Properties

Label 1320.2.d.c.529.7
Level $1320$
Weight $2$
Character 1320.529
Analytic conductor $10.540$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1320,2,Mod(529,1320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1320.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1320.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5402530668\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 23x^{8} + 187x^{6} + 657x^{4} + 928x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 529.7
Root \(-3.13869i\) of defining polynomial
Character \(\chi\) \(=\) 1320.529
Dual form 1320.2.d.c.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.76211 - 1.37658i) q^{5} -2.71268i q^{7} -1.00000 q^{9} -1.00000 q^{11} +4.34872i q^{13} +(1.37658 - 1.76211i) q^{15} -4.23689i q^{17} -0.771041 q^{19} +2.71268 q^{21} +7.39451i q^{23} +(1.21003 + 4.85137i) q^{25} -1.00000i q^{27} -4.64134 q^{29} -3.41239 q^{31} -1.00000i q^{33} +(-3.73424 + 4.78003i) q^{35} +4.27738i q^{37} -4.34872 q^{39} -5.06140 q^{41} +11.8729i q^{43} +(1.76211 + 1.37658i) q^{45} +1.96915i q^{47} -0.358655 q^{49} +4.23689 q^{51} -4.29525i q^{53} +(1.76211 + 1.37658i) q^{55} -0.771041i q^{57} -1.98702 q^{59} -3.16025 q^{61} +2.71268i q^{63} +(5.98638 - 7.66290i) q^{65} +12.7512i q^{67} -7.39451 q^{69} -6.94958 q^{71} -2.46054i q^{73} +(-4.85137 + 1.21003i) q^{75} +2.71268i q^{77} -2.88287 q^{79} +1.00000 q^{81} +2.18316i q^{83} +(-5.83244 + 7.46585i) q^{85} -4.64134i q^{87} -2.58761 q^{89} +11.7967 q^{91} -3.41239i q^{93} +(1.35866 + 1.06140i) q^{95} -11.2448i q^{97} +1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} - 4 q^{19} + 4 q^{21} - 2 q^{25} - 8 q^{29} + 8 q^{31} + 8 q^{35} + 16 q^{41} + 2 q^{45} - 42 q^{49} - 12 q^{51} + 2 q^{55} - 24 q^{59} + 20 q^{61} + 24 q^{65} - 8 q^{69}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1320\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.76211 1.37658i −0.788037 0.615627i
\(6\) 0 0
\(7\) 2.71268i 1.02530i −0.858598 0.512649i \(-0.828664\pi\)
0.858598 0.512649i \(-0.171336\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.34872i 1.20612i 0.797697 + 0.603059i \(0.206052\pi\)
−0.797697 + 0.603059i \(0.793948\pi\)
\(14\) 0 0
\(15\) 1.37658 1.76211i 0.355433 0.454974i
\(16\) 0 0
\(17\) 4.23689i 1.02760i −0.857911 0.513799i \(-0.828238\pi\)
0.857911 0.513799i \(-0.171762\pi\)
\(18\) 0 0
\(19\) −0.771041 −0.176889 −0.0884445 0.996081i \(-0.528190\pi\)
−0.0884445 + 0.996081i \(0.528190\pi\)
\(20\) 0 0
\(21\) 2.71268 0.591956
\(22\) 0 0
\(23\) 7.39451i 1.54186i 0.636918 + 0.770931i \(0.280209\pi\)
−0.636918 + 0.770931i \(0.719791\pi\)
\(24\) 0 0
\(25\) 1.21003 + 4.85137i 0.242006 + 0.970275i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −4.64134 −0.861876 −0.430938 0.902382i \(-0.641817\pi\)
−0.430938 + 0.902382i \(0.641817\pi\)
\(30\) 0 0
\(31\) −3.41239 −0.612883 −0.306441 0.951890i \(-0.599138\pi\)
−0.306441 + 0.951890i \(0.599138\pi\)
\(32\) 0 0
\(33\) 1.00000i 0.174078i
\(34\) 0 0
\(35\) −3.73424 + 4.78003i −0.631202 + 0.807973i
\(36\) 0 0
\(37\) 4.27738i 0.703197i 0.936151 + 0.351598i \(0.114362\pi\)
−0.936151 + 0.351598i \(0.885638\pi\)
\(38\) 0 0
\(39\) −4.34872 −0.696352
\(40\) 0 0
\(41\) −5.06140 −0.790458 −0.395229 0.918583i \(-0.629335\pi\)
−0.395229 + 0.918583i \(0.629335\pi\)
\(42\) 0 0
\(43\) 11.8729i 1.81060i 0.424768 + 0.905302i \(0.360356\pi\)
−0.424768 + 0.905302i \(0.639644\pi\)
\(44\) 0 0
\(45\) 1.76211 + 1.37658i 0.262679 + 0.205209i
\(46\) 0 0
\(47\) 1.96915i 0.287229i 0.989634 + 0.143615i \(0.0458726\pi\)
−0.989634 + 0.143615i \(0.954127\pi\)
\(48\) 0 0
\(49\) −0.358655 −0.0512365
\(50\) 0 0
\(51\) 4.23689 0.593284
\(52\) 0 0
\(53\) 4.29525i 0.589998i −0.955498 0.294999i \(-0.904681\pi\)
0.955498 0.294999i \(-0.0953193\pi\)
\(54\) 0 0
\(55\) 1.76211 + 1.37658i 0.237602 + 0.185619i
\(56\) 0 0
\(57\) 0.771041i 0.102127i
\(58\) 0 0
\(59\) −1.98702 −0.258688 −0.129344 0.991600i \(-0.541287\pi\)
−0.129344 + 0.991600i \(0.541287\pi\)
\(60\) 0 0
\(61\) −3.16025 −0.404628 −0.202314 0.979321i \(-0.564846\pi\)
−0.202314 + 0.979321i \(0.564846\pi\)
\(62\) 0 0
\(63\) 2.71268i 0.341766i
\(64\) 0 0
\(65\) 5.98638 7.66290i 0.742519 0.950466i
\(66\) 0 0
\(67\) 12.7512i 1.55780i 0.627146 + 0.778902i \(0.284223\pi\)
−0.627146 + 0.778902i \(0.715777\pi\)
\(68\) 0 0
\(69\) −7.39451 −0.890195
\(70\) 0 0
\(71\) −6.94958 −0.824763 −0.412382 0.911011i \(-0.635303\pi\)
−0.412382 + 0.911011i \(0.635303\pi\)
\(72\) 0 0
\(73\) 2.46054i 0.287985i −0.989579 0.143992i \(-0.954006\pi\)
0.989579 0.143992i \(-0.0459941\pi\)
\(74\) 0 0
\(75\) −4.85137 + 1.21003i −0.560188 + 0.139722i
\(76\) 0 0
\(77\) 2.71268i 0.309139i
\(78\) 0 0
\(79\) −2.88287 −0.324348 −0.162174 0.986762i \(-0.551851\pi\)
−0.162174 + 0.986762i \(0.551851\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 2.18316i 0.239633i 0.992796 + 0.119817i \(0.0382307\pi\)
−0.992796 + 0.119817i \(0.961769\pi\)
\(84\) 0 0
\(85\) −5.83244 + 7.46585i −0.632617 + 0.809786i
\(86\) 0 0
\(87\) 4.64134i 0.497604i
\(88\) 0 0
\(89\) −2.58761 −0.274287 −0.137143 0.990551i \(-0.543792\pi\)
−0.137143 + 0.990551i \(0.543792\pi\)
\(90\) 0 0
\(91\) 11.7967 1.23663
\(92\) 0 0
\(93\) 3.41239i 0.353848i
\(94\) 0 0
\(95\) 1.35866 + 1.06140i 0.139395 + 0.108898i
\(96\) 0 0
\(97\) 11.2448i 1.14174i −0.821041 0.570870i \(-0.806606\pi\)
0.821041 0.570870i \(-0.193394\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −13.1961 −1.31306 −0.656531 0.754299i \(-0.727977\pi\)
−0.656531 + 0.754299i \(0.727977\pi\)
\(102\) 0 0
\(103\) 2.57463i 0.253686i 0.991923 + 0.126843i \(0.0404844\pi\)
−0.991923 + 0.126843i \(0.959516\pi\)
\(104\) 0 0
\(105\) −4.78003 3.73424i −0.466484 0.364424i
\(106\) 0 0
\(107\) 2.46054i 0.237870i 0.992902 + 0.118935i \(0.0379480\pi\)
−0.992902 + 0.118935i \(0.962052\pi\)
\(108\) 0 0
\(109\) −18.0110 −1.72514 −0.862570 0.505938i \(-0.831146\pi\)
−0.862570 + 0.505938i \(0.831146\pi\)
\(110\) 0 0
\(111\) −4.27738 −0.405991
\(112\) 0 0
\(113\) 13.3388i 1.25481i −0.778694 0.627404i \(-0.784118\pi\)
0.778694 0.627404i \(-0.215882\pi\)
\(114\) 0 0
\(115\) 10.1792 13.0299i 0.949213 1.21505i
\(116\) 0 0
\(117\) 4.34872i 0.402039i
\(118\) 0 0
\(119\) −11.4934 −1.05359
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 5.06140i 0.456371i
\(124\) 0 0
\(125\) 4.54613 10.2143i 0.406618 0.913598i
\(126\) 0 0
\(127\) 6.79365i 0.602839i −0.953492 0.301420i \(-0.902539\pi\)
0.953492 0.301420i \(-0.0974605\pi\)
\(128\) 0 0
\(129\) −11.8729 −1.04535
\(130\) 0 0
\(131\) 1.08628 0.0949088 0.0474544 0.998873i \(-0.484889\pi\)
0.0474544 + 0.998873i \(0.484889\pi\)
\(132\) 0 0
\(133\) 2.09159i 0.181364i
\(134\) 0 0
\(135\) −1.37658 + 1.76211i −0.118478 + 0.151658i
\(136\) 0 0
\(137\) 11.7515i 1.00400i 0.864869 + 0.501998i \(0.167402\pi\)
−0.864869 + 0.501998i \(0.832598\pi\)
\(138\) 0 0
\(139\) 19.4486 1.64961 0.824805 0.565418i \(-0.191285\pi\)
0.824805 + 0.565418i \(0.191285\pi\)
\(140\) 0 0
\(141\) −1.96915 −0.165832
\(142\) 0 0
\(143\) 4.34872i 0.363658i
\(144\) 0 0
\(145\) 8.17854 + 6.38920i 0.679191 + 0.530595i
\(146\) 0 0
\(147\) 0.358655i 0.0295814i
\(148\) 0 0
\(149\) −14.1477 −1.15902 −0.579512 0.814964i \(-0.696757\pi\)
−0.579512 + 0.814964i \(0.696757\pi\)
\(150\) 0 0
\(151\) 13.4482 1.09440 0.547201 0.837001i \(-0.315693\pi\)
0.547201 + 0.837001i \(0.315693\pi\)
\(152\) 0 0
\(153\) 4.23689i 0.342533i
\(154\) 0 0
\(155\) 6.01298 + 4.69744i 0.482974 + 0.377307i
\(156\) 0 0
\(157\) 2.04311i 0.163058i 0.996671 + 0.0815290i \(0.0259803\pi\)
−0.996671 + 0.0815290i \(0.974020\pi\)
\(158\) 0 0
\(159\) 4.29525 0.340636
\(160\) 0 0
\(161\) 20.0590 1.58087
\(162\) 0 0
\(163\) 14.9057i 1.16751i 0.811931 + 0.583754i \(0.198417\pi\)
−0.811931 + 0.583754i \(0.801583\pi\)
\(164\) 0 0
\(165\) −1.37658 + 1.76211i −0.107167 + 0.137180i
\(166\) 0 0
\(167\) 13.7001i 1.06015i 0.847952 + 0.530074i \(0.177836\pi\)
−0.847952 + 0.530074i \(0.822164\pi\)
\(168\) 0 0
\(169\) −5.91136 −0.454720
\(170\) 0 0
\(171\) 0.771041 0.0589630
\(172\) 0 0
\(173\) 6.16329i 0.468586i 0.972166 + 0.234293i \(0.0752776\pi\)
−0.972166 + 0.234293i \(0.924722\pi\)
\(174\) 0 0
\(175\) 13.1602 3.28243i 0.994821 0.248128i
\(176\) 0 0
\(177\) 1.98702i 0.149353i
\(178\) 0 0
\(179\) 19.3438 1.44582 0.722911 0.690941i \(-0.242804\pi\)
0.722911 + 0.690941i \(0.242804\pi\)
\(180\) 0 0
\(181\) 22.1098 1.64341 0.821705 0.569913i \(-0.193023\pi\)
0.821705 + 0.569913i \(0.193023\pi\)
\(182\) 0 0
\(183\) 3.16025i 0.233612i
\(184\) 0 0
\(185\) 5.88818 7.53719i 0.432907 0.554145i
\(186\) 0 0
\(187\) 4.23689i 0.309832i
\(188\) 0 0
\(189\) −2.71268 −0.197319
\(190\) 0 0
\(191\) −22.1835 −1.60514 −0.802572 0.596555i \(-0.796536\pi\)
−0.802572 + 0.596555i \(0.796536\pi\)
\(192\) 0 0
\(193\) 1.39678i 0.100542i −0.998736 0.0502711i \(-0.983991\pi\)
0.998736 0.0502711i \(-0.0160085\pi\)
\(194\) 0 0
\(195\) 7.66290 + 5.98638i 0.548752 + 0.428694i
\(196\) 0 0
\(197\) 20.2601i 1.44347i −0.692167 0.721737i \(-0.743344\pi\)
0.692167 0.721737i \(-0.256656\pi\)
\(198\) 0 0
\(199\) −25.8992 −1.83594 −0.917971 0.396647i \(-0.870174\pi\)
−0.917971 + 0.396647i \(0.870174\pi\)
\(200\) 0 0
\(201\) −12.7512 −0.899398
\(202\) 0 0
\(203\) 12.5905i 0.883680i
\(204\) 0 0
\(205\) 8.91872 + 6.96745i 0.622911 + 0.486628i
\(206\) 0 0
\(207\) 7.39451i 0.513954i
\(208\) 0 0
\(209\) 0.771041 0.0533340
\(210\) 0 0
\(211\) 14.8321 1.02109 0.510543 0.859852i \(-0.329444\pi\)
0.510543 + 0.859852i \(0.329444\pi\)
\(212\) 0 0
\(213\) 6.94958i 0.476177i
\(214\) 0 0
\(215\) 16.3441 20.9213i 1.11466 1.42682i
\(216\) 0 0
\(217\) 9.25672i 0.628387i
\(218\) 0 0
\(219\) 2.46054 0.166268
\(220\) 0 0
\(221\) 18.4251 1.23940
\(222\) 0 0
\(223\) 8.73318i 0.584817i 0.956293 + 0.292409i \(0.0944567\pi\)
−0.956293 + 0.292409i \(0.905543\pi\)
\(224\) 0 0
\(225\) −1.21003 4.85137i −0.0806686 0.323425i
\(226\) 0 0
\(227\) 17.0259i 1.13005i −0.825074 0.565025i \(-0.808866\pi\)
0.825074 0.565025i \(-0.191134\pi\)
\(228\) 0 0
\(229\) −16.3205 −1.07849 −0.539244 0.842149i \(-0.681290\pi\)
−0.539244 + 0.842149i \(0.681290\pi\)
\(230\) 0 0
\(231\) −2.71268 −0.178482
\(232\) 0 0
\(233\) 10.2748i 0.673122i −0.941662 0.336561i \(-0.890736\pi\)
0.941662 0.336561i \(-0.109264\pi\)
\(234\) 0 0
\(235\) 2.71070 3.46984i 0.176826 0.226348i
\(236\) 0 0
\(237\) 2.88287i 0.187262i
\(238\) 0 0
\(239\) −0.223649 −0.0144667 −0.00723333 0.999974i \(-0.502302\pi\)
−0.00723333 + 0.999974i \(0.502302\pi\)
\(240\) 0 0
\(241\) −1.77635 −0.114425 −0.0572124 0.998362i \(-0.518221\pi\)
−0.0572124 + 0.998362i \(0.518221\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0.631988 + 0.493719i 0.0403762 + 0.0315426i
\(246\) 0 0
\(247\) 3.35304i 0.213349i
\(248\) 0 0
\(249\) −2.18316 −0.138352
\(250\) 0 0
\(251\) −2.82713 −0.178447 −0.0892236 0.996012i \(-0.528439\pi\)
−0.0892236 + 0.996012i \(0.528439\pi\)
\(252\) 0 0
\(253\) 7.39451i 0.464889i
\(254\) 0 0
\(255\) −7.46585 5.83244i −0.467530 0.365242i
\(256\) 0 0
\(257\) 25.7316i 1.60509i 0.596589 + 0.802547i \(0.296522\pi\)
−0.596589 + 0.802547i \(0.703478\pi\)
\(258\) 0 0
\(259\) 11.6032 0.720987
\(260\) 0 0
\(261\) 4.64134 0.287292
\(262\) 0 0
\(263\) 13.0889i 0.807097i −0.914958 0.403548i \(-0.867777\pi\)
0.914958 0.403548i \(-0.132223\pi\)
\(264\) 0 0
\(265\) −5.91278 + 7.56868i −0.363219 + 0.464941i
\(266\) 0 0
\(267\) 2.58761i 0.158359i
\(268\) 0 0
\(269\) 23.8484 1.45406 0.727032 0.686603i \(-0.240899\pi\)
0.727032 + 0.686603i \(0.240899\pi\)
\(270\) 0 0
\(271\) −5.69786 −0.346120 −0.173060 0.984911i \(-0.555366\pi\)
−0.173060 + 0.984911i \(0.555366\pi\)
\(272\) 0 0
\(273\) 11.7967i 0.713969i
\(274\) 0 0
\(275\) −1.21003 4.85137i −0.0729675 0.292549i
\(276\) 0 0
\(277\) 19.8969i 1.19549i 0.801687 + 0.597744i \(0.203936\pi\)
−0.801687 + 0.597744i \(0.796064\pi\)
\(278\) 0 0
\(279\) 3.41239 0.204294
\(280\) 0 0
\(281\) 1.79061 0.106819 0.0534094 0.998573i \(-0.482991\pi\)
0.0534094 + 0.998573i \(0.482991\pi\)
\(282\) 0 0
\(283\) 23.5378i 1.39918i 0.714545 + 0.699589i \(0.246634\pi\)
−0.714545 + 0.699589i \(0.753366\pi\)
\(284\) 0 0
\(285\) −1.06140 + 1.35866i −0.0628721 + 0.0804798i
\(286\) 0 0
\(287\) 13.7300i 0.810456i
\(288\) 0 0
\(289\) −0.951274 −0.0559573
\(290\) 0 0
\(291\) 11.2448 0.659184
\(292\) 0 0
\(293\) 27.4102i 1.60132i −0.599117 0.800662i \(-0.704482\pi\)
0.599117 0.800662i \(-0.295518\pi\)
\(294\) 0 0
\(295\) 3.50133 + 2.73530i 0.203856 + 0.159255i
\(296\) 0 0
\(297\) 1.00000i 0.0580259i
\(298\) 0 0
\(299\) −32.1567 −1.85967
\(300\) 0 0
\(301\) 32.2075 1.85641
\(302\) 0 0
\(303\) 13.1961i 0.758096i
\(304\) 0 0
\(305\) 5.56868 + 4.35035i 0.318862 + 0.249100i
\(306\) 0 0
\(307\) 1.74035i 0.0993267i −0.998766 0.0496634i \(-0.984185\pi\)
0.998766 0.0496634i \(-0.0158148\pi\)
\(308\) 0 0
\(309\) −2.57463 −0.146466
\(310\) 0 0
\(311\) 17.9623 1.01855 0.509273 0.860605i \(-0.329914\pi\)
0.509273 + 0.860605i \(0.329914\pi\)
\(312\) 0 0
\(313\) 4.83487i 0.273283i −0.990621 0.136641i \(-0.956369\pi\)
0.990621 0.136641i \(-0.0436308\pi\)
\(314\) 0 0
\(315\) 3.73424 4.78003i 0.210401 0.269324i
\(316\) 0 0
\(317\) 14.6365i 0.822065i 0.911621 + 0.411033i \(0.134832\pi\)
−0.911621 + 0.411033i \(0.865168\pi\)
\(318\) 0 0
\(319\) 4.64134 0.259865
\(320\) 0 0
\(321\) −2.46054 −0.137334
\(322\) 0 0
\(323\) 3.26682i 0.181771i
\(324\) 0 0
\(325\) −21.0973 + 5.26208i −1.17027 + 0.291887i
\(326\) 0 0
\(327\) 18.0110i 0.996010i
\(328\) 0 0
\(329\) 5.34167 0.294496
\(330\) 0 0
\(331\) −15.4356 −0.848419 −0.424209 0.905564i \(-0.639448\pi\)
−0.424209 + 0.905564i \(0.639448\pi\)
\(332\) 0 0
\(333\) 4.27738i 0.234399i
\(334\) 0 0
\(335\) 17.5531 22.4689i 0.959026 1.22761i
\(336\) 0 0
\(337\) 31.9576i 1.74084i −0.492307 0.870422i \(-0.663846\pi\)
0.492307 0.870422i \(-0.336154\pi\)
\(338\) 0 0
\(339\) 13.3388 0.724463
\(340\) 0 0
\(341\) 3.41239 0.184791
\(342\) 0 0
\(343\) 18.0159i 0.972766i
\(344\) 0 0
\(345\) 13.0299 + 10.1792i 0.701507 + 0.548028i
\(346\) 0 0
\(347\) 3.49182i 0.187451i −0.995598 0.0937253i \(-0.970122\pi\)
0.995598 0.0937253i \(-0.0298775\pi\)
\(348\) 0 0
\(349\) 29.8378 1.59718 0.798591 0.601874i \(-0.205579\pi\)
0.798591 + 0.601874i \(0.205579\pi\)
\(350\) 0 0
\(351\) 4.34872 0.232117
\(352\) 0 0
\(353\) 29.4198i 1.56586i −0.622113 0.782928i \(-0.713725\pi\)
0.622113 0.782928i \(-0.286275\pi\)
\(354\) 0 0
\(355\) 12.2459 + 9.56668i 0.649944 + 0.507747i
\(356\) 0 0
\(357\) 11.4934i 0.608293i
\(358\) 0 0
\(359\) −34.6418 −1.82833 −0.914163 0.405347i \(-0.867151\pi\)
−0.914163 + 0.405347i \(0.867151\pi\)
\(360\) 0 0
\(361\) −18.4055 −0.968710
\(362\) 0 0
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) −3.38715 + 4.33574i −0.177291 + 0.226943i
\(366\) 0 0
\(367\) 8.49975i 0.443684i 0.975083 + 0.221842i \(0.0712068\pi\)
−0.975083 + 0.221842i \(0.928793\pi\)
\(368\) 0 0
\(369\) 5.06140 0.263486
\(370\) 0 0
\(371\) −11.6517 −0.604924
\(372\) 0 0
\(373\) 13.8908i 0.719238i −0.933099 0.359619i \(-0.882907\pi\)
0.933099 0.359619i \(-0.117093\pi\)
\(374\) 0 0
\(375\) 10.2143 + 4.54613i 0.527466 + 0.234761i
\(376\) 0 0
\(377\) 20.1839i 1.03952i
\(378\) 0 0
\(379\) −38.7878 −1.99239 −0.996197 0.0871348i \(-0.972229\pi\)
−0.996197 + 0.0871348i \(0.972229\pi\)
\(380\) 0 0
\(381\) 6.79365 0.348049
\(382\) 0 0
\(383\) 14.7735i 0.754892i 0.926032 + 0.377446i \(0.123198\pi\)
−0.926032 + 0.377446i \(0.876802\pi\)
\(384\) 0 0
\(385\) 3.73424 4.78003i 0.190314 0.243613i
\(386\) 0 0
\(387\) 11.8729i 0.603535i
\(388\) 0 0
\(389\) −31.4059 −1.59234 −0.796170 0.605073i \(-0.793144\pi\)
−0.796170 + 0.605073i \(0.793144\pi\)
\(390\) 0 0
\(391\) 31.3298 1.58441
\(392\) 0 0
\(393\) 1.08628i 0.0547956i
\(394\) 0 0
\(395\) 5.07991 + 3.96851i 0.255598 + 0.199677i
\(396\) 0 0
\(397\) 7.27079i 0.364911i −0.983214 0.182455i \(-0.941595\pi\)
0.983214 0.182455i \(-0.0584045\pi\)
\(398\) 0 0
\(399\) −2.09159 −0.104710
\(400\) 0 0
\(401\) 38.7456 1.93486 0.967430 0.253138i \(-0.0814625\pi\)
0.967430 + 0.253138i \(0.0814625\pi\)
\(402\) 0 0
\(403\) 14.8395i 0.739208i
\(404\) 0 0
\(405\) −1.76211 1.37658i −0.0875597 0.0684030i
\(406\) 0 0
\(407\) 4.27738i 0.212022i
\(408\) 0 0
\(409\) 30.9378 1.52978 0.764888 0.644163i \(-0.222794\pi\)
0.764888 + 0.644163i \(0.222794\pi\)
\(410\) 0 0
\(411\) −11.7515 −0.579657
\(412\) 0 0
\(413\) 5.39015i 0.265232i
\(414\) 0 0
\(415\) 3.00531 3.84696i 0.147525 0.188840i
\(416\) 0 0
\(417\) 19.4486i 0.952402i
\(418\) 0 0
\(419\) −27.4153 −1.33932 −0.669662 0.742666i \(-0.733561\pi\)
−0.669662 + 0.742666i \(0.733561\pi\)
\(420\) 0 0
\(421\) −5.51932 −0.268995 −0.134498 0.990914i \(-0.542942\pi\)
−0.134498 + 0.990914i \(0.542942\pi\)
\(422\) 0 0
\(423\) 1.96915i 0.0957432i
\(424\) 0 0
\(425\) 20.5548 5.12677i 0.997052 0.248685i
\(426\) 0 0
\(427\) 8.57275i 0.414864i
\(428\) 0 0
\(429\) 4.34872 0.209958
\(430\) 0 0
\(431\) −9.70402 −0.467426 −0.233713 0.972306i \(-0.575088\pi\)
−0.233713 + 0.972306i \(0.575088\pi\)
\(432\) 0 0
\(433\) 4.55476i 0.218888i 0.993993 + 0.109444i \(0.0349070\pi\)
−0.993993 + 0.109444i \(0.965093\pi\)
\(434\) 0 0
\(435\) −6.38920 + 8.17854i −0.306339 + 0.392131i
\(436\) 0 0
\(437\) 5.70147i 0.272738i
\(438\) 0 0
\(439\) 14.0647 0.671272 0.335636 0.941992i \(-0.391049\pi\)
0.335636 + 0.941992i \(0.391049\pi\)
\(440\) 0 0
\(441\) 0.358655 0.0170788
\(442\) 0 0
\(443\) 25.1400i 1.19444i 0.802078 + 0.597219i \(0.203728\pi\)
−0.802078 + 0.597219i \(0.796272\pi\)
\(444\) 0 0
\(445\) 4.55965 + 3.56207i 0.216148 + 0.168858i
\(446\) 0 0
\(447\) 14.1477i 0.669162i
\(448\) 0 0
\(449\) −36.2014 −1.70845 −0.854225 0.519903i \(-0.825968\pi\)
−0.854225 + 0.519903i \(0.825968\pi\)
\(450\) 0 0
\(451\) 5.06140 0.238332
\(452\) 0 0
\(453\) 13.4482i 0.631854i
\(454\) 0 0
\(455\) −20.7870 16.2392i −0.974511 0.761303i
\(456\) 0 0
\(457\) 14.0750i 0.658399i −0.944260 0.329199i \(-0.893221\pi\)
0.944260 0.329199i \(-0.106779\pi\)
\(458\) 0 0
\(459\) −4.23689 −0.197761
\(460\) 0 0
\(461\) 7.78722 0.362687 0.181343 0.983420i \(-0.441955\pi\)
0.181343 + 0.983420i \(0.441955\pi\)
\(462\) 0 0
\(463\) 40.4698i 1.88079i −0.340083 0.940395i \(-0.610455\pi\)
0.340083 0.940395i \(-0.389545\pi\)
\(464\) 0 0
\(465\) −4.69744 + 6.01298i −0.217838 + 0.278845i
\(466\) 0 0
\(467\) 17.6755i 0.817925i 0.912551 + 0.408962i \(0.134109\pi\)
−0.912551 + 0.408962i \(0.865891\pi\)
\(468\) 0 0
\(469\) 34.5899 1.59721
\(470\) 0 0
\(471\) −2.04311 −0.0941416
\(472\) 0 0
\(473\) 11.8729i 0.545918i
\(474\) 0 0
\(475\) −0.932982 3.74061i −0.0428081 0.171631i
\(476\) 0 0
\(477\) 4.29525i 0.196666i
\(478\) 0 0
\(479\) −7.74061 −0.353677 −0.176839 0.984240i \(-0.556587\pi\)
−0.176839 + 0.984240i \(0.556587\pi\)
\(480\) 0 0
\(481\) −18.6011 −0.848138
\(482\) 0 0
\(483\) 20.0590i 0.912715i
\(484\) 0 0
\(485\) −15.4795 + 19.8146i −0.702886 + 0.899733i
\(486\) 0 0
\(487\) 11.8838i 0.538507i −0.963069 0.269253i \(-0.913223\pi\)
0.963069 0.269253i \(-0.0867769\pi\)
\(488\) 0 0
\(489\) −14.9057 −0.674061
\(490\) 0 0
\(491\) 20.1334 0.908609 0.454304 0.890847i \(-0.349888\pi\)
0.454304 + 0.890847i \(0.349888\pi\)
\(492\) 0 0
\(493\) 19.6649i 0.885662i
\(494\) 0 0
\(495\) −1.76211 1.37658i −0.0792007 0.0618729i
\(496\) 0 0
\(497\) 18.8520i 0.845628i
\(498\) 0 0
\(499\) −1.79297 −0.0802644 −0.0401322 0.999194i \(-0.512778\pi\)
−0.0401322 + 0.999194i \(0.512778\pi\)
\(500\) 0 0
\(501\) −13.7001 −0.612076
\(502\) 0 0
\(503\) 27.3284i 1.21851i −0.792973 0.609257i \(-0.791468\pi\)
0.792973 0.609257i \(-0.208532\pi\)
\(504\) 0 0
\(505\) 23.2529 + 18.1656i 1.03474 + 0.808357i
\(506\) 0 0
\(507\) 5.91136i 0.262533i
\(508\) 0 0
\(509\) 21.3588 0.946711 0.473355 0.880872i \(-0.343043\pi\)
0.473355 + 0.880872i \(0.343043\pi\)
\(510\) 0 0
\(511\) −6.67468 −0.295270
\(512\) 0 0
\(513\) 0.771041i 0.0340423i
\(514\) 0 0
\(515\) 3.54420 4.53677i 0.156176 0.199914i
\(516\) 0 0
\(517\) 1.96915i 0.0866029i
\(518\) 0 0
\(519\) −6.16329 −0.270538
\(520\) 0 0
\(521\) −9.30092 −0.407481 −0.203740 0.979025i \(-0.565310\pi\)
−0.203740 + 0.979025i \(0.565310\pi\)
\(522\) 0 0
\(523\) 31.2732i 1.36748i 0.729726 + 0.683740i \(0.239648\pi\)
−0.729726 + 0.683740i \(0.760352\pi\)
\(524\) 0 0
\(525\) 3.28243 + 13.1602i 0.143257 + 0.574360i
\(526\) 0 0
\(527\) 14.4579i 0.629797i
\(528\) 0 0
\(529\) −31.6788 −1.37734
\(530\) 0 0
\(531\) 1.98702 0.0862292
\(532\) 0 0
\(533\) 22.0106i 0.953386i
\(534\) 0 0
\(535\) 3.38715 4.33574i 0.146439 0.187450i
\(536\) 0 0
\(537\) 19.3438i 0.834746i
\(538\) 0 0
\(539\) 0.358655 0.0154484
\(540\) 0 0
\(541\) −36.9479 −1.58852 −0.794258 0.607581i \(-0.792140\pi\)
−0.794258 + 0.607581i \(0.792140\pi\)
\(542\) 0 0
\(543\) 22.1098i 0.948823i
\(544\) 0 0
\(545\) 31.7372 + 24.7936i 1.35947 + 1.06204i
\(546\) 0 0
\(547\) 38.9738i 1.66640i −0.552972 0.833200i \(-0.686506\pi\)
0.552972 0.833200i \(-0.313494\pi\)
\(548\) 0 0
\(549\) 3.16025 0.134876
\(550\) 0 0
\(551\) 3.57867 0.152456
\(552\) 0 0
\(553\) 7.82030i 0.332553i
\(554\) 0 0
\(555\) 7.53719 + 5.88818i 0.319936 + 0.249939i
\(556\) 0 0
\(557\) 30.6469i 1.29855i 0.760554 + 0.649275i \(0.224927\pi\)
−0.760554 + 0.649275i \(0.775073\pi\)
\(558\) 0 0
\(559\) −51.6320 −2.18380
\(560\) 0 0
\(561\) −4.23689 −0.178882
\(562\) 0 0
\(563\) 3.90517i 0.164583i 0.996608 + 0.0822917i \(0.0262239\pi\)
−0.996608 + 0.0822917i \(0.973776\pi\)
\(564\) 0 0
\(565\) −18.3620 + 23.5043i −0.772494 + 0.988835i
\(566\) 0 0
\(567\) 2.71268i 0.113922i
\(568\) 0 0
\(569\) −24.3062 −1.01897 −0.509485 0.860479i \(-0.670164\pi\)
−0.509485 + 0.860479i \(0.670164\pi\)
\(570\) 0 0
\(571\) 23.0298 0.963768 0.481884 0.876235i \(-0.339953\pi\)
0.481884 + 0.876235i \(0.339953\pi\)
\(572\) 0 0
\(573\) 22.1835i 0.926731i
\(574\) 0 0
\(575\) −35.8736 + 8.94758i −1.49603 + 0.373140i
\(576\) 0 0
\(577\) 14.3497i 0.597386i 0.954349 + 0.298693i \(0.0965507\pi\)
−0.954349 + 0.298693i \(0.903449\pi\)
\(578\) 0 0
\(579\) 1.39678 0.0580481
\(580\) 0 0
\(581\) 5.92223 0.245696
\(582\) 0 0
\(583\) 4.29525i 0.177891i
\(584\) 0 0
\(585\) −5.98638 + 7.66290i −0.247506 + 0.316822i
\(586\) 0 0
\(587\) 22.5254i 0.929723i −0.885383 0.464861i \(-0.846104\pi\)
0.885383 0.464861i \(-0.153896\pi\)
\(588\) 0 0
\(589\) 2.63109 0.108412
\(590\) 0 0
\(591\) 20.2601 0.833391
\(592\) 0 0
\(593\) 26.8832i 1.10396i −0.833857 0.551981i \(-0.813872\pi\)
0.833857 0.551981i \(-0.186128\pi\)
\(594\) 0 0
\(595\) 20.2525 + 15.8216i 0.830272 + 0.648621i
\(596\) 0 0
\(597\) 25.8992i 1.05998i
\(598\) 0 0
\(599\) 17.8769 0.730432 0.365216 0.930923i \(-0.380995\pi\)
0.365216 + 0.930923i \(0.380995\pi\)
\(600\) 0 0
\(601\) −10.6782 −0.435572 −0.217786 0.975997i \(-0.569883\pi\)
−0.217786 + 0.975997i \(0.569883\pi\)
\(602\) 0 0
\(603\) 12.7512i 0.519268i
\(604\) 0 0
\(605\) −1.76211 1.37658i −0.0716398 0.0559661i
\(606\) 0 0
\(607\) 1.87782i 0.0762183i −0.999274 0.0381091i \(-0.987867\pi\)
0.999274 0.0381091i \(-0.0121335\pi\)
\(608\) 0 0
\(609\) −12.5905 −0.510193
\(610\) 0 0
\(611\) −8.56326 −0.346433
\(612\) 0 0
\(613\) 30.8066i 1.24427i −0.782911 0.622134i \(-0.786266\pi\)
0.782911 0.622134i \(-0.213734\pi\)
\(614\) 0 0
\(615\) −6.96745 + 8.91872i −0.280955 + 0.359638i
\(616\) 0 0
\(617\) 34.1529i 1.37495i 0.726210 + 0.687473i \(0.241280\pi\)
−0.726210 + 0.687473i \(0.758720\pi\)
\(618\) 0 0
\(619\) −27.1895 −1.09284 −0.546418 0.837512i \(-0.684009\pi\)
−0.546418 + 0.837512i \(0.684009\pi\)
\(620\) 0 0
\(621\) 7.39451 0.296732
\(622\) 0 0
\(623\) 7.01938i 0.281226i
\(624\) 0 0
\(625\) −22.0717 + 11.7406i −0.882866 + 0.469624i
\(626\) 0 0
\(627\) 0.771041i 0.0307924i
\(628\) 0 0
\(629\) 18.1228 0.722604
\(630\) 0 0
\(631\) −25.9237 −1.03201 −0.516003 0.856587i \(-0.672580\pi\)
−0.516003 + 0.856587i \(0.672580\pi\)
\(632\) 0 0
\(633\) 14.8321i 0.589525i
\(634\) 0 0
\(635\) −9.35204 + 11.9711i −0.371124 + 0.475060i
\(636\) 0 0
\(637\) 1.55969i 0.0617972i
\(638\) 0 0
\(639\) 6.94958 0.274921
\(640\) 0 0
\(641\) −31.9467 −1.26182 −0.630910 0.775856i \(-0.717318\pi\)
−0.630910 + 0.775856i \(0.717318\pi\)
\(642\) 0 0
\(643\) 31.5097i 1.24262i −0.783564 0.621311i \(-0.786600\pi\)
0.783564 0.621311i \(-0.213400\pi\)
\(644\) 0 0
\(645\) 20.9213 + 16.3441i 0.823777 + 0.643548i
\(646\) 0 0
\(647\) 40.6467i 1.59799i 0.601340 + 0.798994i \(0.294634\pi\)
−0.601340 + 0.798994i \(0.705366\pi\)
\(648\) 0 0
\(649\) 1.98702 0.0779973
\(650\) 0 0
\(651\) −9.25672 −0.362800
\(652\) 0 0
\(653\) 35.4109i 1.38573i 0.721065 + 0.692867i \(0.243653\pi\)
−0.721065 + 0.692867i \(0.756347\pi\)
\(654\) 0 0
\(655\) −1.91414 1.49536i −0.0747917 0.0584284i
\(656\) 0 0
\(657\) 2.46054i 0.0959949i
\(658\) 0 0
\(659\) 23.7983 0.927051 0.463525 0.886084i \(-0.346584\pi\)
0.463525 + 0.886084i \(0.346584\pi\)
\(660\) 0 0
\(661\) −20.8965 −0.812779 −0.406390 0.913700i \(-0.633212\pi\)
−0.406390 + 0.913700i \(0.633212\pi\)
\(662\) 0 0
\(663\) 18.4251i 0.715570i
\(664\) 0 0
\(665\) 2.87925 3.68560i 0.111653 0.142922i
\(666\) 0 0
\(667\) 34.3205i 1.32889i
\(668\) 0 0
\(669\) −8.73318 −0.337644
\(670\) 0 0
\(671\) 3.16025 0.122000
\(672\) 0 0
\(673\) 32.3432i 1.24674i 0.781927 + 0.623370i \(0.214237\pi\)
−0.781927 + 0.623370i \(0.785763\pi\)
\(674\) 0 0
\(675\) 4.85137 1.21003i 0.186729 0.0465740i
\(676\) 0 0
\(677\) 43.4460i 1.66976i 0.550428 + 0.834882i \(0.314464\pi\)
−0.550428 + 0.834882i \(0.685536\pi\)
\(678\) 0 0
\(679\) −30.5037 −1.17062
\(680\) 0 0
\(681\) 17.0259 0.652435
\(682\) 0 0
\(683\) 24.4983i 0.937401i 0.883357 + 0.468701i \(0.155278\pi\)
−0.883357 + 0.468701i \(0.844722\pi\)
\(684\) 0 0
\(685\) 16.1769 20.7073i 0.618088 0.791186i
\(686\) 0 0
\(687\) 16.3205i 0.622666i
\(688\) 0 0
\(689\) 18.6788 0.711607
\(690\) 0 0
\(691\) −28.9476 −1.10122 −0.550609 0.834763i \(-0.685604\pi\)
−0.550609 + 0.834763i \(0.685604\pi\)
\(692\) 0 0
\(693\) 2.71268i 0.103046i
\(694\) 0 0
\(695\) −34.2705 26.7727i −1.29995 1.01554i
\(696\) 0 0
\(697\) 21.4446i 0.812273i
\(698\) 0 0
\(699\) 10.2748 0.388627
\(700\) 0 0
\(701\) −14.3811 −0.543167 −0.271584 0.962415i \(-0.587547\pi\)
−0.271584 + 0.962415i \(0.587547\pi\)
\(702\) 0 0
\(703\) 3.29803i 0.124388i
\(704\) 0 0
\(705\) 3.46984 + 2.71070i 0.130682 + 0.102091i
\(706\) 0 0
\(707\) 35.7969i 1.34628i
\(708\) 0 0
\(709\) 4.92459 0.184947 0.0924733 0.995715i \(-0.470523\pi\)
0.0924733 + 0.995715i \(0.470523\pi\)
\(710\) 0 0
\(711\) 2.88287 0.108116
\(712\) 0 0
\(713\) 25.2329i 0.944981i
\(714\) 0 0
\(715\) −5.98638 + 7.66290i −0.223878 + 0.286576i
\(716\) 0 0
\(717\) 0.223649i 0.00835233i
\(718\) 0 0
\(719\) 11.2943 0.421206 0.210603 0.977572i \(-0.432457\pi\)
0.210603 + 0.977572i \(0.432457\pi\)
\(720\) 0 0
\(721\) 6.98416 0.260104
\(722\) 0 0
\(723\) 1.77635i 0.0660632i
\(724\) 0 0
\(725\) −5.61616 22.5169i −0.208579 0.836257i
\(726\) 0 0
\(727\) 15.1606i 0.562276i −0.959667 0.281138i \(-0.909288\pi\)
0.959667 0.281138i \(-0.0907118\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 50.3043 1.86057
\(732\) 0 0
\(733\) 36.6851i 1.35499i 0.735525 + 0.677497i \(0.236935\pi\)
−0.735525 + 0.677497i \(0.763065\pi\)
\(734\) 0 0
\(735\) −0.493719 + 0.631988i −0.0182111 + 0.0233112i
\(736\) 0 0
\(737\) 12.7512i 0.469695i
\(738\) 0 0
\(739\) 23.2149 0.853976 0.426988 0.904257i \(-0.359575\pi\)
0.426988 + 0.904257i \(0.359575\pi\)
\(740\) 0 0
\(741\) 3.35304 0.123177
\(742\) 0 0
\(743\) 42.9933i 1.57727i 0.614861 + 0.788636i \(0.289212\pi\)
−0.614861 + 0.788636i \(0.710788\pi\)
\(744\) 0 0
\(745\) 24.9297 + 19.4755i 0.913354 + 0.713527i
\(746\) 0 0
\(747\) 2.18316i 0.0798778i
\(748\) 0 0
\(749\) 6.67468 0.243887
\(750\) 0 0
\(751\) −6.56538 −0.239574 −0.119787 0.992800i \(-0.538221\pi\)
−0.119787 + 0.992800i \(0.538221\pi\)
\(752\) 0 0
\(753\) 2.82713i 0.103026i
\(754\) 0 0
\(755\) −23.6972 18.5126i −0.862430 0.673744i
\(756\) 0 0
\(757\) 3.69666i 0.134357i −0.997741 0.0671786i \(-0.978600\pi\)
0.997741 0.0671786i \(-0.0213997\pi\)
\(758\) 0 0
\(759\) 7.39451 0.268404
\(760\) 0 0
\(761\) 43.2474 1.56772 0.783859 0.620939i \(-0.213249\pi\)
0.783859 + 0.620939i \(0.213249\pi\)
\(762\) 0 0
\(763\) 48.8581i 1.76878i
\(764\) 0 0
\(765\) 5.83244 7.46585i 0.210872 0.269929i
\(766\) 0 0
\(767\) 8.64098i 0.312008i
\(768\) 0 0
\(769\) −37.8488 −1.36486 −0.682431 0.730950i \(-0.739077\pi\)
−0.682431 + 0.730950i \(0.739077\pi\)
\(770\) 0 0
\(771\) −25.7316 −0.926701
\(772\) 0 0
\(773\) 14.5250i 0.522428i 0.965281 + 0.261214i \(0.0841228\pi\)
−0.965281 + 0.261214i \(0.915877\pi\)
\(774\) 0 0
\(775\) −4.12909 16.5548i −0.148321 0.594665i
\(776\) 0 0
\(777\) 11.6032i 0.416262i
\(778\) 0 0
\(779\) 3.90255 0.139823
\(780\) 0 0
\(781\) 6.94958 0.248675
\(782\) 0 0
\(783\) 4.64134i 0.165868i
\(784\) 0 0
\(785\) 2.81251 3.60018i 0.100383 0.128496i
\(786\) 0 0
\(787\) 40.3415i 1.43802i −0.695001 0.719009i \(-0.744596\pi\)
0.695001 0.719009i \(-0.255404\pi\)
\(788\) 0 0
\(789\) 13.0889 0.465977
\(790\) 0 0
\(791\) −36.1839 −1.28655
\(792\) 0 0
\(793\) 13.7430i 0.488029i
\(794\) 0 0
\(795\) −7.56868 5.91278i −0.268434 0.209705i
\(796\) 0 0
\(797\) 30.5348i 1.08160i 0.841152 + 0.540799i \(0.181878\pi\)
−0.841152 + 0.540799i \(0.818122\pi\)
\(798\) 0 0
\(799\) 8.34306 0.295156
\(800\) 0 0
\(801\) 2.58761 0.0914289
\(802\) 0 0
\(803\) 2.46054i 0.0868307i
\(804\) 0 0
\(805\) −35.3460 27.6129i −1.24578 0.973226i
\(806\) 0 0
\(807\) 23.8484i 0.839505i
\(808\) 0 0
\(809\) 41.9375 1.47444 0.737222 0.675651i \(-0.236137\pi\)
0.737222 + 0.675651i \(0.236137\pi\)
\(810\) 0 0
\(811\) −15.3869 −0.540307 −0.270154 0.962817i \(-0.587074\pi\)
−0.270154 + 0.962817i \(0.587074\pi\)
\(812\) 0 0
\(813\) 5.69786i 0.199833i
\(814\) 0 0
\(815\) 20.5190 26.2655i 0.718750 0.920040i
\(816\) 0 0
\(817\) 9.15451i 0.320276i
\(818\) 0 0
\(819\) −11.7967 −0.412210
\(820\) 0 0
\(821\) 34.7244 1.21189 0.605945 0.795506i \(-0.292795\pi\)
0.605945 + 0.795506i \(0.292795\pi\)
\(822\) 0 0
\(823\) 11.8216i 0.412074i 0.978544 + 0.206037i \(0.0660568\pi\)
−0.978544 + 0.206037i \(0.933943\pi\)
\(824\) 0 0
\(825\) 4.85137 1.21003i 0.168903 0.0421278i
\(826\) 0 0
\(827\) 49.7533i 1.73009i 0.501693 + 0.865046i \(0.332711\pi\)
−0.501693 + 0.865046i \(0.667289\pi\)
\(828\) 0 0
\(829\) −9.46484 −0.328728 −0.164364 0.986400i \(-0.552557\pi\)
−0.164364 + 0.986400i \(0.552557\pi\)
\(830\) 0 0
\(831\) −19.8969 −0.690216
\(832\) 0 0
\(833\) 1.51958i 0.0526505i
\(834\) 0 0
\(835\) 18.8594 24.1411i 0.652656 0.835436i
\(836\) 0 0
\(837\) 3.41239i 0.117949i
\(838\) 0 0
\(839\) 17.4977 0.604088 0.302044 0.953294i \(-0.402331\pi\)
0.302044 + 0.953294i \(0.402331\pi\)
\(840\) 0 0
\(841\) −7.45792 −0.257170
\(842\) 0 0
\(843\) 1.79061i 0.0616718i
\(844\) 0 0
\(845\) 10.4164 + 8.13748i 0.358336 + 0.279938i
\(846\) 0 0
\(847\) 2.71268i 0.0932089i
\(848\) 0 0
\(849\) −23.5378 −0.807816
\(850\) 0 0
\(851\) −31.6291 −1.08423
\(852\) 0 0
\(853\) 49.9585i 1.71055i −0.518177 0.855274i \(-0.673389\pi\)
0.518177 0.855274i \(-0.326611\pi\)
\(854\) 0 0
\(855\) −1.35866 1.06140i −0.0464650 0.0362992i
\(856\) 0 0
\(857\) 31.3583i 1.07118i −0.844478 0.535590i \(-0.820089\pi\)
0.844478 0.535590i \(-0.179911\pi\)
\(858\) 0 0
\(859\) −37.0794 −1.26513 −0.632566 0.774506i \(-0.717998\pi\)
−0.632566 + 0.774506i \(0.717998\pi\)
\(860\) 0 0
\(861\) −13.7300 −0.467917
\(862\) 0 0
\(863\) 35.4974i 1.20835i −0.796853 0.604174i \(-0.793503\pi\)
0.796853 0.604174i \(-0.206497\pi\)
\(864\) 0 0
\(865\) 8.48429 10.8604i 0.288475 0.369264i
\(866\) 0 0
\(867\) 0.951274i 0.0323070i
\(868\) 0 0
\(869\) 2.88287 0.0977945
\(870\) 0 0
\(871\) −55.4512 −1.87889
\(872\) 0 0
\(873\) 11.2448i 0.380580i
\(874\) 0 0
\(875\) −27.7083 12.3322i −0.936711 0.416905i
\(876\) 0 0
\(877\) 30.0290i 1.01401i 0.861944 + 0.507003i \(0.169247\pi\)
−0.861944 + 0.507003i \(0.830753\pi\)
\(878\) 0 0
\(879\) 27.4102 0.924524
\(880\) 0 0
\(881\) 35.0598 1.18119 0.590597 0.806967i \(-0.298892\pi\)
0.590597 + 0.806967i \(0.298892\pi\)
\(882\) 0 0
\(883\) 11.1016i 0.373599i 0.982398 + 0.186800i \(0.0598115\pi\)
−0.982398 + 0.186800i \(0.940188\pi\)
\(884\) 0 0
\(885\) −2.73530 + 3.50133i −0.0919460 + 0.117696i
\(886\) 0 0
\(887\) 3.43536i 0.115348i −0.998335 0.0576741i \(-0.981632\pi\)
0.998335 0.0576741i \(-0.0183684\pi\)
\(888\) 0 0
\(889\) −18.4290 −0.618090
\(890\) 0 0
\(891\) −1.00000 −0.0335013
\(892\) 0 0
\(893\) 1.51829i 0.0508077i
\(894\) 0 0
\(895\) −34.0858 26.6284i −1.13936 0.890088i
\(896\) 0 0
\(897\) 32.1567i 1.07368i
\(898\) 0 0
\(899\) 15.8381 0.528229
\(900\) 0 0
\(901\) −18.1985 −0.606281
\(902\) 0 0
\(903\) 32.2075i 1.07180i
\(904\) 0 0
\(905\) −38.9598 30.4360i −1.29507 1.01173i
\(906\) 0 0
\(907\) 38.8168i 1.28889i −0.764650 0.644445i \(-0.777088\pi\)
0.764650 0.644445i \(-0.222912\pi\)
\(908\) 0 0
\(909\) 13.1961 0.437687
\(910\) 0 0
\(911\) 5.10977 0.169294 0.0846471 0.996411i \(-0.473024\pi\)
0.0846471 + 0.996411i \(0.473024\pi\)
\(912\) 0 0
\(913\) 2.18316i 0.0722522i
\(914\) 0 0
\(915\) −4.35035 + 5.56868i −0.143818 + 0.184095i
\(916\) 0 0
\(917\) 2.94674i 0.0973098i
\(918\) 0 0
\(919\) −27.5970 −0.910342 −0.455171 0.890404i \(-0.650422\pi\)
−0.455171 + 0.890404i \(0.650422\pi\)
\(920\) 0 0
\(921\) 1.74035 0.0573463
\(922\) 0 0
\(923\) 30.2218i 0.994761i
\(924\) 0 0
\(925\) −20.7512 + 5.17575i −0.682294 + 0.170178i
\(926\) 0 0
\(927\) 2.57463i 0.0845620i
\(928\) 0 0
\(929\) 2.07172 0.0679709 0.0339854 0.999422i \(-0.489180\pi\)
0.0339854 + 0.999422i \(0.489180\pi\)
\(930\) 0 0
\(931\) 0.276538 0.00906316
\(932\) 0 0
\(933\) 17.9623i 0.588058i
\(934\) 0 0
\(935\) 5.83244 7.46585i 0.190741 0.244160i
\(936\) 0 0
\(937\) 21.8925i 0.715198i 0.933875 + 0.357599i \(0.116404\pi\)
−0.933875 + 0.357599i \(0.883596\pi\)
\(938\) 0 0
\(939\) 4.83487 0.157780
\(940\) 0 0
\(941\) −36.9844 −1.20566 −0.602829 0.797871i \(-0.705960\pi\)
−0.602829 + 0.797871i \(0.705960\pi\)
\(942\) 0 0
\(943\) 37.4266i 1.21878i
\(944\) 0 0
\(945\) 4.78003 + 3.73424i 0.155495 + 0.121475i
\(946\) 0 0
\(947\) 10.0916i 0.327933i 0.986466 + 0.163966i \(0.0524288\pi\)
−0.986466 + 0.163966i \(0.947571\pi\)
\(948\) 0 0
\(949\) 10.7002 0.347344
\(950\) 0 0
\(951\) −14.6365 −0.474620
\(952\) 0 0
\(953\) 9.27795i 0.300542i 0.988645 + 0.150271i \(0.0480147\pi\)
−0.988645 + 0.150271i \(0.951985\pi\)
\(954\) 0 0
\(955\) 39.0897 + 30.5375i 1.26491 + 0.988171i
\(956\) 0 0
\(957\) 4.64134i 0.150033i
\(958\) 0 0
\(959\) 31.8780 1.02940
\(960\) 0 0
\(961\) −19.3556 −0.624375
\(962\) 0 0
\(963\) 2.46054i 0.0792899i
\(964\) 0 0
\(965\) −1.92278 + 2.46127i −0.0618966 + 0.0792311i
\(966\) 0 0
\(967\) 8.51416i 0.273797i 0.990585 + 0.136898i \(0.0437134\pi\)
−0.990585 + 0.136898i \(0.956287\pi\)
\(968\) 0 0
\(969\) −3.26682 −0.104945
\(970\) 0 0
\(971\) 26.9012 0.863301 0.431651 0.902041i \(-0.357931\pi\)
0.431651 + 0.902041i \(0.357931\pi\)
\(972\) 0 0
\(973\) 52.7579i 1.69134i
\(974\) 0 0
\(975\) −5.26208 21.0973i −0.168521 0.675653i
\(976\) 0 0
\(977\) 45.7509i 1.46370i 0.681466 + 0.731850i \(0.261343\pi\)
−0.681466 + 0.731850i \(0.738657\pi\)
\(978\) 0 0
\(979\) 2.58761 0.0827005
\(980\) 0 0
\(981\) 18.0110 0.575046
\(982\) 0 0
\(983\) 35.9148i 1.14550i −0.819729 0.572752i \(-0.805876\pi\)
0.819729 0.572752i \(-0.194124\pi\)
\(984\) 0 0
\(985\) −27.8898 + 35.7005i −0.888643 + 1.13751i
\(986\) 0 0
\(987\) 5.34167i 0.170027i
\(988\) 0 0
\(989\) −87.7945 −2.79170
\(990\) 0 0
\(991\) 49.3833 1.56871 0.784355 0.620312i \(-0.212994\pi\)
0.784355 + 0.620312i \(0.212994\pi\)
\(992\) 0 0
\(993\) 15.4356i 0.489835i
\(994\) 0 0
\(995\) 45.6370 + 35.6524i 1.44679 + 1.13026i
\(996\) 0 0
\(997\) 1.01442i 0.0321269i −0.999871 0.0160634i \(-0.994887\pi\)
0.999871 0.0160634i \(-0.00511337\pi\)
\(998\) 0 0
\(999\) 4.27738 0.135330
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1320.2.d.c.529.7 yes 10
3.2 odd 2 3960.2.d.h.3169.8 10
4.3 odd 2 2640.2.d.k.529.2 10
5.2 odd 4 6600.2.a.bz.1.4 5
5.3 odd 4 6600.2.a.bx.1.2 5
5.4 even 2 inner 1320.2.d.c.529.2 10
15.14 odd 2 3960.2.d.h.3169.7 10
20.19 odd 2 2640.2.d.k.529.7 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1320.2.d.c.529.2 10 5.4 even 2 inner
1320.2.d.c.529.7 yes 10 1.1 even 1 trivial
2640.2.d.k.529.2 10 4.3 odd 2
2640.2.d.k.529.7 10 20.19 odd 2
3960.2.d.h.3169.7 10 15.14 odd 2
3960.2.d.h.3169.8 10 3.2 odd 2
6600.2.a.bx.1.2 5 5.3 odd 4
6600.2.a.bz.1.4 5 5.2 odd 4