Properties

Label 1320.2.ba.a.329.6
Level $1320$
Weight $2$
Character 1320.329
Analytic conductor $10.540$
Analytic rank $0$
Dimension $72$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1320,2,Mod(329,1320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1320.329");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1320.ba (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5402530668\)
Analytic rank: \(0\)
Dimension: \(72\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 329.6
Character \(\chi\) \(=\) 1320.329
Dual form 1320.2.ba.a.329.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72010 - 0.203093i) q^{3} +(-0.910442 - 2.04233i) q^{5} +4.06802 q^{7} +(2.91751 + 0.698681i) q^{9} +(3.04109 + 1.32355i) q^{11} +0.487030 q^{13} +(1.15127 + 3.69791i) q^{15} +6.71182i q^{17} -1.77760i q^{19} +(-6.99741 - 0.826186i) q^{21} -4.87073 q^{23} +(-3.34219 + 3.71884i) q^{25} +(-4.87651 - 1.79433i) q^{27} +1.32904 q^{29} +6.21817 q^{31} +(-4.96218 - 2.89427i) q^{33} +(-3.70370 - 8.30822i) q^{35} +7.96402i q^{37} +(-0.837742 - 0.0989123i) q^{39} +5.07398 q^{41} -4.68285 q^{43} +(-1.22929 - 6.59461i) q^{45} +10.7188 q^{47} +9.54880 q^{49} +(1.36312 - 11.5450i) q^{51} +9.51918 q^{53} +(-0.0656055 - 7.41591i) q^{55} +(-0.361018 + 3.05766i) q^{57} -5.13015i q^{59} +2.61817i q^{61} +(11.8685 + 2.84225i) q^{63} +(-0.443413 - 0.994674i) q^{65} +8.52433i q^{67} +(8.37816 + 0.989210i) q^{69} -6.00972i q^{71} -0.708858 q^{73} +(6.50418 - 5.71801i) q^{75} +(12.3712 + 5.38424i) q^{77} +7.16015i q^{79} +(8.02369 + 4.07681i) q^{81} -13.8902i q^{83} +(13.7077 - 6.11072i) q^{85} +(-2.28609 - 0.269919i) q^{87} +15.9597i q^{89} +1.98125 q^{91} +(-10.6959 - 1.26287i) q^{93} +(-3.63044 + 1.61840i) q^{95} +0.844397i q^{97} +(7.94765 + 5.98623i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 6 q^{15} - 4 q^{25} + 34 q^{45} + 96 q^{49} - 28 q^{55} + 28 q^{69} + 14 q^{75} + 16 q^{81} - 48 q^{91} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1320\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72010 0.203093i −0.993102 0.117256i
\(4\) 0 0
\(5\) −0.910442 2.04233i −0.407162 0.913356i
\(6\) 0 0
\(7\) 4.06802 1.53757 0.768784 0.639509i \(-0.220862\pi\)
0.768784 + 0.639509i \(0.220862\pi\)
\(8\) 0 0
\(9\) 2.91751 + 0.698681i 0.972502 + 0.232894i
\(10\) 0 0
\(11\) 3.04109 + 1.32355i 0.916922 + 0.399066i
\(12\) 0 0
\(13\) 0.487030 0.135078 0.0675389 0.997717i \(-0.478485\pi\)
0.0675389 + 0.997717i \(0.478485\pi\)
\(14\) 0 0
\(15\) 1.15127 + 3.69791i 0.297257 + 0.954797i
\(16\) 0 0
\(17\) 6.71182i 1.62786i 0.580966 + 0.813928i \(0.302675\pi\)
−0.580966 + 0.813928i \(0.697325\pi\)
\(18\) 0 0
\(19\) 1.77760i 0.407810i −0.978991 0.203905i \(-0.934637\pi\)
0.978991 0.203905i \(-0.0653633\pi\)
\(20\) 0 0
\(21\) −6.99741 0.826186i −1.52696 0.180288i
\(22\) 0 0
\(23\) −4.87073 −1.01562 −0.507809 0.861470i \(-0.669544\pi\)
−0.507809 + 0.861470i \(0.669544\pi\)
\(24\) 0 0
\(25\) −3.34219 + 3.71884i −0.668438 + 0.743768i
\(26\) 0 0
\(27\) −4.87651 1.79433i −0.938486 0.345318i
\(28\) 0 0
\(29\) 1.32904 0.246797 0.123398 0.992357i \(-0.460621\pi\)
0.123398 + 0.992357i \(0.460621\pi\)
\(30\) 0 0
\(31\) 6.21817 1.11682 0.558408 0.829566i \(-0.311412\pi\)
0.558408 + 0.829566i \(0.311412\pi\)
\(32\) 0 0
\(33\) −4.96218 2.89427i −0.863804 0.503828i
\(34\) 0 0
\(35\) −3.70370 8.30822i −0.626039 1.40435i
\(36\) 0 0
\(37\) 7.96402i 1.30928i 0.755942 + 0.654638i \(0.227179\pi\)
−0.755942 + 0.654638i \(0.772821\pi\)
\(38\) 0 0
\(39\) −0.837742 0.0989123i −0.134146 0.0158386i
\(40\) 0 0
\(41\) 5.07398 0.792423 0.396212 0.918159i \(-0.370325\pi\)
0.396212 + 0.918159i \(0.370325\pi\)
\(42\) 0 0
\(43\) −4.68285 −0.714128 −0.357064 0.934080i \(-0.616222\pi\)
−0.357064 + 0.934080i \(0.616222\pi\)
\(44\) 0 0
\(45\) −1.22929 6.59461i −0.183251 0.983066i
\(46\) 0 0
\(47\) 10.7188 1.56350 0.781751 0.623591i \(-0.214327\pi\)
0.781751 + 0.623591i \(0.214327\pi\)
\(48\) 0 0
\(49\) 9.54880 1.36411
\(50\) 0 0
\(51\) 1.36312 11.5450i 0.190875 1.61663i
\(52\) 0 0
\(53\) 9.51918 1.30756 0.653780 0.756685i \(-0.273182\pi\)
0.653780 + 0.756685i \(0.273182\pi\)
\(54\) 0 0
\(55\) −0.0656055 7.41591i −0.00884624 0.999961i
\(56\) 0 0
\(57\) −0.361018 + 3.05766i −0.0478180 + 0.404996i
\(58\) 0 0
\(59\) 5.13015i 0.667889i −0.942593 0.333944i \(-0.891620\pi\)
0.942593 0.333944i \(-0.108380\pi\)
\(60\) 0 0
\(61\) 2.61817i 0.335223i 0.985853 + 0.167611i \(0.0536054\pi\)
−0.985853 + 0.167611i \(0.946395\pi\)
\(62\) 0 0
\(63\) 11.8685 + 2.84225i 1.49529 + 0.358090i
\(64\) 0 0
\(65\) −0.443413 0.994674i −0.0549986 0.123374i
\(66\) 0 0
\(67\) 8.52433i 1.04141i 0.853736 + 0.520706i \(0.174331\pi\)
−0.853736 + 0.520706i \(0.825669\pi\)
\(68\) 0 0
\(69\) 8.37816 + 0.989210i 1.00861 + 0.119087i
\(70\) 0 0
\(71\) 6.00972i 0.713223i −0.934253 0.356611i \(-0.883932\pi\)
0.934253 0.356611i \(-0.116068\pi\)
\(72\) 0 0
\(73\) −0.708858 −0.0829655 −0.0414828 0.999139i \(-0.513208\pi\)
−0.0414828 + 0.999139i \(0.513208\pi\)
\(74\) 0 0
\(75\) 6.50418 5.71801i 0.751038 0.660259i
\(76\) 0 0
\(77\) 12.3712 + 5.38424i 1.40983 + 0.613592i
\(78\) 0 0
\(79\) 7.16015i 0.805580i 0.915292 + 0.402790i \(0.131960\pi\)
−0.915292 + 0.402790i \(0.868040\pi\)
\(80\) 0 0
\(81\) 8.02369 + 4.07681i 0.891521 + 0.452979i
\(82\) 0 0
\(83\) 13.8902i 1.52464i −0.647198 0.762322i \(-0.724059\pi\)
0.647198 0.762322i \(-0.275941\pi\)
\(84\) 0 0
\(85\) 13.7077 6.11072i 1.48681 0.662801i
\(86\) 0 0
\(87\) −2.28609 0.269919i −0.245095 0.0289383i
\(88\) 0 0
\(89\) 15.9597i 1.69172i 0.533401 + 0.845862i \(0.320914\pi\)
−0.533401 + 0.845862i \(0.679086\pi\)
\(90\) 0 0
\(91\) 1.98125 0.207691
\(92\) 0 0
\(93\) −10.6959 1.26287i −1.10911 0.130953i
\(94\) 0 0
\(95\) −3.63044 + 1.61840i −0.372475 + 0.166045i
\(96\) 0 0
\(97\) 0.844397i 0.0857356i 0.999081 + 0.0428678i \(0.0136494\pi\)
−0.999081 + 0.0428678i \(0.986351\pi\)
\(98\) 0 0
\(99\) 7.94765 + 5.98623i 0.798769 + 0.601638i
\(100\) 0 0
\(101\) −11.3862 −1.13297 −0.566487 0.824071i \(-0.691698\pi\)
−0.566487 + 0.824071i \(0.691698\pi\)
\(102\) 0 0
\(103\) 15.7776i 1.55461i −0.629122 0.777307i \(-0.716585\pi\)
0.629122 0.777307i \(-0.283415\pi\)
\(104\) 0 0
\(105\) 4.68340 + 15.0432i 0.457053 + 1.46807i
\(106\) 0 0
\(107\) 13.8398i 1.33795i −0.743286 0.668974i \(-0.766734\pi\)
0.743286 0.668974i \(-0.233266\pi\)
\(108\) 0 0
\(109\) 14.9906i 1.43583i −0.696129 0.717917i \(-0.745096\pi\)
0.696129 0.717917i \(-0.254904\pi\)
\(110\) 0 0
\(111\) 1.61743 13.6989i 0.153520 1.30024i
\(112\) 0 0
\(113\) 2.24055 0.210774 0.105387 0.994431i \(-0.466392\pi\)
0.105387 + 0.994431i \(0.466392\pi\)
\(114\) 0 0
\(115\) 4.43452 + 9.94762i 0.413521 + 0.927620i
\(116\) 0 0
\(117\) 1.42091 + 0.340279i 0.131364 + 0.0314588i
\(118\) 0 0
\(119\) 27.3038i 2.50294i
\(120\) 0 0
\(121\) 7.49641 + 8.05008i 0.681492 + 0.731826i
\(122\) 0 0
\(123\) −8.72777 1.03049i −0.786957 0.0929161i
\(124\) 0 0
\(125\) 10.6380 + 3.44005i 0.951487 + 0.307688i
\(126\) 0 0
\(127\) 0.504158 0.0447368 0.0223684 0.999750i \(-0.492879\pi\)
0.0223684 + 0.999750i \(0.492879\pi\)
\(128\) 0 0
\(129\) 8.05498 + 0.951053i 0.709202 + 0.0837355i
\(130\) 0 0
\(131\) 12.0129 1.04957 0.524785 0.851235i \(-0.324146\pi\)
0.524785 + 0.851235i \(0.324146\pi\)
\(132\) 0 0
\(133\) 7.23132i 0.627035i
\(134\) 0 0
\(135\) 0.775184 + 11.5931i 0.0667172 + 0.997772i
\(136\) 0 0
\(137\) −6.09143 −0.520426 −0.260213 0.965551i \(-0.583793\pi\)
−0.260213 + 0.965551i \(0.583793\pi\)
\(138\) 0 0
\(139\) 15.5072i 1.31531i −0.753321 0.657653i \(-0.771549\pi\)
0.753321 0.657653i \(-0.228451\pi\)
\(140\) 0 0
\(141\) −18.4375 2.17692i −1.55272 0.183329i
\(142\) 0 0
\(143\) 1.48110 + 0.644611i 0.123856 + 0.0539050i
\(144\) 0 0
\(145\) −1.21002 2.71434i −0.100486 0.225413i
\(146\) 0 0
\(147\) −16.4249 1.93929i −1.35470 0.159950i
\(148\) 0 0
\(149\) 10.9221 0.894777 0.447388 0.894340i \(-0.352354\pi\)
0.447388 + 0.894340i \(0.352354\pi\)
\(150\) 0 0
\(151\) 8.12518i 0.661218i 0.943768 + 0.330609i \(0.107254\pi\)
−0.943768 + 0.330609i \(0.892746\pi\)
\(152\) 0 0
\(153\) −4.68942 + 19.5818i −0.379117 + 1.58309i
\(154\) 0 0
\(155\) −5.66129 12.6995i −0.454725 1.02005i
\(156\) 0 0
\(157\) 17.1960i 1.37239i −0.727416 0.686197i \(-0.759279\pi\)
0.727416 0.686197i \(-0.240721\pi\)
\(158\) 0 0
\(159\) −16.3740 1.93328i −1.29854 0.153319i
\(160\) 0 0
\(161\) −19.8142 −1.56158
\(162\) 0 0
\(163\) 2.94978i 0.231045i −0.993305 0.115522i \(-0.963146\pi\)
0.993305 0.115522i \(-0.0368542\pi\)
\(164\) 0 0
\(165\) −1.39327 + 12.7694i −0.108466 + 0.994100i
\(166\) 0 0
\(167\) 6.23678i 0.482616i −0.970449 0.241308i \(-0.922424\pi\)
0.970449 0.241308i \(-0.0775765\pi\)
\(168\) 0 0
\(169\) −12.7628 −0.981754
\(170\) 0 0
\(171\) 1.24198 5.18616i 0.0949762 0.396596i
\(172\) 0 0
\(173\) 16.4466i 1.25042i 0.780459 + 0.625208i \(0.214986\pi\)
−0.780459 + 0.625208i \(0.785014\pi\)
\(174\) 0 0
\(175\) −13.5961 + 15.1283i −1.02777 + 1.14359i
\(176\) 0 0
\(177\) −1.04190 + 8.82439i −0.0783137 + 0.663282i
\(178\) 0 0
\(179\) 21.5926i 1.61391i 0.590615 + 0.806954i \(0.298885\pi\)
−0.590615 + 0.806954i \(0.701115\pi\)
\(180\) 0 0
\(181\) −6.77626 −0.503676 −0.251838 0.967769i \(-0.581035\pi\)
−0.251838 + 0.967769i \(0.581035\pi\)
\(182\) 0 0
\(183\) 0.531732 4.50353i 0.0393068 0.332910i
\(184\) 0 0
\(185\) 16.2651 7.25078i 1.19584 0.533088i
\(186\) 0 0
\(187\) −8.88345 + 20.4112i −0.649622 + 1.49262i
\(188\) 0 0
\(189\) −19.8378 7.29936i −1.44298 0.530950i
\(190\) 0 0
\(191\) 7.83016i 0.566570i −0.959036 0.283285i \(-0.908576\pi\)
0.959036 0.283285i \(-0.0914243\pi\)
\(192\) 0 0
\(193\) −9.86217 −0.709894 −0.354947 0.934886i \(-0.615501\pi\)
−0.354947 + 0.934886i \(0.615501\pi\)
\(194\) 0 0
\(195\) 0.560704 + 1.80100i 0.0401529 + 0.128972i
\(196\) 0 0
\(197\) 10.8165i 0.770642i −0.922783 0.385321i \(-0.874091\pi\)
0.922783 0.385321i \(-0.125909\pi\)
\(198\) 0 0
\(199\) 8.15499 0.578092 0.289046 0.957315i \(-0.406662\pi\)
0.289046 + 0.957315i \(0.406662\pi\)
\(200\) 0 0
\(201\) 1.73123 14.6627i 0.122111 1.03423i
\(202\) 0 0
\(203\) 5.40657 0.379467
\(204\) 0 0
\(205\) −4.61957 10.3627i −0.322645 0.723764i
\(206\) 0 0
\(207\) −14.2104 3.40309i −0.987690 0.236531i
\(208\) 0 0
\(209\) 2.35275 5.40584i 0.162743 0.373930i
\(210\) 0 0
\(211\) 21.9241i 1.50932i 0.656118 + 0.754659i \(0.272198\pi\)
−0.656118 + 0.754659i \(0.727802\pi\)
\(212\) 0 0
\(213\) −1.22053 + 10.3373i −0.0836294 + 0.708303i
\(214\) 0 0
\(215\) 4.26346 + 9.56391i 0.290766 + 0.652253i
\(216\) 0 0
\(217\) 25.2956 1.71718
\(218\) 0 0
\(219\) 1.21931 + 0.143964i 0.0823932 + 0.00972818i
\(220\) 0 0
\(221\) 3.26886i 0.219887i
\(222\) 0 0
\(223\) 1.87033i 0.125247i 0.998037 + 0.0626234i \(0.0199467\pi\)
−0.998037 + 0.0626234i \(0.980053\pi\)
\(224\) 0 0
\(225\) −12.3491 + 8.51461i −0.823276 + 0.567641i
\(226\) 0 0
\(227\) 7.79604i 0.517442i −0.965952 0.258721i \(-0.916699\pi\)
0.965952 0.258721i \(-0.0833010\pi\)
\(228\) 0 0
\(229\) 2.31997 0.153308 0.0766541 0.997058i \(-0.475576\pi\)
0.0766541 + 0.997058i \(0.475576\pi\)
\(230\) 0 0
\(231\) −20.1862 11.7740i −1.32816 0.774669i
\(232\) 0 0
\(233\) 13.4363i 0.880242i −0.897938 0.440121i \(-0.854936\pi\)
0.897938 0.440121i \(-0.145064\pi\)
\(234\) 0 0
\(235\) −9.75888 21.8913i −0.636599 1.42803i
\(236\) 0 0
\(237\) 1.45418 12.3162i 0.0944588 0.800023i
\(238\) 0 0
\(239\) 27.3786 1.77097 0.885486 0.464667i \(-0.153826\pi\)
0.885486 + 0.464667i \(0.153826\pi\)
\(240\) 0 0
\(241\) 21.4071i 1.37895i −0.724309 0.689476i \(-0.757841\pi\)
0.724309 0.689476i \(-0.242159\pi\)
\(242\) 0 0
\(243\) −12.9736 8.64209i −0.832257 0.554390i
\(244\) 0 0
\(245\) −8.69363 19.5018i −0.555415 1.24592i
\(246\) 0 0
\(247\) 0.865745i 0.0550860i
\(248\) 0 0
\(249\) −2.82099 + 23.8925i −0.178773 + 1.51413i
\(250\) 0 0
\(251\) 13.5309i 0.854065i −0.904236 0.427033i \(-0.859559\pi\)
0.904236 0.427033i \(-0.140441\pi\)
\(252\) 0 0
\(253\) −14.8123 6.44667i −0.931242 0.405299i
\(254\) 0 0
\(255\) −24.8197 + 7.72713i −1.55427 + 0.483892i
\(256\) 0 0
\(257\) −1.12756 −0.0703354 −0.0351677 0.999381i \(-0.511197\pi\)
−0.0351677 + 0.999381i \(0.511197\pi\)
\(258\) 0 0
\(259\) 32.3978i 2.01310i
\(260\) 0 0
\(261\) 3.87749 + 0.928576i 0.240011 + 0.0574774i
\(262\) 0 0
\(263\) 5.30436i 0.327081i 0.986537 + 0.163540i \(0.0522914\pi\)
−0.986537 + 0.163540i \(0.947709\pi\)
\(264\) 0 0
\(265\) −8.66666 19.4413i −0.532389 1.19427i
\(266\) 0 0
\(267\) 3.24130 27.4523i 0.198364 1.68005i
\(268\) 0 0
\(269\) 20.3758i 1.24234i 0.783677 + 0.621168i \(0.213342\pi\)
−0.783677 + 0.621168i \(0.786658\pi\)
\(270\) 0 0
\(271\) 10.9132i 0.662928i 0.943468 + 0.331464i \(0.107543\pi\)
−0.943468 + 0.331464i \(0.892457\pi\)
\(272\) 0 0
\(273\) −3.40795 0.402377i −0.206259 0.0243530i
\(274\) 0 0
\(275\) −15.0860 + 6.88574i −0.909718 + 0.415226i
\(276\) 0 0
\(277\) 11.4973 0.690803 0.345402 0.938455i \(-0.387743\pi\)
0.345402 + 0.938455i \(0.387743\pi\)
\(278\) 0 0
\(279\) 18.1416 + 4.34452i 1.08611 + 0.260099i
\(280\) 0 0
\(281\) −26.2511 −1.56601 −0.783006 0.622015i \(-0.786314\pi\)
−0.783006 + 0.622015i \(0.786314\pi\)
\(282\) 0 0
\(283\) 29.8807 1.77623 0.888113 0.459626i \(-0.152017\pi\)
0.888113 + 0.459626i \(0.152017\pi\)
\(284\) 0 0
\(285\) 6.57341 2.04650i 0.389375 0.121224i
\(286\) 0 0
\(287\) 20.6411 1.21840
\(288\) 0 0
\(289\) −28.0485 −1.64991
\(290\) 0 0
\(291\) 0.171491 1.45245i 0.0100530 0.0851441i
\(292\) 0 0
\(293\) 9.36390i 0.547045i 0.961866 + 0.273522i \(0.0881888\pi\)
−0.961866 + 0.273522i \(0.911811\pi\)
\(294\) 0 0
\(295\) −10.4774 + 4.67071i −0.610020 + 0.271939i
\(296\) 0 0
\(297\) −12.4550 11.9110i −0.722713 0.691148i
\(298\) 0 0
\(299\) −2.37219 −0.137187
\(300\) 0 0
\(301\) −19.0499 −1.09802
\(302\) 0 0
\(303\) 19.5855 + 2.31246i 1.12516 + 0.132848i
\(304\) 0 0
\(305\) 5.34717 2.38370i 0.306178 0.136490i
\(306\) 0 0
\(307\) −21.2866 −1.21489 −0.607446 0.794361i \(-0.707806\pi\)
−0.607446 + 0.794361i \(0.707806\pi\)
\(308\) 0 0
\(309\) −3.20432 + 27.1391i −0.182287 + 1.54389i
\(310\) 0 0
\(311\) 9.11702i 0.516979i 0.966014 + 0.258490i \(0.0832247\pi\)
−0.966014 + 0.258490i \(0.916775\pi\)
\(312\) 0 0
\(313\) 4.00507i 0.226380i 0.993573 + 0.113190i \(0.0361068\pi\)
−0.993573 + 0.113190i \(0.963893\pi\)
\(314\) 0 0
\(315\) −5.00077 26.8270i −0.281761 1.51153i
\(316\) 0 0
\(317\) −23.6367 −1.32757 −0.663785 0.747924i \(-0.731051\pi\)
−0.663785 + 0.747924i \(0.731051\pi\)
\(318\) 0 0
\(319\) 4.04173 + 1.75906i 0.226294 + 0.0984884i
\(320\) 0 0
\(321\) −2.81077 + 23.8059i −0.156882 + 1.32872i
\(322\) 0 0
\(323\) 11.9309 0.663855
\(324\) 0 0
\(325\) −1.62775 + 1.81119i −0.0902912 + 0.100467i
\(326\) 0 0
\(327\) −3.04447 + 25.7853i −0.168360 + 1.42593i
\(328\) 0 0
\(329\) 43.6044 2.40399
\(330\) 0 0
\(331\) −29.8074 −1.63837 −0.819183 0.573533i \(-0.805573\pi\)
−0.819183 + 0.573533i \(0.805573\pi\)
\(332\) 0 0
\(333\) −5.56431 + 23.2351i −0.304922 + 1.27327i
\(334\) 0 0
\(335\) 17.4095 7.76091i 0.951180 0.424024i
\(336\) 0 0
\(337\) −16.3537 −0.890842 −0.445421 0.895321i \(-0.646946\pi\)
−0.445421 + 0.895321i \(0.646946\pi\)
\(338\) 0 0
\(339\) −3.85398 0.455040i −0.209320 0.0247144i
\(340\) 0 0
\(341\) 18.9100 + 8.23008i 1.02403 + 0.445684i
\(342\) 0 0
\(343\) 10.3686 0.559849
\(344\) 0 0
\(345\) −5.60754 18.0115i −0.301900 0.969709i
\(346\) 0 0
\(347\) 4.73694i 0.254292i −0.991884 0.127146i \(-0.959418\pi\)
0.991884 0.127146i \(-0.0405817\pi\)
\(348\) 0 0
\(349\) 13.2603i 0.709808i 0.934903 + 0.354904i \(0.115486\pi\)
−0.934903 + 0.354904i \(0.884514\pi\)
\(350\) 0 0
\(351\) −2.37501 0.873891i −0.126769 0.0466449i
\(352\) 0 0
\(353\) 25.1335 1.33772 0.668860 0.743388i \(-0.266782\pi\)
0.668860 + 0.743388i \(0.266782\pi\)
\(354\) 0 0
\(355\) −12.2738 + 5.47151i −0.651426 + 0.290397i
\(356\) 0 0
\(357\) 5.54521 46.9654i 0.293484 2.48567i
\(358\) 0 0
\(359\) −32.4183 −1.71097 −0.855487 0.517824i \(-0.826742\pi\)
−0.855487 + 0.517824i \(0.826742\pi\)
\(360\) 0 0
\(361\) 15.8401 0.833691
\(362\) 0 0
\(363\) −11.2597 15.3694i −0.590980 0.806686i
\(364\) 0 0
\(365\) 0.645374 + 1.44772i 0.0337804 + 0.0757771i
\(366\) 0 0
\(367\) 14.6914i 0.766886i 0.923565 + 0.383443i \(0.125262\pi\)
−0.923565 + 0.383443i \(0.874738\pi\)
\(368\) 0 0
\(369\) 14.8034 + 3.54509i 0.770633 + 0.184550i
\(370\) 0 0
\(371\) 38.7242 2.01046
\(372\) 0 0
\(373\) −22.3850 −1.15905 −0.579526 0.814954i \(-0.696762\pi\)
−0.579526 + 0.814954i \(0.696762\pi\)
\(374\) 0 0
\(375\) −17.5997 8.07773i −0.908846 0.417132i
\(376\) 0 0
\(377\) 0.647284 0.0333368
\(378\) 0 0
\(379\) 5.14877 0.264475 0.132237 0.991218i \(-0.457784\pi\)
0.132237 + 0.991218i \(0.457784\pi\)
\(380\) 0 0
\(381\) −0.867204 0.102391i −0.0444282 0.00524564i
\(382\) 0 0
\(383\) −0.856386 −0.0437593 −0.0218796 0.999761i \(-0.506965\pi\)
−0.0218796 + 0.999761i \(0.506965\pi\)
\(384\) 0 0
\(385\) −0.266884 30.1681i −0.0136017 1.53751i
\(386\) 0 0
\(387\) −13.6622 3.27182i −0.694491 0.166316i
\(388\) 0 0
\(389\) 34.4192i 1.74512i 0.488506 + 0.872560i \(0.337542\pi\)
−0.488506 + 0.872560i \(0.662458\pi\)
\(390\) 0 0
\(391\) 32.6915i 1.65328i
\(392\) 0 0
\(393\) −20.6634 2.43973i −1.04233 0.123068i
\(394\) 0 0
\(395\) 14.6234 6.51890i 0.735781 0.328002i
\(396\) 0 0
\(397\) 35.3725i 1.77529i 0.460526 + 0.887646i \(0.347661\pi\)
−0.460526 + 0.887646i \(0.652339\pi\)
\(398\) 0 0
\(399\) −1.46863 + 12.4386i −0.0735234 + 0.622709i
\(400\) 0 0
\(401\) 10.6690i 0.532786i 0.963865 + 0.266393i \(0.0858318\pi\)
−0.963865 + 0.266393i \(0.914168\pi\)
\(402\) 0 0
\(403\) 3.02844 0.150857
\(404\) 0 0
\(405\) 1.02107 20.0987i 0.0507375 0.998712i
\(406\) 0 0
\(407\) −10.5408 + 24.2193i −0.522488 + 1.20050i
\(408\) 0 0
\(409\) 28.4363i 1.40608i −0.711148 0.703042i \(-0.751825\pi\)
0.711148 0.703042i \(-0.248175\pi\)
\(410\) 0 0
\(411\) 10.4779 + 1.23713i 0.516836 + 0.0610229i
\(412\) 0 0
\(413\) 20.8696i 1.02692i
\(414\) 0 0
\(415\) −28.3682 + 12.6462i −1.39254 + 0.620777i
\(416\) 0 0
\(417\) −3.14941 + 26.6740i −0.154227 + 1.30623i
\(418\) 0 0
\(419\) 2.94511i 0.143878i 0.997409 + 0.0719391i \(0.0229187\pi\)
−0.997409 + 0.0719391i \(0.977081\pi\)
\(420\) 0 0
\(421\) −13.1762 −0.642170 −0.321085 0.947050i \(-0.604048\pi\)
−0.321085 + 0.947050i \(0.604048\pi\)
\(422\) 0 0
\(423\) 31.2723 + 7.48904i 1.52051 + 0.364130i
\(424\) 0 0
\(425\) −24.9602 22.4322i −1.21075 1.08812i
\(426\) 0 0
\(427\) 10.6508i 0.515428i
\(428\) 0 0
\(429\) −2.41673 1.40960i −0.116681 0.0680560i
\(430\) 0 0
\(431\) −18.4389 −0.888171 −0.444086 0.895984i \(-0.646471\pi\)
−0.444086 + 0.895984i \(0.646471\pi\)
\(432\) 0 0
\(433\) 16.6376i 0.799553i 0.916613 + 0.399776i \(0.130912\pi\)
−0.916613 + 0.399776i \(0.869088\pi\)
\(434\) 0 0
\(435\) 1.53009 + 4.91469i 0.0733622 + 0.235641i
\(436\) 0 0
\(437\) 8.65821i 0.414179i
\(438\) 0 0
\(439\) 17.3196i 0.826619i −0.910591 0.413310i \(-0.864373\pi\)
0.910591 0.413310i \(-0.135627\pi\)
\(440\) 0 0
\(441\) 27.8587 + 6.67156i 1.32660 + 0.317693i
\(442\) 0 0
\(443\) −11.0984 −0.527299 −0.263650 0.964619i \(-0.584926\pi\)
−0.263650 + 0.964619i \(0.584926\pi\)
\(444\) 0 0
\(445\) 32.5949 14.5304i 1.54515 0.688806i
\(446\) 0 0
\(447\) −18.7872 2.21821i −0.888604 0.104918i
\(448\) 0 0
\(449\) 10.7509i 0.507366i −0.967287 0.253683i \(-0.918358\pi\)
0.967287 0.253683i \(-0.0816420\pi\)
\(450\) 0 0
\(451\) 15.4304 + 6.71569i 0.726590 + 0.316229i
\(452\) 0 0
\(453\) 1.65017 13.9762i 0.0775316 0.656657i
\(454\) 0 0
\(455\) −1.80381 4.04636i −0.0845640 0.189696i
\(456\) 0 0
\(457\) 18.0288 0.843349 0.421675 0.906747i \(-0.361442\pi\)
0.421675 + 0.906747i \(0.361442\pi\)
\(458\) 0 0
\(459\) 12.0432 32.7303i 0.562128 1.52772i
\(460\) 0 0
\(461\) 11.4037 0.531121 0.265561 0.964094i \(-0.414443\pi\)
0.265561 + 0.964094i \(0.414443\pi\)
\(462\) 0 0
\(463\) 15.0077i 0.697465i −0.937222 0.348733i \(-0.886612\pi\)
0.937222 0.348733i \(-0.113388\pi\)
\(464\) 0 0
\(465\) 7.15881 + 22.9943i 0.331982 + 1.06633i
\(466\) 0 0
\(467\) 23.8630 1.10425 0.552123 0.833762i \(-0.313818\pi\)
0.552123 + 0.833762i \(0.313818\pi\)
\(468\) 0 0
\(469\) 34.6771i 1.60124i
\(470\) 0 0
\(471\) −3.49239 + 29.5790i −0.160921 + 1.36293i
\(472\) 0 0
\(473\) −14.2410 6.19800i −0.654800 0.284985i
\(474\) 0 0
\(475\) 6.61061 + 5.94108i 0.303316 + 0.272595i
\(476\) 0 0
\(477\) 27.7723 + 6.65087i 1.27161 + 0.304522i
\(478\) 0 0
\(479\) −32.6508 −1.49185 −0.745927 0.666027i \(-0.767993\pi\)
−0.745927 + 0.666027i \(0.767993\pi\)
\(480\) 0 0
\(481\) 3.87872i 0.176854i
\(482\) 0 0
\(483\) 34.0825 + 4.02413i 1.55081 + 0.183104i
\(484\) 0 0
\(485\) 1.72453 0.768775i 0.0783071 0.0349083i
\(486\) 0 0
\(487\) 29.7269i 1.34706i −0.739162 0.673528i \(-0.764778\pi\)
0.739162 0.673528i \(-0.235222\pi\)
\(488\) 0 0
\(489\) −0.599079 + 5.07392i −0.0270913 + 0.229451i
\(490\) 0 0
\(491\) −41.1627 −1.85765 −0.928823 0.370524i \(-0.879178\pi\)
−0.928823 + 0.370524i \(0.879178\pi\)
\(492\) 0 0
\(493\) 8.92029i 0.401750i
\(494\) 0 0
\(495\) 4.98995 21.6818i 0.224281 0.974524i
\(496\) 0 0
\(497\) 24.4477i 1.09663i
\(498\) 0 0
\(499\) −3.18648 −0.142646 −0.0713232 0.997453i \(-0.522722\pi\)
−0.0713232 + 0.997453i \(0.522722\pi\)
\(500\) 0 0
\(501\) −1.26664 + 10.7279i −0.0565895 + 0.479287i
\(502\) 0 0
\(503\) 19.8089i 0.883234i 0.897204 + 0.441617i \(0.145595\pi\)
−0.897204 + 0.441617i \(0.854405\pi\)
\(504\) 0 0
\(505\) 10.3665 + 23.2544i 0.461304 + 1.03481i
\(506\) 0 0
\(507\) 21.9533 + 2.59203i 0.974982 + 0.115116i
\(508\) 0 0
\(509\) 13.4429i 0.595845i −0.954590 0.297922i \(-0.903706\pi\)
0.954590 0.297922i \(-0.0962937\pi\)
\(510\) 0 0
\(511\) −2.88365 −0.127565
\(512\) 0 0
\(513\) −3.18960 + 8.66849i −0.140824 + 0.382723i
\(514\) 0 0
\(515\) −32.2230 + 14.3646i −1.41992 + 0.632980i
\(516\) 0 0
\(517\) 32.5969 + 14.1869i 1.43361 + 0.623941i
\(518\) 0 0
\(519\) 3.34019 28.2899i 0.146618 1.24179i
\(520\) 0 0
\(521\) 10.9273i 0.478732i −0.970929 0.239366i \(-0.923060\pi\)
0.970929 0.239366i \(-0.0769395\pi\)
\(522\) 0 0
\(523\) −3.81921 −0.167003 −0.0835013 0.996508i \(-0.526610\pi\)
−0.0835013 + 0.996508i \(0.526610\pi\)
\(524\) 0 0
\(525\) 26.4591 23.2610i 1.15477 1.01519i
\(526\) 0 0
\(527\) 41.7352i 1.81802i
\(528\) 0 0
\(529\) 0.724020 0.0314791
\(530\) 0 0
\(531\) 3.58434 14.9673i 0.155547 0.649523i
\(532\) 0 0
\(533\) 2.47118 0.107039
\(534\) 0 0
\(535\) −28.2655 + 12.6004i −1.22202 + 0.544761i
\(536\) 0 0
\(537\) 4.38530 37.1415i 0.189240 1.60277i
\(538\) 0 0
\(539\) 29.0387 + 12.6383i 1.25079 + 0.544372i
\(540\) 0 0
\(541\) 11.5067i 0.494710i 0.968925 + 0.247355i \(0.0795613\pi\)
−0.968925 + 0.247355i \(0.920439\pi\)
\(542\) 0 0
\(543\) 11.6559 + 1.37621i 0.500201 + 0.0590588i
\(544\) 0 0
\(545\) −30.6156 + 13.6480i −1.31143 + 0.584617i
\(546\) 0 0
\(547\) 6.69674 0.286332 0.143166 0.989699i \(-0.454272\pi\)
0.143166 + 0.989699i \(0.454272\pi\)
\(548\) 0 0
\(549\) −1.82927 + 7.63854i −0.0780713 + 0.326005i
\(550\) 0 0
\(551\) 2.36251i 0.100646i
\(552\) 0 0
\(553\) 29.1277i 1.23863i
\(554\) 0 0
\(555\) −29.4503 + 9.16876i −1.25009 + 0.389192i
\(556\) 0 0
\(557\) 24.3328i 1.03102i −0.856885 0.515508i \(-0.827603\pi\)
0.856885 0.515508i \(-0.172397\pi\)
\(558\) 0 0
\(559\) −2.28069 −0.0964629
\(560\) 0 0
\(561\) 19.4258 33.3052i 0.820159 1.40615i
\(562\) 0 0
\(563\) 42.6342i 1.79682i −0.439160 0.898409i \(-0.644724\pi\)
0.439160 0.898409i \(-0.355276\pi\)
\(564\) 0 0
\(565\) −2.03990 4.57594i −0.0858191 0.192511i
\(566\) 0 0
\(567\) 32.6405 + 16.5846i 1.37077 + 0.696486i
\(568\) 0 0
\(569\) 22.9670 0.962825 0.481413 0.876494i \(-0.340124\pi\)
0.481413 + 0.876494i \(0.340124\pi\)
\(570\) 0 0
\(571\) 8.36110i 0.349901i −0.984577 0.174951i \(-0.944023\pi\)
0.984577 0.174951i \(-0.0559766\pi\)
\(572\) 0 0
\(573\) −1.59025 + 13.4687i −0.0664336 + 0.562662i
\(574\) 0 0
\(575\) 16.2789 18.1135i 0.678877 0.755384i
\(576\) 0 0
\(577\) 15.7206i 0.654456i −0.944945 0.327228i \(-0.893885\pi\)
0.944945 0.327228i \(-0.106115\pi\)
\(578\) 0 0
\(579\) 16.9639 + 2.00293i 0.704997 + 0.0832391i
\(580\) 0 0
\(581\) 56.5055i 2.34424i
\(582\) 0 0
\(583\) 28.9487 + 12.5991i 1.19893 + 0.521803i
\(584\) 0 0
\(585\) −0.598700 3.21177i −0.0247532 0.132790i
\(586\) 0 0
\(587\) −12.3947 −0.511583 −0.255792 0.966732i \(-0.582336\pi\)
−0.255792 + 0.966732i \(0.582336\pi\)
\(588\) 0 0
\(589\) 11.0534i 0.455448i
\(590\) 0 0
\(591\) −2.19675 + 18.6055i −0.0903622 + 0.765326i
\(592\) 0 0
\(593\) 22.7756i 0.935282i −0.883918 0.467641i \(-0.845104\pi\)
0.883918 0.467641i \(-0.154896\pi\)
\(594\) 0 0
\(595\) 55.7633 24.8586i 2.28607 1.01910i
\(596\) 0 0
\(597\) −14.0274 1.65622i −0.574104 0.0677845i
\(598\) 0 0
\(599\) 16.3904i 0.669694i 0.942273 + 0.334847i \(0.108685\pi\)
−0.942273 + 0.334847i \(0.891315\pi\)
\(600\) 0 0
\(601\) 32.1587i 1.31178i −0.754855 0.655891i \(-0.772293\pi\)
0.754855 0.655891i \(-0.227707\pi\)
\(602\) 0 0
\(603\) −5.95578 + 24.8698i −0.242538 + 1.01278i
\(604\) 0 0
\(605\) 9.61584 22.6392i 0.390940 0.920416i
\(606\) 0 0
\(607\) 19.8544 0.805863 0.402932 0.915230i \(-0.367991\pi\)
0.402932 + 0.915230i \(0.367991\pi\)
\(608\) 0 0
\(609\) −9.29986 1.09804i −0.376849 0.0444947i
\(610\) 0 0
\(611\) 5.22039 0.211195
\(612\) 0 0
\(613\) −9.51906 −0.384471 −0.192236 0.981349i \(-0.561574\pi\)
−0.192236 + 0.981349i \(0.561574\pi\)
\(614\) 0 0
\(615\) 5.84154 + 18.7632i 0.235554 + 0.756604i
\(616\) 0 0
\(617\) −20.0214 −0.806031 −0.403015 0.915193i \(-0.632038\pi\)
−0.403015 + 0.915193i \(0.632038\pi\)
\(618\) 0 0
\(619\) 44.4802 1.78781 0.893905 0.448257i \(-0.147955\pi\)
0.893905 + 0.448257i \(0.147955\pi\)
\(620\) 0 0
\(621\) 23.7522 + 8.73968i 0.953142 + 0.350711i
\(622\) 0 0
\(623\) 64.9244i 2.60114i
\(624\) 0 0
\(625\) −2.65953 24.8581i −0.106381 0.994325i
\(626\) 0 0
\(627\) −5.14486 + 8.82077i −0.205466 + 0.352268i
\(628\) 0 0
\(629\) −53.4530 −2.13131
\(630\) 0 0
\(631\) 1.35237 0.0538370 0.0269185 0.999638i \(-0.491431\pi\)
0.0269185 + 0.999638i \(0.491431\pi\)
\(632\) 0 0
\(633\) 4.45263 37.7117i 0.176976 1.49891i
\(634\) 0 0
\(635\) −0.459007 1.02965i −0.0182151 0.0408606i
\(636\) 0 0
\(637\) 4.65055 0.184262
\(638\) 0 0
\(639\) 4.19888 17.5334i 0.166105 0.693611i
\(640\) 0 0
\(641\) 8.72758i 0.344719i 0.985034 + 0.172359i \(0.0551391\pi\)
−0.985034 + 0.172359i \(0.944861\pi\)
\(642\) 0 0
\(643\) 31.9235i 1.25894i 0.777024 + 0.629471i \(0.216728\pi\)
−0.777024 + 0.629471i \(0.783272\pi\)
\(644\) 0 0
\(645\) −5.39124 17.3168i −0.212280 0.681848i
\(646\) 0 0
\(647\) 16.5851 0.652026 0.326013 0.945365i \(-0.394295\pi\)
0.326013 + 0.945365i \(0.394295\pi\)
\(648\) 0 0
\(649\) 6.79003 15.6012i 0.266532 0.612402i
\(650\) 0 0
\(651\) −43.5111 5.13736i −1.70534 0.201349i
\(652\) 0 0
\(653\) −30.0000 −1.17399 −0.586995 0.809590i \(-0.699689\pi\)
−0.586995 + 0.809590i \(0.699689\pi\)
\(654\) 0 0
\(655\) −10.9370 24.5342i −0.427345 0.958630i
\(656\) 0 0
\(657\) −2.06810 0.495265i −0.0806842 0.0193221i
\(658\) 0 0
\(659\) −19.8443 −0.773025 −0.386512 0.922284i \(-0.626320\pi\)
−0.386512 + 0.922284i \(0.626320\pi\)
\(660\) 0 0
\(661\) 7.27040 0.282786 0.141393 0.989954i \(-0.454842\pi\)
0.141393 + 0.989954i \(0.454842\pi\)
\(662\) 0 0
\(663\) 0.663881 5.62277i 0.0257830 0.218370i
\(664\) 0 0
\(665\) −14.7687 + 6.58370i −0.572706 + 0.255305i
\(666\) 0 0
\(667\) −6.47341 −0.250651
\(668\) 0 0
\(669\) 0.379851 3.21716i 0.0146859 0.124383i
\(670\) 0 0
\(671\) −3.46529 + 7.96210i −0.133776 + 0.307373i
\(672\) 0 0
\(673\) −4.18041 −0.161143 −0.0805716 0.996749i \(-0.525675\pi\)
−0.0805716 + 0.996749i \(0.525675\pi\)
\(674\) 0 0
\(675\) 22.9711 12.1380i 0.884156 0.467191i
\(676\) 0 0
\(677\) 32.1263i 1.23471i 0.786683 + 0.617357i \(0.211797\pi\)
−0.786683 + 0.617357i \(0.788203\pi\)
\(678\) 0 0
\(679\) 3.43503i 0.131824i
\(680\) 0 0
\(681\) −1.58332 + 13.4100i −0.0606730 + 0.513872i
\(682\) 0 0
\(683\) −4.24883 −0.162577 −0.0812884 0.996691i \(-0.525903\pi\)
−0.0812884 + 0.996691i \(0.525903\pi\)
\(684\) 0 0
\(685\) 5.54590 + 12.4407i 0.211898 + 0.475334i
\(686\) 0 0
\(687\) −3.99059 0.471170i −0.152251 0.0179762i
\(688\) 0 0
\(689\) 4.63613 0.176622
\(690\) 0 0
\(691\) 5.59047 0.212671 0.106336 0.994330i \(-0.466088\pi\)
0.106336 + 0.994330i \(0.466088\pi\)
\(692\) 0 0
\(693\) 32.3312 + 24.3521i 1.22816 + 0.925059i
\(694\) 0 0
\(695\) −31.6708 + 14.1184i −1.20134 + 0.535543i
\(696\) 0 0
\(697\) 34.0557i 1.28995i
\(698\) 0 0
\(699\) −2.72882 + 23.1118i −0.103213 + 0.874170i
\(700\) 0 0
\(701\) 36.5121 1.37904 0.689521 0.724266i \(-0.257821\pi\)
0.689521 + 0.724266i \(0.257821\pi\)
\(702\) 0 0
\(703\) 14.1568 0.533935
\(704\) 0 0
\(705\) 12.3403 + 39.6373i 0.464762 + 1.49283i
\(706\) 0 0
\(707\) −46.3195 −1.74202
\(708\) 0 0
\(709\) 28.7632 1.08023 0.540113 0.841592i \(-0.318381\pi\)
0.540113 + 0.841592i \(0.318381\pi\)
\(710\) 0 0
\(711\) −5.00266 + 20.8898i −0.187614 + 0.783428i
\(712\) 0 0
\(713\) −30.2870 −1.13426
\(714\) 0 0
\(715\) −0.0319518 3.61177i −0.00119493 0.135073i
\(716\) 0 0
\(717\) −47.0939 5.56039i −1.75875 0.207656i
\(718\) 0 0
\(719\) 24.9024i 0.928702i 0.885651 + 0.464351i \(0.153712\pi\)
−0.885651 + 0.464351i \(0.846288\pi\)
\(720\) 0 0
\(721\) 64.1836i 2.39032i
\(722\) 0 0
\(723\) −4.34762 + 36.8224i −0.161690 + 1.36944i
\(724\) 0 0
\(725\) −4.44191 + 4.94250i −0.164968 + 0.183560i
\(726\) 0 0
\(727\) 33.0847i 1.22704i 0.789678 + 0.613522i \(0.210248\pi\)
−0.789678 + 0.613522i \(0.789752\pi\)
\(728\) 0 0
\(729\) 20.5608 + 17.5001i 0.761510 + 0.648153i
\(730\) 0 0
\(731\) 31.4304i 1.16250i
\(732\) 0 0
\(733\) −10.3268 −0.381431 −0.190715 0.981645i \(-0.561081\pi\)
−0.190715 + 0.981645i \(0.561081\pi\)
\(734\) 0 0
\(735\) 10.9933 + 35.3106i 0.405493 + 1.30245i
\(736\) 0 0
\(737\) −11.2824 + 25.9232i −0.415593 + 0.954894i
\(738\) 0 0
\(739\) 16.7742i 0.617047i −0.951217 0.308524i \(-0.900165\pi\)
0.951217 0.308524i \(-0.0998349\pi\)
\(740\) 0 0
\(741\) −0.175827 + 1.48917i −0.00645915 + 0.0547060i
\(742\) 0 0
\(743\) 11.9919i 0.439940i −0.975507 0.219970i \(-0.929404\pi\)
0.975507 0.219970i \(-0.0705960\pi\)
\(744\) 0 0
\(745\) −9.94398 22.3066i −0.364319 0.817250i
\(746\) 0 0
\(747\) 9.70479 40.5246i 0.355080 1.48272i
\(748\) 0 0
\(749\) 56.3007i 2.05718i
\(750\) 0 0
\(751\) 43.0821 1.57209 0.786043 0.618172i \(-0.212126\pi\)
0.786043 + 0.618172i \(0.212126\pi\)
\(752\) 0 0
\(753\) −2.74804 + 23.2746i −0.100144 + 0.848174i
\(754\) 0 0
\(755\) 16.5943 7.39751i 0.603927 0.269223i
\(756\) 0 0
\(757\) 17.0338i 0.619105i 0.950882 + 0.309553i \(0.100179\pi\)
−0.950882 + 0.309553i \(0.899821\pi\)
\(758\) 0 0
\(759\) 24.1694 + 14.0972i 0.877295 + 0.511696i
\(760\) 0 0
\(761\) −7.99473 −0.289809 −0.144904 0.989446i \(-0.546287\pi\)
−0.144904 + 0.989446i \(0.546287\pi\)
\(762\) 0 0
\(763\) 60.9819i 2.20769i
\(764\) 0 0
\(765\) 44.2618 8.25075i 1.60029 0.298307i
\(766\) 0 0
\(767\) 2.49854i 0.0902170i
\(768\) 0 0
\(769\) 32.3828i 1.16775i −0.811842 0.583877i \(-0.801535\pi\)
0.811842 0.583877i \(-0.198465\pi\)
\(770\) 0 0
\(771\) 1.93952 + 0.229000i 0.0698502 + 0.00824722i
\(772\) 0 0
\(773\) 28.6633 1.03095 0.515474 0.856905i \(-0.327616\pi\)
0.515474 + 0.856905i \(0.327616\pi\)
\(774\) 0 0
\(775\) −20.7823 + 23.1244i −0.746523 + 0.830652i
\(776\) 0 0
\(777\) 6.57976 55.7275i 0.236047 1.99921i
\(778\) 0 0
\(779\) 9.01952i 0.323158i
\(780\) 0 0
\(781\) 7.95419 18.2761i 0.284623 0.653970i
\(782\) 0 0
\(783\) −6.48109 2.38474i −0.231615 0.0852235i
\(784\) 0 0
\(785\) −35.1199 + 15.6560i −1.25348 + 0.558787i
\(786\) 0 0
\(787\) −54.3410 −1.93705 −0.968523 0.248924i \(-0.919923\pi\)
−0.968523 + 0.248924i \(0.919923\pi\)
\(788\) 0 0
\(789\) 1.07728 9.12404i 0.0383521 0.324825i
\(790\) 0 0
\(791\) 9.11462 0.324079
\(792\) 0 0
\(793\) 1.27513i 0.0452812i
\(794\) 0 0
\(795\) 10.9592 + 35.2011i 0.388682 + 1.24845i
\(796\) 0 0
\(797\) −23.3137 −0.825815 −0.412907 0.910773i \(-0.635487\pi\)
−0.412907 + 0.910773i \(0.635487\pi\)
\(798\) 0 0
\(799\) 71.9429i 2.54516i
\(800\) 0 0
\(801\) −11.1507 + 46.5625i −0.393992 + 1.64521i
\(802\) 0 0
\(803\) −2.15570 0.938211i −0.0760729 0.0331088i
\(804\) 0 0
\(805\) 18.0397 + 40.4671i 0.635816 + 1.42628i
\(806\) 0 0
\(807\) 4.13818 35.0485i 0.145671 1.23377i
\(808\) 0 0
\(809\) 47.8598 1.68266 0.841330 0.540522i \(-0.181773\pi\)
0.841330 + 0.540522i \(0.181773\pi\)
\(810\) 0 0
\(811\) 11.5757i 0.406479i −0.979129 0.203240i \(-0.934853\pi\)
0.979129 0.203240i \(-0.0651471\pi\)
\(812\) 0 0
\(813\) 2.21639 18.7718i 0.0777321 0.658355i
\(814\) 0 0
\(815\) −6.02441 + 2.68560i −0.211026 + 0.0940726i
\(816\) 0 0
\(817\) 8.32424i 0.291228i
\(818\) 0 0
\(819\) 5.78031 + 1.38426i 0.201980 + 0.0483700i
\(820\) 0 0
\(821\) −4.39090 −0.153243 −0.0766217 0.997060i \(-0.524413\pi\)
−0.0766217 + 0.997060i \(0.524413\pi\)
\(822\) 0 0
\(823\) 4.48004i 0.156164i 0.996947 + 0.0780822i \(0.0248797\pi\)
−0.996947 + 0.0780822i \(0.975120\pi\)
\(824\) 0 0
\(825\) 27.3479 8.78034i 0.952130 0.305692i
\(826\) 0 0
\(827\) 11.5880i 0.402954i 0.979493 + 0.201477i \(0.0645742\pi\)
−0.979493 + 0.201477i \(0.935426\pi\)
\(828\) 0 0
\(829\) 35.9085 1.24715 0.623577 0.781762i \(-0.285679\pi\)
0.623577 + 0.781762i \(0.285679\pi\)
\(830\) 0 0
\(831\) −19.7765 2.33501i −0.686038 0.0810006i
\(832\) 0 0
\(833\) 64.0898i 2.22058i
\(834\) 0 0
\(835\) −12.7375 + 5.67823i −0.440800 + 0.196503i
\(836\) 0 0
\(837\) −30.3230 11.1574i −1.04812 0.385657i
\(838\) 0 0
\(839\) 47.7992i 1.65021i −0.564978 0.825106i \(-0.691115\pi\)
0.564978 0.825106i \(-0.308885\pi\)
\(840\) 0 0
\(841\) −27.2336 −0.939091
\(842\) 0 0
\(843\) 45.1546 + 5.33141i 1.55521 + 0.183624i
\(844\) 0 0
\(845\) 11.6198 + 26.0658i 0.399733 + 0.896691i
\(846\) 0 0
\(847\) 30.4956 + 32.7479i 1.04784 + 1.12523i
\(848\) 0 0
\(849\) −51.3979 6.06856i −1.76397 0.208272i
\(850\) 0 0
\(851\) 38.7906i 1.32972i
\(852\) 0 0
\(853\) −38.5491 −1.31989 −0.659947 0.751312i \(-0.729421\pi\)
−0.659947 + 0.751312i \(0.729421\pi\)
\(854\) 0 0
\(855\) −11.7226 + 2.18518i −0.400904 + 0.0747316i
\(856\) 0 0
\(857\) 34.4805i 1.17783i −0.808194 0.588916i \(-0.799555\pi\)
0.808194 0.588916i \(-0.200445\pi\)
\(858\) 0 0
\(859\) −19.3752 −0.661074 −0.330537 0.943793i \(-0.607230\pi\)
−0.330537 + 0.943793i \(0.607230\pi\)
\(860\) 0 0
\(861\) −35.5048 4.19205i −1.21000 0.142865i
\(862\) 0 0
\(863\) −24.5481 −0.835628 −0.417814 0.908533i \(-0.637204\pi\)
−0.417814 + 0.908533i \(0.637204\pi\)
\(864\) 0 0
\(865\) 33.5894 14.9737i 1.14207 0.509122i
\(866\) 0 0
\(867\) 48.2463 + 5.69645i 1.63853 + 0.193462i
\(868\) 0 0
\(869\) −9.47685 + 21.7746i −0.321480 + 0.738654i
\(870\) 0 0
\(871\) 4.15160i 0.140672i
\(872\) 0 0
\(873\) −0.589964 + 2.46353i −0.0199673 + 0.0833780i
\(874\) 0 0
\(875\) 43.2754 + 13.9942i 1.46298 + 0.473091i
\(876\) 0 0
\(877\) −50.5199 −1.70594 −0.852969 0.521962i \(-0.825200\pi\)
−0.852969 + 0.521962i \(0.825200\pi\)
\(878\) 0 0
\(879\) 1.90174 16.1069i 0.0641441 0.543271i
\(880\) 0 0
\(881\) 11.6713i 0.393217i 0.980482 + 0.196609i \(0.0629929\pi\)
−0.980482 + 0.196609i \(0.937007\pi\)
\(882\) 0 0
\(883\) 34.6469i 1.16596i −0.812486 0.582980i \(-0.801887\pi\)
0.812486 0.582980i \(-0.198113\pi\)
\(884\) 0 0
\(885\) 18.9709 5.90620i 0.637698 0.198535i
\(886\) 0 0
\(887\) 39.7308i 1.33403i −0.745044 0.667015i \(-0.767572\pi\)
0.745044 0.667015i \(-0.232428\pi\)
\(888\) 0 0
\(889\) 2.05093 0.0687858
\(890\) 0 0
\(891\) 19.0049 + 23.0177i 0.636687 + 0.771123i
\(892\) 0 0
\(893\) 19.0538i 0.637611i
\(894\) 0 0
\(895\) 44.0991 19.6588i 1.47407 0.657122i
\(896\) 0 0
\(897\) 4.08042 + 0.481775i 0.136241 + 0.0160860i
\(898\) 0 0
\(899\) 8.26421 0.275627
\(900\) 0 0
\(901\) 63.8910i 2.12852i
\(902\) 0 0
\(903\) 32.7678 + 3.86890i 1.09045 + 0.128749i
\(904\) 0 0
\(905\) 6.16940 + 13.8393i 0.205078 + 0.460035i
\(906\) 0 0
\(907\) 31.0066i 1.02956i 0.857323 + 0.514778i \(0.172126\pi\)
−0.857323 + 0.514778i \(0.827874\pi\)
\(908\) 0 0
\(909\) −33.2194 7.95535i −1.10182 0.263862i
\(910\) 0 0
\(911\) 22.9078i 0.758968i 0.925198 + 0.379484i \(0.123898\pi\)
−0.925198 + 0.379484i \(0.876102\pi\)
\(912\) 0 0
\(913\) 18.3844 42.2412i 0.608434 1.39798i
\(914\) 0 0
\(915\) −9.68179 + 3.01423i −0.320070 + 0.0996475i
\(916\) 0 0
\(917\) 48.8686 1.61378
\(918\) 0 0
\(919\) 12.6635i 0.417729i −0.977945 0.208865i \(-0.933023\pi\)
0.977945 0.208865i \(-0.0669768\pi\)
\(920\) 0 0
\(921\) 36.6152 + 4.32316i 1.20651 + 0.142453i
\(922\) 0 0
\(923\) 2.92692i 0.0963406i
\(924\) 0 0
\(925\) −29.6169 26.6173i −0.973798 0.875170i
\(926\) 0 0
\(927\) 11.0235 46.0313i 0.362059 1.51186i
\(928\) 0 0
\(929\) 18.3172i 0.600966i −0.953787 0.300483i \(-0.902852\pi\)
0.953787 0.300483i \(-0.0971479\pi\)
\(930\) 0 0
\(931\) 16.9739i 0.556299i
\(932\) 0 0
\(933\) 1.85160 15.6822i 0.0606187 0.513413i
\(934\) 0 0
\(935\) 49.7742 0.440332i 1.62779 0.0144004i
\(936\) 0 0
\(937\) 50.9580 1.66472 0.832362 0.554232i \(-0.186988\pi\)
0.832362 + 0.554232i \(0.186988\pi\)
\(938\) 0 0
\(939\) 0.813400 6.88912i 0.0265443 0.224818i
\(940\) 0 0
\(941\) −1.10936 −0.0361640 −0.0180820 0.999837i \(-0.505756\pi\)
−0.0180820 + 0.999837i \(0.505756\pi\)
\(942\) 0 0
\(943\) −24.7140 −0.804799
\(944\) 0 0
\(945\) 3.15346 + 47.1608i 0.102582 + 1.53414i
\(946\) 0 0
\(947\) −27.1440 −0.882061 −0.441030 0.897492i \(-0.645387\pi\)
−0.441030 + 0.897492i \(0.645387\pi\)
\(948\) 0 0
\(949\) −0.345235 −0.0112068
\(950\) 0 0
\(951\) 40.6576 + 4.80044i 1.31841 + 0.155665i
\(952\) 0 0
\(953\) 23.7432i 0.769118i 0.923100 + 0.384559i \(0.125647\pi\)
−0.923100 + 0.384559i \(0.874353\pi\)
\(954\) 0 0
\(955\) −15.9917 + 7.12891i −0.517480 + 0.230686i
\(956\) 0 0
\(957\) −6.59494 3.84661i −0.213184 0.124343i
\(958\) 0 0
\(959\) −24.7801 −0.800190
\(960\) 0 0
\(961\) 7.66565 0.247279
\(962\) 0 0
\(963\) 9.66963 40.3778i 0.311599 1.30116i
\(964\) 0 0
\(965\) 8.97893 + 20.1418i 0.289042 + 0.648386i
\(966\) 0 0
\(967\) 43.8957 1.41159 0.705796 0.708415i \(-0.250590\pi\)
0.705796 + 0.708415i \(0.250590\pi\)
\(968\) 0 0
\(969\) −20.5224 2.42309i −0.659275 0.0778407i
\(970\) 0 0
\(971\) 49.2284i 1.57981i 0.613226 + 0.789907i \(0.289871\pi\)
−0.613226 + 0.789907i \(0.710129\pi\)
\(972\) 0 0
\(973\) 63.0838i 2.02237i
\(974\) 0 0
\(975\) 3.16773 2.78484i 0.101449 0.0891864i
\(976\) 0 0
\(977\) 54.2159 1.73452 0.867261 0.497854i \(-0.165878\pi\)
0.867261 + 0.497854i \(0.165878\pi\)
\(978\) 0 0
\(979\) −21.1235 + 48.5348i −0.675111 + 1.55118i
\(980\) 0 0
\(981\) 10.4736 43.7350i 0.334397 1.39635i
\(982\) 0 0
\(983\) −17.2245 −0.549377 −0.274689 0.961533i \(-0.588575\pi\)
−0.274689 + 0.961533i \(0.588575\pi\)
\(984\) 0 0
\(985\) −22.0908 + 9.84778i −0.703871 + 0.313776i
\(986\) 0 0
\(987\) −75.0041 8.85574i −2.38741 0.281881i
\(988\) 0 0
\(989\) 22.8089 0.725281
\(990\) 0 0
\(991\) 7.18071 0.228103 0.114051 0.993475i \(-0.463617\pi\)
0.114051 + 0.993475i \(0.463617\pi\)
\(992\) 0 0
\(993\) 51.2719 + 6.05368i 1.62706 + 0.192108i
\(994\) 0 0
\(995\) −7.42464 16.6551i −0.235377 0.528003i
\(996\) 0 0
\(997\) 27.2644 0.863471 0.431736 0.902000i \(-0.357901\pi\)
0.431736 + 0.902000i \(0.357901\pi\)
\(998\) 0 0
\(999\) 14.2901 38.8366i 0.452117 1.22874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1320.2.ba.a.329.6 yes 72
3.2 odd 2 inner 1320.2.ba.a.329.66 yes 72
5.4 even 2 inner 1320.2.ba.a.329.67 yes 72
11.10 odd 2 inner 1320.2.ba.a.329.5 72
15.14 odd 2 inner 1320.2.ba.a.329.7 yes 72
33.32 even 2 inner 1320.2.ba.a.329.65 yes 72
55.54 odd 2 inner 1320.2.ba.a.329.68 yes 72
165.164 even 2 inner 1320.2.ba.a.329.8 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1320.2.ba.a.329.5 72 11.10 odd 2 inner
1320.2.ba.a.329.6 yes 72 1.1 even 1 trivial
1320.2.ba.a.329.7 yes 72 15.14 odd 2 inner
1320.2.ba.a.329.8 yes 72 165.164 even 2 inner
1320.2.ba.a.329.65 yes 72 33.32 even 2 inner
1320.2.ba.a.329.66 yes 72 3.2 odd 2 inner
1320.2.ba.a.329.67 yes 72 5.4 even 2 inner
1320.2.ba.a.329.68 yes 72 55.54 odd 2 inner