\pi\)
\(524\) 16712.4 1.39329
\(525\) 0 0
\(526\) 4896.49 0.405888
\(527\) 6887.89 0.569338
\(528\) 10406.5 0.857736
\(529\) 22937.8 1.88525
\(530\) 0 0
\(531\) −496.910 −0.0406103
\(532\) −1570.45 −0.127985
\(533\) −9794.88 −0.795992
\(534\) 3683.80 0.298527
\(535\) 0 0
\(536\) 8337.83 0.671902
\(537\) −811.972 −0.0652499
\(538\) −1492.12 −0.119572
\(539\) −10817.9 −0.864486
\(540\) 0 0
\(541\) 12028.0 0.955864 0.477932 0.878397i \(-0.341387\pi\)
0.477932 + 0.878397i \(0.341387\pi\)
\(542\) −2621.45 −0.207750
\(543\) −529.516 −0.0418485
\(544\) 13143.8 1.03591
\(545\) 0 0
\(546\) 2686.06 0.210536
\(547\) −861.602 −0.0673482 −0.0336741 0.999433i \(-0.510721\pi\)
−0.0336741 + 0.999433i \(0.510721\pi\)
\(548\) 8802.93 0.686209
\(549\) 2336.94 0.181673
\(550\) 0 0
\(551\) −448.211 −0.0346541
\(552\) 7055.19 0.544001
\(553\) 10987.0 0.844874
\(554\) 756.772 0.0580364
\(555\) 0 0
\(556\) 70.7736 0.00539832
\(557\) −26268.4 −1.99826 −0.999129 0.0417358i \(-0.986711\pi\)
−0.999129 + 0.0417358i \(0.986711\pi\)
\(558\) 540.680 0.0410194
\(559\) 3310.66 0.250494
\(560\) 0 0
\(561\) −20201.6 −1.52034
\(562\) −2542.62 −0.190843
\(563\) −24246.0 −1.81501 −0.907503 0.420045i \(-0.862014\pi\)
−0.907503 + 0.420045i \(0.862014\pi\)
\(564\) −12936.6 −0.965831
\(565\) 0 0
\(566\) −8.64386 −0.000641923 0
\(567\) −1122.92 −0.0831711
\(568\) 3328.54 0.245885
\(569\) −16401.5 −1.20841 −0.604206 0.796828i \(-0.706510\pi\)
−0.604206 + 0.796828i \(0.706510\pi\)
\(570\) 0 0
\(571\) 13490.3 0.988704 0.494352 0.869262i \(-0.335405\pi\)
0.494352 + 0.869262i \(0.335405\pi\)
\(572\) −41470.6 −3.03142
\(573\) 7560.87 0.551239
\(574\) −1409.54 −0.102496
\(575\) 0 0
\(576\) −2450.12 −0.177237
\(577\) −25614.9 −1.84811 −0.924057 0.382254i \(-0.875148\pi\)
−0.924057 + 0.382254i \(0.875148\pi\)
\(578\) −3193.28 −0.229798
\(579\) −4481.56 −0.321671
\(580\) 0 0
\(581\) 19751.4 1.41037
\(582\) 1876.83 0.133672
\(583\) 8975.44 0.637607
\(584\) 66.2609 0.00469503
\(585\) 0 0
\(586\) −2368.00 −0.166930
\(587\) 389.674 0.0273996 0.0136998 0.999906i \(-0.495639\pi\)
0.0136998 + 0.999906i \(0.495639\pi\)
\(588\) 3316.19 0.232580
\(589\) 1133.99 0.0793296
\(590\) 0 0
\(591\) 9465.15 0.658789
\(592\) 6147.60 0.426799
\(593\) −3592.08 −0.248750 −0.124375 0.992235i \(-0.539693\pi\)
−0.124375 + 0.992235i \(0.539693\pi\)
\(594\) −1585.77 −0.109537
\(595\) 0 0
\(596\) 4136.96 0.284323
\(597\) 16381.6 1.12304
\(598\) −12100.8 −0.827492
\(599\) 6355.87 0.433546 0.216773 0.976222i \(-0.430447\pi\)
0.216773 + 0.976222i \(0.430447\pi\)
\(600\) 0 0
\(601\) −24779.9 −1.68185 −0.840927 0.541149i \(-0.817990\pi\)
−0.840927 + 0.541149i \(0.817990\pi\)
\(602\) 476.422 0.0322550
\(603\) 5978.50 0.403753
\(604\) −4661.04 −0.313998
\(605\) 0 0
\(606\) 3796.21 0.254473
\(607\) −14087.1 −0.941971 −0.470986 0.882141i \(-0.656102\pi\)
−0.470986 + 0.882141i \(0.656102\pi\)
\(608\) 2163.93 0.144341
\(609\) −1206.09 −0.0802519
\(610\) 0 0
\(611\) 46406.4 3.07267
\(612\) 6192.75 0.409031
\(613\) 18561.9 1.22302 0.611508 0.791238i \(-0.290563\pi\)
0.611508 + 0.791238i \(0.290563\pi\)
\(614\) 5624.69 0.369697
\(615\) 0 0
\(616\) −12481.5 −0.816389
\(617\) 21599.2 1.40932 0.704661 0.709544i \(-0.251099\pi\)
0.704661 + 0.709544i \(0.251099\pi\)
\(618\) 501.928 0.0326707
\(619\) −14290.1 −0.927893 −0.463947 0.885863i \(-0.653567\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(620\) 0 0
\(621\) 5058.80 0.326896
\(622\) 3074.45 0.198190
\(623\) 20790.4 1.33700
\(624\) 11443.5 0.734148
\(625\) 0 0
\(626\) 822.338 0.0525036
\(627\) −3325.89 −0.211839
\(628\) −4200.01 −0.266877
\(629\) −11934.0 −0.756503
\(630\) 0 0
\(631\) 21344.9 1.34664 0.673318 0.739353i \(-0.264869\pi\)
0.673318 + 0.739353i \(0.264869\pi\)
\(632\) −9947.67 −0.626103
\(633\) 7790.26 0.489155
\(634\) −3730.14 −0.233663
\(635\) 0 0
\(636\) −2751.40 −0.171541
\(637\) −11895.9 −0.739926
\(638\) −1703.23 −0.105692
\(639\) 2386.67 0.147755
\(640\) 0 0
\(641\) 24178.6 1.48985 0.744927 0.667146i \(-0.232484\pi\)
0.744927 + 0.667146i \(0.232484\pi\)
\(642\) −842.262 −0.0517779
\(643\) −11994.8 −0.735658 −0.367829 0.929893i \(-0.619899\pi\)
−0.367829 + 0.929893i \(0.619899\pi\)
\(644\) 19038.1 1.16492
\(645\) 0 0
\(646\) −1188.01 −0.0723553
\(647\) −5641.51 −0.342798 −0.171399 0.985202i \(-0.554829\pi\)
−0.171399 + 0.985202i \(0.554829\pi\)
\(648\) 1016.69 0.0616348
\(649\) −3960.39 −0.239536
\(650\) 0 0
\(651\) 3051.46 0.183711
\(652\) −24026.5 −1.44318
\(653\) −21090.4 −1.26390 −0.631952 0.775008i \(-0.717746\pi\)
−0.631952 + 0.775008i \(0.717746\pi\)
\(654\) −3223.05 −0.192708
\(655\) 0 0
\(656\) −6005.12 −0.357409
\(657\) 47.5112 0.00282129
\(658\) 6678.13 0.395654
\(659\) −13160.3 −0.777926 −0.388963 0.921253i \(-0.627167\pi\)
−0.388963 + 0.921253i \(0.627167\pi\)
\(660\) 0 0
\(661\) 32282.2 1.89959 0.949796 0.312869i \(-0.101290\pi\)
0.949796 + 0.312869i \(0.101290\pi\)
\(662\) 3557.13 0.208840
\(663\) −22214.8 −1.30128
\(664\) −17883.0 −1.04517
\(665\) 0 0
\(666\) −936.787 −0.0545042
\(667\) 5433.52 0.315423
\(668\) −28767.2 −1.66622
\(669\) 4735.35 0.273661
\(670\) 0 0
\(671\) 18625.5 1.07158
\(672\) 5822.95 0.334263
\(673\) 2556.97 0.146455 0.0732273 0.997315i \(-0.476670\pi\)
0.0732273 + 0.997315i \(0.476670\pi\)
\(674\) 6642.33 0.379604
\(675\) 0 0
\(676\) −29500.2 −1.67844
\(677\) −24565.3 −1.39457 −0.697284 0.716795i \(-0.745608\pi\)
−0.697284 + 0.716795i \(0.745608\pi\)
\(678\) 96.6842 0.00547660
\(679\) 10592.4 0.598670
\(680\) 0 0
\(681\) 7285.90 0.409980
\(682\) 4309.23 0.241949
\(683\) 2925.25 0.163882 0.0819411 0.996637i \(-0.473888\pi\)
0.0819411 + 0.996637i \(0.473888\pi\)
\(684\) 1019.54 0.0569930
\(685\) 0 0
\(686\) −5605.29 −0.311969
\(687\) −13864.5 −0.769964
\(688\) 2029.72 0.112475
\(689\) 9869.88 0.545737
\(690\) 0 0
\(691\) −3667.88 −0.201929 −0.100964 0.994890i \(-0.532193\pi\)
−0.100964 + 0.994890i \(0.532193\pi\)
\(692\) −17659.5 −0.970104
\(693\) −8949.67 −0.490577
\(694\) −8793.06 −0.480951
\(695\) 0 0
\(696\) 1092.00 0.0594715
\(697\) 11657.4 0.633510
\(698\) 6300.74 0.341672
\(699\) −10012.5 −0.541784
\(700\) 0 0
\(701\) 13843.7 0.745891 0.372946 0.927853i \(-0.378348\pi\)
0.372946 + 0.927853i \(0.378348\pi\)
\(702\) −1743.80 −0.0937541
\(703\) −1964.76 −0.105409
\(704\) −19527.6 −1.04542
\(705\) 0 0
\(706\) −5421.30 −0.288999
\(707\) 21424.9 1.13970
\(708\) 1214.05 0.0644444
\(709\) 23902.3 1.26610 0.633052 0.774109i \(-0.281802\pi\)
0.633052 + 0.774109i \(0.281802\pi\)
\(710\) 0 0
\(711\) −7132.80 −0.376232
\(712\) −18823.7 −0.990797
\(713\) −13747.0 −0.722060
\(714\) −3196.82 −0.167560
\(715\) 0 0
\(716\) 1983.81 0.103545
\(717\) −2271.65 −0.118321
\(718\) −1981.47 −0.102991
\(719\) 16629.2 0.862537 0.431269 0.902224i \(-0.358066\pi\)
0.431269 + 0.902224i \(0.358066\pi\)
\(720\) 0 0
\(721\) 2832.75 0.146321
\(722\) 5420.51 0.279405
\(723\) −1442.57 −0.0742042
\(724\) 1293.71 0.0664094
\(725\) 0 0
\(726\) −9369.18 −0.478957
\(727\) 8889.10 0.453478 0.226739 0.973956i \(-0.427194\pi\)
0.226739 + 0.973956i \(0.427194\pi\)
\(728\) −13725.4 −0.698759
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −3940.20 −0.199362
\(732\) −5709.60 −0.288296
\(733\) 17622.0 0.887973 0.443987 0.896033i \(-0.353564\pi\)
0.443987 + 0.896033i \(0.353564\pi\)
\(734\) 4302.37 0.216353
\(735\) 0 0
\(736\) −26232.7 −1.31379
\(737\) 47648.8 2.38150
\(738\) 915.075 0.0456428
\(739\) −25697.3 −1.27915 −0.639573 0.768730i \(-0.720889\pi\)
−0.639573 + 0.768730i \(0.720889\pi\)
\(740\) 0 0
\(741\) −3657.33 −0.181316
\(742\) 1420.33 0.0702721
\(743\) 35603.8 1.75798 0.878989 0.476843i \(-0.158219\pi\)
0.878989 + 0.476843i \(0.158219\pi\)
\(744\) −2762.80 −0.136141
\(745\) 0 0
\(746\) −4912.90 −0.241118
\(747\) −12822.7 −0.628054
\(748\) 49356.4 2.41263
\(749\) −4753.51 −0.231895
\(750\) 0 0
\(751\) −890.657 −0.0432763 −0.0216382 0.999766i \(-0.506888\pi\)
−0.0216382 + 0.999766i \(0.506888\pi\)
\(752\) 28451.2 1.37966
\(753\) 6708.77 0.324676
\(754\) −1872.97 −0.0904634
\(755\) 0 0
\(756\) 2743.50 0.131984
\(757\) 27316.1 1.31152 0.655761 0.754969i \(-0.272348\pi\)
0.655761 + 0.754969i \(0.272348\pi\)
\(758\) −7736.86 −0.370733
\(759\) 40318.8 1.92817
\(760\) 0 0
\(761\) −19155.6 −0.912472 −0.456236 0.889859i \(-0.650803\pi\)
−0.456236 + 0.889859i \(0.650803\pi\)
\(762\) −4528.56 −0.215292
\(763\) −18190.1 −0.863073
\(764\) −18472.7 −0.874762
\(765\) 0 0
\(766\) −701.498 −0.0330890
\(767\) −4355.06 −0.205022
\(768\) 3234.78 0.151986
\(769\) −6601.93 −0.309586 −0.154793 0.987947i \(-0.549471\pi\)
−0.154793 + 0.987947i \(0.549471\pi\)
\(770\) 0 0
\(771\) 20822.1 0.972620
\(772\) 10949.3 0.510460
\(773\) −10501.3 −0.488622 −0.244311 0.969697i \(-0.578562\pi\)
−0.244311 + 0.969697i \(0.578562\pi\)
\(774\) −309.295 −0.0143635
\(775\) 0 0
\(776\) −9590.34 −0.443651
\(777\) −5286.99 −0.244105
\(778\) 141.569 0.00652376
\(779\) 1919.22 0.0882711
\(780\) 0 0
\(781\) 19021.8 0.871517
\(782\) 14401.9 0.658580
\(783\) 783.000 0.0357371
\(784\) −7293.22 −0.332235
\(785\) 0 0
\(786\) 5600.86 0.254168
\(787\) −27169.2 −1.23059 −0.615297 0.788296i \(-0.710964\pi\)
−0.615297 + 0.788296i \(0.710964\pi\)
\(788\) −23125.2 −1.04543
\(789\) −17940.4 −0.809500
\(790\) 0 0
\(791\) 545.661 0.0245278
\(792\) 8103.05 0.363547
\(793\) 20481.6 0.917180
\(794\) −7574.30 −0.338541
\(795\) 0 0
\(796\) −40023.3 −1.78215
\(797\) −3072.45 −0.136552 −0.0682759 0.997666i \(-0.521750\pi\)
−0.0682759 + 0.997666i \(0.521750\pi\)
\(798\) −526.309 −0.0233473
\(799\) −55230.8 −2.44546
\(800\) 0 0
\(801\) −13497.2 −0.595380
\(802\) −8111.48 −0.357140
\(803\) 378.666 0.0166411
\(804\) −14606.6 −0.640716
\(805\) 0 0
\(806\) 4738.67 0.207087
\(807\) 5467.03 0.238474
\(808\) −19398.1 −0.844583
\(809\) −149.629 −0.00650269 −0.00325134 0.999995i \(-0.501035\pi\)
−0.00325134 + 0.999995i \(0.501035\pi\)
\(810\) 0 0
\(811\) −10550.4 −0.456813 −0.228406 0.973566i \(-0.573351\pi\)
−0.228406 + 0.973566i \(0.573351\pi\)
\(812\) 2946.72 0.127352
\(813\) 9604.81 0.414336
\(814\) −7466.22 −0.321488
\(815\) 0 0
\(816\) −13619.6 −0.584290
\(817\) −648.695 −0.0277784
\(818\) 7743.86 0.331000
\(819\) −9841.54 −0.419892
\(820\) 0 0
\(821\) 29361.9 1.24816 0.624078 0.781362i \(-0.285475\pi\)
0.624078 + 0.781362i \(0.285475\pi\)
\(822\) 2950.14 0.125180
\(823\) −23398.7 −0.991042 −0.495521 0.868596i \(-0.665023\pi\)
−0.495521 + 0.868596i \(0.665023\pi\)
\(824\) −2564.78 −0.108433
\(825\) 0 0
\(826\) −626.716 −0.0263998
\(827\) −15323.5 −0.644317 −0.322158 0.946686i \(-0.604408\pi\)
−0.322158 + 0.946686i \(0.604408\pi\)
\(828\) −12359.6 −0.518752
\(829\) 10782.3 0.451730 0.225865 0.974159i \(-0.427479\pi\)
0.225865 + 0.974159i \(0.427479\pi\)
\(830\) 0 0
\(831\) −2772.76 −0.115747
\(832\) −21473.6 −0.894786
\(833\) 14157.9 0.588888
\(834\) 23.7185 0.000984776 0
\(835\) 0 0
\(836\) 8125.79 0.336168
\(837\) −1981.02 −0.0818088
\(838\) −4031.78 −0.166200
\(839\) 41081.5 1.69045 0.845227 0.534408i \(-0.179465\pi\)
0.845227 + 0.534408i \(0.179465\pi\)
\(840\) 0 0
\(841\) 841.000 0.0344828
\(842\) 10726.9 0.439044
\(843\) 9315.98 0.380616
\(844\) −19033.1 −0.776240
\(845\) 0 0
\(846\) −4335.46 −0.176189
\(847\) −52877.3 −2.14508
\(848\) 6051.10 0.245042
\(849\) 31.6705 0.00128025
\(850\) 0 0
\(851\) 23818.2 0.959432
\(852\) −5831.10 −0.234472
\(853\) 23051.2 0.925274 0.462637 0.886548i \(-0.346903\pi\)
0.462637 + 0.886548i \(0.346903\pi\)
\(854\) 2947.41 0.118101
\(855\) 0 0
\(856\) 4303.84 0.171848
\(857\) −1000.28 −0.0398704 −0.0199352 0.999801i \(-0.506346\pi\)
−0.0199352 + 0.999801i \(0.506346\pi\)
\(858\) −13898.1 −0.553000
\(859\) −16370.6 −0.650242 −0.325121 0.945672i \(-0.605405\pi\)
−0.325121 + 0.945672i \(0.605405\pi\)
\(860\) 0 0
\(861\) 5164.45 0.204418
\(862\) 10240.3 0.404626
\(863\) −16312.7 −0.643441 −0.321721 0.946835i \(-0.604261\pi\)
−0.321721 + 0.946835i \(0.604261\pi\)
\(864\) −3780.27 −0.148851
\(865\) 0 0
\(866\) 3041.34 0.119340
\(867\) 11700.0 0.458307
\(868\) −7455.30 −0.291532
\(869\) −56848.6 −2.21917
\(870\) 0 0
\(871\) 52397.2 2.03836
\(872\) 16469.3 0.639589
\(873\) −6876.59 −0.266595
\(874\) 2371.05 0.0917644
\(875\) 0 0
\(876\) −116.079 −0.00447711
\(877\) 15674.8 0.603534 0.301767 0.953382i \(-0.402424\pi\)
0.301767 + 0.953382i \(0.402424\pi\)
\(878\) −7613.86 −0.292660
\(879\) 8676.21 0.332925
\(880\) 0 0
\(881\) −14789.4 −0.565569 −0.282784 0.959184i \(-0.591258\pi\)
−0.282784 + 0.959184i \(0.591258\pi\)
\(882\) 1111.36 0.0424279
\(883\) −5049.14 −0.192432 −0.0962158 0.995360i \(-0.530674\pi\)
−0.0962158 + 0.995360i \(0.530674\pi\)
\(884\) 54274.9 2.06500
\(885\) 0 0
\(886\) −8451.03 −0.320449
\(887\) 37670.6 1.42599 0.712997 0.701167i \(-0.247337\pi\)
0.712997 + 0.701167i \(0.247337\pi\)
\(888\) 4786.85 0.180897
\(889\) −25558.1 −0.964218
\(890\) 0 0
\(891\) 5810.15 0.218459
\(892\) −11569.4 −0.434273
\(893\) −9092.92 −0.340743
\(894\) 1386.43 0.0518670
\(895\) 0 0
\(896\) −18618.0 −0.694179
\(897\) 44336.7 1.65034
\(898\) −6010.17 −0.223343
\(899\) −2127.76 −0.0789374
\(900\) 0 0
\(901\) −11746.7 −0.434338
\(902\) 7293.17 0.269220
\(903\) −1745.58 −0.0643292
\(904\) −494.043 −0.0181766
\(905\) 0 0
\(906\) −1562.06 −0.0572804
\(907\) 29554.5 1.08196 0.540981 0.841035i \(-0.318053\pi\)
0.540981 + 0.841035i \(0.318053\pi\)
\(908\) −17800.9 −0.650597
\(909\) −13909.1 −0.507519
\(910\) 0 0
\(911\) 898.948 0.0326932 0.0163466 0.999866i \(-0.494796\pi\)
0.0163466 + 0.999866i \(0.494796\pi\)
\(912\) −2242.26 −0.0814130
\(913\) −102197. −3.70452
\(914\) 1165.43 0.0421760
\(915\) 0 0
\(916\) 33873.7 1.22186
\(917\) 31609.8 1.13833
\(918\) 2075.39 0.0746165
\(919\) −36963.4 −1.32678 −0.663390 0.748274i \(-0.730883\pi\)
−0.663390 + 0.748274i \(0.730883\pi\)
\(920\) 0 0
\(921\) −20608.5 −0.737321
\(922\) 6439.87 0.230028
\(923\) 20917.4 0.745944
\(924\) 21865.8 0.778497
\(925\) 0 0
\(926\) 4991.43 0.177137
\(927\) −1839.03 −0.0651583
\(928\) −4060.29 −0.143627
\(929\) −35541.5 −1.25520 −0.627600 0.778536i \(-0.715963\pi\)
−0.627600 + 0.778536i \(0.715963\pi\)
\(930\) 0 0
\(931\) 2330.90 0.0820537
\(932\) 24462.5 0.859758
\(933\) −11264.6 −0.395270
\(934\) −6169.96 −0.216154
\(935\) 0 0
\(936\) 8910.56 0.311165
\(937\) −17380.4 −0.605968 −0.302984 0.952996i \(-0.597983\pi\)
−0.302984 + 0.952996i \(0.597983\pi\)
\(938\) 7540.24 0.262471
\(939\) −3012.99 −0.104713
\(940\) 0 0
\(941\) 12456.3 0.431525 0.215763 0.976446i \(-0.430776\pi\)
0.215763 + 0.976446i \(0.430776\pi\)
\(942\) −1407.56 −0.0486844
\(943\) −23266.1 −0.803446
\(944\) −2670.03 −0.0920572
\(945\) 0 0
\(946\) −2465.09 −0.0847219
\(947\) 36639.9 1.25727 0.628636 0.777700i \(-0.283614\pi\)
0.628636 + 0.777700i \(0.283614\pi\)
\(948\) 17426.8 0.597043
\(949\) 416.402 0.0142434
\(950\) 0 0
\(951\) 13667.0 0.466017
\(952\) 16335.3 0.556125
\(953\) −4554.66 −0.154816 −0.0774082 0.996999i \(-0.524664\pi\)
−0.0774082 + 0.996999i \(0.524664\pi\)
\(954\) −922.082 −0.0312930
\(955\) 0 0
\(956\) 5550.07 0.187764
\(957\) 6240.53 0.210792
\(958\) −13896.1 −0.468647
\(959\) 16649.8 0.560638
\(960\) 0 0
\(961\) −24407.7 −0.819298
\(962\) −8210.26 −0.275166
\(963\) 3085.99 0.103266
\(964\) 3524.47 0.117755
\(965\) 0 0
\(966\) 6380.29 0.212508
\(967\) −13804.0 −0.459056 −0.229528 0.973302i \(-0.573718\pi\)
−0.229528 + 0.973302i \(0.573718\pi\)
\(968\) 47875.2 1.58964
\(969\) 4352.78 0.144305
\(970\) 0 0
\(971\) −24931.6 −0.823988 −0.411994 0.911187i \(-0.635168\pi\)
−0.411994 + 0.911187i \(0.635168\pi\)
\(972\) −1781.09 −0.0587741
\(973\) 133.861 0.00441047
\(974\) 14192.2 0.466887
\(975\) 0 0
\(976\) 12557.0 0.411824
\(977\) 24423.4 0.799770 0.399885 0.916565i \(-0.369050\pi\)
0.399885 + 0.916565i \(0.369050\pi\)
\(978\) −8052.05 −0.263268
\(979\) −107573. −3.51180
\(980\) 0 0
\(981\) 11809.0 0.384336
\(982\) −2021.16 −0.0656801
\(983\) −52340.5 −1.69827 −0.849136 0.528174i \(-0.822877\pi\)
−0.849136 + 0.528174i \(0.822877\pi\)
\(984\) −4675.91 −0.151486
\(985\) 0 0
\(986\) 2229.12 0.0719976
\(987\) −24468.2 −0.789091
\(988\) 8935.56 0.287731
\(989\) 7863.93 0.252840
\(990\) 0 0
\(991\) 6746.36 0.216251 0.108126 0.994137i \(-0.465515\pi\)
0.108126 + 0.994137i \(0.465515\pi\)
\(992\) 10272.7 0.328788
\(993\) −13033.1 −0.416509
\(994\) 3010.13 0.0960519
\(995\) 0 0
\(996\) 31328.2 0.996659
\(997\) −15842.8 −0.503257 −0.251629 0.967824i \(-0.580966\pi\)
−0.251629 + 0.967824i \(0.580966\pi\)
\(998\) −7439.01 −0.235950
\(999\) 3432.33 0.108703
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2175.4.a.o.1.3 8
5.4 even 2 435.4.a.k.1.6 8
15.14 odd 2 1305.4.a.p.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
435.4.a.k.1.6 8 5.4 even 2
1305.4.a.p.1.3 8 15.14 odd 2
2175.4.a.o.1.3 8 1.1 even 1 trivial