Properties

Label 1323.2.g.b.667.1
Level $1323$
Weight $2$
Character 1323.667
Analytic conductor $10.564$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(361,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.1
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 1323.667
Dual form 1323.2.g.b.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23025 - 2.13086i) q^{2} +(-2.02704 + 3.51094i) q^{4} -2.59358 q^{5} +5.05408 q^{8} +O(q^{10})\) \(q+(-1.23025 - 2.13086i) q^{2} +(-2.02704 + 3.51094i) q^{4} -2.59358 q^{5} +5.05408 q^{8} +(3.19076 + 5.52655i) q^{10} -4.51459 q^{11} +(0.500000 + 0.866025i) q^{13} +(-2.16372 - 3.74766i) q^{16} +(0.472958 + 0.819187i) q^{17} +(-2.02704 + 3.51094i) q^{19} +(5.25729 - 9.10590i) q^{20} +(5.55408 + 9.61996i) q^{22} +0.273346 q^{23} +1.72665 q^{25} +(1.23025 - 2.13086i) q^{26} +(1.23025 - 2.13086i) q^{29} +(1.16372 - 2.01561i) q^{31} +(-0.269748 + 0.467216i) q^{32} +(1.16372 - 2.01561i) q^{34} +(-0.890369 + 1.54216i) q^{37} +9.97509 q^{38} -13.1082 q^{40} +(3.20321 + 5.54812i) q^{41} +(5.21780 - 9.03749i) q^{43} +(9.15126 - 15.8505i) q^{44} +(-0.336285 - 0.582462i) q^{46} +(6.08113 + 10.5328i) q^{47} +(-2.12422 - 3.67926i) q^{50} -4.05408 q^{52} +(-3.13667 - 5.43288i) q^{53} +11.7089 q^{55} -6.05408 q^{58} +(1.36333 - 2.36135i) q^{59} +(-1.13667 - 1.96878i) q^{61} -5.72665 q^{62} -7.32743 q^{64} +(-1.29679 - 2.24611i) q^{65} +(7.90856 - 13.6980i) q^{67} -3.83482 q^{68} -3.27335 q^{71} +(-0.753696 - 1.30544i) q^{73} +4.38151 q^{74} +(-8.21780 - 14.2336i) q^{76} +(-7.35447 - 12.7383i) q^{79} +(5.61177 + 9.71987i) q^{80} +(7.88151 - 13.6512i) q^{82} +(0.472958 - 0.819187i) q^{83} +(-1.22665 - 2.12463i) q^{85} -25.6768 q^{86} -22.8171 q^{88} +(7.17830 - 12.4332i) q^{89} +(-0.554084 + 0.959702i) q^{92} +(14.9626 - 25.9161i) q^{94} +(5.25729 - 9.10590i) q^{95} +(-5.74484 + 9.95036i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{2} - 3 q^{4} - 10 q^{5} + 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{2} - 3 q^{4} - 10 q^{5} + 12 q^{8} + 4 q^{11} + 3 q^{13} - 3 q^{16} + 12 q^{17} - 3 q^{19} + 16 q^{20} + 15 q^{22} + 12 q^{25} + q^{26} + q^{29} - 3 q^{31} - 8 q^{32} - 3 q^{34} + 3 q^{37} + 16 q^{38} - 42 q^{40} + 22 q^{41} + 3 q^{43} + 23 q^{44} - 12 q^{46} + 9 q^{47} + 10 q^{50} - 6 q^{52} - 18 q^{53} + 12 q^{55} - 18 q^{58} + 9 q^{59} - 6 q^{61} - 36 q^{62} - 24 q^{64} - 5 q^{65} + 12 q^{68} - 18 q^{71} + 3 q^{73} - 12 q^{74} - 21 q^{76} - 15 q^{79} - 11 q^{80} + 9 q^{82} + 12 q^{83} - 9 q^{85} - 68 q^{86} - 42 q^{88} + 2 q^{89} + 15 q^{92} + 24 q^{94} + 16 q^{95} + 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23025 2.13086i −0.869920 1.50675i −0.862078 0.506776i \(-0.830837\pi\)
−0.00784213 0.999969i \(-0.502496\pi\)
\(3\) 0 0
\(4\) −2.02704 + 3.51094i −1.01352 + 1.75547i
\(5\) −2.59358 −1.15988 −0.579942 0.814658i \(-0.696925\pi\)
−0.579942 + 0.814658i \(0.696925\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 5.05408 1.78689
\(9\) 0 0
\(10\) 3.19076 + 5.52655i 1.00901 + 1.74765i
\(11\) −4.51459 −1.36120 −0.680600 0.732655i \(-0.738281\pi\)
−0.680600 + 0.732655i \(0.738281\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i 0.926995 0.375073i \(-0.122382\pi\)
−0.788320 + 0.615265i \(0.789049\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.16372 3.74766i −0.540929 0.936916i
\(17\) 0.472958 + 0.819187i 0.114709 + 0.198682i 0.917663 0.397359i \(-0.130073\pi\)
−0.802954 + 0.596041i \(0.796740\pi\)
\(18\) 0 0
\(19\) −2.02704 + 3.51094i −0.465035 + 0.805465i −0.999203 0.0399136i \(-0.987292\pi\)
0.534168 + 0.845378i \(0.320625\pi\)
\(20\) 5.25729 9.10590i 1.17557 2.03614i
\(21\) 0 0
\(22\) 5.55408 + 9.61996i 1.18413 + 2.05098i
\(23\) 0.273346 0.0569966 0.0284983 0.999594i \(-0.490927\pi\)
0.0284983 + 0.999594i \(0.490927\pi\)
\(24\) 0 0
\(25\) 1.72665 0.345331
\(26\) 1.23025 2.13086i 0.241272 0.417896i
\(27\) 0 0
\(28\) 0 0
\(29\) 1.23025 2.13086i 0.228452 0.395691i −0.728897 0.684623i \(-0.759967\pi\)
0.957350 + 0.288932i \(0.0933002\pi\)
\(30\) 0 0
\(31\) 1.16372 2.01561i 0.209009 0.362015i −0.742393 0.669964i \(-0.766309\pi\)
0.951403 + 0.307949i \(0.0996427\pi\)
\(32\) −0.269748 + 0.467216i −0.0476851 + 0.0825930i
\(33\) 0 0
\(34\) 1.16372 2.01561i 0.199576 0.345675i
\(35\) 0 0
\(36\) 0 0
\(37\) −0.890369 + 1.54216i −0.146376 + 0.253530i −0.929885 0.367849i \(-0.880094\pi\)
0.783510 + 0.621380i \(0.213428\pi\)
\(38\) 9.97509 1.61817
\(39\) 0 0
\(40\) −13.1082 −2.07258
\(41\) 3.20321 + 5.54812i 0.500257 + 0.866471i 1.00000 0.000297253i \(9.46187e-5\pi\)
−0.499743 + 0.866174i \(0.666572\pi\)
\(42\) 0 0
\(43\) 5.21780 9.03749i 0.795707 1.37820i −0.126682 0.991943i \(-0.540433\pi\)
0.922389 0.386262i \(-0.126234\pi\)
\(44\) 9.15126 15.8505i 1.37960 2.38955i
\(45\) 0 0
\(46\) −0.336285 0.582462i −0.0495825 0.0858794i
\(47\) 6.08113 + 10.5328i 0.887023 + 1.53637i 0.843377 + 0.537323i \(0.180564\pi\)
0.0436467 + 0.999047i \(0.486102\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −2.12422 3.67926i −0.300410 0.520326i
\(51\) 0 0
\(52\) −4.05408 −0.562200
\(53\) −3.13667 5.43288i −0.430855 0.746263i 0.566092 0.824342i \(-0.308455\pi\)
−0.996947 + 0.0780790i \(0.975121\pi\)
\(54\) 0 0
\(55\) 11.7089 1.57883
\(56\) 0 0
\(57\) 0 0
\(58\) −6.05408 −0.794940
\(59\) 1.36333 2.36135i 0.177490 0.307422i −0.763530 0.645772i \(-0.776536\pi\)
0.941020 + 0.338350i \(0.109869\pi\)
\(60\) 0 0
\(61\) −1.13667 1.96878i −0.145536 0.252076i 0.784037 0.620714i \(-0.213157\pi\)
−0.929573 + 0.368639i \(0.879824\pi\)
\(62\) −5.72665 −0.727286
\(63\) 0 0
\(64\) −7.32743 −0.915929
\(65\) −1.29679 2.24611i −0.160847 0.278595i
\(66\) 0 0
\(67\) 7.90856 13.6980i 0.966184 1.67348i 0.259784 0.965667i \(-0.416349\pi\)
0.706400 0.707813i \(-0.250318\pi\)
\(68\) −3.83482 −0.465041
\(69\) 0 0
\(70\) 0 0
\(71\) −3.27335 −0.388475 −0.194237 0.980955i \(-0.562223\pi\)
−0.194237 + 0.980955i \(0.562223\pi\)
\(72\) 0 0
\(73\) −0.753696 1.30544i −0.0882134 0.152790i 0.818543 0.574446i \(-0.194782\pi\)
−0.906756 + 0.421656i \(0.861449\pi\)
\(74\) 4.38151 0.509341
\(75\) 0 0
\(76\) −8.21780 14.2336i −0.942646 1.63271i
\(77\) 0 0
\(78\) 0 0
\(79\) −7.35447 12.7383i −0.827443 1.43317i −0.900038 0.435811i \(-0.856461\pi\)
0.0725952 0.997361i \(-0.476872\pi\)
\(80\) 5.61177 + 9.71987i 0.627415 + 1.08671i
\(81\) 0 0
\(82\) 7.88151 13.6512i 0.870368 1.50752i
\(83\) 0.472958 0.819187i 0.0519139 0.0899175i −0.838901 0.544285i \(-0.816801\pi\)
0.890815 + 0.454367i \(0.150135\pi\)
\(84\) 0 0
\(85\) −1.22665 2.12463i −0.133049 0.230448i
\(86\) −25.6768 −2.76881
\(87\) 0 0
\(88\) −22.8171 −2.43231
\(89\) 7.17830 12.4332i 0.760899 1.31792i −0.181489 0.983393i \(-0.558092\pi\)
0.942388 0.334522i \(-0.108575\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.554084 + 0.959702i −0.0577673 + 0.100056i
\(93\) 0 0
\(94\) 14.9626 25.9161i 1.54328 2.67304i
\(95\) 5.25729 9.10590i 0.539387 0.934246i
\(96\) 0 0
\(97\) −5.74484 + 9.95036i −0.583300 + 1.01031i 0.411785 + 0.911281i \(0.364906\pi\)
−0.995085 + 0.0990246i \(0.968428\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.50000 + 6.06218i −0.350000 + 0.606218i
\(101\) −3.67977 −0.366150 −0.183075 0.983099i \(-0.558605\pi\)
−0.183075 + 0.983099i \(0.558605\pi\)
\(102\) 0 0
\(103\) 9.72665 0.958396 0.479198 0.877707i \(-0.340928\pi\)
0.479198 + 0.877707i \(0.340928\pi\)
\(104\) 2.52704 + 4.37697i 0.247797 + 0.429197i
\(105\) 0 0
\(106\) −7.71780 + 13.3676i −0.749619 + 1.29838i
\(107\) −0.687159 + 1.19019i −0.0664301 + 0.115060i −0.897327 0.441365i \(-0.854494\pi\)
0.830897 + 0.556426i \(0.187828\pi\)
\(108\) 0 0
\(109\) 1.69961 + 2.94381i 0.162793 + 0.281966i 0.935869 0.352347i \(-0.114616\pi\)
−0.773076 + 0.634313i \(0.781283\pi\)
\(110\) −14.4050 24.9501i −1.37346 2.37890i
\(111\) 0 0
\(112\) 0 0
\(113\) 5.19436 + 8.99689i 0.488644 + 0.846356i 0.999915 0.0130636i \(-0.00415840\pi\)
−0.511271 + 0.859420i \(0.670825\pi\)
\(114\) 0 0
\(115\) −0.708945 −0.0661095
\(116\) 4.98755 + 8.63868i 0.463082 + 0.802082i
\(117\) 0 0
\(118\) −6.70895 −0.617608
\(119\) 0 0
\(120\) 0 0
\(121\) 9.38151 0.852865
\(122\) −2.79679 + 4.84418i −0.253209 + 0.438572i
\(123\) 0 0
\(124\) 4.71780 + 8.17147i 0.423671 + 0.733820i
\(125\) 8.48968 0.759340
\(126\) 0 0
\(127\) 0.672570 0.0596809 0.0298405 0.999555i \(-0.490500\pi\)
0.0298405 + 0.999555i \(0.490500\pi\)
\(128\) 9.55408 + 16.5482i 0.844470 + 1.46266i
\(129\) 0 0
\(130\) −3.19076 + 5.52655i −0.279848 + 0.484711i
\(131\) 7.91381 0.691433 0.345717 0.938339i \(-0.387636\pi\)
0.345717 + 0.938339i \(0.387636\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −38.9181 −3.36201
\(135\) 0 0
\(136\) 2.39037 + 4.14024i 0.204972 + 0.355023i
\(137\) 3.67257 0.313769 0.156884 0.987617i \(-0.449855\pi\)
0.156884 + 0.987617i \(0.449855\pi\)
\(138\) 0 0
\(139\) −1.02704 1.77889i −0.0871126 0.150883i 0.819177 0.573541i \(-0.194431\pi\)
−0.906289 + 0.422658i \(0.861097\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.02704 + 6.97504i 0.337942 + 0.585332i
\(143\) −2.25729 3.90975i −0.188764 0.326950i
\(144\) 0 0
\(145\) −3.19076 + 5.52655i −0.264978 + 0.458955i
\(146\) −1.85447 + 3.21204i −0.153477 + 0.265830i
\(147\) 0 0
\(148\) −3.60963 6.25206i −0.296710 0.513917i
\(149\) 13.5438 1.10955 0.554774 0.832001i \(-0.312805\pi\)
0.554774 + 0.832001i \(0.312805\pi\)
\(150\) 0 0
\(151\) 9.92821 0.807946 0.403973 0.914771i \(-0.367629\pi\)
0.403973 + 0.914771i \(0.367629\pi\)
\(152\) −10.2448 + 17.7446i −0.830966 + 1.43928i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.01819 + 5.22765i −0.242427 + 0.419895i
\(156\) 0 0
\(157\) 3.02704 5.24299i 0.241584 0.418436i −0.719581 0.694408i \(-0.755666\pi\)
0.961166 + 0.275972i \(0.0889996\pi\)
\(158\) −18.0957 + 31.3427i −1.43962 + 2.49349i
\(159\) 0 0
\(160\) 0.699612 1.21176i 0.0553092 0.0957983i
\(161\) 0 0
\(162\) 0 0
\(163\) −8.90856 + 15.4301i −0.697772 + 1.20858i 0.271465 + 0.962448i \(0.412492\pi\)
−0.969237 + 0.246128i \(0.920842\pi\)
\(164\) −25.9722 −2.02809
\(165\) 0 0
\(166\) −2.32743 −0.180644
\(167\) 4.23385 + 7.33325i 0.327625 + 0.567464i 0.982040 0.188672i \(-0.0604183\pi\)
−0.654415 + 0.756136i \(0.727085\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) −3.01819 + 5.22765i −0.231484 + 0.400943i
\(171\) 0 0
\(172\) 21.1534 + 36.6388i 1.61293 + 2.79368i
\(173\) −8.67830 15.0313i −0.659799 1.14281i −0.980667 0.195682i \(-0.937308\pi\)
0.320868 0.947124i \(-0.396025\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 9.76829 + 16.9192i 0.736312 + 1.27533i
\(177\) 0 0
\(178\) −35.3245 −2.64768
\(179\) −5.67471 9.82888i −0.424147 0.734645i 0.572193 0.820119i \(-0.306093\pi\)
−0.996340 + 0.0854741i \(0.972759\pi\)
\(180\) 0 0
\(181\) −21.8889 −1.62699 −0.813495 0.581572i \(-0.802438\pi\)
−0.813495 + 0.581572i \(0.802438\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.38151 0.101847
\(185\) 2.30924 3.99973i 0.169779 0.294066i
\(186\) 0 0
\(187\) −2.13521 3.69829i −0.156142 0.270446i
\(188\) −49.3068 −3.59607
\(189\) 0 0
\(190\) −25.8712 −1.87689
\(191\) −0.350874 0.607731i −0.0253883 0.0439739i 0.853052 0.521826i \(-0.174749\pi\)
−0.878440 + 0.477852i \(0.841416\pi\)
\(192\) 0 0
\(193\) −6.07227 + 10.5175i −0.437092 + 0.757065i −0.997464 0.0711760i \(-0.977325\pi\)
0.560372 + 0.828241i \(0.310658\pi\)
\(194\) 28.2704 2.02970
\(195\) 0 0
\(196\) 0 0
\(197\) 16.4107 1.16921 0.584607 0.811317i \(-0.301249\pi\)
0.584607 + 0.811317i \(0.301249\pi\)
\(198\) 0 0
\(199\) 11.3530 + 19.6640i 0.804794 + 1.39394i 0.916430 + 0.400194i \(0.131057\pi\)
−0.111637 + 0.993749i \(0.535609\pi\)
\(200\) 8.72665 0.617068
\(201\) 0 0
\(202\) 4.52704 + 7.84107i 0.318522 + 0.551696i
\(203\) 0 0
\(204\) 0 0
\(205\) −8.30778 14.3895i −0.580241 1.00501i
\(206\) −11.9662 20.7261i −0.833727 1.44406i
\(207\) 0 0
\(208\) 2.16372 3.74766i 0.150027 0.259854i
\(209\) 9.15126 15.8505i 0.633006 1.09640i
\(210\) 0 0
\(211\) −2.28074 3.95035i −0.157012 0.271954i 0.776778 0.629775i \(-0.216853\pi\)
−0.933790 + 0.357822i \(0.883520\pi\)
\(212\) 25.4327 1.74672
\(213\) 0 0
\(214\) 3.38151 0.231156
\(215\) −13.5328 + 23.4395i −0.922928 + 1.59856i
\(216\) 0 0
\(217\) 0 0
\(218\) 4.18190 7.24327i 0.283234 0.490576i
\(219\) 0 0
\(220\) −23.7345 + 41.1094i −1.60018 + 2.77160i
\(221\) −0.472958 + 0.819187i −0.0318146 + 0.0551045i
\(222\) 0 0
\(223\) 6.66225 11.5394i 0.446137 0.772733i −0.551993 0.833849i \(-0.686133\pi\)
0.998131 + 0.0611159i \(0.0194659\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 12.7807 22.1369i 0.850162 1.47252i
\(227\) 1.38151 0.0916943 0.0458472 0.998948i \(-0.485401\pi\)
0.0458472 + 0.998948i \(0.485401\pi\)
\(228\) 0 0
\(229\) 17.9794 1.18811 0.594055 0.804424i \(-0.297526\pi\)
0.594055 + 0.804424i \(0.297526\pi\)
\(230\) 0.872181 + 1.51066i 0.0575099 + 0.0996101i
\(231\) 0 0
\(232\) 6.21780 10.7695i 0.408219 0.707055i
\(233\) −9.49115 + 16.4391i −0.621786 + 1.07696i 0.367367 + 0.930076i \(0.380259\pi\)
−0.989153 + 0.146888i \(0.953074\pi\)
\(234\) 0 0
\(235\) −15.7719 27.3177i −1.02884 1.78201i
\(236\) 5.52704 + 9.57312i 0.359780 + 0.623157i
\(237\) 0 0
\(238\) 0 0
\(239\) 2.44592 + 4.23645i 0.158213 + 0.274033i 0.934224 0.356686i \(-0.116093\pi\)
−0.776011 + 0.630719i \(0.782760\pi\)
\(240\) 0 0
\(241\) 26.1593 1.68507 0.842535 0.538641i \(-0.181062\pi\)
0.842535 + 0.538641i \(0.181062\pi\)
\(242\) −11.5416 19.9907i −0.741924 1.28505i
\(243\) 0 0
\(244\) 9.21634 0.590016
\(245\) 0 0
\(246\) 0 0
\(247\) −4.05408 −0.257955
\(248\) 5.88151 10.1871i 0.373477 0.646880i
\(249\) 0 0
\(250\) −10.4445 18.0903i −0.660565 1.14413i
\(251\) 18.4576 1.16503 0.582516 0.812819i \(-0.302068\pi\)
0.582516 + 0.812819i \(0.302068\pi\)
\(252\) 0 0
\(253\) −1.23405 −0.0775838
\(254\) −0.827430 1.43315i −0.0519176 0.0899239i
\(255\) 0 0
\(256\) 16.1804 28.0253i 1.01128 1.75158i
\(257\) −11.7339 −0.731938 −0.365969 0.930627i \(-0.619262\pi\)
−0.365969 + 0.930627i \(0.619262\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 10.5146 0.652087
\(261\) 0 0
\(262\) −9.73599 16.8632i −0.601491 1.04181i
\(263\) 7.52179 0.463813 0.231907 0.972738i \(-0.425504\pi\)
0.231907 + 0.972738i \(0.425504\pi\)
\(264\) 0 0
\(265\) 8.13521 + 14.0906i 0.499742 + 0.865579i
\(266\) 0 0
\(267\) 0 0
\(268\) 32.0620 + 55.5329i 1.95850 + 3.39221i
\(269\) 9.41741 + 16.3114i 0.574190 + 0.994526i 0.996129 + 0.0879017i \(0.0280161\pi\)
−0.421939 + 0.906624i \(0.638651\pi\)
\(270\) 0 0
\(271\) −11.9911 + 20.7693i −0.728410 + 1.26164i 0.229145 + 0.973392i \(0.426407\pi\)
−0.957555 + 0.288251i \(0.906926\pi\)
\(272\) 2.04669 3.54498i 0.124099 0.214946i
\(273\) 0 0
\(274\) −4.51819 7.82573i −0.272954 0.472770i
\(275\) −7.79513 −0.470064
\(276\) 0 0
\(277\) 7.16225 0.430338 0.215169 0.976577i \(-0.430970\pi\)
0.215169 + 0.976577i \(0.430970\pi\)
\(278\) −2.52704 + 4.37697i −0.151562 + 0.262513i
\(279\) 0 0
\(280\) 0 0
\(281\) 7.44085 12.8879i 0.443884 0.768830i −0.554090 0.832457i \(-0.686933\pi\)
0.997974 + 0.0636271i \(0.0202668\pi\)
\(282\) 0 0
\(283\) 9.99854 17.3180i 0.594351 1.02945i −0.399287 0.916826i \(-0.630742\pi\)
0.993638 0.112621i \(-0.0359245\pi\)
\(284\) 6.63521 11.4925i 0.393727 0.681956i
\(285\) 0 0
\(286\) −5.55408 + 9.61996i −0.328420 + 0.568840i
\(287\) 0 0
\(288\) 0 0
\(289\) 8.05262 13.9475i 0.473684 0.820444i
\(290\) 15.7017 0.922038
\(291\) 0 0
\(292\) 6.11109 0.357625
\(293\) −7.53278 13.0472i −0.440070 0.762223i 0.557625 0.830093i \(-0.311713\pi\)
−0.997694 + 0.0678705i \(0.978380\pi\)
\(294\) 0 0
\(295\) −3.53590 + 6.12435i −0.205868 + 0.356574i
\(296\) −4.50000 + 7.79423i −0.261557 + 0.453030i
\(297\) 0 0
\(298\) −16.6623 28.8599i −0.965218 1.67181i
\(299\) 0.136673 + 0.236725i 0.00790401 + 0.0136901i
\(300\) 0 0
\(301\) 0 0
\(302\) −12.2142 21.1556i −0.702848 1.21737i
\(303\) 0 0
\(304\) 17.5438 1.00620
\(305\) 2.94805 + 5.10618i 0.168805 + 0.292379i
\(306\) 0 0
\(307\) 27.2704 1.55641 0.778203 0.628013i \(-0.216132\pi\)
0.778203 + 0.628013i \(0.216132\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 14.8525 0.843567
\(311\) 7.99115 13.8411i 0.453136 0.784855i −0.545443 0.838148i \(-0.683638\pi\)
0.998579 + 0.0532931i \(0.0169718\pi\)
\(312\) 0 0
\(313\) 5.79893 + 10.0440i 0.327775 + 0.567722i 0.982070 0.188517i \(-0.0603680\pi\)
−0.654295 + 0.756239i \(0.727035\pi\)
\(314\) −14.8961 −0.840636
\(315\) 0 0
\(316\) 59.6313 3.35452
\(317\) −1.00885 1.74739i −0.0566629 0.0981430i 0.836303 0.548268i \(-0.184713\pi\)
−0.892965 + 0.450125i \(0.851379\pi\)
\(318\) 0 0
\(319\) −5.55408 + 9.61996i −0.310969 + 0.538614i
\(320\) 19.0043 1.06237
\(321\) 0 0
\(322\) 0 0
\(323\) −3.83482 −0.213375
\(324\) 0 0
\(325\) 0.863327 + 1.49533i 0.0478888 + 0.0829458i
\(326\) 43.8391 2.42802
\(327\) 0 0
\(328\) 16.1893 + 28.0407i 0.893904 + 1.54829i
\(329\) 0 0
\(330\) 0 0
\(331\) 9.85447 + 17.0684i 0.541651 + 0.938167i 0.998809 + 0.0487815i \(0.0155338\pi\)
−0.457159 + 0.889385i \(0.651133\pi\)
\(332\) 1.91741 + 3.32105i 0.105232 + 0.182266i
\(333\) 0 0
\(334\) 10.4174 18.0435i 0.570015 0.987296i
\(335\) −20.5115 + 35.5269i −1.12066 + 1.94104i
\(336\) 0 0
\(337\) 14.5256 + 25.1590i 0.791259 + 1.37050i 0.925188 + 0.379509i \(0.123907\pi\)
−0.133929 + 0.990991i \(0.542759\pi\)
\(338\) −29.5261 −1.60601
\(339\) 0 0
\(340\) 9.94592 0.539393
\(341\) −5.25370 + 9.09967i −0.284504 + 0.492775i
\(342\) 0 0
\(343\) 0 0
\(344\) 26.3712 45.6763i 1.42184 2.46270i
\(345\) 0 0
\(346\) −21.3530 + 36.9845i −1.14794 + 1.98830i
\(347\) 14.5416 25.1868i 0.780636 1.35210i −0.150936 0.988544i \(-0.548229\pi\)
0.931572 0.363557i \(-0.118438\pi\)
\(348\) 0 0
\(349\) 12.3815 21.4454i 0.662767 1.14795i −0.317118 0.948386i \(-0.602715\pi\)
0.979885 0.199561i \(-0.0639515\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.21780 2.10929i 0.0649089 0.112426i
\(353\) −33.3025 −1.77251 −0.886257 0.463193i \(-0.846704\pi\)
−0.886257 + 0.463193i \(0.846704\pi\)
\(354\) 0 0
\(355\) 8.48968 0.450586
\(356\) 29.1015 + 50.4052i 1.54237 + 2.67147i
\(357\) 0 0
\(358\) −13.9626 + 24.1840i −0.737949 + 1.27816i
\(359\) 12.7683 22.1153i 0.673884 1.16720i −0.302909 0.953019i \(-0.597958\pi\)
0.976794 0.214182i \(-0.0687087\pi\)
\(360\) 0 0
\(361\) 1.28220 + 2.22084i 0.0674842 + 0.116886i
\(362\) 26.9289 + 46.6422i 1.41535 + 2.45146i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.95477 + 3.38576i 0.102317 + 0.177219i
\(366\) 0 0
\(367\) −27.4504 −1.43290 −0.716449 0.697639i \(-0.754234\pi\)
−0.716449 + 0.697639i \(0.754234\pi\)
\(368\) −0.591443 1.02441i −0.0308311 0.0534011i
\(369\) 0 0
\(370\) −11.3638 −0.590776
\(371\) 0 0
\(372\) 0 0
\(373\) 16.3274 0.845402 0.422701 0.906269i \(-0.361082\pi\)
0.422701 + 0.906269i \(0.361082\pi\)
\(374\) −5.25370 + 9.09967i −0.271662 + 0.470533i
\(375\) 0 0
\(376\) 30.7345 + 53.2338i 1.58501 + 2.74532i
\(377\) 2.46050 0.126722
\(378\) 0 0
\(379\) 12.0364 0.618267 0.309134 0.951019i \(-0.399961\pi\)
0.309134 + 0.951019i \(0.399961\pi\)
\(380\) 21.3135 + 36.9161i 1.09336 + 1.89376i
\(381\) 0 0
\(382\) −0.863327 + 1.49533i −0.0441716 + 0.0765075i
\(383\) −12.4356 −0.635429 −0.317715 0.948186i \(-0.602915\pi\)
−0.317715 + 0.948186i \(0.602915\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 29.8817 1.52094
\(387\) 0 0
\(388\) −23.2901 40.3396i −1.18237 2.04793i
\(389\) −20.6008 −1.04450 −0.522250 0.852792i \(-0.674907\pi\)
−0.522250 + 0.852792i \(0.674907\pi\)
\(390\) 0 0
\(391\) 0.129281 + 0.223922i 0.00653803 + 0.0113242i
\(392\) 0 0
\(393\) 0 0
\(394\) −20.1893 34.9689i −1.01712 1.76171i
\(395\) 19.0744 + 33.0378i 0.959738 + 1.66231i
\(396\) 0 0
\(397\) −11.8186 + 20.4704i −0.593157 + 1.02738i 0.400647 + 0.916233i \(0.368785\pi\)
−0.993804 + 0.111146i \(0.964548\pi\)
\(398\) 27.9341 48.3833i 1.40021 2.42524i
\(399\) 0 0
\(400\) −3.73599 6.47092i −0.186799 0.323546i
\(401\) 2.56440 0.128060 0.0640300 0.997948i \(-0.479605\pi\)
0.0640300 + 0.997948i \(0.479605\pi\)
\(402\) 0 0
\(403\) 2.32743 0.115938
\(404\) 7.45904 12.9194i 0.371101 0.642766i
\(405\) 0 0
\(406\) 0 0
\(407\) 4.01965 6.96224i 0.199247 0.345105i
\(408\) 0 0
\(409\) −17.1623 + 29.7259i −0.848619 + 1.46985i 0.0338223 + 0.999428i \(0.489232\pi\)
−0.882441 + 0.470423i \(0.844101\pi\)
\(410\) −20.4413 + 35.4054i −1.00953 + 1.74855i
\(411\) 0 0
\(412\) −19.7163 + 34.1497i −0.971354 + 1.68243i
\(413\) 0 0
\(414\) 0 0
\(415\) −1.22665 + 2.12463i −0.0602141 + 0.104294i
\(416\) −0.539495 −0.0264509
\(417\) 0 0
\(418\) −45.0335 −2.20266
\(419\) −2.02850 3.51347i −0.0990989 0.171644i 0.812213 0.583361i \(-0.198263\pi\)
−0.911312 + 0.411717i \(0.864929\pi\)
\(420\) 0 0
\(421\) 10.5344 18.2462i 0.513417 0.889264i −0.486462 0.873702i \(-0.661713\pi\)
0.999879 0.0155624i \(-0.00495387\pi\)
\(422\) −5.61177 + 9.71987i −0.273177 + 0.473156i
\(423\) 0 0
\(424\) −15.8530 27.4582i −0.769890 1.33349i
\(425\) 0.816635 + 1.41445i 0.0396126 + 0.0686110i
\(426\) 0 0
\(427\) 0 0
\(428\) −2.78580 4.82515i −0.134657 0.233232i
\(429\) 0 0
\(430\) 66.5949 3.21149
\(431\) 11.3092 + 19.5882i 0.544747 + 0.943530i 0.998623 + 0.0524646i \(0.0167077\pi\)
−0.453876 + 0.891065i \(0.649959\pi\)
\(432\) 0 0
\(433\) −2.41789 −0.116196 −0.0580982 0.998311i \(-0.518504\pi\)
−0.0580982 + 0.998311i \(0.518504\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −13.7807 −0.659978
\(437\) −0.554084 + 0.959702i −0.0265054 + 0.0459088i
\(438\) 0 0
\(439\) −11.7448 20.3427i −0.560551 0.970902i −0.997448 0.0713911i \(-0.977256\pi\)
0.436898 0.899511i \(-0.356077\pi\)
\(440\) 59.1780 2.82120
\(441\) 0 0
\(442\) 2.32743 0.110705
\(443\) −6.70895 11.6202i −0.318752 0.552094i 0.661476 0.749966i \(-0.269930\pi\)
−0.980228 + 0.197872i \(0.936597\pi\)
\(444\) 0 0
\(445\) −18.6175 + 32.2465i −0.882554 + 1.52863i
\(446\) −32.7850 −1.55242
\(447\) 0 0
\(448\) 0 0
\(449\) 9.16225 0.432393 0.216197 0.976350i \(-0.430635\pi\)
0.216197 + 0.976350i \(0.430635\pi\)
\(450\) 0 0
\(451\) −14.4612 25.0475i −0.680950 1.17944i
\(452\) −42.1167 −1.98100
\(453\) 0 0
\(454\) −1.69961 2.94381i −0.0797667 0.138160i
\(455\) 0 0
\(456\) 0 0
\(457\) −4.40856 7.63584i −0.206224 0.357190i 0.744298 0.667847i \(-0.232784\pi\)
−0.950522 + 0.310658i \(0.899451\pi\)
\(458\) −22.1192 38.3115i −1.03356 1.79018i
\(459\) 0 0
\(460\) 1.43706 2.48906i 0.0670033 0.116053i
\(461\) 2.82957 4.90095i 0.131786 0.228260i −0.792579 0.609769i \(-0.791262\pi\)
0.924365 + 0.381509i \(0.124595\pi\)
\(462\) 0 0
\(463\) −7.86333 13.6197i −0.365440 0.632960i 0.623407 0.781898i \(-0.285748\pi\)
−0.988847 + 0.148937i \(0.952415\pi\)
\(464\) −10.6477 −0.494305
\(465\) 0 0
\(466\) 46.7060 2.16361
\(467\) 10.9985 19.0500i 0.508952 0.881530i −0.490995 0.871163i \(-0.663367\pi\)
0.999946 0.0103675i \(-0.00330013\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −38.8068 + 67.2153i −1.79002 + 3.10041i
\(471\) 0 0
\(472\) 6.89037 11.9345i 0.317155 0.549328i
\(473\) −23.5562 + 40.8006i −1.08312 + 1.87601i
\(474\) 0 0
\(475\) −3.50000 + 6.06218i −0.160591 + 0.278152i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.01819 10.4238i 0.275265 0.476774i
\(479\) 24.9751 1.14114 0.570571 0.821249i \(-0.306722\pi\)
0.570571 + 0.821249i \(0.306722\pi\)
\(480\) 0 0
\(481\) −1.78074 −0.0811947
\(482\) −32.1826 55.7419i −1.46588 2.53897i
\(483\) 0 0
\(484\) −19.0167 + 32.9379i −0.864397 + 1.49718i
\(485\) 14.8997 25.8070i 0.676561 1.17184i
\(486\) 0 0
\(487\) 8.79893 + 15.2402i 0.398717 + 0.690599i 0.993568 0.113238i \(-0.0361221\pi\)
−0.594851 + 0.803836i \(0.702789\pi\)
\(488\) −5.74484 9.95036i −0.260057 0.450432i
\(489\) 0 0
\(490\) 0 0
\(491\) 6.89757 + 11.9469i 0.311283 + 0.539158i 0.978640 0.205580i \(-0.0659080\pi\)
−0.667358 + 0.744737i \(0.732575\pi\)
\(492\) 0 0
\(493\) 2.32743 0.104822
\(494\) 4.98755 + 8.63868i 0.224400 + 0.388673i
\(495\) 0 0
\(496\) −10.0718 −0.452237
\(497\) 0 0
\(498\) 0 0
\(499\) 13.0875 0.585879 0.292939 0.956131i \(-0.405367\pi\)
0.292939 + 0.956131i \(0.405367\pi\)
\(500\) −17.2089 + 29.8068i −0.769607 + 1.33300i
\(501\) 0 0
\(502\) −22.7075 39.3305i −1.01348 1.75541i
\(503\) −22.3068 −0.994611 −0.497305 0.867576i \(-0.665677\pi\)
−0.497305 + 0.867576i \(0.665677\pi\)
\(504\) 0 0
\(505\) 9.54377 0.424692
\(506\) 1.51819 + 2.62958i 0.0674917 + 0.116899i
\(507\) 0 0
\(508\) −1.36333 + 2.36135i −0.0604879 + 0.104768i
\(509\) −15.8932 −0.704453 −0.352226 0.935915i \(-0.614575\pi\)
−0.352226 + 0.935915i \(0.614575\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −41.4078 −1.82998
\(513\) 0 0
\(514\) 14.4356 + 25.0032i 0.636727 + 1.10284i
\(515\) −25.2268 −1.11163
\(516\) 0 0
\(517\) −27.4538 47.5514i −1.20742 2.09131i
\(518\) 0 0
\(519\) 0 0
\(520\) −6.55408 11.3520i −0.287416 0.497818i
\(521\) −2.20895 3.82600i −0.0967756 0.167620i 0.813573 0.581463i \(-0.197520\pi\)
−0.910348 + 0.413843i \(0.864186\pi\)
\(522\) 0 0
\(523\) 12.6367 21.8874i 0.552563 0.957067i −0.445526 0.895269i \(-0.646983\pi\)
0.998089 0.0617982i \(-0.0196835\pi\)
\(524\) −16.0416 + 27.7849i −0.700782 + 1.21379i
\(525\) 0 0
\(526\) −9.25370 16.0279i −0.403480 0.698848i
\(527\) 2.20155 0.0959012
\(528\) 0 0
\(529\) −22.9253 −0.996751
\(530\) 20.0167 34.6700i 0.869471 1.50597i
\(531\) 0 0
\(532\) 0 0
\(533\) −3.20321 + 5.54812i −0.138746 + 0.240316i
\(534\) 0 0
\(535\) 1.78220 3.08686i 0.0770513 0.133457i
\(536\) 39.9705 69.2310i 1.72646 2.99032i
\(537\) 0 0
\(538\) 23.1716 40.1344i 0.998998 1.73032i
\(539\) 0 0
\(540\) 0 0
\(541\) 1.71926 2.97785i 0.0739168 0.128028i −0.826698 0.562646i \(-0.809783\pi\)
0.900615 + 0.434618i \(0.143117\pi\)
\(542\) 59.0085 2.53463
\(543\) 0 0
\(544\) −0.510317 −0.0218797
\(545\) −4.40808 7.63501i −0.188821 0.327048i
\(546\) 0 0
\(547\) 3.46410 6.00000i 0.148114 0.256542i −0.782416 0.622756i \(-0.786013\pi\)
0.930531 + 0.366214i \(0.119346\pi\)
\(548\) −7.44445 + 12.8942i −0.318011 + 0.550812i
\(549\) 0 0
\(550\) 9.58998 + 16.6103i 0.408918 + 0.708267i
\(551\) 4.98755 + 8.63868i 0.212477 + 0.368020i
\(552\) 0 0
\(553\) 0 0
\(554\) −8.81138 15.2618i −0.374360 0.648410i
\(555\) 0 0
\(556\) 8.32743 0.353162
\(557\) 16.7917 + 29.0841i 0.711488 + 1.23233i 0.964298 + 0.264818i \(0.0853119\pi\)
−0.252810 + 0.967516i \(0.581355\pi\)
\(558\) 0 0
\(559\) 10.4356 0.441379
\(560\) 0 0
\(561\) 0 0
\(562\) −36.6165 −1.54457
\(563\) −21.2396 + 36.7880i −0.895142 + 1.55043i −0.0615128 + 0.998106i \(0.519593\pi\)
−0.833629 + 0.552325i \(0.813741\pi\)
\(564\) 0 0
\(565\) −13.4720 23.3341i −0.566770 0.981675i
\(566\) −49.2029 −2.06815
\(567\) 0 0
\(568\) −16.5438 −0.694161
\(569\) 5.20175 + 9.00969i 0.218069 + 0.377706i 0.954217 0.299114i \(-0.0966910\pi\)
−0.736149 + 0.676820i \(0.763358\pi\)
\(570\) 0 0
\(571\) −8.92480 + 15.4582i −0.373491 + 0.646906i −0.990100 0.140364i \(-0.955173\pi\)
0.616609 + 0.787270i \(0.288506\pi\)
\(572\) 18.3025 0.765267
\(573\) 0 0
\(574\) 0 0
\(575\) 0.471974 0.0196827
\(576\) 0 0
\(577\) 5.97150 + 10.3429i 0.248597 + 0.430582i 0.963137 0.269013i \(-0.0866973\pi\)
−0.714540 + 0.699595i \(0.753364\pi\)
\(578\) −39.6270 −1.64827
\(579\) 0 0
\(580\) −12.9356 22.4051i −0.537122 0.930322i
\(581\) 0 0
\(582\) 0 0
\(583\) 14.1608 + 24.5272i 0.586480 + 1.01581i
\(584\) −3.80924 6.59780i −0.157628 0.273019i
\(585\) 0 0
\(586\) −18.5344 + 32.1026i −0.765650 + 1.32615i
\(587\) −11.9299 + 20.6631i −0.492398 + 0.852859i −0.999962 0.00875568i \(-0.997213\pi\)
0.507563 + 0.861614i \(0.330546\pi\)
\(588\) 0 0
\(589\) 4.71780 + 8.17147i 0.194394 + 0.336699i
\(590\) 17.4002 0.716354
\(591\) 0 0
\(592\) 7.70602 0.316715
\(593\) −9.79007 + 16.9569i −0.402030 + 0.696336i −0.993971 0.109645i \(-0.965029\pi\)
0.591941 + 0.805981i \(0.298362\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −27.4538 + 47.5514i −1.12455 + 1.94778i
\(597\) 0 0
\(598\) 0.336285 0.582462i 0.0137517 0.0238187i
\(599\) 9.27335 16.0619i 0.378899 0.656272i −0.612004 0.790855i \(-0.709636\pi\)
0.990902 + 0.134583i \(0.0429696\pi\)
\(600\) 0 0
\(601\) −9.09931 + 15.7605i −0.371169 + 0.642883i −0.989746 0.142841i \(-0.954376\pi\)
0.618577 + 0.785724i \(0.287710\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.1249 + 34.8573i −0.818870 + 1.41832i
\(605\) −24.3317 −0.989224
\(606\) 0 0
\(607\) 22.3097 0.905524 0.452762 0.891631i \(-0.350439\pi\)
0.452762 + 0.891631i \(0.350439\pi\)
\(608\) −1.09358 1.89413i −0.0443505 0.0768173i
\(609\) 0 0
\(610\) 7.25370 12.5638i 0.293694 0.508692i
\(611\) −6.08113 + 10.5328i −0.246016 + 0.426112i
\(612\) 0 0
\(613\) −5.11849 8.86548i −0.206734 0.358073i 0.743950 0.668235i \(-0.232950\pi\)
−0.950684 + 0.310162i \(0.899617\pi\)
\(614\) −33.5495 58.1094i −1.35395 2.34511i
\(615\) 0 0
\(616\) 0 0
\(617\) −5.66372 9.80984i −0.228013 0.394929i 0.729206 0.684294i \(-0.239889\pi\)
−0.957219 + 0.289364i \(0.906556\pi\)
\(618\) 0 0
\(619\) −8.63327 −0.347000 −0.173500 0.984834i \(-0.555508\pi\)
−0.173500 + 0.984834i \(0.555508\pi\)
\(620\) −12.2360 21.1934i −0.491409 0.851145i
\(621\) 0 0
\(622\) −39.3245 −1.57677
\(623\) 0 0
\(624\) 0 0
\(625\) −30.6519 −1.22608
\(626\) 14.2683 24.7134i 0.570275 0.987746i
\(627\) 0 0
\(628\) 12.2719 + 21.2555i 0.489701 + 0.848188i
\(629\) −1.68443 −0.0671626
\(630\) 0 0
\(631\) −14.8535 −0.591308 −0.295654 0.955295i \(-0.595538\pi\)
−0.295654 + 0.955295i \(0.595538\pi\)
\(632\) −37.1701 64.3805i −1.47855 2.56092i
\(633\) 0 0
\(634\) −2.48229 + 4.29945i −0.0985844 + 0.170753i
\(635\) −1.74436 −0.0692229
\(636\) 0 0
\(637\) 0 0
\(638\) 27.3317 1.08207
\(639\) 0 0
\(640\) −24.7793 42.9190i −0.979487 1.69652i
\(641\) 34.1593 1.34921 0.674606 0.738178i \(-0.264313\pi\)
0.674606 + 0.738178i \(0.264313\pi\)
\(642\) 0 0
\(643\) −5.41741 9.38323i −0.213642 0.370039i 0.739210 0.673475i \(-0.235199\pi\)
−0.952852 + 0.303437i \(0.901866\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 4.71780 + 8.17147i 0.185619 + 0.321502i
\(647\) −16.4846 28.5522i −0.648077 1.12250i −0.983582 0.180464i \(-0.942240\pi\)
0.335504 0.942039i \(-0.391093\pi\)
\(648\) 0 0
\(649\) −6.15486 + 10.6605i −0.241599 + 0.418462i
\(650\) 2.12422 3.67926i 0.0833188 0.144312i
\(651\) 0 0
\(652\) −36.1160 62.5548i −1.41441 2.44984i
\(653\) 3.93113 0.153837 0.0769185 0.997037i \(-0.475492\pi\)
0.0769185 + 0.997037i \(0.475492\pi\)
\(654\) 0 0
\(655\) −20.5251 −0.801982
\(656\) 13.8617 24.0091i 0.541207 0.937399i
\(657\) 0 0
\(658\) 0 0
\(659\) 8.40856 14.5640i 0.327551 0.567335i −0.654474 0.756084i \(-0.727110\pi\)
0.982025 + 0.188749i \(0.0604434\pi\)
\(660\) 0 0
\(661\) −8.51080 + 14.7411i −0.331032 + 0.573364i −0.982714 0.185128i \(-0.940730\pi\)
0.651683 + 0.758492i \(0.274063\pi\)
\(662\) 24.2470 41.9970i 0.942386 1.63226i
\(663\) 0 0
\(664\) 2.39037 4.14024i 0.0927643 0.160672i
\(665\) 0 0
\(666\) 0 0
\(667\) 0.336285 0.582462i 0.0130210 0.0225530i
\(668\) −34.3288 −1.32822
\(669\) 0 0
\(670\) 100.937 3.89954
\(671\) 5.13161 + 8.88821i 0.198104 + 0.343126i
\(672\) 0 0
\(673\) −14.3727 + 24.8942i −0.554025 + 0.959600i 0.443953 + 0.896050i \(0.353576\pi\)
−0.997979 + 0.0635501i \(0.979758\pi\)
\(674\) 35.7403 61.9039i 1.37666 2.38445i
\(675\) 0 0
\(676\) 24.3245 + 42.1313i 0.935558 + 1.62043i
\(677\) 3.01819 + 5.22765i 0.115998 + 0.200915i 0.918178 0.396167i \(-0.129660\pi\)
−0.802180 + 0.597082i \(0.796327\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.19961 10.7380i −0.237744 0.411785i
\(681\) 0 0
\(682\) 25.8535 0.989981
\(683\) 10.2556 + 17.7633i 0.392421 + 0.679693i 0.992768 0.120046i \(-0.0383043\pi\)
−0.600347 + 0.799739i \(0.704971\pi\)
\(684\) 0 0
\(685\) −9.52510 −0.363935
\(686\) 0 0
\(687\) 0 0
\(688\) −45.1593 −1.72168
\(689\) 3.13667 5.43288i 0.119498 0.206976i
\(690\) 0 0
\(691\) −7.50146 12.9929i −0.285369 0.494274i 0.687330 0.726346i \(-0.258783\pi\)
−0.972699 + 0.232072i \(0.925450\pi\)
\(692\) 70.3652 2.67488
\(693\) 0 0
\(694\) −71.5595 −2.71636
\(695\) 2.66372 + 4.61369i 0.101040 + 0.175007i
\(696\) 0 0
\(697\) −3.02997 + 5.24806i −0.114768 + 0.198784i
\(698\) −60.9296 −2.30622
\(699\) 0 0
\(700\) 0 0
\(701\) −38.5113 −1.45455 −0.727275 0.686346i \(-0.759214\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(702\) 0 0
\(703\) −3.60963 6.25206i −0.136140 0.235801i
\(704\) 33.0803 1.24676
\(705\) 0 0
\(706\) 40.9705 + 70.9630i 1.54195 + 2.67073i
\(707\) 0 0
\(708\) 0 0
\(709\) −3.82004 6.61650i −0.143465 0.248488i 0.785334 0.619072i \(-0.212491\pi\)
−0.928799 + 0.370584i \(0.879158\pi\)
\(710\) −10.4445 18.0903i −0.391973 0.678918i
\(711\) 0 0
\(712\) 36.2798 62.8384i 1.35964 2.35497i
\(713\) 0.318097 0.550960i 0.0119128 0.0206336i
\(714\) 0 0
\(715\) 5.85447 + 10.1402i 0.218945 + 0.379224i
\(716\) 46.0115 1.71953
\(717\) 0 0
\(718\) −62.8329 −2.34490
\(719\) 15.0182 26.0123i 0.560084 0.970094i −0.437405 0.899265i \(-0.644102\pi\)
0.997488 0.0708289i \(-0.0225644\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.15486 5.46438i 0.117412 0.203363i
\(723\) 0 0
\(724\) 44.3697 76.8506i 1.64899 2.85613i
\(725\) 2.12422 3.67926i 0.0788916 0.136644i
\(726\) 0 0
\(727\) 1.72812 2.99319i 0.0640923 0.111011i −0.832199 0.554478i \(-0.812918\pi\)
0.896291 + 0.443466i \(0.146251\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 4.80972 8.33068i 0.178016 0.308332i
\(731\) 9.87120 0.365099
\(732\) 0 0
\(733\) −38.5261 −1.42299 −0.711496 0.702690i \(-0.751982\pi\)
−0.711496 + 0.702690i \(0.751982\pi\)
\(734\) 33.7709 + 58.4929i 1.24651 + 2.15901i
\(735\) 0 0
\(736\) −0.0737345 + 0.127712i −0.00271789 + 0.00470752i
\(737\) −35.7039 + 61.8409i −1.31517 + 2.27794i
\(738\) 0 0
\(739\) −22.5620 39.0785i −0.829955 1.43752i −0.898073 0.439847i \(-0.855033\pi\)
0.0681179 0.997677i \(-0.478301\pi\)
\(740\) 9.36186 + 16.2152i 0.344149 + 0.596084i
\(741\) 0 0
\(742\) 0 0
\(743\) 4.74338 + 8.21577i 0.174018 + 0.301407i 0.939821 0.341668i \(-0.110992\pi\)
−0.765803 + 0.643075i \(0.777658\pi\)
\(744\) 0 0
\(745\) −35.1268 −1.28695
\(746\) −20.0869 34.7915i −0.735432 1.27381i
\(747\) 0 0
\(748\) 17.3126 0.633013
\(749\) 0 0
\(750\) 0 0
\(751\) −9.83190 −0.358771 −0.179386 0.983779i \(-0.557411\pi\)
−0.179386 + 0.983779i \(0.557411\pi\)
\(752\) 26.3157 45.5800i 0.959633 1.66213i
\(753\) 0 0
\(754\) −3.02704 5.24299i −0.110238 0.190938i
\(755\) −25.7496 −0.937124
\(756\) 0 0
\(757\) −41.8171 −1.51987 −0.759934 0.650000i \(-0.774769\pi\)
−0.759934 + 0.650000i \(0.774769\pi\)
\(758\) −14.8078 25.6478i −0.537843 0.931571i
\(759\) 0 0
\(760\) 26.5708 46.0220i 0.963825 1.66939i
\(761\) 22.9794 0.833001 0.416501 0.909135i \(-0.363256\pi\)
0.416501 + 0.909135i \(0.363256\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 2.84494 0.102926
\(765\) 0 0
\(766\) 15.2989 + 26.4985i 0.552773 + 0.957430i
\(767\) 2.72665 0.0984538
\(768\) 0 0
\(769\) 3.04329 + 5.27113i 0.109744 + 0.190082i 0.915666 0.401939i \(-0.131664\pi\)
−0.805923 + 0.592021i \(0.798330\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −24.6175 42.6388i −0.886003 1.53460i
\(773\) 20.9107 + 36.2184i 0.752105 + 1.30268i 0.946801 + 0.321821i \(0.104295\pi\)
−0.194695 + 0.980864i \(0.562372\pi\)
\(774\) 0 0
\(775\) 2.00933 3.48027i 0.0721774 0.125015i
\(776\) −29.0349 + 50.2899i −1.04229 + 1.80530i
\(777\) 0 0
\(778\) 25.3442 + 43.8974i 0.908632 + 1.57380i
\(779\) −25.9722 −0.930550
\(780\) 0 0
\(781\) 14.7778 0.528792
\(782\) 0.318097 0.550960i 0.0113751 0.0197023i
\(783\) 0 0
\(784\) 0 0
\(785\) −7.85087 + 13.5981i −0.280210 + 0.485337i
\(786\) 0 0
\(787\) 16.1460 27.9657i 0.575543 0.996870i −0.420439 0.907321i \(-0.638124\pi\)
0.995982 0.0895491i \(-0.0285426\pi\)
\(788\) −33.2652 + 57.6170i −1.18502 + 2.05252i
\(789\) 0 0
\(790\) 46.9327 81.2898i 1.66979 2.89216i
\(791\) 0 0
\(792\) 0 0
\(793\) 1.13667 1.96878i 0.0403644 0.0699133i
\(794\) 58.1593 2.06400
\(795\) 0 0
\(796\) −92.0521 −3.26270
\(797\) −23.2829 40.3271i −0.824722 1.42846i −0.902132 0.431461i \(-0.857998\pi\)
0.0774101 0.996999i \(-0.475335\pi\)
\(798\) 0 0
\(799\) −5.75223 + 9.96316i −0.203499 + 0.352471i
\(800\) −0.465761 + 0.806721i −0.0164671 + 0.0285219i
\(801\) 0 0
\(802\) −3.15486 5.46438i −0.111402 0.192954i
\(803\) 3.40263 + 5.89352i 0.120076 + 0.207978i
\(804\) 0 0
\(805\) 0 0
\(806\) −2.86333 4.95943i −0.100856 0.174688i
\(807\) 0 0
\(808\) −18.5979 −0.654270
\(809\) −5.40116 9.35509i −0.189895 0.328908i 0.755320 0.655356i \(-0.227481\pi\)
−0.945215 + 0.326448i \(0.894148\pi\)
\(810\) 0 0
\(811\) −5.58307 −0.196048 −0.0980240 0.995184i \(-0.531252\pi\)
−0.0980240 + 0.995184i \(0.531252\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −19.7807 −0.693315
\(815\) 23.1050 40.0191i 0.809335 1.40181i
\(816\) 0 0
\(817\) 21.1534 + 36.6388i 0.740064 + 1.28183i
\(818\) 84.4556 2.95292
\(819\) 0 0
\(820\) 67.3609 2.35234
\(821\) −15.8940 27.5292i −0.554703 0.960774i −0.997927 0.0643630i \(-0.979498\pi\)
0.443223 0.896411i \(-0.353835\pi\)
\(822\) 0 0
\(823\) 18.0000 31.1769i 0.627441 1.08676i −0.360623 0.932712i \(-0.617436\pi\)
0.988063 0.154047i \(-0.0492308\pi\)
\(824\) 49.1593 1.71255
\(825\) 0 0
\(826\) 0 0
\(827\) −15.9224 −0.553675 −0.276837 0.960917i \(-0.589286\pi\)
−0.276837 + 0.960917i \(0.589286\pi\)
\(828\) 0 0
\(829\) 17.7360 + 30.7196i 0.615996 + 1.06694i 0.990209 + 0.139594i \(0.0445797\pi\)
−0.374213 + 0.927343i \(0.622087\pi\)
\(830\) 6.03638 0.209526
\(831\) 0 0
\(832\) −3.66372 6.34574i −0.127016 0.219999i
\(833\) 0 0
\(834\) 0 0
\(835\) −10.9808 19.0194i −0.380007 0.658192i
\(836\) 37.1000 + 64.2591i 1.28313 + 2.22245i
\(837\) 0 0
\(838\) −4.99115 + 8.64492i −0.172416 + 0.298634i
\(839\) 27.3391 47.3527i 0.943850 1.63480i 0.185814 0.982585i \(-0.440508\pi\)
0.758037 0.652212i \(-0.226159\pi\)
\(840\) 0 0
\(841\) 11.4730 + 19.8717i 0.395619 + 0.685233i
\(842\) −51.8401 −1.78653
\(843\) 0 0
\(844\) 18.4926 0.636542
\(845\) −15.5615 + 26.9533i −0.535331 + 0.927221i
\(846\) 0 0
\(847\) 0 0
\(848\) −13.5737 + 23.5104i −0.466124 + 0.807350i
\(849\) 0 0
\(850\) 2.00933 3.48027i 0.0689196 0.119372i
\(851\) −0.243379 + 0.421545i −0.00834292 + 0.0144504i
\(852\) 0 0
\(853\) −1.09884 + 1.90324i −0.0376234 + 0.0651656i −0.884224 0.467063i \(-0.845312\pi\)
0.846601 + 0.532229i \(0.178645\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.47296 + 6.01534i −0.118703 + 0.205600i
\(857\) −15.7765 −0.538914 −0.269457 0.963012i \(-0.586844\pi\)
−0.269457 + 0.963012i \(0.586844\pi\)
\(858\) 0 0
\(859\) −5.57626 −0.190260 −0.0951298 0.995465i \(-0.530327\pi\)
−0.0951298 + 0.995465i \(0.530327\pi\)
\(860\) −54.8630 95.0255i −1.87081 3.24034i
\(861\) 0 0
\(862\) 27.8264 48.1968i 0.947773 1.64159i
\(863\) 11.5634 20.0284i 0.393623 0.681776i −0.599301 0.800524i \(-0.704555\pi\)
0.992924 + 0.118748i \(0.0378881\pi\)
\(864\) 0 0
\(865\) 22.5079 + 38.9848i 0.765291 + 1.32552i
\(866\) 2.97462 + 5.15218i 0.101082 + 0.175078i
\(867\) 0 0
\(868\) 0 0
\(869\) 33.2024 + 57.5083i 1.12631 + 1.95083i
\(870\) 0 0
\(871\) 15.8171 0.535942
\(872\) 8.58998 + 14.8783i 0.290893 + 0.503842i
\(873\) 0 0
\(874\) 2.72665 0.0922304
\(875\) 0 0
\(876\) 0 0
\(877\) 3.92528 0.132547 0.0662737 0.997801i \(-0.478889\pi\)
0.0662737 + 0.997801i \(0.478889\pi\)
\(878\) −28.8982 + 50.0532i −0.975268 + 1.68921i
\(879\) 0 0
\(880\) −25.3348 43.8812i −0.854037 1.47923i
\(881\) 27.1986 0.916345 0.458173 0.888863i \(-0.348504\pi\)
0.458173 + 0.888863i \(0.348504\pi\)
\(882\) 0 0
\(883\) 8.21341 0.276403 0.138202 0.990404i \(-0.455868\pi\)
0.138202 + 0.990404i \(0.455868\pi\)
\(884\) −1.91741 3.32105i −0.0644895 0.111699i
\(885\) 0 0
\(886\) −16.5074 + 28.5916i −0.554577 + 0.960555i
\(887\) −6.48114 −0.217615 −0.108808 0.994063i \(-0.534703\pi\)
−0.108808 + 0.994063i \(0.534703\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 91.6169 3.07101
\(891\) 0 0
\(892\) 27.0093 + 46.7815i 0.904339 + 1.56636i
\(893\) −49.3068 −1.64999
\(894\) 0 0
\(895\) 14.7178 + 25.4920i 0.491962 + 0.852103i
\(896\) 0 0
\(897\) 0 0
\(898\) −11.2719 19.5235i −0.376148 0.651507i
\(899\) −2.86333 4.95943i −0.0954973 0.165406i
\(900\) 0 0
\(901\) 2.96703 5.13904i 0.0988461 0.171206i
\(902\) −35.5818 + 61.6295i −1.18474 + 2.05204i
\(903\) 0 0
\(904\) 26.2527 + 45.4710i 0.873152 + 1.51234i
\(905\) 56.7706 1.88712
\(906\) 0 0
\(907\) 10.1288 0.336321 0.168161 0.985760i \(-0.446217\pi\)
0.168161 + 0.985760i \(0.446217\pi\)
\(908\) −2.80039 + 4.85041i −0.0929341 + 0.160967i
\(909\) 0 0
\(910\) 0 0
\(911\) 22.9612 39.7699i 0.760738 1.31764i −0.181733 0.983348i \(-0.558171\pi\)
0.942471 0.334289i \(-0.108496\pi\)
\(912\) 0 0
\(913\) −2.13521 + 3.69829i −0.0706652 + 0.122396i
\(914\) −10.8473 + 18.7880i −0.358796 + 0.621453i
\(915\) 0 0
\(916\) −36.4449 + 63.1245i −1.20417 + 2.08569i
\(917\) 0 0
\(918\) 0 0
\(919\) 2.46216 4.26459i 0.0812192 0.140676i −0.822555 0.568686i \(-0.807452\pi\)
0.903774 + 0.428010i \(0.140785\pi\)
\(920\) −3.58307 −0.118130
\(921\) 0 0
\(922\) −13.9243 −0.458573
\(923\) −1.63667 2.83480i −0.0538718 0.0933086i
\(924\) 0 0
\(925\) −1.53736 + 2.66278i −0.0505481 + 0.0875518i
\(926\) −19.3478 + 33.5113i −0.635807 + 1.10125i
\(927\) 0 0
\(928\) 0.663715 + 1.14959i 0.0217875 + 0.0377371i
\(929\) −0.00379324 0.00657009i −0.000124452 0.000215558i 0.865963 0.500108i \(-0.166706\pi\)
−0.866088 + 0.499892i \(0.833373\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −38.4779 66.6457i −1.26039 2.18305i
\(933\) 0 0
\(934\) −54.1239 −1.77099
\(935\) 5.53784 + 9.59182i 0.181107 + 0.313686i
\(936\) 0 0
\(937\) −21.1623 −0.691341 −0.345670 0.938356i \(-0.612348\pi\)
−0.345670 + 0.938356i \(0.612348\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 127.881 4.17102
\(941\) −2.27908 + 3.94748i −0.0742959 + 0.128684i −0.900780 0.434276i \(-0.857004\pi\)
0.826484 + 0.562960i \(0.190338\pi\)
\(942\) 0 0
\(943\) 0.875585 + 1.51656i 0.0285130 + 0.0493859i
\(944\) −11.7994 −0.384038
\(945\) 0 0
\(946\) 115.920 3.76890
\(947\) 6.86760 + 11.8950i 0.223167 + 0.386537i 0.955768 0.294122i \(-0.0950271\pi\)
−0.732601 + 0.680658i \(0.761694\pi\)
\(948\) 0 0
\(949\) 0.753696 1.30544i 0.0244660 0.0423764i
\(950\) 17.2235 0.558805
\(951\) 0 0
\(952\) 0 0
\(953\) −8.80699 −0.285286 −0.142643 0.989774i \(-0.545560\pi\)
−0.142643 + 0.989774i \(0.545560\pi\)
\(954\) 0 0
\(955\) 0.910019 + 1.57620i 0.0294475 + 0.0510046i
\(956\) −19.8319 −0.641409
\(957\) 0 0
\(958\) −30.7257 53.2184i −0.992701 1.71941i
\(959\) 0 0
\(960\) 0 0
\(961\) 12.7915 + 22.1556i 0.412630 + 0.714696i
\(962\) 2.19076 + 3.79450i 0.0706329 + 0.122340i
\(963\) 0 0
\(964\) −53.0261 + 91.8438i −1.70785 + 2.95809i
\(965\) 15.7489 27.2779i 0.506976 0.878108i
\(966\) 0 0
\(967\) −19.1642 33.1934i −0.616279 1.06743i −0.990159 0.139949i \(-0.955306\pi\)
0.373880 0.927477i \(-0.378027\pi\)
\(968\) 47.4150 1.52397
\(969\) 0 0
\(970\) −73.3216 −2.35421
\(971\) 15.5093 26.8630i 0.497718 0.862073i −0.502278 0.864706i \(-0.667505\pi\)
0.999997 + 0.00263281i \(0.000838049\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 21.6498 37.4986i 0.693704 1.20153i
\(975\) 0 0
\(976\) −4.91887 + 8.51974i −0.157449 + 0.272710i
\(977\) −26.3712 + 45.6763i −0.843689 + 1.46131i 0.0430652 + 0.999072i \(0.486288\pi\)
−0.886755 + 0.462241i \(0.847046\pi\)
\(978\) 0 0
\(979\) −32.4071 + 56.1307i −1.03574 + 1.79395i
\(980\) 0 0
\(981\) 0 0
\(982\) 16.9715 29.3955i 0.541582 0.938048i
\(983\) −18.3029 −0.583772 −0.291886 0.956453i \(-0.594283\pi\)
−0.291886 + 0.956453i \(0.594283\pi\)
\(984\) 0 0
\(985\) −42.5624 −1.35615
\(986\) −2.86333 4.95943i −0.0911869 0.157940i
\(987\) 0 0
\(988\) 8.21780 14.2336i 0.261443 0.452833i
\(989\) 1.42627 2.47036i 0.0453526 0.0785530i
\(990\) 0 0
\(991\) 6.30039 + 10.9126i 0.200138 + 0.346650i 0.948573 0.316559i \(-0.102527\pi\)
−0.748434 + 0.663209i \(0.769194\pi\)
\(992\) 0.627819 + 1.08741i 0.0199333 + 0.0345254i
\(993\) 0 0
\(994\) 0 0
\(995\) −29.4449 51.0001i −0.933467 1.61681i
\(996\) 0 0
\(997\) −11.7424 −0.371885 −0.185943 0.982561i \(-0.559534\pi\)
−0.185943 + 0.982561i \(0.559534\pi\)
\(998\) −16.1010 27.8877i −0.509667 0.882770i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.g.b.667.1 6
3.2 odd 2 441.2.g.d.79.3 6
7.2 even 3 1323.2.f.c.883.1 6
7.3 odd 6 1323.2.h.d.802.3 6
7.4 even 3 1323.2.h.e.802.3 6
7.5 odd 6 189.2.f.a.127.1 6
7.6 odd 2 1323.2.g.c.667.1 6
9.4 even 3 1323.2.h.e.226.3 6
9.5 odd 6 441.2.h.b.373.1 6
21.2 odd 6 441.2.f.d.295.3 6
21.5 even 6 63.2.f.b.43.3 yes 6
21.11 odd 6 441.2.h.b.214.1 6
21.17 even 6 441.2.h.c.214.1 6
21.20 even 2 441.2.g.e.79.3 6
28.19 even 6 3024.2.r.g.2017.2 6
63.2 odd 6 3969.2.a.m.1.1 3
63.4 even 3 inner 1323.2.g.b.361.1 6
63.5 even 6 63.2.f.b.22.3 6
63.13 odd 6 1323.2.h.d.226.3 6
63.16 even 3 3969.2.a.p.1.3 3
63.23 odd 6 441.2.f.d.148.3 6
63.31 odd 6 1323.2.g.c.361.1 6
63.32 odd 6 441.2.g.d.67.3 6
63.40 odd 6 189.2.f.a.64.1 6
63.41 even 6 441.2.h.c.373.1 6
63.47 even 6 567.2.a.d.1.1 3
63.58 even 3 1323.2.f.c.442.1 6
63.59 even 6 441.2.g.e.67.3 6
63.61 odd 6 567.2.a.g.1.3 3
84.47 odd 6 1008.2.r.k.673.3 6
252.47 odd 6 9072.2.a.bq.1.2 3
252.103 even 6 3024.2.r.g.1009.2 6
252.131 odd 6 1008.2.r.k.337.3 6
252.187 even 6 9072.2.a.cd.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.f.b.22.3 6 63.5 even 6
63.2.f.b.43.3 yes 6 21.5 even 6
189.2.f.a.64.1 6 63.40 odd 6
189.2.f.a.127.1 6 7.5 odd 6
441.2.f.d.148.3 6 63.23 odd 6
441.2.f.d.295.3 6 21.2 odd 6
441.2.g.d.67.3 6 63.32 odd 6
441.2.g.d.79.3 6 3.2 odd 2
441.2.g.e.67.3 6 63.59 even 6
441.2.g.e.79.3 6 21.20 even 2
441.2.h.b.214.1 6 21.11 odd 6
441.2.h.b.373.1 6 9.5 odd 6
441.2.h.c.214.1 6 21.17 even 6
441.2.h.c.373.1 6 63.41 even 6
567.2.a.d.1.1 3 63.47 even 6
567.2.a.g.1.3 3 63.61 odd 6
1008.2.r.k.337.3 6 252.131 odd 6
1008.2.r.k.673.3 6 84.47 odd 6
1323.2.f.c.442.1 6 63.58 even 3
1323.2.f.c.883.1 6 7.2 even 3
1323.2.g.b.361.1 6 63.4 even 3 inner
1323.2.g.b.667.1 6 1.1 even 1 trivial
1323.2.g.c.361.1 6 63.31 odd 6
1323.2.g.c.667.1 6 7.6 odd 2
1323.2.h.d.226.3 6 63.13 odd 6
1323.2.h.d.802.3 6 7.3 odd 6
1323.2.h.e.226.3 6 9.4 even 3
1323.2.h.e.802.3 6 7.4 even 3
3024.2.r.g.1009.2 6 252.103 even 6
3024.2.r.g.2017.2 6 28.19 even 6
3969.2.a.m.1.1 3 63.2 odd 6
3969.2.a.p.1.3 3 63.16 even 3
9072.2.a.bq.1.2 3 252.47 odd 6
9072.2.a.cd.1.2 3 252.187 even 6