Properties

Label 396.4.j.b.37.1
Level $396$
Weight $4$
Character 396.37
Analytic conductor $23.365$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,4,Mod(37,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 396.j (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.3647563623\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 58x^{6} - 115x^{5} + 2421x^{4} + 3435x^{3} + 83262x^{2} + 124773x + 4791721 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 132)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 37.1
Root \(-2.37690 + 7.31535i\) of defining polynomial
Character \(\chi\) \(=\) 396.37
Dual form 396.4.j.b.289.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.60477 + 1.16593i) q^{5} +(3.78898 + 11.6613i) q^{7} +(8.21788 - 35.5453i) q^{11} +(5.26513 + 3.82534i) q^{13} +(62.9784 - 45.7565i) q^{17} +(-28.2631 + 86.9850i) q^{19} +20.2371 q^{23} +(-37.4112 + 115.140i) q^{25} +(23.5838 + 72.5834i) q^{29} +(92.8764 + 67.4787i) q^{31} +(-19.6767 - 14.2960i) q^{35} +(27.6238 + 85.0174i) q^{37} +(-30.4658 + 93.7641i) q^{41} +488.233 q^{43} +(-33.0191 + 101.622i) q^{47} +(155.864 - 113.242i) q^{49} +(447.009 + 324.771i) q^{53} +(28.2556 + 66.6235i) q^{55} +(52.3705 + 161.180i) q^{59} +(235.345 - 170.988i) q^{61} -12.9094 q^{65} +107.351 q^{67} +(-589.515 + 428.308i) q^{71} +(110.836 + 341.119i) q^{73} +(445.641 - 38.8493i) q^{77} +(413.815 + 300.654i) q^{79} +(-515.712 + 374.687i) q^{83} +(-47.7168 + 146.857i) q^{85} +830.847 q^{89} +(-24.6589 + 75.8924i) q^{91} +(-56.0629 - 172.544i) q^{95} +(-642.830 - 467.043i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 27 q^{5} + 13 q^{7} + 45 q^{11} - 89 q^{13} + 24 q^{17} - 28 q^{19} + 348 q^{23} - 9 q^{25} + 249 q^{29} - 217 q^{31} - 630 q^{35} + 585 q^{37} + 177 q^{41} + 684 q^{43} + 93 q^{47} + 1377 q^{49}+ \cdots - 3783 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.60477 + 1.16593i −0.143535 + 0.104284i −0.657235 0.753685i \(-0.728274\pi\)
0.513700 + 0.857970i \(0.328274\pi\)
\(6\) 0 0
\(7\) 3.78898 + 11.6613i 0.204586 + 0.629650i 0.999730 + 0.0232301i \(0.00739502\pi\)
−0.795144 + 0.606420i \(0.792605\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 8.21788 35.5453i 0.225253 0.974300i
\(12\) 0 0
\(13\) 5.26513 + 3.82534i 0.112330 + 0.0816123i 0.642532 0.766259i \(-0.277884\pi\)
−0.530202 + 0.847871i \(0.677884\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 62.9784 45.7565i 0.898500 0.652798i −0.0395805 0.999216i \(-0.512602\pi\)
0.938080 + 0.346418i \(0.112602\pi\)
\(18\) 0 0
\(19\) −28.2631 + 86.9850i −0.341264 + 1.05030i 0.622290 + 0.782787i \(0.286202\pi\)
−0.963554 + 0.267515i \(0.913798\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 20.2371 0.183466 0.0917331 0.995784i \(-0.470759\pi\)
0.0917331 + 0.995784i \(0.470759\pi\)
\(24\) 0 0
\(25\) −37.4112 + 115.140i −0.299290 + 0.921120i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 23.5838 + 72.5834i 0.151014 + 0.464773i 0.997735 0.0672639i \(-0.0214269\pi\)
−0.846721 + 0.532036i \(0.821427\pi\)
\(30\) 0 0
\(31\) 92.8764 + 67.4787i 0.538100 + 0.390953i 0.823379 0.567492i \(-0.192086\pi\)
−0.285279 + 0.958445i \(0.592086\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −19.6767 14.2960i −0.0950279 0.0690418i
\(36\) 0 0
\(37\) 27.6238 + 85.0174i 0.122739 + 0.377751i 0.993482 0.113987i \(-0.0363621\pi\)
−0.870744 + 0.491737i \(0.836362\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −30.4658 + 93.7641i −0.116048 + 0.357159i −0.992164 0.124941i \(-0.960126\pi\)
0.876116 + 0.482100i \(0.160126\pi\)
\(42\) 0 0
\(43\) 488.233 1.73151 0.865753 0.500471i \(-0.166840\pi\)
0.865753 + 0.500471i \(0.166840\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −33.0191 + 101.622i −0.102475 + 0.315386i −0.989130 0.147046i \(-0.953023\pi\)
0.886654 + 0.462433i \(0.153023\pi\)
\(48\) 0 0
\(49\) 155.864 113.242i 0.454413 0.330150i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 447.009 + 324.771i 1.15852 + 0.841712i 0.989590 0.143916i \(-0.0459695\pi\)
0.168928 + 0.985628i \(0.445970\pi\)
\(54\) 0 0
\(55\) 28.2556 + 66.6235i 0.0692725 + 0.163337i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 52.3705 + 161.180i 0.115560 + 0.355658i 0.992063 0.125738i \(-0.0401299\pi\)
−0.876503 + 0.481396i \(0.840130\pi\)
\(60\) 0 0
\(61\) 235.345 170.988i 0.493982 0.358899i −0.312732 0.949841i \(-0.601244\pi\)
0.806713 + 0.590943i \(0.201244\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −12.9094 −0.0246341
\(66\) 0 0
\(67\) 107.351 0.195747 0.0978736 0.995199i \(-0.468796\pi\)
0.0978736 + 0.995199i \(0.468796\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −589.515 + 428.308i −0.985389 + 0.715927i −0.958906 0.283722i \(-0.908431\pi\)
−0.0264824 + 0.999649i \(0.508431\pi\)
\(72\) 0 0
\(73\) 110.836 + 341.119i 0.177704 + 0.546917i 0.999747 0.0225091i \(-0.00716546\pi\)
−0.822043 + 0.569426i \(0.807165\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 445.641 38.8493i 0.659552 0.0574973i
\(78\) 0 0
\(79\) 413.815 + 300.654i 0.589339 + 0.428180i 0.842079 0.539354i \(-0.181332\pi\)
−0.252740 + 0.967534i \(0.581332\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −515.712 + 374.687i −0.682010 + 0.495509i −0.874024 0.485883i \(-0.838498\pi\)
0.192014 + 0.981392i \(0.438498\pi\)
\(84\) 0 0
\(85\) −47.7168 + 146.857i −0.0608896 + 0.187399i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 830.847 0.989547 0.494773 0.869022i \(-0.335251\pi\)
0.494773 + 0.869022i \(0.335251\pi\)
\(90\) 0 0
\(91\) −24.6589 + 75.8924i −0.0284061 + 0.0874251i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −56.0629 172.544i −0.0605467 0.186344i
\(96\) 0 0
\(97\) −642.830 467.043i −0.672882 0.488877i 0.198107 0.980180i \(-0.436521\pi\)
−0.870989 + 0.491303i \(0.836521\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −381.819 277.407i −0.376162 0.273298i 0.383599 0.923500i \(-0.374684\pi\)
−0.759762 + 0.650202i \(0.774684\pi\)
\(102\) 0 0
\(103\) 571.034 + 1757.46i 0.546268 + 1.68124i 0.717955 + 0.696090i \(0.245078\pi\)
−0.171686 + 0.985152i \(0.554922\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 287.507 884.855i 0.259760 0.799460i −0.733094 0.680127i \(-0.761925\pi\)
0.992854 0.119332i \(-0.0380754\pi\)
\(108\) 0 0
\(109\) 433.332 0.380786 0.190393 0.981708i \(-0.439024\pi\)
0.190393 + 0.981708i \(0.439024\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 520.776 1602.78i 0.433544 1.33431i −0.461026 0.887386i \(-0.652519\pi\)
0.894571 0.446926i \(-0.147481\pi\)
\(114\) 0 0
\(115\) −32.4759 + 23.5951i −0.0263338 + 0.0191327i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 772.203 + 561.038i 0.594855 + 0.432187i
\(120\) 0 0
\(121\) −1195.93 584.214i −0.898522 0.438928i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −150.830 464.208i −0.107925 0.332160i
\(126\) 0 0
\(127\) −100.382 + 72.9320i −0.0701377 + 0.0509580i −0.622302 0.782778i \(-0.713802\pi\)
0.552164 + 0.833736i \(0.313802\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 140.240 0.0935328 0.0467664 0.998906i \(-0.485108\pi\)
0.0467664 + 0.998906i \(0.485108\pi\)
\(132\) 0 0
\(133\) −1121.45 −0.731140
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −610.321 + 443.424i −0.380608 + 0.276528i −0.761596 0.648052i \(-0.775584\pi\)
0.380988 + 0.924580i \(0.375584\pi\)
\(138\) 0 0
\(139\) −367.333 1130.53i −0.224149 0.689861i −0.998377 0.0569534i \(-0.981861\pi\)
0.774227 0.632907i \(-0.218139\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 179.241 155.714i 0.104817 0.0910594i
\(144\) 0 0
\(145\) −122.474 88.9827i −0.0701443 0.0509628i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1173.73 + 852.763i −0.645339 + 0.468866i −0.861680 0.507452i \(-0.830588\pi\)
0.216341 + 0.976318i \(0.430588\pi\)
\(150\) 0 0
\(151\) −870.060 + 2677.77i −0.468904 + 1.44314i 0.385102 + 0.922874i \(0.374166\pi\)
−0.854006 + 0.520263i \(0.825834\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −227.721 −0.118006
\(156\) 0 0
\(157\) 742.481 2285.12i 0.377429 1.16161i −0.564396 0.825504i \(-0.690891\pi\)
0.941825 0.336104i \(-0.109109\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 76.6779 + 235.990i 0.0375346 + 0.115520i
\(162\) 0 0
\(163\) −1694.23 1230.93i −0.814123 0.591495i 0.100900 0.994897i \(-0.467828\pi\)
−0.915023 + 0.403402i \(0.867828\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3089.83 2244.90i −1.43173 1.04021i −0.989692 0.143214i \(-0.954256\pi\)
−0.442036 0.896997i \(-0.645744\pi\)
\(168\) 0 0
\(169\) −665.822 2049.19i −0.303060 0.932722i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 611.373 1881.61i 0.268681 0.826916i −0.722141 0.691746i \(-0.756842\pi\)
0.990822 0.135170i \(-0.0431581\pi\)
\(174\) 0 0
\(175\) −1484.43 −0.641214
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −818.393 + 2518.76i −0.341729 + 1.05174i 0.621582 + 0.783349i \(0.286490\pi\)
−0.963311 + 0.268386i \(0.913510\pi\)
\(180\) 0 0
\(181\) 3446.85 2504.29i 1.41548 1.02841i 0.422988 0.906135i \(-0.360981\pi\)
0.992496 0.122274i \(-0.0390188\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −143.455 104.226i −0.0570108 0.0414208i
\(186\) 0 0
\(187\) −1108.88 2614.60i −0.433632 1.02245i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 407.397 + 1253.84i 0.154336 + 0.474998i 0.998093 0.0617276i \(-0.0196610\pi\)
−0.843757 + 0.536726i \(0.819661\pi\)
\(192\) 0 0
\(193\) 2230.05 1620.23i 0.831724 0.604283i −0.0883223 0.996092i \(-0.528151\pi\)
0.920047 + 0.391809i \(0.128151\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1901.61 −0.687738 −0.343869 0.939018i \(-0.611738\pi\)
−0.343869 + 0.939018i \(0.611738\pi\)
\(198\) 0 0
\(199\) −3994.66 −1.42299 −0.711493 0.702693i \(-0.751981\pi\)
−0.711493 + 0.702693i \(0.751981\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −757.058 + 550.034i −0.261749 + 0.190172i
\(204\) 0 0
\(205\) −60.4322 185.991i −0.0205891 0.0633668i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2859.64 + 1719.45i 0.946438 + 0.569077i
\(210\) 0 0
\(211\) −417.464 303.305i −0.136206 0.0989592i 0.517596 0.855625i \(-0.326827\pi\)
−0.653802 + 0.756666i \(0.726827\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −783.502 + 569.247i −0.248532 + 0.180569i
\(216\) 0 0
\(217\) −434.981 + 1338.73i −0.136076 + 0.418798i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 506.624 0.154204
\(222\) 0 0
\(223\) −271.131 + 834.455i −0.0814182 + 0.250579i −0.983477 0.181034i \(-0.942056\pi\)
0.902059 + 0.431614i \(0.142056\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1238.72 + 3812.39i 0.362189 + 1.11470i 0.951723 + 0.306959i \(0.0993113\pi\)
−0.589534 + 0.807743i \(0.700689\pi\)
\(228\) 0 0
\(229\) −1386.93 1007.66i −0.400222 0.290779i 0.369409 0.929267i \(-0.379560\pi\)
−0.769632 + 0.638488i \(0.779560\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5121.82 3721.22i −1.44009 1.04629i −0.988023 0.154305i \(-0.950686\pi\)
−0.452068 0.891983i \(-0.649314\pi\)
\(234\) 0 0
\(235\) −65.4970 201.579i −0.0181811 0.0559556i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1863.05 5733.87i 0.504228 1.55185i −0.297837 0.954617i \(-0.596265\pi\)
0.802065 0.597237i \(-0.203735\pi\)
\(240\) 0 0
\(241\) 2528.58 0.675852 0.337926 0.941173i \(-0.390275\pi\)
0.337926 + 0.941173i \(0.390275\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −118.093 + 363.454i −0.0307947 + 0.0947763i
\(246\) 0 0
\(247\) −481.557 + 349.871i −0.124051 + 0.0901287i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2313.85 + 1681.11i 0.581867 + 0.422751i 0.839397 0.543519i \(-0.182908\pi\)
−0.257530 + 0.966270i \(0.582908\pi\)
\(252\) 0 0
\(253\) 166.306 719.333i 0.0413263 0.178751i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1454.89 4477.69i −0.353127 1.08681i −0.957088 0.289798i \(-0.906412\pi\)
0.603961 0.797014i \(-0.293588\pi\)
\(258\) 0 0
\(259\) −886.746 + 644.259i −0.212740 + 0.154565i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1322.27 0.310018 0.155009 0.987913i \(-0.450459\pi\)
0.155009 + 0.987913i \(0.450459\pi\)
\(264\) 0 0
\(265\) −1096.01 −0.254065
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4208.37 3057.56i 0.953863 0.693022i 0.00214547 0.999998i \(-0.499317\pi\)
0.951717 + 0.306976i \(0.0993171\pi\)
\(270\) 0 0
\(271\) 1664.83 + 5123.81i 0.373177 + 1.14852i 0.944700 + 0.327935i \(0.106353\pi\)
−0.571523 + 0.820586i \(0.693647\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3785.24 + 2276.00i 0.830031 + 0.499083i
\(276\) 0 0
\(277\) 2523.21 + 1833.22i 0.547310 + 0.397644i 0.826793 0.562507i \(-0.190163\pi\)
−0.279483 + 0.960151i \(0.590163\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5524.63 + 4013.88i −1.17285 + 0.852127i −0.991348 0.131263i \(-0.958097\pi\)
−0.181505 + 0.983390i \(0.558097\pi\)
\(282\) 0 0
\(283\) −2827.14 + 8701.05i −0.593838 + 1.82765i −0.0334114 + 0.999442i \(0.510637\pi\)
−0.560427 + 0.828204i \(0.689363\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1208.84 −0.248627
\(288\) 0 0
\(289\) 354.420 1090.79i 0.0721391 0.222021i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1000.77 3080.04i −0.199541 0.614123i −0.999894 0.0145935i \(-0.995355\pi\)
0.800353 0.599529i \(-0.204645\pi\)
\(294\) 0 0
\(295\) −271.968 197.596i −0.0536766 0.0389983i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 106.551 + 77.4138i 0.0206087 + 0.0149731i
\(300\) 0 0
\(301\) 1849.90 + 5693.42i 0.354242 + 1.09024i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −178.314 + 548.794i −0.0334762 + 0.103029i
\(306\) 0 0
\(307\) −3909.16 −0.726735 −0.363367 0.931646i \(-0.618373\pi\)
−0.363367 + 0.931646i \(0.618373\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2705.87 8327.83i 0.493364 1.51842i −0.326128 0.945326i \(-0.605744\pi\)
0.819491 0.573091i \(-0.194256\pi\)
\(312\) 0 0
\(313\) 4483.78 3257.66i 0.809707 0.588286i −0.104039 0.994573i \(-0.533177\pi\)
0.913746 + 0.406287i \(0.133177\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6558.45 + 4765.00i 1.16202 + 0.844255i 0.990032 0.140845i \(-0.0449818\pi\)
0.171985 + 0.985099i \(0.444982\pi\)
\(318\) 0 0
\(319\) 2773.81 241.810i 0.486844 0.0424413i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2200.16 + 6771.39i 0.379010 + 1.16647i
\(324\) 0 0
\(325\) −637.425 + 463.116i −0.108794 + 0.0790433i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1310.16 −0.219548
\(330\) 0 0
\(331\) 2603.54 0.432336 0.216168 0.976356i \(-0.430644\pi\)
0.216168 + 0.976356i \(0.430644\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −172.274 + 125.165i −0.0280966 + 0.0204134i
\(336\) 0 0
\(337\) −238.684 734.594i −0.0385814 0.118741i 0.929911 0.367785i \(-0.119884\pi\)
−0.968492 + 0.249044i \(0.919884\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3161.80 2746.79i 0.502114 0.436208i
\(342\) 0 0
\(343\) 5313.56 + 3860.53i 0.836458 + 0.607722i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3408.56 + 2476.46i −0.527323 + 0.383123i −0.819355 0.573286i \(-0.805668\pi\)
0.292032 + 0.956408i \(0.405668\pi\)
\(348\) 0 0
\(349\) 1483.19 4564.79i 0.227488 0.700137i −0.770541 0.637390i \(-0.780014\pi\)
0.998029 0.0627467i \(-0.0199860\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 448.615 0.0676412 0.0338206 0.999428i \(-0.489233\pi\)
0.0338206 + 0.999428i \(0.489233\pi\)
\(354\) 0 0
\(355\) 446.658 1374.67i 0.0667779 0.205521i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3435.35 + 10572.9i 0.505045 + 1.55437i 0.800695 + 0.599072i \(0.204464\pi\)
−0.295651 + 0.955296i \(0.595536\pi\)
\(360\) 0 0
\(361\) −1218.54 885.320i −0.177655 0.129074i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −575.589 418.190i −0.0825417 0.0599700i
\(366\) 0 0
\(367\) 3149.15 + 9692.08i 0.447913 + 1.37854i 0.879257 + 0.476348i \(0.158040\pi\)
−0.431344 + 0.902188i \(0.641960\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2093.54 + 6443.25i −0.292968 + 0.901663i
\(372\) 0 0
\(373\) 11174.0 1.55112 0.775560 0.631274i \(-0.217468\pi\)
0.775560 + 0.631274i \(0.217468\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −153.485 + 472.377i −0.0209678 + 0.0645323i
\(378\) 0 0
\(379\) 7717.65 5607.20i 1.04599 0.759954i 0.0745413 0.997218i \(-0.476251\pi\)
0.971445 + 0.237264i \(0.0762507\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −9441.77 6859.85i −1.25967 0.915201i −0.260925 0.965359i \(-0.584027\pi\)
−0.998741 + 0.0501584i \(0.984027\pi\)
\(384\) 0 0
\(385\) −669.856 + 581.932i −0.0886728 + 0.0770338i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3268.87 + 10060.6i 0.426063 + 1.31129i 0.901973 + 0.431793i \(0.142119\pi\)
−0.475910 + 0.879494i \(0.657881\pi\)
\(390\) 0 0
\(391\) 1274.50 925.977i 0.164844 0.119766i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1014.62 −0.129243
\(396\) 0 0
\(397\) −337.577 −0.0426763 −0.0213381 0.999772i \(-0.506793\pi\)
−0.0213381 + 0.999772i \(0.506793\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4762.00 3459.79i 0.593024 0.430857i −0.250372 0.968150i \(-0.580553\pi\)
0.843396 + 0.537292i \(0.180553\pi\)
\(402\) 0 0
\(403\) 230.878 + 710.569i 0.0285381 + 0.0878311i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3248.98 283.233i 0.395690 0.0344947i
\(408\) 0 0
\(409\) −10318.7 7496.99i −1.24750 0.906363i −0.249427 0.968394i \(-0.580242\pi\)
−0.998074 + 0.0620309i \(0.980242\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1681.13 + 1221.41i −0.200298 + 0.145525i
\(414\) 0 0
\(415\) 390.740 1202.57i 0.0462185 0.142246i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4686.15 −0.546380 −0.273190 0.961960i \(-0.588079\pi\)
−0.273190 + 0.961960i \(0.588079\pi\)
\(420\) 0 0
\(421\) −479.525 + 1475.83i −0.0555121 + 0.170849i −0.974968 0.222344i \(-0.928629\pi\)
0.919456 + 0.393192i \(0.128629\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2912.30 + 8963.13i 0.332393 + 1.02300i
\(426\) 0 0
\(427\) 2885.66 + 2096.56i 0.327042 + 0.237610i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9433.01 6853.48i −1.05423 0.765941i −0.0812156 0.996697i \(-0.525880\pi\)
−0.973012 + 0.230756i \(0.925880\pi\)
\(432\) 0 0
\(433\) 785.662 + 2418.02i 0.0871975 + 0.268366i 0.985142 0.171743i \(-0.0549398\pi\)
−0.897944 + 0.440109i \(0.854940\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −571.963 + 1760.32i −0.0626103 + 0.192695i
\(438\) 0 0
\(439\) −5101.99 −0.554681 −0.277340 0.960772i \(-0.589453\pi\)
−0.277340 + 0.960772i \(0.589453\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −846.872 + 2606.40i −0.0908264 + 0.279535i −0.986144 0.165894i \(-0.946949\pi\)
0.895317 + 0.445429i \(0.146949\pi\)
\(444\) 0 0
\(445\) −1333.32 + 968.714i −0.142035 + 0.103194i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8818.11 + 6406.73i 0.926843 + 0.673391i 0.945218 0.326440i \(-0.105849\pi\)
−0.0183750 + 0.999831i \(0.505849\pi\)
\(450\) 0 0
\(451\) 3082.51 + 1853.46i 0.321840 + 0.193517i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −48.9136 150.541i −0.00503979 0.0155109i
\(456\) 0 0
\(457\) −11106.2 + 8069.11i −1.13682 + 0.825946i −0.986673 0.162718i \(-0.947974\pi\)
−0.150144 + 0.988664i \(0.547974\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3104.40 −0.313636 −0.156818 0.987628i \(-0.550124\pi\)
−0.156818 + 0.987628i \(0.550124\pi\)
\(462\) 0 0
\(463\) 3771.28 0.378545 0.189272 0.981925i \(-0.439387\pi\)
0.189272 + 0.981925i \(0.439387\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 9914.73 7203.47i 0.982439 0.713784i 0.0241865 0.999707i \(-0.492300\pi\)
0.958252 + 0.285924i \(0.0923005\pi\)
\(468\) 0 0
\(469\) 406.753 + 1251.86i 0.0400471 + 0.123252i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4012.24 17354.4i 0.390027 1.68701i
\(474\) 0 0
\(475\) −8958.09 6508.43i −0.865316 0.628689i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −843.488 + 612.830i −0.0804592 + 0.0584570i −0.627288 0.778788i \(-0.715835\pi\)
0.546828 + 0.837245i \(0.315835\pi\)
\(480\) 0 0
\(481\) −179.778 + 553.298i −0.0170419 + 0.0524496i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1576.14 0.147564
\(486\) 0 0
\(487\) 536.464 1651.07i 0.0499169 0.153628i −0.922991 0.384822i \(-0.874263\pi\)
0.972908 + 0.231193i \(0.0742630\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3489.83 10740.6i −0.320761 0.987202i −0.973318 0.229462i \(-0.926303\pi\)
0.652556 0.757740i \(-0.273697\pi\)
\(492\) 0 0
\(493\) 4806.43 + 3492.07i 0.439089 + 0.319016i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7228.28 5251.66i −0.652380 0.473982i
\(498\) 0 0
\(499\) −4140.83 12744.2i −0.371481 1.14330i −0.945822 0.324686i \(-0.894741\pi\)
0.574341 0.818616i \(-0.305259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −2410.37 + 7418.36i −0.213664 + 0.657591i 0.785582 + 0.618758i \(0.212364\pi\)
−0.999246 + 0.0388326i \(0.987636\pi\)
\(504\) 0 0
\(505\) 936.171 0.0824932
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6733.56 20723.8i 0.586365 1.80465i −0.00735129 0.999973i \(-0.502340\pi\)
0.593717 0.804674i \(-0.297660\pi\)
\(510\) 0 0
\(511\) −3557.93 + 2584.99i −0.308011 + 0.223783i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2965.46 2154.54i −0.253736 0.184350i
\(516\) 0 0
\(517\) 3340.85 + 2008.80i 0.284198 + 0.170883i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 258.126 + 794.431i 0.0217058 + 0.0668036i 0.961323 0.275425i \(-0.0888184\pi\)
−0.939617 + 0.342228i \(0.888818\pi\)
\(522\) 0 0
\(523\) −664.886 + 483.068i −0.0555898 + 0.0403883i −0.615233 0.788345i \(-0.710938\pi\)
0.559643 + 0.828734i \(0.310938\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8936.79 0.738696
\(528\) 0 0
\(529\) −11757.5 −0.966340
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −519.087 + 377.138i −0.0421841 + 0.0306486i
\(534\) 0 0
\(535\) 570.300 + 1755.20i 0.0460864 + 0.141839i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2744.33 6470.82i −0.219308 0.517102i
\(540\) 0 0
\(541\) −16604.9 12064.2i −1.31960 0.958744i −0.999937 0.0112114i \(-0.996431\pi\)
−0.319660 0.947532i \(-0.603569\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −695.399 + 505.237i −0.0546562 + 0.0397101i
\(546\) 0 0
\(547\) 1843.40 5673.41i 0.144092 0.443469i −0.852801 0.522236i \(-0.825098\pi\)
0.996893 + 0.0787666i \(0.0250982\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6980.22 −0.539687
\(552\) 0 0
\(553\) −1938.08 + 5964.79i −0.149033 + 0.458677i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 451.401 + 1389.27i 0.0343383 + 0.105683i 0.966757 0.255698i \(-0.0823054\pi\)
−0.932418 + 0.361381i \(0.882305\pi\)
\(558\) 0 0
\(559\) 2570.61 + 1867.66i 0.194499 + 0.141312i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −20000.9 14531.5i −1.49723 1.08780i −0.971469 0.237167i \(-0.923781\pi\)
−0.525759 0.850633i \(-0.676219\pi\)
\(564\) 0 0
\(565\) 1033.02 + 3179.29i 0.0769191 + 0.236733i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7905.61 + 24331.0i −0.582461 + 1.79263i 0.0267756 + 0.999641i \(0.491476\pi\)
−0.609236 + 0.792989i \(0.708524\pi\)
\(570\) 0 0
\(571\) −8840.84 −0.647947 −0.323973 0.946066i \(-0.605019\pi\)
−0.323973 + 0.946066i \(0.605019\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −757.094 + 2330.10i −0.0549096 + 0.168994i
\(576\) 0 0
\(577\) −14479.3 + 10519.8i −1.04468 + 0.759003i −0.971193 0.238293i \(-0.923412\pi\)
−0.0734847 + 0.997296i \(0.523412\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6323.36 4594.19i −0.451527 0.328053i
\(582\) 0 0
\(583\) 15217.6 13220.1i 1.08104 0.939146i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8445.52 + 25992.6i 0.593840 + 1.82765i 0.560419 + 0.828209i \(0.310640\pi\)
0.0334206 + 0.999441i \(0.489360\pi\)
\(588\) 0 0
\(589\) −8494.61 + 6171.70i −0.594252 + 0.431749i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 389.353 0.0269626 0.0134813 0.999909i \(-0.495709\pi\)
0.0134813 + 0.999909i \(0.495709\pi\)
\(594\) 0 0
\(595\) −1893.34 −0.130453
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20429.9 14843.2i 1.39356 1.01248i 0.398096 0.917344i \(-0.369671\pi\)
0.995464 0.0951368i \(-0.0303288\pi\)
\(600\) 0 0
\(601\) −2181.63 6714.37i −0.148071 0.455715i 0.849322 0.527875i \(-0.177011\pi\)
−0.997393 + 0.0721596i \(0.977011\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2600.35 456.850i 0.174743 0.0307002i
\(606\) 0 0
\(607\) −12283.3 8924.34i −0.821357 0.596751i 0.0957435 0.995406i \(-0.469477\pi\)
−0.917101 + 0.398655i \(0.869477\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −562.591 + 408.746i −0.0372504 + 0.0270640i
\(612\) 0 0
\(613\) 4796.66 14762.6i 0.316044 0.972685i −0.659278 0.751899i \(-0.729138\pi\)
0.975322 0.220785i \(-0.0708620\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27430.4 −1.78980 −0.894899 0.446269i \(-0.852752\pi\)
−0.894899 + 0.446269i \(0.852752\pi\)
\(618\) 0 0
\(619\) 6668.83 20524.5i 0.433025 1.33272i −0.462071 0.886843i \(-0.652894\pi\)
0.895097 0.445872i \(-0.147106\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3148.07 + 9688.75i 0.202447 + 0.623068i
\(624\) 0 0
\(625\) −11459.7 8325.96i −0.733421 0.532862i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 5629.80 + 4090.29i 0.356875 + 0.259285i
\(630\) 0 0
\(631\) −2320.52 7141.83i −0.146400 0.450573i 0.850788 0.525509i \(-0.176125\pi\)
−0.997188 + 0.0749353i \(0.976125\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 76.0566 234.078i 0.00475310 0.0146285i
\(636\) 0 0
\(637\) 1253.83 0.0779883
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 2424.82 7462.83i 0.149414 0.459850i −0.848138 0.529776i \(-0.822276\pi\)
0.997552 + 0.0699253i \(0.0222761\pi\)
\(642\) 0 0
\(643\) 706.659 513.418i 0.0433404 0.0314887i −0.565904 0.824471i \(-0.691473\pi\)
0.609245 + 0.792982i \(0.291473\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −20663.0 15012.6i −1.25556 0.912217i −0.257028 0.966404i \(-0.582743\pi\)
−0.998531 + 0.0541866i \(0.982743\pi\)
\(648\) 0 0
\(649\) 6159.56 536.967i 0.372548 0.0324774i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3190.62 + 9819.73i 0.191208 + 0.588477i 1.00000 0.000382475i \(0.000121746\pi\)
−0.808792 + 0.588095i \(0.799878\pi\)
\(654\) 0 0
\(655\) −225.053 + 163.510i −0.0134252 + 0.00975401i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28905.7 1.70866 0.854329 0.519733i \(-0.173969\pi\)
0.854329 + 0.519733i \(0.173969\pi\)
\(660\) 0 0
\(661\) 28041.5 1.65006 0.825028 0.565092i \(-0.191159\pi\)
0.825028 + 0.565092i \(0.191159\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1799.66 1307.53i 0.104944 0.0762465i
\(666\) 0 0
\(667\) 477.267 + 1468.88i 0.0277059 + 0.0852701i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4143.79 9770.57i −0.238404 0.562129i
\(672\) 0 0
\(673\) −7569.87 5499.83i −0.433576 0.315012i 0.349501 0.936936i \(-0.386351\pi\)
−0.783077 + 0.621924i \(0.786351\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18651.9 + 13551.4i −1.05886 + 0.769309i −0.973878 0.227073i \(-0.927084\pi\)
−0.0849856 + 0.996382i \(0.527084\pi\)
\(678\) 0 0
\(679\) 3010.66 9265.84i 0.170160 0.523697i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18443.9 −1.03329 −0.516645 0.856200i \(-0.672819\pi\)
−0.516645 + 0.856200i \(0.672819\pi\)
\(684\) 0 0
\(685\) 462.422 1423.19i 0.0257931 0.0793829i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1111.20 + 3419.93i 0.0614418 + 0.189098i
\(690\) 0 0
\(691\) 20208.4 + 14682.3i 1.11254 + 0.808306i 0.983061 0.183276i \(-0.0586703\pi\)
0.129476 + 0.991582i \(0.458670\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1907.61 + 1385.96i 0.104115 + 0.0756440i
\(696\) 0 0
\(697\) 2371.63 + 7299.12i 0.128884 + 0.396663i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7753.13 + 23861.7i −0.417734 + 1.28565i 0.492048 + 0.870568i \(0.336249\pi\)
−0.909782 + 0.415086i \(0.863751\pi\)
\(702\) 0 0
\(703\) −8175.97 −0.438638
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1788.22 5503.59i 0.0951246 0.292763i
\(708\) 0 0
\(709\) 12414.6 9019.76i 0.657604 0.477777i −0.208249 0.978076i \(-0.566776\pi\)
0.865853 + 0.500298i \(0.166776\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1879.55 + 1365.57i 0.0987232 + 0.0717266i
\(714\) 0 0
\(715\) −106.088 + 458.869i −0.00554891 + 0.0240010i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9216.75 + 28366.3i 0.478063 + 1.47133i 0.841783 + 0.539817i \(0.181506\pi\)
−0.363720 + 0.931508i \(0.618494\pi\)
\(720\) 0 0
\(721\) −18330.6 + 13318.0i −0.946835 + 0.687916i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −9239.55 −0.473308
\(726\) 0 0
\(727\) −19398.7 −0.989626 −0.494813 0.869000i \(-0.664763\pi\)
−0.494813 + 0.869000i \(0.664763\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30748.1 22339.8i 1.55576 1.13032i
\(732\) 0 0
\(733\) 10180.5 + 31332.4i 0.512996 + 1.57884i 0.786900 + 0.617081i \(0.211685\pi\)
−0.273904 + 0.961757i \(0.588315\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 882.201 3815.84i 0.0440927 0.190717i
\(738\) 0 0
\(739\) 5707.17 + 4146.50i 0.284089 + 0.206403i 0.720699 0.693248i \(-0.243821\pi\)
−0.436610 + 0.899651i \(0.643821\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 4025.05 2924.37i 0.198741 0.144394i −0.483964 0.875088i \(-0.660803\pi\)
0.682705 + 0.730694i \(0.260803\pi\)
\(744\) 0 0
\(745\) 889.298 2736.98i 0.0437334 0.134598i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 11407.9 0.556523
\(750\) 0 0
\(751\) 10127.4 31168.8i 0.492081 1.51447i −0.329376 0.944199i \(-0.606838\pi\)
0.821457 0.570270i \(-0.193162\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −1725.86 5311.64i −0.0831925 0.256040i
\(756\) 0 0
\(757\) 25632.9 + 18623.4i 1.23070 + 0.894158i 0.996943 0.0781357i \(-0.0248968\pi\)
0.233761 + 0.972294i \(0.424897\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −16845.6 12239.0i −0.802432 0.583001i 0.109195 0.994020i \(-0.465173\pi\)
−0.911627 + 0.411019i \(0.865173\pi\)
\(762\) 0 0
\(763\) 1641.89 + 5053.21i 0.0779035 + 0.239762i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −340.831 + 1048.97i −0.0160452 + 0.0493821i
\(768\) 0 0
\(769\) −15356.6 −0.720123 −0.360062 0.932929i \(-0.617244\pi\)
−0.360062 + 0.932929i \(0.617244\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7407.09 22796.7i 0.344650 1.06072i −0.617121 0.786868i \(-0.711701\pi\)
0.961771 0.273855i \(-0.0882990\pi\)
\(774\) 0 0
\(775\) −11244.1 + 8169.33i −0.521162 + 0.378646i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7295.01 5300.14i −0.335521 0.243770i
\(780\) 0 0
\(781\) 10379.8 + 24474.3i 0.475566 + 1.12133i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1472.79 + 4532.78i 0.0669632 + 0.206092i
\(786\) 0 0
\(787\) −20832.6 + 15135.7i −0.943584 + 0.685554i −0.949281 0.314430i \(-0.898187\pi\)
0.00569705 + 0.999984i \(0.498187\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20663.7 0.928847
\(792\) 0 0
\(793\) 1893.21 0.0847793
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18104.8 13153.9i 0.804651 0.584613i −0.107624 0.994192i \(-0.534324\pi\)
0.912275 + 0.409579i \(0.134324\pi\)
\(798\) 0 0
\(799\) 2570.39 + 7910.86i 0.113810 + 0.350270i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13036.0 1136.43i 0.572890 0.0499424i
\(804\) 0 0
\(805\) −398.200 289.309i −0.0174344 0.0126668i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −327.625 + 238.034i −0.0142382 + 0.0103446i −0.594882 0.803813i \(-0.702801\pi\)
0.580643 + 0.814158i \(0.302801\pi\)
\(810\) 0 0
\(811\) −1964.56 + 6046.29i −0.0850616 + 0.261793i −0.984536 0.175180i \(-0.943949\pi\)
0.899475 + 0.436973i \(0.143949\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4154.03 0.178539
\(816\) 0 0
\(817\) −13799.0 + 42468.9i −0.590900 + 1.81860i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 13029.9 + 40102.0i 0.553895 + 1.70471i 0.698844 + 0.715274i \(0.253698\pi\)
−0.144949 + 0.989439i \(0.546302\pi\)
\(822\) 0 0
\(823\) 12019.8 + 8732.87i 0.509092 + 0.369877i 0.812479 0.582991i \(-0.198118\pi\)
−0.303387 + 0.952867i \(0.598118\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −296.623 215.509i −0.0124723 0.00906167i 0.581532 0.813524i \(-0.302454\pi\)
−0.594004 + 0.804462i \(0.702454\pi\)
\(828\) 0 0
\(829\) 9464.11 + 29127.5i 0.396504 + 1.22032i 0.927784 + 0.373118i \(0.121711\pi\)
−0.531279 + 0.847197i \(0.678289\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4634.50 14263.5i 0.192768 0.593280i
\(834\) 0 0
\(835\) 7575.88 0.313981
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6047.10 + 18611.1i −0.248831 + 0.765822i 0.746152 + 0.665776i \(0.231899\pi\)
−0.994983 + 0.100047i \(0.968101\pi\)
\(840\) 0 0
\(841\) 15019.0 10911.9i 0.615809 0.447411i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3457.71 + 2512.18i 0.140768 + 0.102274i
\(846\) 0 0
\(847\) 2281.32 16159.7i 0.0925466 0.655553i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 559.025 + 1720.50i 0.0225184 + 0.0693045i
\(852\) 0 0
\(853\) 6707.36 4873.18i 0.269233 0.195609i −0.444975 0.895543i \(-0.646787\pi\)
0.714207 + 0.699934i \(0.246787\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −36841.7 −1.46848 −0.734240 0.678890i \(-0.762461\pi\)
−0.734240 + 0.678890i \(0.762461\pi\)
\(858\) 0 0
\(859\) 24003.0 0.953400 0.476700 0.879066i \(-0.341833\pi\)
0.476700 + 0.879066i \(0.341833\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15761.4 11451.3i 0.621697 0.451689i −0.231817 0.972759i \(-0.574467\pi\)
0.853514 + 0.521070i \(0.174467\pi\)
\(864\) 0 0
\(865\) 1212.72 + 3732.38i 0.0476692 + 0.146711i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14087.5 12238.4i 0.549927 0.477745i
\(870\) 0 0
\(871\) 565.220 + 410.656i 0.0219882 + 0.0159754i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4841.76 3517.75i 0.187065 0.135910i
\(876\) 0 0
\(877\) 761.474 2343.58i 0.0293194 0.0902360i −0.935326 0.353787i \(-0.884894\pi\)
0.964645 + 0.263551i \(0.0848938\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12953.1 −0.495349 −0.247675 0.968843i \(-0.579666\pi\)
−0.247675 + 0.968843i \(0.579666\pi\)
\(882\) 0 0
\(883\) 3138.31 9658.74i 0.119607 0.368111i −0.873273 0.487231i \(-0.838007\pi\)
0.992880 + 0.119119i \(0.0380071\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3710.82 + 11420.7i 0.140470 + 0.432323i 0.996401 0.0847679i \(-0.0270149\pi\)
−0.855930 + 0.517091i \(0.827015\pi\)
\(888\) 0 0
\(889\) −1230.83 894.248i −0.0464349 0.0337369i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7906.41 5744.34i −0.296280 0.215260i
\(894\) 0 0
\(895\) −1623.37 4996.22i −0.0606294 0.186598i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2707.46 + 8332.69i −0.100444 + 0.309133i
\(900\) 0 0
\(901\) 43012.3 1.59040
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2611.58 + 8037.61i −0.0959247 + 0.295226i
\(906\) 0 0
\(907\) −5268.47 + 3827.77i −0.192874 + 0.140131i −0.680031 0.733183i \(-0.738034\pi\)
0.487157 + 0.873314i \(0.338034\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13675.2 + 9935.64i 0.497345 + 0.361342i 0.808002 0.589180i \(-0.200549\pi\)
−0.310657 + 0.950522i \(0.600549\pi\)
\(912\) 0 0
\(913\) 9080.29 + 21410.3i 0.329150 + 0.776097i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 531.366 + 1635.38i 0.0191355 + 0.0588930i
\(918\) 0 0
\(919\) 27195.5 19758.7i 0.976166 0.709226i 0.0193174 0.999813i \(-0.493851\pi\)
0.956848 + 0.290587i \(0.0938507\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4742.30 −0.169117
\(924\) 0 0
\(925\) −10822.3 −0.384688
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −14105.6 + 10248.3i −0.498160 + 0.361934i −0.808314 0.588752i \(-0.799619\pi\)
0.310154 + 0.950686i \(0.399619\pi\)
\(930\) 0 0
\(931\) 5445.12 + 16758.4i 0.191683 + 0.589939i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4827.95 + 2902.96i 0.168867 + 0.101537i
\(936\) 0 0
\(937\) −32056.6 23290.5i −1.11766 0.812024i −0.133804 0.991008i \(-0.542719\pi\)
−0.983852 + 0.178983i \(0.942719\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1854.88 + 1347.65i −0.0642586 + 0.0466866i −0.619451 0.785035i \(-0.712645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(942\) 0 0
\(943\) −616.539 + 1897.51i −0.0212909 + 0.0655265i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −22750.9 −0.780680 −0.390340 0.920671i \(-0.627643\pi\)
−0.390340 + 0.920671i \(0.627643\pi\)
\(948\) 0 0
\(949\) −721.329 + 2220.02i −0.0246737 + 0.0759378i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12914.9 + 39747.8i 0.438985 + 1.35106i 0.888947 + 0.458010i \(0.151438\pi\)
−0.449961 + 0.893048i \(0.648562\pi\)
\(954\) 0 0
\(955\) −2115.67 1537.13i −0.0716875 0.0520840i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −7483.39 5437.00i −0.251983 0.183076i
\(960\) 0 0
\(961\) −5133.26 15798.6i −0.172309 0.530313i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1689.65 + 5200.19i −0.0563644 + 0.173472i
\(966\) 0 0
\(967\) −17075.1 −0.567836 −0.283918 0.958849i \(-0.591634\pi\)
−0.283918 + 0.958849i \(0.591634\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5934.01 18263.0i 0.196119 0.603592i −0.803843 0.594842i \(-0.797215\pi\)
0.999962 0.00875008i \(-0.00278527\pi\)
\(972\) 0 0
\(973\) 11791.7 8567.15i 0.388513 0.282271i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 27764.0 + 20171.8i 0.909161 + 0.660544i 0.940803 0.338955i \(-0.110074\pi\)
−0.0316416 + 0.999499i \(0.510074\pi\)
\(978\) 0 0
\(979\) 6827.81 29532.7i 0.222899 0.964116i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1435.17 4416.99i −0.0465664 0.143317i 0.925070 0.379797i \(-0.124006\pi\)
−0.971636 + 0.236480i \(0.924006\pi\)
\(984\) 0 0
\(985\) 3051.66 2217.16i 0.0987146 0.0717203i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9880.40 0.317673
\(990\) 0 0
\(991\) −14255.1 −0.456941 −0.228471 0.973551i \(-0.573372\pi\)
−0.228471 + 0.973551i \(0.573372\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6410.52 4657.52i 0.204248 0.148395i
\(996\) 0 0
\(997\) −4467.91 13750.8i −0.141926 0.436803i 0.854677 0.519160i \(-0.173755\pi\)
−0.996603 + 0.0823571i \(0.973755\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.4.j.b.37.1 8
3.2 odd 2 132.4.i.b.37.2 yes 8
11.3 even 5 inner 396.4.j.b.289.1 8
33.5 odd 10 1452.4.a.o.1.2 4
33.14 odd 10 132.4.i.b.25.2 8
33.17 even 10 1452.4.a.p.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
132.4.i.b.25.2 8 33.14 odd 10
132.4.i.b.37.2 yes 8 3.2 odd 2
396.4.j.b.37.1 8 1.1 even 1 trivial
396.4.j.b.289.1 8 11.3 even 5 inner
1452.4.a.o.1.2 4 33.5 odd 10
1452.4.a.p.1.2 4 33.17 even 10