Properties

Label 132.4.i.b.37.2
Level $132$
Weight $4$
Character 132.37
Analytic conductor $7.788$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [132,4,Mod(25,132)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("132.25");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 132.i (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78825212076\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 58x^{6} - 115x^{5} + 2421x^{4} + 3435x^{3} + 83262x^{2} + 124773x + 4791721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.2
Root \(2.06788 + 6.36429i\) of defining polynomial
Character \(\chi\) \(=\) 132.37
Dual form 132.4.i.b.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.927051 + 2.85317i) q^{3} +(1.60477 - 1.16593i) q^{5} +(3.78898 + 11.6613i) q^{7} +(-7.28115 - 5.29007i) q^{9} +(-8.21788 + 35.5453i) q^{11} +(5.26513 + 3.82534i) q^{13} +(1.83890 + 5.65957i) q^{15} +(-62.9784 + 45.7565i) q^{17} +(-28.2631 + 86.9850i) q^{19} -36.7842 q^{21} -20.2371 q^{23} +(-37.4112 + 115.140i) q^{25} +(21.8435 - 15.8702i) q^{27} +(-23.5838 - 72.5834i) q^{29} +(92.8764 + 67.4787i) q^{31} +(-93.7983 - 56.3993i) q^{33} +(19.6767 + 14.2960i) q^{35} +(27.6238 + 85.0174i) q^{37} +(-15.7954 + 11.4760i) q^{39} +(30.4658 - 93.7641i) q^{41} +488.233 q^{43} -17.8525 q^{45} +(33.0191 - 101.622i) q^{47} +(155.864 - 113.242i) q^{49} +(-72.1668 - 222.106i) q^{51} +(-447.009 - 324.771i) q^{53} +(28.2556 + 66.6235i) q^{55} +(-221.982 - 161.279i) q^{57} +(-52.3705 - 161.180i) q^{59} +(235.345 - 170.988i) q^{61} +(34.1008 - 104.952i) q^{63} +12.9094 q^{65} +107.351 q^{67} +(18.7608 - 57.7398i) q^{69} +(589.515 - 428.308i) q^{71} +(110.836 + 341.119i) q^{73} +(-293.832 - 213.481i) q^{75} +(-445.641 + 38.8493i) q^{77} +(413.815 + 300.654i) q^{79} +(25.0304 + 77.0356i) q^{81} +(515.712 - 374.687i) q^{83} +(-47.7168 + 146.857i) q^{85} +228.956 q^{87} -830.847 q^{89} +(-24.6589 + 75.8924i) q^{91} +(-278.629 + 202.436i) q^{93} +(56.0629 + 172.544i) q^{95} +(-642.830 - 467.043i) q^{97} +(247.873 - 215.337i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} - 27 q^{5} + 13 q^{7} - 18 q^{9} - 45 q^{11} - 89 q^{13} - 99 q^{15} - 24 q^{17} - 28 q^{19} + 66 q^{21} - 348 q^{23} - 9 q^{25} + 54 q^{27} - 249 q^{29} - 217 q^{31} - 540 q^{33} + 630 q^{35}+ \cdots - 1215 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.927051 + 2.85317i −0.178411 + 0.549093i
\(4\) 0 0
\(5\) 1.60477 1.16593i 0.143535 0.104284i −0.513700 0.857970i \(-0.671726\pi\)
0.657235 + 0.753685i \(0.271726\pi\)
\(6\) 0 0
\(7\) 3.78898 + 11.6613i 0.204586 + 0.629650i 0.999730 + 0.0232301i \(0.00739502\pi\)
−0.795144 + 0.606420i \(0.792605\pi\)
\(8\) 0 0
\(9\) −7.28115 5.29007i −0.269672 0.195928i
\(10\) 0 0
\(11\) −8.21788 + 35.5453i −0.225253 + 0.974300i
\(12\) 0 0
\(13\) 5.26513 + 3.82534i 0.112330 + 0.0816123i 0.642532 0.766259i \(-0.277884\pi\)
−0.530202 + 0.847871i \(0.677884\pi\)
\(14\) 0 0
\(15\) 1.83890 + 5.65957i 0.0316535 + 0.0974196i
\(16\) 0 0
\(17\) −62.9784 + 45.7565i −0.898500 + 0.652798i −0.938080 0.346418i \(-0.887398\pi\)
0.0395805 + 0.999216i \(0.487398\pi\)
\(18\) 0 0
\(19\) −28.2631 + 86.9850i −0.341264 + 1.05030i 0.622290 + 0.782787i \(0.286202\pi\)
−0.963554 + 0.267515i \(0.913798\pi\)
\(20\) 0 0
\(21\) −36.7842 −0.382237
\(22\) 0 0
\(23\) −20.2371 −0.183466 −0.0917331 0.995784i \(-0.529241\pi\)
−0.0917331 + 0.995784i \(0.529241\pi\)
\(24\) 0 0
\(25\) −37.4112 + 115.140i −0.299290 + 0.921120i
\(26\) 0 0
\(27\) 21.8435 15.8702i 0.155695 0.113119i
\(28\) 0 0
\(29\) −23.5838 72.5834i −0.151014 0.464773i 0.846721 0.532036i \(-0.178573\pi\)
−0.997735 + 0.0672639i \(0.978573\pi\)
\(30\) 0 0
\(31\) 92.8764 + 67.4787i 0.538100 + 0.390953i 0.823379 0.567492i \(-0.192086\pi\)
−0.285279 + 0.958445i \(0.592086\pi\)
\(32\) 0 0
\(33\) −93.7983 56.3993i −0.494794 0.297511i
\(34\) 0 0
\(35\) 19.6767 + 14.2960i 0.0950279 + 0.0690418i
\(36\) 0 0
\(37\) 27.6238 + 85.0174i 0.122739 + 0.377751i 0.993482 0.113987i \(-0.0363621\pi\)
−0.870744 + 0.491737i \(0.836362\pi\)
\(38\) 0 0
\(39\) −15.7954 + 11.4760i −0.0648535 + 0.0471189i
\(40\) 0 0
\(41\) 30.4658 93.7641i 0.116048 0.357159i −0.876116 0.482100i \(-0.839874\pi\)
0.992164 + 0.124941i \(0.0398743\pi\)
\(42\) 0 0
\(43\) 488.233 1.73151 0.865753 0.500471i \(-0.166840\pi\)
0.865753 + 0.500471i \(0.166840\pi\)
\(44\) 0 0
\(45\) −17.8525 −0.0591397
\(46\) 0 0
\(47\) 33.0191 101.622i 0.102475 0.315386i −0.886654 0.462433i \(-0.846977\pi\)
0.989130 + 0.147046i \(0.0469766\pi\)
\(48\) 0 0
\(49\) 155.864 113.242i 0.454413 0.330150i
\(50\) 0 0
\(51\) −72.1668 222.106i −0.198144 0.609826i
\(52\) 0 0
\(53\) −447.009 324.771i −1.15852 0.841712i −0.168928 0.985628i \(-0.554030\pi\)
−0.989590 + 0.143916i \(0.954030\pi\)
\(54\) 0 0
\(55\) 28.2556 + 66.6235i 0.0692725 + 0.163337i
\(56\) 0 0
\(57\) −221.982 161.279i −0.515828 0.374771i
\(58\) 0 0
\(59\) −52.3705 161.180i −0.115560 0.355658i 0.876503 0.481396i \(-0.159870\pi\)
−0.992063 + 0.125738i \(0.959870\pi\)
\(60\) 0 0
\(61\) 235.345 170.988i 0.493982 0.358899i −0.312732 0.949841i \(-0.601244\pi\)
0.806713 + 0.590943i \(0.201244\pi\)
\(62\) 0 0
\(63\) 34.1008 104.952i 0.0681953 0.209883i
\(64\) 0 0
\(65\) 12.9094 0.0246341
\(66\) 0 0
\(67\) 107.351 0.195747 0.0978736 0.995199i \(-0.468796\pi\)
0.0978736 + 0.995199i \(0.468796\pi\)
\(68\) 0 0
\(69\) 18.7608 57.7398i 0.0327324 0.100740i
\(70\) 0 0
\(71\) 589.515 428.308i 0.985389 0.715927i 0.0264824 0.999649i \(-0.491569\pi\)
0.958906 + 0.283722i \(0.0915694\pi\)
\(72\) 0 0
\(73\) 110.836 + 341.119i 0.177704 + 0.546917i 0.999747 0.0225091i \(-0.00716546\pi\)
−0.822043 + 0.569426i \(0.807165\pi\)
\(74\) 0 0
\(75\) −293.832 213.481i −0.452383 0.328676i
\(76\) 0 0
\(77\) −445.641 + 38.8493i −0.659552 + 0.0574973i
\(78\) 0 0
\(79\) 413.815 + 300.654i 0.589339 + 0.428180i 0.842079 0.539354i \(-0.181332\pi\)
−0.252740 + 0.967534i \(0.581332\pi\)
\(80\) 0 0
\(81\) 25.0304 + 77.0356i 0.0343352 + 0.105673i
\(82\) 0 0
\(83\) 515.712 374.687i 0.682010 0.495509i −0.192014 0.981392i \(-0.561502\pi\)
0.874024 + 0.485883i \(0.161502\pi\)
\(84\) 0 0
\(85\) −47.7168 + 146.857i −0.0608896 + 0.187399i
\(86\) 0 0
\(87\) 228.956 0.282146
\(88\) 0 0
\(89\) −830.847 −0.989547 −0.494773 0.869022i \(-0.664749\pi\)
−0.494773 + 0.869022i \(0.664749\pi\)
\(90\) 0 0
\(91\) −24.6589 + 75.8924i −0.0284061 + 0.0874251i
\(92\) 0 0
\(93\) −278.629 + 202.436i −0.310672 + 0.225717i
\(94\) 0 0
\(95\) 56.0629 + 172.544i 0.0605467 + 0.186344i
\(96\) 0 0
\(97\) −642.830 467.043i −0.672882 0.488877i 0.198107 0.980180i \(-0.436521\pi\)
−0.870989 + 0.491303i \(0.836521\pi\)
\(98\) 0 0
\(99\) 247.873 215.337i 0.251638 0.218608i
\(100\) 0 0
\(101\) 381.819 + 277.407i 0.376162 + 0.273298i 0.759762 0.650202i \(-0.225316\pi\)
−0.383599 + 0.923500i \(0.625316\pi\)
\(102\) 0 0
\(103\) 571.034 + 1757.46i 0.546268 + 1.68124i 0.717955 + 0.696090i \(0.245078\pi\)
−0.171686 + 0.985152i \(0.554922\pi\)
\(104\) 0 0
\(105\) −59.0302 + 42.8880i −0.0548644 + 0.0398613i
\(106\) 0 0
\(107\) −287.507 + 884.855i −0.259760 + 0.799460i 0.733094 + 0.680127i \(0.238075\pi\)
−0.992854 + 0.119332i \(0.961925\pi\)
\(108\) 0 0
\(109\) 433.332 0.380786 0.190393 0.981708i \(-0.439024\pi\)
0.190393 + 0.981708i \(0.439024\pi\)
\(110\) 0 0
\(111\) −268.178 −0.229318
\(112\) 0 0
\(113\) −520.776 + 1602.78i −0.433544 + 1.33431i 0.461026 + 0.887386i \(0.347481\pi\)
−0.894571 + 0.446926i \(0.852519\pi\)
\(114\) 0 0
\(115\) −32.4759 + 23.5951i −0.0263338 + 0.0191327i
\(116\) 0 0
\(117\) −18.0999 55.7058i −0.0143020 0.0440171i
\(118\) 0 0
\(119\) −772.203 561.038i −0.594855 0.432187i
\(120\) 0 0
\(121\) −1195.93 584.214i −0.898522 0.438928i
\(122\) 0 0
\(123\) 239.282 + 173.848i 0.175409 + 0.127442i
\(124\) 0 0
\(125\) 150.830 + 464.208i 0.107925 + 0.332160i
\(126\) 0 0
\(127\) −100.382 + 72.9320i −0.0701377 + 0.0509580i −0.622302 0.782778i \(-0.713802\pi\)
0.552164 + 0.833736i \(0.313802\pi\)
\(128\) 0 0
\(129\) −452.617 + 1393.01i −0.308920 + 0.950758i
\(130\) 0 0
\(131\) −140.240 −0.0935328 −0.0467664 0.998906i \(-0.514892\pi\)
−0.0467664 + 0.998906i \(0.514892\pi\)
\(132\) 0 0
\(133\) −1121.45 −0.731140
\(134\) 0 0
\(135\) 16.5501 50.9361i 0.0105512 0.0324732i
\(136\) 0 0
\(137\) 610.321 443.424i 0.380608 0.276528i −0.380988 0.924580i \(-0.624416\pi\)
0.761596 + 0.648052i \(0.224416\pi\)
\(138\) 0 0
\(139\) −367.333 1130.53i −0.224149 0.689861i −0.998377 0.0569534i \(-0.981861\pi\)
0.774227 0.632907i \(-0.218139\pi\)
\(140\) 0 0
\(141\) 259.336 + 188.418i 0.154894 + 0.112537i
\(142\) 0 0
\(143\) −179.241 + 155.714i −0.104817 + 0.0910594i
\(144\) 0 0
\(145\) −122.474 88.9827i −0.0701443 0.0509628i
\(146\) 0 0
\(147\) 178.604 + 549.686i 0.100211 + 0.308417i
\(148\) 0 0
\(149\) 1173.73 852.763i 0.645339 0.468866i −0.216341 0.976318i \(-0.569412\pi\)
0.861680 + 0.507452i \(0.169412\pi\)
\(150\) 0 0
\(151\) −870.060 + 2677.77i −0.468904 + 1.44314i 0.385102 + 0.922874i \(0.374166\pi\)
−0.854006 + 0.520263i \(0.825834\pi\)
\(152\) 0 0
\(153\) 700.610 0.370202
\(154\) 0 0
\(155\) 227.721 0.118006
\(156\) 0 0
\(157\) 742.481 2285.12i 0.377429 1.16161i −0.564396 0.825504i \(-0.690891\pi\)
0.941825 0.336104i \(-0.109109\pi\)
\(158\) 0 0
\(159\) 1341.03 974.314i 0.668871 0.485963i
\(160\) 0 0
\(161\) −76.6779 235.990i −0.0375346 0.115520i
\(162\) 0 0
\(163\) −1694.23 1230.93i −0.814123 0.591495i 0.100900 0.994897i \(-0.467828\pi\)
−0.915023 + 0.403402i \(0.867828\pi\)
\(164\) 0 0
\(165\) −216.283 + 18.8547i −0.102046 + 0.00889598i
\(166\) 0 0
\(167\) 3089.83 + 2244.90i 1.43173 + 1.04021i 0.989692 + 0.143214i \(0.0457437\pi\)
0.442036 + 0.896997i \(0.354256\pi\)
\(168\) 0 0
\(169\) −665.822 2049.19i −0.303060 0.932722i
\(170\) 0 0
\(171\) 665.945 483.837i 0.297813 0.216374i
\(172\) 0 0
\(173\) −611.373 + 1881.61i −0.268681 + 0.826916i 0.722141 + 0.691746i \(0.243158\pi\)
−0.990822 + 0.135170i \(0.956842\pi\)
\(174\) 0 0
\(175\) −1484.43 −0.641214
\(176\) 0 0
\(177\) 508.424 0.215907
\(178\) 0 0
\(179\) 818.393 2518.76i 0.341729 1.05174i −0.621582 0.783349i \(-0.713510\pi\)
0.963311 0.268386i \(-0.0864903\pi\)
\(180\) 0 0
\(181\) 3446.85 2504.29i 1.41548 1.02841i 0.422988 0.906135i \(-0.360981\pi\)
0.992496 0.122274i \(-0.0390188\pi\)
\(182\) 0 0
\(183\) 269.682 + 829.995i 0.108937 + 0.335273i
\(184\) 0 0
\(185\) 143.455 + 104.226i 0.0570108 + 0.0414208i
\(186\) 0 0
\(187\) −1108.88 2614.60i −0.433632 1.02245i
\(188\) 0 0
\(189\) 267.831 + 194.591i 0.103079 + 0.0748910i
\(190\) 0 0
\(191\) −407.397 1253.84i −0.154336 0.474998i 0.843757 0.536726i \(-0.180339\pi\)
−0.998093 + 0.0617276i \(0.980339\pi\)
\(192\) 0 0
\(193\) 2230.05 1620.23i 0.831724 0.604283i −0.0883223 0.996092i \(-0.528151\pi\)
0.920047 + 0.391809i \(0.128151\pi\)
\(194\) 0 0
\(195\) −11.9677 + 36.8328i −0.00439500 + 0.0135264i
\(196\) 0 0
\(197\) 1901.61 0.687738 0.343869 0.939018i \(-0.388262\pi\)
0.343869 + 0.939018i \(0.388262\pi\)
\(198\) 0 0
\(199\) −3994.66 −1.42299 −0.711493 0.702693i \(-0.751981\pi\)
−0.711493 + 0.702693i \(0.751981\pi\)
\(200\) 0 0
\(201\) −99.5203 + 306.292i −0.0349235 + 0.107483i
\(202\) 0 0
\(203\) 757.058 550.034i 0.261749 0.190172i
\(204\) 0 0
\(205\) −60.4322 185.991i −0.0205891 0.0633668i
\(206\) 0 0
\(207\) 147.349 + 107.056i 0.0494758 + 0.0359462i
\(208\) 0 0
\(209\) −2859.64 1719.45i −0.946438 0.569077i
\(210\) 0 0
\(211\) −417.464 303.305i −0.136206 0.0989592i 0.517596 0.855625i \(-0.326827\pi\)
−0.653802 + 0.756666i \(0.726827\pi\)
\(212\) 0 0
\(213\) 675.525 + 2079.05i 0.217306 + 0.668799i
\(214\) 0 0
\(215\) 783.502 569.247i 0.248532 0.180569i
\(216\) 0 0
\(217\) −434.981 + 1338.73i −0.136076 + 0.418798i
\(218\) 0 0
\(219\) −1076.02 −0.332013
\(220\) 0 0
\(221\) −506.624 −0.154204
\(222\) 0 0
\(223\) −271.131 + 834.455i −0.0814182 + 0.250579i −0.983477 0.181034i \(-0.942056\pi\)
0.902059 + 0.431614i \(0.142056\pi\)
\(224\) 0 0
\(225\) 881.495 640.444i 0.261184 0.189761i
\(226\) 0 0
\(227\) −1238.72 3812.39i −0.362189 1.11470i −0.951723 0.306959i \(-0.900689\pi\)
0.589534 0.807743i \(-0.299311\pi\)
\(228\) 0 0
\(229\) −1386.93 1007.66i −0.400222 0.290779i 0.369409 0.929267i \(-0.379560\pi\)
−0.769632 + 0.638488i \(0.779560\pi\)
\(230\) 0 0
\(231\) 302.288 1307.50i 0.0861000 0.372413i
\(232\) 0 0
\(233\) 5121.82 + 3721.22i 1.44009 + 1.04629i 0.988023 + 0.154305i \(0.0493137\pi\)
0.452068 + 0.891983i \(0.350686\pi\)
\(234\) 0 0
\(235\) −65.4970 201.579i −0.0181811 0.0559556i
\(236\) 0 0
\(237\) −1241.44 + 901.962i −0.340255 + 0.247210i
\(238\) 0 0
\(239\) −1863.05 + 5733.87i −0.504228 + 1.55185i 0.297837 + 0.954617i \(0.403735\pi\)
−0.802065 + 0.597237i \(0.796265\pi\)
\(240\) 0 0
\(241\) 2528.58 0.675852 0.337926 0.941173i \(-0.390275\pi\)
0.337926 + 0.941173i \(0.390275\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 118.093 363.454i 0.0307947 0.0947763i
\(246\) 0 0
\(247\) −481.557 + 349.871i −0.124051 + 0.0901287i
\(248\) 0 0
\(249\) 590.954 + 1818.77i 0.150402 + 0.462891i
\(250\) 0 0
\(251\) −2313.85 1681.11i −0.581867 0.422751i 0.257530 0.966270i \(-0.417092\pi\)
−0.839397 + 0.543519i \(0.817092\pi\)
\(252\) 0 0
\(253\) 166.306 719.333i 0.0413263 0.178751i
\(254\) 0 0
\(255\) −374.773 272.288i −0.0920360 0.0668681i
\(256\) 0 0
\(257\) 1454.89 + 4477.69i 0.353127 + 1.08681i 0.957088 + 0.289798i \(0.0935882\pi\)
−0.603961 + 0.797014i \(0.706412\pi\)
\(258\) 0 0
\(259\) −886.746 + 644.259i −0.212740 + 0.154565i
\(260\) 0 0
\(261\) −212.254 + 653.251i −0.0503379 + 0.154924i
\(262\) 0 0
\(263\) −1322.27 −0.310018 −0.155009 0.987913i \(-0.549541\pi\)
−0.155009 + 0.987913i \(0.549541\pi\)
\(264\) 0 0
\(265\) −1096.01 −0.254065
\(266\) 0 0
\(267\) 770.238 2370.55i 0.176546 0.543353i
\(268\) 0 0
\(269\) −4208.37 + 3057.56i −0.953863 + 0.693022i −0.951717 0.306976i \(-0.900683\pi\)
−0.00214547 + 0.999998i \(0.500683\pi\)
\(270\) 0 0
\(271\) 1664.83 + 5123.81i 0.373177 + 1.14852i 0.944700 + 0.327935i \(0.106353\pi\)
−0.571523 + 0.820586i \(0.693647\pi\)
\(272\) 0 0
\(273\) −193.674 140.712i −0.0429365 0.0311952i
\(274\) 0 0
\(275\) −3785.24 2276.00i −0.830031 0.499083i
\(276\) 0 0
\(277\) 2523.21 + 1833.22i 0.547310 + 0.397644i 0.826793 0.562507i \(-0.190163\pi\)
−0.279483 + 0.960151i \(0.590163\pi\)
\(278\) 0 0
\(279\) −319.281 982.645i −0.0685120 0.210858i
\(280\) 0 0
\(281\) 5524.63 4013.88i 1.17285 0.852127i 0.181505 0.983390i \(-0.441903\pi\)
0.991348 + 0.131263i \(0.0419031\pi\)
\(282\) 0 0
\(283\) −2827.14 + 8701.05i −0.593838 + 1.82765i −0.0334114 + 0.999442i \(0.510637\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(284\) 0 0
\(285\) −544.271 −0.113122
\(286\) 0 0
\(287\) 1208.84 0.248627
\(288\) 0 0
\(289\) 354.420 1090.79i 0.0721391 0.222021i
\(290\) 0 0
\(291\) 1928.49 1401.13i 0.388488 0.282253i
\(292\) 0 0
\(293\) 1000.77 + 3080.04i 0.199541 + 0.614123i 0.999894 + 0.0145935i \(0.00464542\pi\)
−0.800353 + 0.599529i \(0.795355\pi\)
\(294\) 0 0
\(295\) −271.968 197.596i −0.0536766 0.0389983i
\(296\) 0 0
\(297\) 384.604 + 906.851i 0.0751413 + 0.177175i
\(298\) 0 0
\(299\) −106.551 77.4138i −0.0206087 0.0149731i
\(300\) 0 0
\(301\) 1849.90 + 5693.42i 0.354242 + 1.09024i
\(302\) 0 0
\(303\) −1145.46 + 832.222i −0.217177 + 0.157789i
\(304\) 0 0
\(305\) 178.314 548.794i 0.0334762 0.103029i
\(306\) 0 0
\(307\) −3909.16 −0.726735 −0.363367 0.931646i \(-0.618373\pi\)
−0.363367 + 0.931646i \(0.618373\pi\)
\(308\) 0 0
\(309\) −5543.71 −1.02062
\(310\) 0 0
\(311\) −2705.87 + 8327.83i −0.493364 + 1.51842i 0.326128 + 0.945326i \(0.394256\pi\)
−0.819491 + 0.573091i \(0.805744\pi\)
\(312\) 0 0
\(313\) 4483.78 3257.66i 0.809707 0.588286i −0.104039 0.994573i \(-0.533177\pi\)
0.913746 + 0.406287i \(0.133177\pi\)
\(314\) 0 0
\(315\) −67.6426 208.183i −0.0120991 0.0372373i
\(316\) 0 0
\(317\) −6558.45 4765.00i −1.16202 0.844255i −0.171985 0.985099i \(-0.555018\pi\)
−0.990032 + 0.140845i \(0.955018\pi\)
\(318\) 0 0
\(319\) 2773.81 241.810i 0.486844 0.0424413i
\(320\) 0 0
\(321\) −2258.11 1640.61i −0.392633 0.285265i
\(322\) 0 0
\(323\) −2200.16 6771.39i −0.379010 1.16647i
\(324\) 0 0
\(325\) −637.425 + 463.116i −0.108794 + 0.0790433i
\(326\) 0 0
\(327\) −401.721 + 1236.37i −0.0679365 + 0.209087i
\(328\) 0 0
\(329\) 1310.16 0.219548
\(330\) 0 0
\(331\) 2603.54 0.432336 0.216168 0.976356i \(-0.430644\pi\)
0.216168 + 0.976356i \(0.430644\pi\)
\(332\) 0 0
\(333\) 248.614 765.156i 0.0409129 0.125917i
\(334\) 0 0
\(335\) 172.274 125.165i 0.0280966 0.0204134i
\(336\) 0 0
\(337\) −238.684 734.594i −0.0385814 0.118741i 0.929911 0.367785i \(-0.119884\pi\)
−0.968492 + 0.249044i \(0.919884\pi\)
\(338\) 0 0
\(339\) −4090.23 2971.73i −0.655312 0.476112i
\(340\) 0 0
\(341\) −3161.80 + 2746.79i −0.502114 + 0.436208i
\(342\) 0 0
\(343\) 5313.56 + 3860.53i 0.836458 + 0.607722i
\(344\) 0 0
\(345\) −37.2141 114.533i −0.00580735 0.0178732i
\(346\) 0 0
\(347\) 3408.56 2476.46i 0.527323 0.383123i −0.292032 0.956408i \(-0.594332\pi\)
0.819355 + 0.573286i \(0.194332\pi\)
\(348\) 0 0
\(349\) 1483.19 4564.79i 0.227488 0.700137i −0.770541 0.637390i \(-0.780014\pi\)
0.998029 0.0627467i \(-0.0199860\pi\)
\(350\) 0 0
\(351\) 175.718 0.0267211
\(352\) 0 0
\(353\) −448.615 −0.0676412 −0.0338206 0.999428i \(-0.510767\pi\)
−0.0338206 + 0.999428i \(0.510767\pi\)
\(354\) 0 0
\(355\) 446.658 1374.67i 0.0667779 0.205521i
\(356\) 0 0
\(357\) 2316.61 1683.11i 0.343440 0.249523i
\(358\) 0 0
\(359\) −3435.35 10572.9i −0.505045 1.55437i −0.800695 0.599072i \(-0.795536\pi\)
0.295651 0.955296i \(-0.404464\pi\)
\(360\) 0 0
\(361\) −1218.54 885.320i −0.177655 0.129074i
\(362\) 0 0
\(363\) 2775.55 2870.60i 0.401319 0.415062i
\(364\) 0 0
\(365\) 575.589 + 418.190i 0.0825417 + 0.0599700i
\(366\) 0 0
\(367\) 3149.15 + 9692.08i 0.447913 + 1.37854i 0.879257 + 0.476348i \(0.158040\pi\)
−0.431344 + 0.902188i \(0.641960\pi\)
\(368\) 0 0
\(369\) −717.845 + 521.545i −0.101272 + 0.0735787i
\(370\) 0 0
\(371\) 2093.54 6443.25i 0.292968 0.901663i
\(372\) 0 0
\(373\) 11174.0 1.55112 0.775560 0.631274i \(-0.217468\pi\)
0.775560 + 0.631274i \(0.217468\pi\)
\(374\) 0 0
\(375\) −1464.29 −0.201642
\(376\) 0 0
\(377\) 153.485 472.377i 0.0209678 0.0645323i
\(378\) 0 0
\(379\) 7717.65 5607.20i 1.04599 0.759954i 0.0745413 0.997218i \(-0.476251\pi\)
0.971445 + 0.237264i \(0.0762507\pi\)
\(380\) 0 0
\(381\) −115.028 354.019i −0.0154673 0.0476036i
\(382\) 0 0
\(383\) 9441.77 + 6859.85i 1.25967 + 0.915201i 0.998741 0.0501584i \(-0.0159726\pi\)
0.260925 + 0.965359i \(0.415973\pi\)
\(384\) 0 0
\(385\) −669.856 + 581.932i −0.0886728 + 0.0770338i
\(386\) 0 0
\(387\) −3554.90 2582.78i −0.466939 0.339251i
\(388\) 0 0
\(389\) −3268.87 10060.6i −0.426063 1.31129i −0.901973 0.431793i \(-0.857881\pi\)
0.475910 0.879494i \(-0.342119\pi\)
\(390\) 0 0
\(391\) 1274.50 925.977i 0.164844 0.119766i
\(392\) 0 0
\(393\) 130.009 400.128i 0.0166873 0.0513582i
\(394\) 0 0
\(395\) 1014.62 0.129243
\(396\) 0 0
\(397\) −337.577 −0.0426763 −0.0213381 0.999772i \(-0.506793\pi\)
−0.0213381 + 0.999772i \(0.506793\pi\)
\(398\) 0 0
\(399\) 1039.64 3199.67i 0.130443 0.401464i
\(400\) 0 0
\(401\) −4762.00 + 3459.79i −0.593024 + 0.430857i −0.843396 0.537292i \(-0.819447\pi\)
0.250372 + 0.968150i \(0.419447\pi\)
\(402\) 0 0
\(403\) 230.878 + 710.569i 0.0285381 + 0.0878311i
\(404\) 0 0
\(405\) 129.986 + 94.4407i 0.0159483 + 0.0115872i
\(406\) 0 0
\(407\) −3248.98 + 283.233i −0.395690 + 0.0344947i
\(408\) 0 0
\(409\) −10318.7 7496.99i −1.24750 0.906363i −0.249427 0.968394i \(-0.580242\pi\)
−0.998074 + 0.0620309i \(0.980242\pi\)
\(410\) 0 0
\(411\) 699.366 + 2152.43i 0.0839347 + 0.258325i
\(412\) 0 0
\(413\) 1681.13 1221.41i 0.200298 0.145525i
\(414\) 0 0
\(415\) 390.740 1202.57i 0.0462185 0.142246i
\(416\) 0 0
\(417\) 3566.14 0.418788
\(418\) 0 0
\(419\) 4686.15 0.546380 0.273190 0.961960i \(-0.411921\pi\)
0.273190 + 0.961960i \(0.411921\pi\)
\(420\) 0 0
\(421\) −479.525 + 1475.83i −0.0555121 + 0.170849i −0.974968 0.222344i \(-0.928629\pi\)
0.919456 + 0.393192i \(0.128629\pi\)
\(422\) 0 0
\(423\) −778.007 + 565.255i −0.0894279 + 0.0649732i
\(424\) 0 0
\(425\) −2912.30 8963.13i −0.332393 1.02300i
\(426\) 0 0
\(427\) 2885.66 + 2096.56i 0.327042 + 0.237610i
\(428\) 0 0
\(429\) −278.114 655.760i −0.0312994 0.0738005i
\(430\) 0 0
\(431\) 9433.01 + 6853.48i 1.05423 + 0.765941i 0.973012 0.230756i \(-0.0741198\pi\)
0.0812156 + 0.996697i \(0.474120\pi\)
\(432\) 0 0
\(433\) 785.662 + 2418.02i 0.0871975 + 0.268366i 0.985142 0.171743i \(-0.0549398\pi\)
−0.897944 + 0.440109i \(0.854940\pi\)
\(434\) 0 0
\(435\) 367.422 266.948i 0.0404978 0.0294234i
\(436\) 0 0
\(437\) 571.963 1760.32i 0.0626103 0.192695i
\(438\) 0 0
\(439\) −5101.99 −0.554681 −0.277340 0.960772i \(-0.589453\pi\)
−0.277340 + 0.960772i \(0.589453\pi\)
\(440\) 0 0
\(441\) −1733.92 −0.187228
\(442\) 0 0
\(443\) 846.872 2606.40i 0.0908264 0.279535i −0.895317 0.445429i \(-0.853051\pi\)
0.986144 + 0.165894i \(0.0530511\pi\)
\(444\) 0 0
\(445\) −1333.32 + 968.714i −0.142035 + 0.103194i
\(446\) 0 0
\(447\) 1344.97 + 4139.40i 0.142315 + 0.438002i
\(448\) 0 0
\(449\) −8818.11 6406.73i −0.926843 0.673391i 0.0183750 0.999831i \(-0.494151\pi\)
−0.945218 + 0.326440i \(0.894151\pi\)
\(450\) 0 0
\(451\) 3082.51 + 1853.46i 0.321840 + 0.193517i
\(452\) 0 0
\(453\) −6833.54 4964.86i −0.708758 0.514943i
\(454\) 0 0
\(455\) 48.9136 + 150.541i 0.00503979 + 0.0155109i
\(456\) 0 0
\(457\) −11106.2 + 8069.11i −1.13682 + 0.825946i −0.986673 0.162718i \(-0.947974\pi\)
−0.150144 + 0.988664i \(0.547974\pi\)
\(458\) 0 0
\(459\) −649.501 + 1998.96i −0.0660482 + 0.203275i
\(460\) 0 0
\(461\) 3104.40 0.313636 0.156818 0.987628i \(-0.449876\pi\)
0.156818 + 0.987628i \(0.449876\pi\)
\(462\) 0 0
\(463\) 3771.28 0.378545 0.189272 0.981925i \(-0.439387\pi\)
0.189272 + 0.981925i \(0.439387\pi\)
\(464\) 0 0
\(465\) −211.109 + 649.727i −0.0210537 + 0.0647965i
\(466\) 0 0
\(467\) −9914.73 + 7203.47i −0.982439 + 0.713784i −0.958252 0.285924i \(-0.907700\pi\)
−0.0241865 + 0.999707i \(0.507700\pi\)
\(468\) 0 0
\(469\) 406.753 + 1251.86i 0.0400471 + 0.123252i
\(470\) 0 0
\(471\) 5831.52 + 4236.85i 0.570493 + 0.414487i
\(472\) 0 0
\(473\) −4012.24 + 17354.4i −0.390027 + 1.68701i
\(474\) 0 0
\(475\) −8958.09 6508.43i −0.865316 0.628689i
\(476\) 0 0
\(477\) 1536.68 + 4729.42i 0.147505 + 0.453973i
\(478\) 0 0
\(479\) 843.488 612.830i 0.0804592 0.0584570i −0.546828 0.837245i \(-0.684165\pi\)
0.627288 + 0.778788i \(0.284165\pi\)
\(480\) 0 0
\(481\) −179.778 + 553.298i −0.0170419 + 0.0524496i
\(482\) 0 0
\(483\) 744.405 0.0701275
\(484\) 0 0
\(485\) −1576.14 −0.147564
\(486\) 0 0
\(487\) 536.464 1651.07i 0.0499169 0.153628i −0.922991 0.384822i \(-0.874263\pi\)
0.972908 + 0.231193i \(0.0742630\pi\)
\(488\) 0 0
\(489\) 5082.68 3692.78i 0.470034 0.341500i
\(490\) 0 0
\(491\) 3489.83 + 10740.6i 0.320761 + 0.987202i 0.973318 + 0.229462i \(0.0736966\pi\)
−0.652556 + 0.757740i \(0.726303\pi\)
\(492\) 0 0
\(493\) 4806.43 + 3492.07i 0.439089 + 0.319016i
\(494\) 0 0
\(495\) 146.709 634.570i 0.0133214 0.0576198i
\(496\) 0 0
\(497\) 7228.28 + 5251.66i 0.652380 + 0.473982i
\(498\) 0 0
\(499\) −4140.83 12744.2i −0.371481 1.14330i −0.945822 0.324686i \(-0.894741\pi\)
0.574341 0.818616i \(-0.305259\pi\)
\(500\) 0 0
\(501\) −9269.50 + 6734.69i −0.826608 + 0.600566i
\(502\) 0 0
\(503\) 2410.37 7418.36i 0.213664 0.657591i −0.785582 0.618758i \(-0.787636\pi\)
0.999246 0.0388326i \(-0.0123639\pi\)
\(504\) 0 0
\(505\) 936.171 0.0824932
\(506\) 0 0
\(507\) 6463.94 0.566220
\(508\) 0 0
\(509\) −6733.56 + 20723.8i −0.586365 + 1.80465i 0.00735129 + 0.999973i \(0.497660\pi\)
−0.593717 + 0.804674i \(0.702340\pi\)
\(510\) 0 0
\(511\) −3557.93 + 2584.99i −0.308011 + 0.223783i
\(512\) 0 0
\(513\) 763.105 + 2348.60i 0.0656762 + 0.202131i
\(514\) 0 0
\(515\) 2965.46 + 2154.54i 0.253736 + 0.184350i
\(516\) 0 0
\(517\) 3340.85 + 2008.80i 0.284198 + 0.170883i
\(518\) 0 0
\(519\) −4801.79 3488.70i −0.406118 0.295062i
\(520\) 0 0
\(521\) −258.126 794.431i −0.0217058 0.0668036i 0.939617 0.342228i \(-0.111182\pi\)
−0.961323 + 0.275425i \(0.911182\pi\)
\(522\) 0 0
\(523\) −664.886 + 483.068i −0.0555898 + 0.0403883i −0.615233 0.788345i \(-0.710938\pi\)
0.559643 + 0.828734i \(0.310938\pi\)
\(524\) 0 0
\(525\) 1376.14 4235.33i 0.114400 0.352086i
\(526\) 0 0
\(527\) −8936.79 −0.738696
\(528\) 0 0
\(529\) −11757.5 −0.966340
\(530\) 0 0
\(531\) −471.335 + 1450.62i −0.0385201 + 0.118553i
\(532\) 0 0
\(533\) 519.087 377.138i 0.0421841 0.0306486i
\(534\) 0 0
\(535\) 570.300 + 1755.20i 0.0460864 + 0.141839i
\(536\) 0 0
\(537\) 6427.74 + 4670.03i 0.516532 + 0.375282i
\(538\) 0 0
\(539\) 2744.33 + 6470.82i 0.219308 + 0.517102i
\(540\) 0 0
\(541\) −16604.9 12064.2i −1.31960 0.958744i −0.999937 0.0112114i \(-0.996431\pi\)
−0.319660 0.947532i \(-0.603569\pi\)
\(542\) 0 0
\(543\) 3949.74 + 12156.1i 0.312154 + 0.960712i
\(544\) 0 0
\(545\) 695.399 505.237i 0.0546562 0.0397101i
\(546\) 0 0
\(547\) 1843.40 5673.41i 0.144092 0.443469i −0.852801 0.522236i \(-0.825098\pi\)
0.996893 + 0.0787666i \(0.0250982\pi\)
\(548\) 0 0
\(549\) −2618.12 −0.203532
\(550\) 0 0
\(551\) 6980.22 0.539687
\(552\) 0 0
\(553\) −1938.08 + 5964.79i −0.149033 + 0.458677i
\(554\) 0 0
\(555\) −430.364 + 312.678i −0.0329152 + 0.0239143i
\(556\) 0 0
\(557\) −451.401 1389.27i −0.0343383 0.105683i 0.932418 0.361381i \(-0.117695\pi\)
−0.966757 + 0.255698i \(0.917695\pi\)
\(558\) 0 0
\(559\) 2570.61 + 1867.66i 0.194499 + 0.141312i
\(560\) 0 0
\(561\) 8487.89 739.943i 0.638786 0.0556870i
\(562\) 0 0
\(563\) 20000.9 + 14531.5i 1.49723 + 1.08780i 0.971469 + 0.237167i \(0.0762187\pi\)
0.525759 + 0.850633i \(0.323781\pi\)
\(564\) 0 0
\(565\) 1033.02 + 3179.29i 0.0769191 + 0.236733i
\(566\) 0 0
\(567\) −803.494 + 583.773i −0.0595125 + 0.0432384i
\(568\) 0 0
\(569\) 7905.61 24331.0i 0.582461 1.79263i −0.0267756 0.999641i \(-0.508524\pi\)
0.609236 0.792989i \(-0.291476\pi\)
\(570\) 0 0
\(571\) −8840.84 −0.647947 −0.323973 0.946066i \(-0.605019\pi\)
−0.323973 + 0.946066i \(0.605019\pi\)
\(572\) 0 0
\(573\) 3955.09 0.288353
\(574\) 0 0
\(575\) 757.094 2330.10i 0.0549096 0.168994i
\(576\) 0 0
\(577\) −14479.3 + 10519.8i −1.04468 + 0.759003i −0.971193 0.238293i \(-0.923412\pi\)
−0.0734847 + 0.997296i \(0.523412\pi\)
\(578\) 0 0
\(579\) 2555.41 + 7864.76i 0.183419 + 0.564505i
\(580\) 0 0
\(581\) 6323.36 + 4594.19i 0.451527 + 0.328053i
\(582\) 0 0
\(583\) 15217.6 13220.1i 1.08104 0.939146i
\(584\) 0 0
\(585\) −93.9956 68.2918i −0.00664314 0.00482653i
\(586\) 0 0
\(587\) −8445.52 25992.6i −0.593840 1.82765i −0.560419 0.828209i \(-0.689360\pi\)
−0.0334206 0.999441i \(-0.510640\pi\)
\(588\) 0 0
\(589\) −8494.61 + 6171.70i −0.594252 + 0.431749i
\(590\) 0 0
\(591\) −1762.89 + 5425.63i −0.122700 + 0.377632i
\(592\) 0 0
\(593\) −389.353 −0.0269626 −0.0134813 0.999909i \(-0.504291\pi\)
−0.0134813 + 0.999909i \(0.504291\pi\)
\(594\) 0 0
\(595\) −1893.34 −0.130453
\(596\) 0 0
\(597\) 3703.26 11397.5i 0.253876 0.781351i
\(598\) 0 0
\(599\) −20429.9 + 14843.2i −1.39356 + 1.01248i −0.398096 + 0.917344i \(0.630329\pi\)
−0.995464 + 0.0951368i \(0.969671\pi\)
\(600\) 0 0
\(601\) −2181.63 6714.37i −0.148071 0.455715i 0.849322 0.527875i \(-0.177011\pi\)
−0.997393 + 0.0721596i \(0.977011\pi\)
\(602\) 0 0
\(603\) −781.642 567.896i −0.0527876 0.0383524i
\(604\) 0 0
\(605\) −2600.35 + 456.850i −0.174743 + 0.0307002i
\(606\) 0 0
\(607\) −12283.3 8924.34i −0.821357 0.596751i 0.0957435 0.995406i \(-0.469477\pi\)
−0.917101 + 0.398655i \(0.869477\pi\)
\(608\) 0 0
\(609\) 867.511 + 2669.92i 0.0577230 + 0.177653i
\(610\) 0 0
\(611\) 562.591 408.746i 0.0372504 0.0270640i
\(612\) 0 0
\(613\) 4796.66 14762.6i 0.316044 0.972685i −0.659278 0.751899i \(-0.729138\pi\)
0.975322 0.220785i \(-0.0708620\pi\)
\(614\) 0 0
\(615\) 586.688 0.0384676
\(616\) 0 0
\(617\) 27430.4 1.78980 0.894899 0.446269i \(-0.147248\pi\)
0.894899 + 0.446269i \(0.147248\pi\)
\(618\) 0 0
\(619\) 6668.83 20524.5i 0.433025 1.33272i −0.462071 0.886843i \(-0.652894\pi\)
0.895097 0.445872i \(-0.147106\pi\)
\(620\) 0 0
\(621\) −442.048 + 321.167i −0.0285648 + 0.0207536i
\(622\) 0 0
\(623\) −3148.07 9688.75i −0.202447 0.623068i
\(624\) 0 0
\(625\) −11459.7 8325.96i −0.733421 0.532862i
\(626\) 0 0
\(627\) 7556.93 6565.02i 0.481331 0.418153i
\(628\) 0 0
\(629\) −5629.80 4090.29i −0.356875 0.259285i
\(630\) 0 0
\(631\) −2320.52 7141.83i −0.146400 0.450573i 0.850788 0.525509i \(-0.176125\pi\)
−0.997188 + 0.0749353i \(0.976125\pi\)
\(632\) 0 0
\(633\) 1252.39 909.916i 0.0786384 0.0571341i
\(634\) 0 0
\(635\) −76.0566 + 234.078i −0.00475310 + 0.0146285i
\(636\) 0 0
\(637\) 1253.83 0.0779883
\(638\) 0 0
\(639\) −6558.13 −0.406003
\(640\) 0 0
\(641\) −2424.82 + 7462.83i −0.149414 + 0.459850i −0.997552 0.0699253i \(-0.977724\pi\)
0.848138 + 0.529776i \(0.177724\pi\)
\(642\) 0 0
\(643\) 706.659 513.418i 0.0433404 0.0314887i −0.565904 0.824471i \(-0.691473\pi\)
0.609245 + 0.792982i \(0.291473\pi\)
\(644\) 0 0
\(645\) 897.813 + 2763.18i 0.0548083 + 0.168683i
\(646\) 0 0
\(647\) 20663.0 + 15012.6i 1.25556 + 0.912217i 0.998531 0.0541866i \(-0.0172566\pi\)
0.257028 + 0.966404i \(0.417257\pi\)
\(648\) 0 0
\(649\) 6159.56 536.967i 0.372548 0.0324774i
\(650\) 0 0
\(651\) −3416.39 2482.15i −0.205682 0.149436i
\(652\) 0 0
\(653\) −3190.62 9819.73i −0.191208 0.588477i −1.00000 0.000382475i \(-0.999878\pi\)
0.808792 0.588095i \(-0.200122\pi\)
\(654\) 0 0
\(655\) −225.053 + 163.510i −0.0134252 + 0.00975401i
\(656\) 0 0
\(657\) 997.526 3070.07i 0.0592347 0.182306i
\(658\) 0 0
\(659\) −28905.7 −1.70866 −0.854329 0.519733i \(-0.826031\pi\)
−0.854329 + 0.519733i \(0.826031\pi\)
\(660\) 0 0
\(661\) 28041.5 1.65006 0.825028 0.565092i \(-0.191159\pi\)
0.825028 + 0.565092i \(0.191159\pi\)
\(662\) 0 0
\(663\) 469.666 1445.48i 0.0275118 0.0846726i
\(664\) 0 0
\(665\) −1799.66 + 1307.53i −0.104944 + 0.0762465i
\(666\) 0 0
\(667\) 477.267 + 1468.88i 0.0277059 + 0.0852701i
\(668\) 0 0
\(669\) −2129.49 1547.16i −0.123065 0.0894123i
\(670\) 0 0
\(671\) 4143.79 + 9770.57i 0.238404 + 0.562129i
\(672\) 0 0
\(673\) −7569.87 5499.83i −0.433576 0.315012i 0.349501 0.936936i \(-0.386351\pi\)
−0.783077 + 0.621924i \(0.786351\pi\)
\(674\) 0 0
\(675\) 1010.10 + 3108.78i 0.0575984 + 0.177270i
\(676\) 0 0
\(677\) 18651.9 13551.4i 1.05886 0.769309i 0.0849856 0.996382i \(-0.472916\pi\)
0.973878 + 0.227073i \(0.0729156\pi\)
\(678\) 0 0
\(679\) 3010.66 9265.84i 0.170160 0.523697i
\(680\) 0 0
\(681\) 12025.8 0.676693
\(682\) 0 0
\(683\) 18443.9 1.03329 0.516645 0.856200i \(-0.327181\pi\)
0.516645 + 0.856200i \(0.327181\pi\)
\(684\) 0 0
\(685\) 462.422 1423.19i 0.0257931 0.0793829i
\(686\) 0 0
\(687\) 4160.79 3022.99i 0.231068 0.167881i
\(688\) 0 0
\(689\) −1111.20 3419.93i −0.0614418 0.189098i
\(690\) 0 0
\(691\) 20208.4 + 14682.3i 1.11254 + 0.808306i 0.983061 0.183276i \(-0.0586703\pi\)
0.129476 + 0.991582i \(0.458670\pi\)
\(692\) 0 0
\(693\) 3450.30 + 2074.60i 0.189128 + 0.113720i
\(694\) 0 0
\(695\) −1907.61 1385.96i −0.104115 0.0756440i
\(696\) 0 0
\(697\) 2371.63 + 7299.12i 0.128884 + 0.396663i
\(698\) 0 0
\(699\) −15365.5 + 11163.7i −0.831437 + 0.604075i
\(700\) 0 0
\(701\) 7753.13 23861.7i 0.417734 1.28565i −0.492048 0.870568i \(-0.663751\pi\)
0.909782 0.415086i \(-0.136249\pi\)
\(702\) 0 0
\(703\) −8175.97 −0.438638
\(704\) 0 0
\(705\) 635.858 0.0339685
\(706\) 0 0
\(707\) −1788.22 + 5503.59i −0.0951246 + 0.292763i
\(708\) 0 0
\(709\) 12414.6 9019.76i 0.657604 0.477777i −0.208249 0.978076i \(-0.566776\pi\)
0.865853 + 0.500298i \(0.166776\pi\)
\(710\) 0 0
\(711\) −1422.57 4378.22i −0.0750359 0.230937i
\(712\) 0 0
\(713\) −1879.55 1365.57i −0.0987232 0.0717266i
\(714\) 0 0
\(715\) −106.088 + 458.869i −0.00554891 + 0.0240010i
\(716\) 0 0
\(717\) −14632.6 10631.2i −0.762152 0.553736i
\(718\) 0 0
\(719\) −9216.75 28366.3i −0.478063 1.47133i −0.841783 0.539817i \(-0.818494\pi\)
0.363720 0.931508i \(-0.381506\pi\)
\(720\) 0 0
\(721\) −18330.6 + 13318.0i −0.946835 + 0.687916i
\(722\) 0 0
\(723\) −2344.13 + 7214.48i −0.120580 + 0.371106i
\(724\) 0 0
\(725\) 9239.55 0.473308
\(726\) 0 0
\(727\) −19398.7 −0.989626 −0.494813 0.869000i \(-0.664763\pi\)
−0.494813 + 0.869000i \(0.664763\pi\)
\(728\) 0 0
\(729\) 225.273 693.320i 0.0114451 0.0352243i
\(730\) 0 0
\(731\) −30748.1 + 22339.8i −1.55576 + 1.13032i
\(732\) 0 0
\(733\) 10180.5 + 31332.4i 0.512996 + 1.57884i 0.786900 + 0.617081i \(0.211685\pi\)
−0.273904 + 0.961757i \(0.588315\pi\)
\(734\) 0 0
\(735\) 927.516 + 673.880i 0.0465469 + 0.0338183i
\(736\) 0 0
\(737\) −882.201 + 3815.84i −0.0440927 + 0.190717i
\(738\) 0 0
\(739\) 5707.17 + 4146.50i 0.284089 + 0.206403i 0.720699 0.693248i \(-0.243821\pi\)
−0.436610 + 0.899651i \(0.643821\pi\)
\(740\) 0 0
\(741\) −551.815 1698.31i −0.0273568 0.0841957i
\(742\) 0 0
\(743\) −4025.05 + 2924.37i −0.198741 + 0.144394i −0.682705 0.730694i \(-0.739197\pi\)
0.483964 + 0.875088i \(0.339197\pi\)
\(744\) 0 0
\(745\) 889.298 2736.98i 0.0437334 0.134598i
\(746\) 0 0
\(747\) −5737.10 −0.281003
\(748\) 0 0
\(749\) −11407.9 −0.556523
\(750\) 0 0
\(751\) 10127.4 31168.8i 0.492081 1.51447i −0.329376 0.944199i \(-0.606838\pi\)
0.821457 0.570270i \(-0.193162\pi\)
\(752\) 0 0
\(753\) 6941.54 5043.32i 0.335941 0.244076i
\(754\) 0 0
\(755\) 1725.86 + 5311.64i 0.0831925 + 0.256040i
\(756\) 0 0
\(757\) 25632.9 + 18623.4i 1.23070 + 0.894158i 0.996943 0.0781357i \(-0.0248968\pi\)
0.233761 + 0.972294i \(0.424897\pi\)
\(758\) 0 0
\(759\) 1898.20 + 1141.36i 0.0907779 + 0.0545832i
\(760\) 0 0
\(761\) 16845.6 + 12239.0i 0.802432 + 0.583001i 0.911627 0.411019i \(-0.134827\pi\)
−0.109195 + 0.994020i \(0.534827\pi\)
\(762\) 0 0
\(763\) 1641.89 + 5053.21i 0.0779035 + 0.239762i
\(764\) 0 0
\(765\) 1124.32 816.865i 0.0531370 0.0386063i
\(766\) 0 0
\(767\) 340.831 1048.97i 0.0160452 0.0493821i
\(768\) 0 0
\(769\) −15356.6 −0.720123 −0.360062 0.932929i \(-0.617244\pi\)
−0.360062 + 0.932929i \(0.617244\pi\)
\(770\) 0 0
\(771\) −14124.4 −0.659762
\(772\) 0 0
\(773\) −7407.09 + 22796.7i −0.344650 + 1.06072i 0.617121 + 0.786868i \(0.288299\pi\)
−0.961771 + 0.273855i \(0.911701\pi\)
\(774\) 0 0
\(775\) −11244.1 + 8169.33i −0.521162 + 0.378646i
\(776\) 0 0
\(777\) −1016.12 3127.30i −0.0469152 0.144390i
\(778\) 0 0
\(779\) 7295.01 + 5300.14i 0.335521 + 0.243770i
\(780\) 0 0
\(781\) 10379.8 + 24474.3i 0.475566 + 1.12133i
\(782\) 0 0
\(783\) −1667.07 1211.19i −0.0760869 0.0552804i
\(784\) 0 0
\(785\) −1472.79 4532.78i −0.0669632 0.206092i
\(786\) 0 0
\(787\) −20832.6 + 15135.7i −0.943584 + 0.685554i −0.949281 0.314430i \(-0.898187\pi\)
0.00569705 + 0.999984i \(0.498187\pi\)
\(788\) 0 0
\(789\) 1225.81 3772.67i 0.0553107 0.170229i
\(790\) 0 0
\(791\) −20663.7 −0.928847
\(792\) 0 0
\(793\) 1893.21 0.0847793
\(794\) 0 0
\(795\) 1016.06 3127.10i 0.0453281 0.139505i
\(796\) 0 0
\(797\) −18104.8 + 13153.9i −0.804651 + 0.584613i −0.912275 0.409579i \(-0.865676\pi\)
0.107624 + 0.994192i \(0.465676\pi\)
\(798\) 0 0
\(799\) 2570.39 + 7910.86i 0.113810 + 0.350270i
\(800\) 0 0
\(801\) 6049.53 + 4395.24i 0.266853 + 0.193880i
\(802\) 0 0
\(803\) −13036.0 + 1136.43i −0.572890 + 0.0499424i
\(804\) 0 0
\(805\) −398.200 289.309i −0.0174344 0.0126668i
\(806\) 0 0
\(807\) −4822.37 14841.7i −0.210354 0.647402i
\(808\) 0 0
\(809\) 327.625 238.034i 0.0142382 0.0103446i −0.580643 0.814158i \(-0.697199\pi\)
0.594882 + 0.803813i \(0.297199\pi\)
\(810\) 0 0
\(811\) −1964.56 + 6046.29i −0.0850616 + 0.261793i −0.984536 0.175180i \(-0.943949\pi\)
0.899475 + 0.436973i \(0.143949\pi\)
\(812\) 0 0
\(813\) −16162.5 −0.697224
\(814\) 0 0
\(815\) −4154.03 −0.178539
\(816\) 0 0
\(817\) −13799.0 + 42468.9i −0.590900 + 1.81860i
\(818\) 0 0
\(819\) 581.021 422.137i 0.0247894 0.0180106i
\(820\) 0 0
\(821\) −13029.9 40102.0i −0.553895 1.70471i −0.698844 0.715274i \(-0.746302\pi\)
0.144949 0.989439i \(-0.453698\pi\)
\(822\) 0 0
\(823\) 12019.8 + 8732.87i 0.509092 + 0.369877i 0.812479 0.582991i \(-0.198118\pi\)
−0.303387 + 0.952867i \(0.598118\pi\)
\(824\) 0 0
\(825\) 10002.9 8689.96i 0.422130 0.366722i
\(826\) 0 0
\(827\) 296.623 + 215.509i 0.0124723 + 0.00906167i 0.594004 0.804462i \(-0.297546\pi\)
−0.581532 + 0.813524i \(0.697546\pi\)
\(828\) 0 0
\(829\) 9464.11 + 29127.5i 0.396504 + 1.22032i 0.927784 + 0.373118i \(0.121711\pi\)
−0.531279 + 0.847197i \(0.678289\pi\)
\(830\) 0 0
\(831\) −7569.62 + 5499.65i −0.315989 + 0.229580i
\(832\) 0 0
\(833\) −4634.50 + 14263.5i −0.192768 + 0.593280i
\(834\) 0 0
\(835\) 7575.88 0.313981
\(836\) 0 0
\(837\) 3099.64 0.128004
\(838\) 0 0
\(839\) 6047.10 18611.1i 0.248831 0.765822i −0.746152 0.665776i \(-0.768101\pi\)
0.994983 0.100047i \(-0.0318992\pi\)
\(840\) 0 0
\(841\) 15019.0 10911.9i 0.615809 0.447411i
\(842\) 0 0
\(843\) 6330.66 + 19483.8i 0.258647 + 0.796034i
\(844\) 0 0
\(845\) −3457.71 2512.18i −0.140768 0.102274i
\(846\) 0 0
\(847\) 2281.32 16159.7i 0.0925466 0.655553i
\(848\) 0 0
\(849\) −22204.7 16132.6i −0.897600 0.652144i
\(850\) 0 0
\(851\) −559.025 1720.50i −0.0225184 0.0693045i
\(852\) 0 0
\(853\) 6707.36 4873.18i 0.269233 0.195609i −0.444975 0.895543i \(-0.646787\pi\)
0.714207 + 0.699934i \(0.246787\pi\)
\(854\) 0 0
\(855\) 504.567 1552.90i 0.0201822 0.0621145i
\(856\) 0 0
\(857\) 36841.7 1.46848 0.734240 0.678890i \(-0.237539\pi\)
0.734240 + 0.678890i \(0.237539\pi\)
\(858\) 0 0
\(859\) 24003.0 0.953400 0.476700 0.879066i \(-0.341833\pi\)
0.476700 + 0.879066i \(0.341833\pi\)
\(860\) 0 0
\(861\) −1120.66 + 3449.04i −0.0443577 + 0.136519i
\(862\) 0 0
\(863\) −15761.4 + 11451.3i −0.621697 + 0.451689i −0.853514 0.521070i \(-0.825533\pi\)
0.231817 + 0.972759i \(0.425533\pi\)
\(864\) 0 0
\(865\) 1212.72 + 3732.38i 0.0476692 + 0.146711i
\(866\) 0 0
\(867\) 2783.65 + 2022.44i 0.109040 + 0.0792222i
\(868\) 0 0
\(869\) −14087.5 + 12238.4i −0.549927 + 0.477745i
\(870\) 0 0
\(871\) 565.220 + 410.656i 0.0219882 + 0.0159754i
\(872\) 0 0
\(873\) 2209.85 + 6801.23i 0.0856726 + 0.263673i
\(874\) 0 0
\(875\) −4841.76 + 3517.75i −0.187065 + 0.135910i
\(876\) 0 0
\(877\) 761.474 2343.58i 0.0293194 0.0902360i −0.935326 0.353787i \(-0.884894\pi\)
0.964645 + 0.263551i \(0.0848938\pi\)
\(878\) 0 0
\(879\) −9715.64 −0.372810
\(880\) 0 0
\(881\) 12953.1 0.495349 0.247675 0.968843i \(-0.420334\pi\)
0.247675 + 0.968843i \(0.420334\pi\)
\(882\) 0 0
\(883\) 3138.31 9658.74i 0.119607 0.368111i −0.873273 0.487231i \(-0.838007\pi\)
0.992880 + 0.119119i \(0.0380071\pi\)
\(884\) 0 0
\(885\) 815.904 592.789i 0.0309902 0.0225157i
\(886\) 0 0
\(887\) −3710.82 11420.7i −0.140470 0.432323i 0.855930 0.517091i \(-0.172985\pi\)
−0.996401 + 0.0847679i \(0.972985\pi\)
\(888\) 0 0
\(889\) −1230.83 894.248i −0.0464349 0.0337369i
\(890\) 0 0
\(891\) −2943.95 + 256.642i −0.110691 + 0.00964965i
\(892\) 0 0
\(893\) 7906.41 + 5744.34i 0.296280 + 0.215260i
\(894\) 0 0
\(895\) −1623.37 4996.22i −0.0606294 0.186598i
\(896\) 0 0
\(897\) 319.653 232.241i 0.0118984 0.00864472i
\(898\) 0 0
\(899\) 2707.46 8332.69i 0.100444 0.309133i
\(900\) 0 0
\(901\) 43012.3 1.59040
\(902\) 0 0
\(903\) −17959.2 −0.661845
\(904\) 0 0
\(905\) 2611.58 8037.61i 0.0959247 0.295226i
\(906\) 0 0
\(907\) −5268.47 + 3827.77i −0.192874 + 0.140131i −0.680031 0.733183i \(-0.738034\pi\)
0.487157 + 0.873314i \(0.338034\pi\)
\(908\) 0 0
\(909\) −1312.58 4039.69i −0.0478937 0.147402i
\(910\) 0 0
\(911\) −13675.2 9935.64i −0.497345 0.361342i 0.310657 0.950522i \(-0.399451\pi\)
−0.808002 + 0.589180i \(0.799451\pi\)
\(912\) 0 0
\(913\) 9080.29 + 21410.3i 0.329150 + 0.776097i
\(914\) 0 0
\(915\) 1400.50 + 1017.52i 0.0506000 + 0.0367631i
\(916\) 0 0
\(917\) −531.366 1635.38i −0.0191355 0.0588930i
\(918\) 0 0
\(919\) 27195.5 19758.7i 0.976166 0.709226i 0.0193174 0.999813i \(-0.493851\pi\)
0.956848 + 0.290587i \(0.0938507\pi\)
\(920\) 0 0
\(921\) 3623.99 11153.5i 0.129658 0.399045i
\(922\) 0 0
\(923\) 4742.30 0.169117
\(924\) 0 0
\(925\) −10822.3 −0.384688
\(926\) 0 0
\(927\) 5139.31 15817.2i 0.182089 0.560414i
\(928\) 0 0
\(929\) 14105.6 10248.3i 0.498160 0.361934i −0.310154 0.950686i \(-0.600381\pi\)
0.808314 + 0.588752i \(0.200381\pi\)
\(930\) 0 0
\(931\) 5445.12 + 16758.4i 0.191683 + 0.589939i
\(932\) 0 0
\(933\) −21252.2 15440.6i −0.745730 0.541805i
\(934\) 0 0
\(935\) −4827.95 2902.96i −0.168867 0.101537i
\(936\) 0 0
\(937\) −32056.6 23290.5i −1.11766 0.812024i −0.133804 0.991008i \(-0.542719\pi\)
−0.983852 + 0.178983i \(0.942719\pi\)
\(938\) 0 0
\(939\) 5137.95 + 15813.0i 0.178563 + 0.549561i
\(940\) 0 0
\(941\) 1854.88 1347.65i 0.0642586 0.0466866i −0.555192 0.831722i \(-0.687355\pi\)
0.619451 + 0.785035i \(0.287355\pi\)
\(942\) 0 0
\(943\) −616.539 + 1897.51i −0.0212909 + 0.0655265i
\(944\) 0 0
\(945\) 656.688 0.0226054
\(946\) 0 0
\(947\) 22750.9 0.780680 0.390340 0.920671i \(-0.372357\pi\)
0.390340 + 0.920671i \(0.372357\pi\)
\(948\) 0 0
\(949\) −721.329 + 2220.02i −0.0246737 + 0.0759378i
\(950\) 0 0
\(951\) 19675.4 14295.0i 0.670891 0.487431i
\(952\) 0 0
\(953\) −12914.9 39747.8i −0.438985 1.35106i −0.888947 0.458010i \(-0.848562\pi\)
0.449961 0.893048i \(-0.351438\pi\)
\(954\) 0 0
\(955\) −2115.67 1537.13i −0.0716875 0.0520840i
\(956\) 0 0
\(957\) −1881.54 + 8138.31i −0.0635542 + 0.274895i
\(958\) 0 0
\(959\) 7483.39 + 5437.00i 0.251983 + 0.183076i
\(960\) 0 0
\(961\) −5133.26 15798.6i −0.172309 0.530313i
\(962\) 0 0
\(963\) 6774.32 4921.84i 0.226687 0.164698i
\(964\) 0 0
\(965\) 1689.65 5200.19i 0.0563644 0.173472i
\(966\) 0 0
\(967\) −17075.1 −0.567836 −0.283918 0.958849i \(-0.591634\pi\)
−0.283918 + 0.958849i \(0.591634\pi\)
\(968\) 0 0
\(969\) 21359.6 0.708121
\(970\) 0 0
\(971\) −5934.01 + 18263.0i −0.196119 + 0.603592i 0.803843 + 0.594842i \(0.202785\pi\)
−0.999962 + 0.00875008i \(0.997215\pi\)
\(972\) 0 0
\(973\) 11791.7 8567.15i 0.388513 0.282271i
\(974\) 0 0
\(975\) −730.424 2248.01i −0.0239921 0.0738401i
\(976\) 0 0
\(977\) −27764.0 20171.8i −0.909161 0.660544i 0.0316416 0.999499i \(-0.489926\pi\)
−0.940803 + 0.338955i \(0.889926\pi\)
\(978\) 0 0
\(979\) 6827.81 29532.7i 0.222899 0.964116i
\(980\) 0 0
\(981\) −3155.16 2292.36i −0.102688 0.0746069i
\(982\) 0 0
\(983\) 1435.17 + 4416.99i 0.0465664 + 0.143317i 0.971636 0.236480i \(-0.0759939\pi\)
−0.925070 + 0.379797i \(0.875994\pi\)
\(984\) 0 0
\(985\) 3051.66 2217.16i 0.0987146 0.0717203i
\(986\) 0 0
\(987\) −1214.58 + 3738.10i −0.0391698 + 0.120552i
\(988\) 0 0
\(989\) −9880.40 −0.317673
\(990\) 0 0
\(991\) −14255.1 −0.456941 −0.228471 0.973551i \(-0.573372\pi\)
−0.228471 + 0.973551i \(0.573372\pi\)
\(992\) 0 0
\(993\) −2413.61 + 7428.33i −0.0771335 + 0.237393i
\(994\) 0 0
\(995\) −6410.52 + 4657.52i −0.204248 + 0.148395i
\(996\) 0 0
\(997\) −4467.91 13750.8i −0.141926 0.436803i 0.854677 0.519160i \(-0.173755\pi\)
−0.996603 + 0.0823571i \(0.973755\pi\)
\(998\) 0 0
\(999\) 1952.64 + 1418.68i 0.0618407 + 0.0449299i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 132.4.i.b.37.2 yes 8
3.2 odd 2 396.4.j.b.37.1 8
11.3 even 5 inner 132.4.i.b.25.2 8
11.5 even 5 1452.4.a.o.1.2 4
11.6 odd 10 1452.4.a.p.1.2 4
33.14 odd 10 396.4.j.b.289.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.4.i.b.25.2 8 11.3 even 5 inner
132.4.i.b.37.2 yes 8 1.1 even 1 trivial
396.4.j.b.37.1 8 3.2 odd 2
396.4.j.b.289.1 8 33.14 odd 10
1452.4.a.o.1.2 4 11.5 even 5
1452.4.a.p.1.2 4 11.6 odd 10