Properties

Label 1323.4.a.bj.1.3
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 43x^{5} + 10x^{4} + 513x^{3} + 258x^{2} - 936x - 504 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.63185\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.63185 q^{2} -5.33705 q^{4} +12.3790 q^{5} +21.7641 q^{8} -20.2007 q^{10} -29.0051 q^{11} -52.9884 q^{13} +7.18051 q^{16} -122.047 q^{17} +141.105 q^{19} -66.0672 q^{20} +47.3321 q^{22} +60.2992 q^{23} +28.2389 q^{25} +86.4693 q^{26} -126.997 q^{29} +150.849 q^{31} -185.831 q^{32} +199.163 q^{34} -341.581 q^{37} -230.262 q^{38} +269.418 q^{40} +292.082 q^{41} +290.696 q^{43} +154.802 q^{44} -98.3995 q^{46} +284.082 q^{47} -46.0818 q^{50} +282.802 q^{52} +387.993 q^{53} -359.053 q^{55} +207.241 q^{58} +269.312 q^{59} -239.606 q^{61} -246.163 q^{62} +245.804 q^{64} -655.941 q^{65} -712.250 q^{67} +651.370 q^{68} +270.507 q^{71} +146.083 q^{73} +557.411 q^{74} -753.083 q^{76} -652.792 q^{79} +88.8874 q^{80} -476.636 q^{82} -35.0239 q^{83} -1510.81 q^{85} -474.373 q^{86} -631.271 q^{88} -1394.56 q^{89} -321.820 q^{92} -463.581 q^{94} +1746.73 q^{95} +805.822 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + q^{2} + 31 q^{4} - q^{5} + 84 q^{8} + 12 q^{10} + 98 q^{11} - 124 q^{13} + 139 q^{16} + 30 q^{17} + 182 q^{19} - 110 q^{20} + 276 q^{22} - 6 q^{23} + 388 q^{25} - 245 q^{26} + 323 q^{29} + 26 q^{31}+ \cdots - 3730 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.63185 −0.576948 −0.288474 0.957488i \(-0.593148\pi\)
−0.288474 + 0.957488i \(0.593148\pi\)
\(3\) 0 0
\(4\) −5.33705 −0.667131
\(5\) 12.3790 1.10721 0.553604 0.832780i \(-0.313252\pi\)
0.553604 + 0.832780i \(0.313252\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 21.7641 0.961848
\(9\) 0 0
\(10\) −20.2007 −0.638802
\(11\) −29.0051 −0.795033 −0.397517 0.917595i \(-0.630128\pi\)
−0.397517 + 0.917595i \(0.630128\pi\)
\(12\) 0 0
\(13\) −52.9884 −1.13049 −0.565243 0.824924i \(-0.691218\pi\)
−0.565243 + 0.824924i \(0.691218\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 7.18051 0.112196
\(17\) −122.047 −1.74122 −0.870609 0.491975i \(-0.836275\pi\)
−0.870609 + 0.491975i \(0.836275\pi\)
\(18\) 0 0
\(19\) 141.105 1.70377 0.851885 0.523728i \(-0.175459\pi\)
0.851885 + 0.523728i \(0.175459\pi\)
\(20\) −66.0672 −0.738654
\(21\) 0 0
\(22\) 47.3321 0.458693
\(23\) 60.2992 0.546663 0.273332 0.961920i \(-0.411874\pi\)
0.273332 + 0.961920i \(0.411874\pi\)
\(24\) 0 0
\(25\) 28.2389 0.225912
\(26\) 86.4693 0.652232
\(27\) 0 0
\(28\) 0 0
\(29\) −126.997 −0.813201 −0.406601 0.913606i \(-0.633286\pi\)
−0.406601 + 0.913606i \(0.633286\pi\)
\(30\) 0 0
\(31\) 150.849 0.873975 0.436988 0.899468i \(-0.356045\pi\)
0.436988 + 0.899468i \(0.356045\pi\)
\(32\) −185.831 −1.02658
\(33\) 0 0
\(34\) 199.163 1.00459
\(35\) 0 0
\(36\) 0 0
\(37\) −341.581 −1.51772 −0.758860 0.651254i \(-0.774243\pi\)
−0.758860 + 0.651254i \(0.774243\pi\)
\(38\) −230.262 −0.982987
\(39\) 0 0
\(40\) 269.418 1.06497
\(41\) 292.082 1.11258 0.556288 0.830990i \(-0.312225\pi\)
0.556288 + 0.830990i \(0.312225\pi\)
\(42\) 0 0
\(43\) 290.696 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(44\) 154.802 0.530392
\(45\) 0 0
\(46\) −98.3995 −0.315396
\(47\) 284.082 0.881652 0.440826 0.897593i \(-0.354686\pi\)
0.440826 + 0.897593i \(0.354686\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −46.0818 −0.130339
\(51\) 0 0
\(52\) 282.802 0.754183
\(53\) 387.993 1.00556 0.502782 0.864413i \(-0.332310\pi\)
0.502782 + 0.864413i \(0.332310\pi\)
\(54\) 0 0
\(55\) −359.053 −0.880268
\(56\) 0 0
\(57\) 0 0
\(58\) 207.241 0.469175
\(59\) 269.312 0.594261 0.297131 0.954837i \(-0.403970\pi\)
0.297131 + 0.954837i \(0.403970\pi\)
\(60\) 0 0
\(61\) −239.606 −0.502925 −0.251462 0.967867i \(-0.580911\pi\)
−0.251462 + 0.967867i \(0.580911\pi\)
\(62\) −246.163 −0.504238
\(63\) 0 0
\(64\) 245.804 0.480087
\(65\) −655.941 −1.25168
\(66\) 0 0
\(67\) −712.250 −1.29873 −0.649367 0.760475i \(-0.724966\pi\)
−0.649367 + 0.760475i \(0.724966\pi\)
\(68\) 651.370 1.16162
\(69\) 0 0
\(70\) 0 0
\(71\) 270.507 0.452160 0.226080 0.974109i \(-0.427409\pi\)
0.226080 + 0.974109i \(0.427409\pi\)
\(72\) 0 0
\(73\) 146.083 0.234215 0.117108 0.993119i \(-0.462638\pi\)
0.117108 + 0.993119i \(0.462638\pi\)
\(74\) 557.411 0.875645
\(75\) 0 0
\(76\) −753.083 −1.13664
\(77\) 0 0
\(78\) 0 0
\(79\) −652.792 −0.929681 −0.464841 0.885394i \(-0.653888\pi\)
−0.464841 + 0.885394i \(0.653888\pi\)
\(80\) 88.8874 0.124224
\(81\) 0 0
\(82\) −476.636 −0.641898
\(83\) −35.0239 −0.0463178 −0.0231589 0.999732i \(-0.507372\pi\)
−0.0231589 + 0.999732i \(0.507372\pi\)
\(84\) 0 0
\(85\) −1510.81 −1.92789
\(86\) −474.373 −0.594802
\(87\) 0 0
\(88\) −631.271 −0.764701
\(89\) −1394.56 −1.66093 −0.830465 0.557071i \(-0.811925\pi\)
−0.830465 + 0.557071i \(0.811925\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −321.820 −0.364696
\(93\) 0 0
\(94\) −463.581 −0.508667
\(95\) 1746.73 1.88643
\(96\) 0 0
\(97\) 805.822 0.843493 0.421746 0.906714i \(-0.361417\pi\)
0.421746 + 0.906714i \(0.361417\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −150.713 −0.150713
\(101\) −1014.81 −0.999778 −0.499889 0.866089i \(-0.666626\pi\)
−0.499889 + 0.866089i \(0.666626\pi\)
\(102\) 0 0
\(103\) 1039.39 0.994310 0.497155 0.867662i \(-0.334378\pi\)
0.497155 + 0.867662i \(0.334378\pi\)
\(104\) −1153.25 −1.08736
\(105\) 0 0
\(106\) −633.147 −0.580158
\(107\) 608.338 0.549628 0.274814 0.961497i \(-0.411384\pi\)
0.274814 + 0.961497i \(0.411384\pi\)
\(108\) 0 0
\(109\) 1077.71 0.947029 0.473514 0.880786i \(-0.342985\pi\)
0.473514 + 0.880786i \(0.342985\pi\)
\(110\) 585.923 0.507869
\(111\) 0 0
\(112\) 0 0
\(113\) 2064.78 1.71893 0.859463 0.511199i \(-0.170798\pi\)
0.859463 + 0.511199i \(0.170798\pi\)
\(114\) 0 0
\(115\) 746.442 0.605270
\(116\) 677.792 0.542512
\(117\) 0 0
\(118\) −439.478 −0.342858
\(119\) 0 0
\(120\) 0 0
\(121\) −489.704 −0.367922
\(122\) 391.002 0.290161
\(123\) 0 0
\(124\) −805.087 −0.583056
\(125\) −1197.80 −0.857078
\(126\) 0 0
\(127\) −130.430 −0.0911320 −0.0455660 0.998961i \(-0.514509\pi\)
−0.0455660 + 0.998961i \(0.514509\pi\)
\(128\) 1085.53 0.749594
\(129\) 0 0
\(130\) 1070.40 0.722157
\(131\) 1905.07 1.27058 0.635292 0.772272i \(-0.280880\pi\)
0.635292 + 0.772272i \(0.280880\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1162.29 0.749302
\(135\) 0 0
\(136\) −2656.24 −1.67479
\(137\) −559.298 −0.348789 −0.174394 0.984676i \(-0.555797\pi\)
−0.174394 + 0.984676i \(0.555797\pi\)
\(138\) 0 0
\(139\) −699.079 −0.426583 −0.213292 0.976989i \(-0.568418\pi\)
−0.213292 + 0.976989i \(0.568418\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −441.429 −0.260872
\(143\) 1536.93 0.898775
\(144\) 0 0
\(145\) −1572.10 −0.900384
\(146\) −238.386 −0.135130
\(147\) 0 0
\(148\) 1823.04 1.01252
\(149\) 1614.90 0.887904 0.443952 0.896050i \(-0.353576\pi\)
0.443952 + 0.896050i \(0.353576\pi\)
\(150\) 0 0
\(151\) −3.59271 −0.00193623 −0.000968116 1.00000i \(-0.500308\pi\)
−0.000968116 1.00000i \(0.500308\pi\)
\(152\) 3071.02 1.63877
\(153\) 0 0
\(154\) 0 0
\(155\) 1867.35 0.967673
\(156\) 0 0
\(157\) 697.746 0.354689 0.177345 0.984149i \(-0.443249\pi\)
0.177345 + 0.984149i \(0.443249\pi\)
\(158\) 1065.26 0.536377
\(159\) 0 0
\(160\) −2300.39 −1.13664
\(161\) 0 0
\(162\) 0 0
\(163\) 145.908 0.0701130 0.0350565 0.999385i \(-0.488839\pi\)
0.0350565 + 0.999385i \(0.488839\pi\)
\(164\) −1558.86 −0.742234
\(165\) 0 0
\(166\) 57.1539 0.0267229
\(167\) 1816.18 0.841556 0.420778 0.907164i \(-0.361757\pi\)
0.420778 + 0.907164i \(0.361757\pi\)
\(168\) 0 0
\(169\) 610.766 0.278000
\(170\) 2465.43 1.11229
\(171\) 0 0
\(172\) −1551.46 −0.687776
\(173\) 2424.68 1.06558 0.532790 0.846247i \(-0.321144\pi\)
0.532790 + 0.846247i \(0.321144\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −208.272 −0.0891992
\(177\) 0 0
\(178\) 2275.71 0.958270
\(179\) 2835.36 1.18394 0.591969 0.805961i \(-0.298351\pi\)
0.591969 + 0.805961i \(0.298351\pi\)
\(180\) 0 0
\(181\) −219.212 −0.0900214 −0.0450107 0.998987i \(-0.514332\pi\)
−0.0450107 + 0.998987i \(0.514332\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1312.36 0.525807
\(185\) −4228.43 −1.68043
\(186\) 0 0
\(187\) 3539.98 1.38433
\(188\) −1516.16 −0.588178
\(189\) 0 0
\(190\) −2850.41 −1.08837
\(191\) 223.424 0.0846410 0.0423205 0.999104i \(-0.486525\pi\)
0.0423205 + 0.999104i \(0.486525\pi\)
\(192\) 0 0
\(193\) −352.158 −0.131342 −0.0656708 0.997841i \(-0.520919\pi\)
−0.0656708 + 0.997841i \(0.520919\pi\)
\(194\) −1314.98 −0.486651
\(195\) 0 0
\(196\) 0 0
\(197\) 5347.45 1.93396 0.966981 0.254850i \(-0.0820261\pi\)
0.966981 + 0.254850i \(0.0820261\pi\)
\(198\) 0 0
\(199\) 582.228 0.207402 0.103701 0.994609i \(-0.466931\pi\)
0.103701 + 0.994609i \(0.466931\pi\)
\(200\) 614.596 0.217292
\(201\) 0 0
\(202\) 1656.03 0.576820
\(203\) 0 0
\(204\) 0 0
\(205\) 3615.68 1.23185
\(206\) −1696.13 −0.573665
\(207\) 0 0
\(208\) −380.484 −0.126836
\(209\) −4092.76 −1.35455
\(210\) 0 0
\(211\) 5467.96 1.78403 0.892014 0.452008i \(-0.149292\pi\)
0.892014 + 0.452008i \(0.149292\pi\)
\(212\) −2070.74 −0.670843
\(213\) 0 0
\(214\) −992.719 −0.317107
\(215\) 3598.51 1.14147
\(216\) 0 0
\(217\) 0 0
\(218\) −1758.67 −0.546386
\(219\) 0 0
\(220\) 1916.29 0.587254
\(221\) 6467.06 1.96842
\(222\) 0 0
\(223\) 4368.05 1.31169 0.655844 0.754897i \(-0.272313\pi\)
0.655844 + 0.754897i \(0.272313\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −3369.43 −0.991730
\(227\) 636.952 0.186238 0.0931189 0.995655i \(-0.470316\pi\)
0.0931189 + 0.995655i \(0.470316\pi\)
\(228\) 0 0
\(229\) 983.495 0.283804 0.141902 0.989881i \(-0.454678\pi\)
0.141902 + 0.989881i \(0.454678\pi\)
\(230\) −1218.09 −0.349209
\(231\) 0 0
\(232\) −2763.99 −0.782176
\(233\) −1677.37 −0.471623 −0.235811 0.971799i \(-0.575775\pi\)
−0.235811 + 0.971799i \(0.575775\pi\)
\(234\) 0 0
\(235\) 3516.64 0.976173
\(236\) −1437.33 −0.396450
\(237\) 0 0
\(238\) 0 0
\(239\) −2705.18 −0.732148 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(240\) 0 0
\(241\) −2140.73 −0.572185 −0.286092 0.958202i \(-0.592356\pi\)
−0.286092 + 0.958202i \(0.592356\pi\)
\(242\) 799.126 0.212272
\(243\) 0 0
\(244\) 1278.79 0.335517
\(245\) 0 0
\(246\) 0 0
\(247\) −7476.91 −1.92609
\(248\) 3283.09 0.840631
\(249\) 0 0
\(250\) 1954.64 0.494489
\(251\) 918.484 0.230973 0.115486 0.993309i \(-0.463157\pi\)
0.115486 + 0.993309i \(0.463157\pi\)
\(252\) 0 0
\(253\) −1748.98 −0.434616
\(254\) 212.842 0.0525784
\(255\) 0 0
\(256\) −3737.86 −0.912563
\(257\) 4232.18 1.02722 0.513611 0.858023i \(-0.328308\pi\)
0.513611 + 0.858023i \(0.328308\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 3500.79 0.835038
\(261\) 0 0
\(262\) −3108.79 −0.733060
\(263\) 5825.05 1.36573 0.682867 0.730542i \(-0.260733\pi\)
0.682867 + 0.730542i \(0.260733\pi\)
\(264\) 0 0
\(265\) 4802.95 1.11337
\(266\) 0 0
\(267\) 0 0
\(268\) 3801.31 0.866426
\(269\) −2592.23 −0.587550 −0.293775 0.955875i \(-0.594912\pi\)
−0.293775 + 0.955875i \(0.594912\pi\)
\(270\) 0 0
\(271\) −3709.89 −0.831586 −0.415793 0.909459i \(-0.636496\pi\)
−0.415793 + 0.909459i \(0.636496\pi\)
\(272\) −876.359 −0.195357
\(273\) 0 0
\(274\) 912.694 0.201233
\(275\) −819.073 −0.179607
\(276\) 0 0
\(277\) −323.380 −0.0701445 −0.0350722 0.999385i \(-0.511166\pi\)
−0.0350722 + 0.999385i \(0.511166\pi\)
\(278\) 1140.79 0.246116
\(279\) 0 0
\(280\) 0 0
\(281\) 4990.53 1.05947 0.529733 0.848165i \(-0.322292\pi\)
0.529733 + 0.848165i \(0.322292\pi\)
\(282\) 0 0
\(283\) 2458.67 0.516441 0.258221 0.966086i \(-0.416864\pi\)
0.258221 + 0.966086i \(0.416864\pi\)
\(284\) −1443.71 −0.301650
\(285\) 0 0
\(286\) −2508.05 −0.518546
\(287\) 0 0
\(288\) 0 0
\(289\) 9982.43 2.03184
\(290\) 2565.44 0.519474
\(291\) 0 0
\(292\) −779.651 −0.156252
\(293\) 3028.06 0.603758 0.301879 0.953346i \(-0.402386\pi\)
0.301879 + 0.953346i \(0.402386\pi\)
\(294\) 0 0
\(295\) 3333.80 0.657972
\(296\) −7434.22 −1.45982
\(297\) 0 0
\(298\) −2635.28 −0.512274
\(299\) −3195.16 −0.617995
\(300\) 0 0
\(301\) 0 0
\(302\) 5.86279 0.00111710
\(303\) 0 0
\(304\) 1013.20 0.191155
\(305\) −2966.08 −0.556843
\(306\) 0 0
\(307\) −8277.86 −1.53890 −0.769450 0.638707i \(-0.779470\pi\)
−0.769450 + 0.638707i \(0.779470\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3047.25 −0.558297
\(311\) 824.071 0.150253 0.0751267 0.997174i \(-0.476064\pi\)
0.0751267 + 0.997174i \(0.476064\pi\)
\(312\) 0 0
\(313\) −2427.80 −0.438426 −0.219213 0.975677i \(-0.570349\pi\)
−0.219213 + 0.975677i \(0.570349\pi\)
\(314\) −1138.62 −0.204637
\(315\) 0 0
\(316\) 3483.98 0.620219
\(317\) 7970.35 1.41218 0.706088 0.708125i \(-0.250458\pi\)
0.706088 + 0.708125i \(0.250458\pi\)
\(318\) 0 0
\(319\) 3683.58 0.646522
\(320\) 3042.81 0.531556
\(321\) 0 0
\(322\) 0 0
\(323\) −17221.4 −2.96664
\(324\) 0 0
\(325\) −1496.34 −0.255390
\(326\) −238.101 −0.0404515
\(327\) 0 0
\(328\) 6356.92 1.07013
\(329\) 0 0
\(330\) 0 0
\(331\) 2273.66 0.377558 0.188779 0.982020i \(-0.439547\pi\)
0.188779 + 0.982020i \(0.439547\pi\)
\(332\) 186.924 0.0309000
\(333\) 0 0
\(334\) −2963.73 −0.485534
\(335\) −8816.92 −1.43797
\(336\) 0 0
\(337\) 3142.92 0.508030 0.254015 0.967200i \(-0.418249\pi\)
0.254015 + 0.967200i \(0.418249\pi\)
\(338\) −996.681 −0.160391
\(339\) 0 0
\(340\) 8063.29 1.28616
\(341\) −4375.38 −0.694839
\(342\) 0 0
\(343\) 0 0
\(344\) 6326.74 0.991613
\(345\) 0 0
\(346\) −3956.73 −0.614784
\(347\) 8966.74 1.38720 0.693602 0.720358i \(-0.256023\pi\)
0.693602 + 0.720358i \(0.256023\pi\)
\(348\) 0 0
\(349\) −140.981 −0.0216234 −0.0108117 0.999942i \(-0.503442\pi\)
−0.0108117 + 0.999942i \(0.503442\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 5390.03 0.816164
\(353\) −8208.98 −1.23773 −0.618867 0.785496i \(-0.712408\pi\)
−0.618867 + 0.785496i \(0.712408\pi\)
\(354\) 0 0
\(355\) 3348.60 0.500635
\(356\) 7442.82 1.10806
\(357\) 0 0
\(358\) −4626.90 −0.683070
\(359\) 8749.05 1.28623 0.643116 0.765769i \(-0.277641\pi\)
0.643116 + 0.765769i \(0.277641\pi\)
\(360\) 0 0
\(361\) 13051.5 1.90284
\(362\) 357.722 0.0519376
\(363\) 0 0
\(364\) 0 0
\(365\) 1808.36 0.259325
\(366\) 0 0
\(367\) −5917.89 −0.841721 −0.420860 0.907125i \(-0.638272\pi\)
−0.420860 + 0.907125i \(0.638272\pi\)
\(368\) 432.979 0.0613332
\(369\) 0 0
\(370\) 6900.18 0.969522
\(371\) 0 0
\(372\) 0 0
\(373\) 11660.7 1.61868 0.809342 0.587338i \(-0.199824\pi\)
0.809342 + 0.587338i \(0.199824\pi\)
\(374\) −5776.73 −0.798684
\(375\) 0 0
\(376\) 6182.80 0.848015
\(377\) 6729.39 0.919313
\(378\) 0 0
\(379\) −14306.7 −1.93902 −0.969508 0.245060i \(-0.921192\pi\)
−0.969508 + 0.245060i \(0.921192\pi\)
\(380\) −9322.39 −1.25850
\(381\) 0 0
\(382\) −364.596 −0.0488334
\(383\) 10840.5 1.44627 0.723136 0.690705i \(-0.242700\pi\)
0.723136 + 0.690705i \(0.242700\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 574.671 0.0757772
\(387\) 0 0
\(388\) −4300.71 −0.562721
\(389\) −11175.5 −1.45660 −0.728301 0.685257i \(-0.759690\pi\)
−0.728301 + 0.685257i \(0.759690\pi\)
\(390\) 0 0
\(391\) −7359.33 −0.951860
\(392\) 0 0
\(393\) 0 0
\(394\) −8726.27 −1.11579
\(395\) −8080.89 −1.02935
\(396\) 0 0
\(397\) −13077.9 −1.65330 −0.826650 0.562716i \(-0.809756\pi\)
−0.826650 + 0.562716i \(0.809756\pi\)
\(398\) −950.111 −0.119660
\(399\) 0 0
\(400\) 202.770 0.0253463
\(401\) 2733.63 0.340427 0.170213 0.985407i \(-0.445554\pi\)
0.170213 + 0.985407i \(0.445554\pi\)
\(402\) 0 0
\(403\) −7993.22 −0.988017
\(404\) 5416.10 0.666983
\(405\) 0 0
\(406\) 0 0
\(407\) 9907.60 1.20664
\(408\) 0 0
\(409\) 11521.1 1.39286 0.696431 0.717623i \(-0.254770\pi\)
0.696431 + 0.717623i \(0.254770\pi\)
\(410\) −5900.26 −0.710715
\(411\) 0 0
\(412\) −5547.27 −0.663336
\(413\) 0 0
\(414\) 0 0
\(415\) −433.560 −0.0512834
\(416\) 9846.86 1.16053
\(417\) 0 0
\(418\) 6678.78 0.781507
\(419\) −2426.62 −0.282931 −0.141465 0.989943i \(-0.545181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(420\) 0 0
\(421\) 10188.2 1.17943 0.589716 0.807611i \(-0.299240\pi\)
0.589716 + 0.807611i \(0.299240\pi\)
\(422\) −8922.91 −1.02929
\(423\) 0 0
\(424\) 8444.32 0.967199
\(425\) −3446.47 −0.393361
\(426\) 0 0
\(427\) 0 0
\(428\) −3246.73 −0.366674
\(429\) 0 0
\(430\) −5872.25 −0.658570
\(431\) −6780.40 −0.757773 −0.378887 0.925443i \(-0.623693\pi\)
−0.378887 + 0.925443i \(0.623693\pi\)
\(432\) 0 0
\(433\) 6122.85 0.679550 0.339775 0.940507i \(-0.389649\pi\)
0.339775 + 0.940507i \(0.389649\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5751.81 −0.631792
\(437\) 8508.50 0.931389
\(438\) 0 0
\(439\) −15747.5 −1.71204 −0.856022 0.516939i \(-0.827071\pi\)
−0.856022 + 0.516939i \(0.827071\pi\)
\(440\) −7814.48 −0.846684
\(441\) 0 0
\(442\) −10553.3 −1.13568
\(443\) 15063.8 1.61558 0.807789 0.589472i \(-0.200664\pi\)
0.807789 + 0.589472i \(0.200664\pi\)
\(444\) 0 0
\(445\) −17263.2 −1.83900
\(446\) −7128.02 −0.756775
\(447\) 0 0
\(448\) 0 0
\(449\) −175.064 −0.0184004 −0.00920020 0.999958i \(-0.502929\pi\)
−0.00920020 + 0.999958i \(0.502929\pi\)
\(450\) 0 0
\(451\) −8471.88 −0.884535
\(452\) −11019.9 −1.14675
\(453\) 0 0
\(454\) −1039.41 −0.107450
\(455\) 0 0
\(456\) 0 0
\(457\) −12593.5 −1.28905 −0.644527 0.764582i \(-0.722946\pi\)
−0.644527 + 0.764582i \(0.722946\pi\)
\(458\) −1604.92 −0.163740
\(459\) 0 0
\(460\) −3983.80 −0.403795
\(461\) 13781.7 1.39236 0.696182 0.717865i \(-0.254881\pi\)
0.696182 + 0.717865i \(0.254881\pi\)
\(462\) 0 0
\(463\) 8867.45 0.890076 0.445038 0.895512i \(-0.353190\pi\)
0.445038 + 0.895512i \(0.353190\pi\)
\(464\) −911.907 −0.0912376
\(465\) 0 0
\(466\) 2737.22 0.272102
\(467\) −12839.0 −1.27221 −0.636103 0.771604i \(-0.719455\pi\)
−0.636103 + 0.771604i \(0.719455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −5738.65 −0.563201
\(471\) 0 0
\(472\) 5861.34 0.571589
\(473\) −8431.66 −0.819636
\(474\) 0 0
\(475\) 3984.65 0.384902
\(476\) 0 0
\(477\) 0 0
\(478\) 4414.46 0.422411
\(479\) 9955.21 0.949614 0.474807 0.880090i \(-0.342518\pi\)
0.474807 + 0.880090i \(0.342518\pi\)
\(480\) 0 0
\(481\) 18099.8 1.71576
\(482\) 3493.36 0.330121
\(483\) 0 0
\(484\) 2613.58 0.245452
\(485\) 9975.25 0.933923
\(486\) 0 0
\(487\) −16716.0 −1.55539 −0.777693 0.628644i \(-0.783610\pi\)
−0.777693 + 0.628644i \(0.783610\pi\)
\(488\) −5214.82 −0.483737
\(489\) 0 0
\(490\) 0 0
\(491\) −2981.39 −0.274029 −0.137014 0.990569i \(-0.543751\pi\)
−0.137014 + 0.990569i \(0.543751\pi\)
\(492\) 0 0
\(493\) 15499.6 1.41596
\(494\) 12201.2 1.11125
\(495\) 0 0
\(496\) 1083.17 0.0980561
\(497\) 0 0
\(498\) 0 0
\(499\) 8169.47 0.732897 0.366449 0.930438i \(-0.380574\pi\)
0.366449 + 0.930438i \(0.380574\pi\)
\(500\) 6392.73 0.571783
\(501\) 0 0
\(502\) −1498.83 −0.133259
\(503\) −1858.71 −0.164763 −0.0823814 0.996601i \(-0.526253\pi\)
−0.0823814 + 0.996601i \(0.526253\pi\)
\(504\) 0 0
\(505\) −12562.3 −1.10696
\(506\) 2854.09 0.250750
\(507\) 0 0
\(508\) 696.110 0.0607970
\(509\) −14749.0 −1.28436 −0.642179 0.766554i \(-0.721970\pi\)
−0.642179 + 0.766554i \(0.721970\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −2584.58 −0.223093
\(513\) 0 0
\(514\) −6906.30 −0.592653
\(515\) 12866.6 1.10091
\(516\) 0 0
\(517\) −8239.83 −0.700943
\(518\) 0 0
\(519\) 0 0
\(520\) −14276.0 −1.20393
\(521\) 13232.1 1.11268 0.556342 0.830953i \(-0.312204\pi\)
0.556342 + 0.830953i \(0.312204\pi\)
\(522\) 0 0
\(523\) −16100.9 −1.34617 −0.673083 0.739567i \(-0.735031\pi\)
−0.673083 + 0.739567i \(0.735031\pi\)
\(524\) −10167.4 −0.847646
\(525\) 0 0
\(526\) −9505.64 −0.787958
\(527\) −18410.6 −1.52178
\(528\) 0 0
\(529\) −8531.01 −0.701159
\(530\) −7837.71 −0.642356
\(531\) 0 0
\(532\) 0 0
\(533\) −15477.0 −1.25775
\(534\) 0 0
\(535\) 7530.60 0.608553
\(536\) −15501.5 −1.24918
\(537\) 0 0
\(538\) 4230.14 0.338986
\(539\) 0 0
\(540\) 0 0
\(541\) 3622.62 0.287890 0.143945 0.989586i \(-0.454021\pi\)
0.143945 + 0.989586i \(0.454021\pi\)
\(542\) 6054.00 0.479782
\(543\) 0 0
\(544\) 22680.0 1.78750
\(545\) 13341.0 1.04856
\(546\) 0 0
\(547\) 14543.8 1.13683 0.568417 0.822741i \(-0.307556\pi\)
0.568417 + 0.822741i \(0.307556\pi\)
\(548\) 2985.00 0.232688
\(549\) 0 0
\(550\) 1336.61 0.103624
\(551\) −17919.9 −1.38551
\(552\) 0 0
\(553\) 0 0
\(554\) 527.709 0.0404697
\(555\) 0 0
\(556\) 3731.02 0.284587
\(557\) −11533.3 −0.877346 −0.438673 0.898647i \(-0.644551\pi\)
−0.438673 + 0.898647i \(0.644551\pi\)
\(558\) 0 0
\(559\) −15403.5 −1.16547
\(560\) 0 0
\(561\) 0 0
\(562\) −8143.81 −0.611256
\(563\) −276.313 −0.0206842 −0.0103421 0.999947i \(-0.503292\pi\)
−0.0103421 + 0.999947i \(0.503292\pi\)
\(564\) 0 0
\(565\) 25559.9 1.90321
\(566\) −4012.20 −0.297960
\(567\) 0 0
\(568\) 5887.36 0.434909
\(569\) −15729.5 −1.15890 −0.579452 0.815007i \(-0.696733\pi\)
−0.579452 + 0.815007i \(0.696733\pi\)
\(570\) 0 0
\(571\) 7718.30 0.565676 0.282838 0.959168i \(-0.408724\pi\)
0.282838 + 0.959168i \(0.408724\pi\)
\(572\) −8202.69 −0.599601
\(573\) 0 0
\(574\) 0 0
\(575\) 1702.79 0.123498
\(576\) 0 0
\(577\) 15638.4 1.12831 0.564156 0.825668i \(-0.309202\pi\)
0.564156 + 0.825668i \(0.309202\pi\)
\(578\) −16289.9 −1.17227
\(579\) 0 0
\(580\) 8390.37 0.600674
\(581\) 0 0
\(582\) 0 0
\(583\) −11253.8 −0.799457
\(584\) 3179.37 0.225279
\(585\) 0 0
\(586\) −4941.35 −0.348337
\(587\) 14520.1 1.02097 0.510484 0.859888i \(-0.329466\pi\)
0.510484 + 0.859888i \(0.329466\pi\)
\(588\) 0 0
\(589\) 21285.5 1.48905
\(590\) −5440.28 −0.379615
\(591\) 0 0
\(592\) −2452.73 −0.170281
\(593\) −5938.70 −0.411253 −0.205627 0.978631i \(-0.565923\pi\)
−0.205627 + 0.978631i \(0.565923\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −8618.80 −0.592349
\(597\) 0 0
\(598\) 5214.03 0.356551
\(599\) 7264.82 0.495547 0.247774 0.968818i \(-0.420301\pi\)
0.247774 + 0.968818i \(0.420301\pi\)
\(600\) 0 0
\(601\) −1691.27 −0.114789 −0.0573945 0.998352i \(-0.518279\pi\)
−0.0573945 + 0.998352i \(0.518279\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.1745 0.00129172
\(605\) −6062.03 −0.407366
\(606\) 0 0
\(607\) 17410.4 1.16420 0.582099 0.813118i \(-0.302232\pi\)
0.582099 + 0.813118i \(0.302232\pi\)
\(608\) −26221.6 −1.74905
\(609\) 0 0
\(610\) 4840.21 0.321269
\(611\) −15053.0 −0.996696
\(612\) 0 0
\(613\) 10205.4 0.672418 0.336209 0.941787i \(-0.390855\pi\)
0.336209 + 0.941787i \(0.390855\pi\)
\(614\) 13508.3 0.887865
\(615\) 0 0
\(616\) 0 0
\(617\) 8936.08 0.583068 0.291534 0.956560i \(-0.405834\pi\)
0.291534 + 0.956560i \(0.405834\pi\)
\(618\) 0 0
\(619\) −18560.2 −1.20517 −0.602584 0.798056i \(-0.705862\pi\)
−0.602584 + 0.798056i \(0.705862\pi\)
\(620\) −9966.15 −0.645565
\(621\) 0 0
\(622\) −1344.76 −0.0866883
\(623\) 0 0
\(624\) 0 0
\(625\) −18357.4 −1.17488
\(626\) 3961.82 0.252949
\(627\) 0 0
\(628\) −3723.91 −0.236624
\(629\) 41688.9 2.64268
\(630\) 0 0
\(631\) −6191.13 −0.390594 −0.195297 0.980744i \(-0.562567\pi\)
−0.195297 + 0.980744i \(0.562567\pi\)
\(632\) −14207.4 −0.894212
\(633\) 0 0
\(634\) −13006.5 −0.814751
\(635\) −1614.59 −0.100902
\(636\) 0 0
\(637\) 0 0
\(638\) −6011.06 −0.373010
\(639\) 0 0
\(640\) 13437.7 0.829957
\(641\) 1592.53 0.0981298 0.0490649 0.998796i \(-0.484376\pi\)
0.0490649 + 0.998796i \(0.484376\pi\)
\(642\) 0 0
\(643\) −20101.4 −1.23285 −0.616426 0.787413i \(-0.711420\pi\)
−0.616426 + 0.787413i \(0.711420\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 28102.8 1.71159
\(647\) 13953.3 0.847855 0.423927 0.905696i \(-0.360651\pi\)
0.423927 + 0.905696i \(0.360651\pi\)
\(648\) 0 0
\(649\) −7811.42 −0.472458
\(650\) 2441.80 0.147347
\(651\) 0 0
\(652\) −778.720 −0.0467746
\(653\) 32040.0 1.92010 0.960049 0.279832i \(-0.0902788\pi\)
0.960049 + 0.279832i \(0.0902788\pi\)
\(654\) 0 0
\(655\) 23582.8 1.40680
\(656\) 2097.30 0.124826
\(657\) 0 0
\(658\) 0 0
\(659\) −22240.2 −1.31465 −0.657325 0.753607i \(-0.728312\pi\)
−0.657325 + 0.753607i \(0.728312\pi\)
\(660\) 0 0
\(661\) 913.832 0.0537730 0.0268865 0.999638i \(-0.491441\pi\)
0.0268865 + 0.999638i \(0.491441\pi\)
\(662\) −3710.28 −0.217831
\(663\) 0 0
\(664\) −762.265 −0.0445506
\(665\) 0 0
\(666\) 0 0
\(667\) −7657.85 −0.444547
\(668\) −9693.02 −0.561429
\(669\) 0 0
\(670\) 14387.9 0.829634
\(671\) 6949.80 0.399842
\(672\) 0 0
\(673\) −7951.84 −0.455454 −0.227727 0.973725i \(-0.573129\pi\)
−0.227727 + 0.973725i \(0.573129\pi\)
\(674\) −5128.79 −0.293106
\(675\) 0 0
\(676\) −3259.69 −0.185462
\(677\) −2633.40 −0.149498 −0.0747488 0.997202i \(-0.523816\pi\)
−0.0747488 + 0.997202i \(0.523816\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −32881.6 −1.85434
\(681\) 0 0
\(682\) 7139.99 0.400886
\(683\) −31241.6 −1.75026 −0.875129 0.483890i \(-0.839224\pi\)
−0.875129 + 0.483890i \(0.839224\pi\)
\(684\) 0 0
\(685\) −6923.54 −0.386182
\(686\) 0 0
\(687\) 0 0
\(688\) 2087.34 0.115668
\(689\) −20559.1 −1.13678
\(690\) 0 0
\(691\) −5773.50 −0.317850 −0.158925 0.987291i \(-0.550803\pi\)
−0.158925 + 0.987291i \(0.550803\pi\)
\(692\) −12940.7 −0.710882
\(693\) 0 0
\(694\) −14632.4 −0.800344
\(695\) −8653.87 −0.472317
\(696\) 0 0
\(697\) −35647.7 −1.93724
\(698\) 230.061 0.0124756
\(699\) 0 0
\(700\) 0 0
\(701\) 18643.2 1.00449 0.502243 0.864726i \(-0.332508\pi\)
0.502243 + 0.864726i \(0.332508\pi\)
\(702\) 0 0
\(703\) −48198.8 −2.58585
\(704\) −7129.58 −0.381685
\(705\) 0 0
\(706\) 13395.9 0.714107
\(707\) 0 0
\(708\) 0 0
\(709\) 10420.4 0.551970 0.275985 0.961162i \(-0.410996\pi\)
0.275985 + 0.961162i \(0.410996\pi\)
\(710\) −5464.43 −0.288840
\(711\) 0 0
\(712\) −30351.3 −1.59756
\(713\) 9096.06 0.477770
\(714\) 0 0
\(715\) 19025.6 0.995131
\(716\) −15132.5 −0.789842
\(717\) 0 0
\(718\) −14277.2 −0.742088
\(719\) −8269.85 −0.428947 −0.214474 0.976730i \(-0.568804\pi\)
−0.214474 + 0.976730i \(0.568804\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −21298.2 −1.09784
\(723\) 0 0
\(724\) 1169.94 0.0600561
\(725\) −3586.27 −0.183712
\(726\) 0 0
\(727\) −4112.34 −0.209791 −0.104896 0.994483i \(-0.533451\pi\)
−0.104896 + 0.994483i \(0.533451\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2950.97 −0.149617
\(731\) −35478.5 −1.79510
\(732\) 0 0
\(733\) −28562.7 −1.43927 −0.719636 0.694352i \(-0.755691\pi\)
−0.719636 + 0.694352i \(0.755691\pi\)
\(734\) 9657.14 0.485629
\(735\) 0 0
\(736\) −11205.4 −0.561193
\(737\) 20658.9 1.03254
\(738\) 0 0
\(739\) 23183.9 1.15404 0.577019 0.816731i \(-0.304216\pi\)
0.577019 + 0.816731i \(0.304216\pi\)
\(740\) 22567.3 1.12107
\(741\) 0 0
\(742\) 0 0
\(743\) −7212.11 −0.356106 −0.178053 0.984021i \(-0.556980\pi\)
−0.178053 + 0.984021i \(0.556980\pi\)
\(744\) 0 0
\(745\) 19990.8 0.983096
\(746\) −19028.6 −0.933896
\(747\) 0 0
\(748\) −18893.1 −0.923528
\(749\) 0 0
\(750\) 0 0
\(751\) −21762.2 −1.05741 −0.528703 0.848807i \(-0.677322\pi\)
−0.528703 + 0.848807i \(0.677322\pi\)
\(752\) 2039.86 0.0989174
\(753\) 0 0
\(754\) −10981.4 −0.530396
\(755\) −44.4741 −0.00214381
\(756\) 0 0
\(757\) −29737.8 −1.42779 −0.713896 0.700252i \(-0.753071\pi\)
−0.713896 + 0.700252i \(0.753071\pi\)
\(758\) 23346.5 1.11871
\(759\) 0 0
\(760\) 38016.1 1.81446
\(761\) −30539.9 −1.45476 −0.727378 0.686237i \(-0.759261\pi\)
−0.727378 + 0.686237i \(0.759261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1192.43 −0.0564667
\(765\) 0 0
\(766\) −17690.1 −0.834424
\(767\) −14270.4 −0.671805
\(768\) 0 0
\(769\) 39801.3 1.86642 0.933208 0.359338i \(-0.116997\pi\)
0.933208 + 0.359338i \(0.116997\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1879.49 0.0876220
\(773\) 15163.9 0.705574 0.352787 0.935704i \(-0.385234\pi\)
0.352787 + 0.935704i \(0.385234\pi\)
\(774\) 0 0
\(775\) 4259.81 0.197441
\(776\) 17538.0 0.811312
\(777\) 0 0
\(778\) 18236.7 0.840383
\(779\) 41214.2 1.89557
\(780\) 0 0
\(781\) −7846.10 −0.359482
\(782\) 12009.4 0.549173
\(783\) 0 0
\(784\) 0 0
\(785\) 8637.38 0.392715
\(786\) 0 0
\(787\) 21917.3 0.992717 0.496359 0.868118i \(-0.334670\pi\)
0.496359 + 0.868118i \(0.334670\pi\)
\(788\) −28539.6 −1.29021
\(789\) 0 0
\(790\) 13186.8 0.593882
\(791\) 0 0
\(792\) 0 0
\(793\) 12696.3 0.568550
\(794\) 21341.2 0.953868
\(795\) 0 0
\(796\) −3107.38 −0.138364
\(797\) −3205.98 −0.142486 −0.0712431 0.997459i \(-0.522697\pi\)
−0.0712431 + 0.997459i \(0.522697\pi\)
\(798\) 0 0
\(799\) −34671.3 −1.53515
\(800\) −5247.66 −0.231916
\(801\) 0 0
\(802\) −4460.89 −0.196408
\(803\) −4237.15 −0.186209
\(804\) 0 0
\(805\) 0 0
\(806\) 13043.8 0.570034
\(807\) 0 0
\(808\) −22086.5 −0.961634
\(809\) 39211.8 1.70410 0.852048 0.523464i \(-0.175360\pi\)
0.852048 + 0.523464i \(0.175360\pi\)
\(810\) 0 0
\(811\) 14711.3 0.636973 0.318486 0.947927i \(-0.396825\pi\)
0.318486 + 0.947927i \(0.396825\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −16167.8 −0.696167
\(815\) 1806.19 0.0776297
\(816\) 0 0
\(817\) 41018.5 1.75650
\(818\) −18800.7 −0.803609
\(819\) 0 0
\(820\) −19297.1 −0.821808
\(821\) −42916.2 −1.82434 −0.912171 0.409810i \(-0.865595\pi\)
−0.912171 + 0.409810i \(0.865595\pi\)
\(822\) 0 0
\(823\) 6882.13 0.291490 0.145745 0.989322i \(-0.453442\pi\)
0.145745 + 0.989322i \(0.453442\pi\)
\(824\) 22621.4 0.956375
\(825\) 0 0
\(826\) 0 0
\(827\) −6598.74 −0.277461 −0.138731 0.990330i \(-0.544302\pi\)
−0.138731 + 0.990330i \(0.544302\pi\)
\(828\) 0 0
\(829\) −23585.6 −0.988134 −0.494067 0.869424i \(-0.664490\pi\)
−0.494067 + 0.869424i \(0.664490\pi\)
\(830\) 707.507 0.0295879
\(831\) 0 0
\(832\) −13024.8 −0.542731
\(833\) 0 0
\(834\) 0 0
\(835\) 22482.4 0.931779
\(836\) 21843.3 0.903666
\(837\) 0 0
\(838\) 3959.88 0.163236
\(839\) 656.729 0.0270236 0.0135118 0.999909i \(-0.495699\pi\)
0.0135118 + 0.999909i \(0.495699\pi\)
\(840\) 0 0
\(841\) −8260.64 −0.338703
\(842\) −16625.6 −0.680470
\(843\) 0 0
\(844\) −29182.8 −1.19018
\(845\) 7560.65 0.307804
\(846\) 0 0
\(847\) 0 0
\(848\) 2785.99 0.112820
\(849\) 0 0
\(850\) 5624.14 0.226949
\(851\) −20597.1 −0.829682
\(852\) 0 0
\(853\) −26201.7 −1.05173 −0.525867 0.850567i \(-0.676259\pi\)
−0.525867 + 0.850567i \(0.676259\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 13239.9 0.528659
\(857\) −23208.5 −0.925072 −0.462536 0.886601i \(-0.653060\pi\)
−0.462536 + 0.886601i \(0.653060\pi\)
\(858\) 0 0
\(859\) −26175.4 −1.03969 −0.519845 0.854260i \(-0.674010\pi\)
−0.519845 + 0.854260i \(0.674010\pi\)
\(860\) −19205.4 −0.761512
\(861\) 0 0
\(862\) 11064.6 0.437196
\(863\) 5651.84 0.222933 0.111466 0.993768i \(-0.464445\pi\)
0.111466 + 0.993768i \(0.464445\pi\)
\(864\) 0 0
\(865\) 30015.1 1.17982
\(866\) −9991.60 −0.392065
\(867\) 0 0
\(868\) 0 0
\(869\) 18934.3 0.739128
\(870\) 0 0
\(871\) 37741.0 1.46820
\(872\) 23455.5 0.910897
\(873\) 0 0
\(874\) −13884.6 −0.537363
\(875\) 0 0
\(876\) 0 0
\(877\) 37510.2 1.44428 0.722138 0.691749i \(-0.243160\pi\)
0.722138 + 0.691749i \(0.243160\pi\)
\(878\) 25697.6 0.987760
\(879\) 0 0
\(880\) −2578.19 −0.0987622
\(881\) −22133.8 −0.846434 −0.423217 0.906028i \(-0.639099\pi\)
−0.423217 + 0.906028i \(0.639099\pi\)
\(882\) 0 0
\(883\) 20678.1 0.788080 0.394040 0.919093i \(-0.371077\pi\)
0.394040 + 0.919093i \(0.371077\pi\)
\(884\) −34515.0 −1.31320
\(885\) 0 0
\(886\) −24581.9 −0.932104
\(887\) −37469.8 −1.41839 −0.709196 0.705012i \(-0.750942\pi\)
−0.709196 + 0.705012i \(0.750942\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28171.0 1.06100
\(891\) 0 0
\(892\) −23312.5 −0.875068
\(893\) 40085.3 1.50213
\(894\) 0 0
\(895\) 35098.9 1.31087
\(896\) 0 0
\(897\) 0 0
\(898\) 285.679 0.0106161
\(899\) −19157.4 −0.710718
\(900\) 0 0
\(901\) −47353.3 −1.75091
\(902\) 13824.9 0.510330
\(903\) 0 0
\(904\) 44938.2 1.65334
\(905\) −2713.61 −0.0996725
\(906\) 0 0
\(907\) 20503.9 0.750630 0.375315 0.926897i \(-0.377535\pi\)
0.375315 + 0.926897i \(0.377535\pi\)
\(908\) −3399.45 −0.124245
\(909\) 0 0
\(910\) 0 0
\(911\) 3533.81 0.128519 0.0642593 0.997933i \(-0.479532\pi\)
0.0642593 + 0.997933i \(0.479532\pi\)
\(912\) 0 0
\(913\) 1015.87 0.0368242
\(914\) 20550.7 0.743717
\(915\) 0 0
\(916\) −5248.96 −0.189335
\(917\) 0 0
\(918\) 0 0
\(919\) 29803.8 1.06979 0.534895 0.844919i \(-0.320351\pi\)
0.534895 + 0.844919i \(0.320351\pi\)
\(920\) 16245.7 0.582178
\(921\) 0 0
\(922\) −22489.8 −0.803321
\(923\) −14333.7 −0.511160
\(924\) 0 0
\(925\) −9645.90 −0.342870
\(926\) −14470.4 −0.513528
\(927\) 0 0
\(928\) 23600.0 0.834815
\(929\) 14446.4 0.510194 0.255097 0.966915i \(-0.417893\pi\)
0.255097 + 0.966915i \(0.417893\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 8952.20 0.314634
\(933\) 0 0
\(934\) 20951.5 0.733996
\(935\) 43821.3 1.53274
\(936\) 0 0
\(937\) 29384.8 1.02450 0.512251 0.858836i \(-0.328812\pi\)
0.512251 + 0.858836i \(0.328812\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −18768.5 −0.651235
\(941\) 4659.97 0.161435 0.0807176 0.996737i \(-0.474279\pi\)
0.0807176 + 0.996737i \(0.474279\pi\)
\(942\) 0 0
\(943\) 17612.3 0.608204
\(944\) 1933.80 0.0666735
\(945\) 0 0
\(946\) 13759.2 0.472887
\(947\) 54321.9 1.86402 0.932008 0.362437i \(-0.118055\pi\)
0.932008 + 0.362437i \(0.118055\pi\)
\(948\) 0 0
\(949\) −7740.69 −0.264777
\(950\) −6502.37 −0.222068
\(951\) 0 0
\(952\) 0 0
\(953\) −23606.5 −0.802404 −0.401202 0.915990i \(-0.631407\pi\)
−0.401202 + 0.915990i \(0.631407\pi\)
\(954\) 0 0
\(955\) 2765.77 0.0937153
\(956\) 14437.7 0.488439
\(957\) 0 0
\(958\) −16245.5 −0.547878
\(959\) 0 0
\(960\) 0 0
\(961\) −7035.67 −0.236168
\(962\) −29536.3 −0.989905
\(963\) 0 0
\(964\) 11425.2 0.381722
\(965\) −4359.36 −0.145422
\(966\) 0 0
\(967\) 7021.95 0.233517 0.116758 0.993160i \(-0.462750\pi\)
0.116758 + 0.993160i \(0.462750\pi\)
\(968\) −10658.0 −0.353885
\(969\) 0 0
\(970\) −16278.2 −0.538825
\(971\) −1483.48 −0.0490290 −0.0245145 0.999699i \(-0.507804\pi\)
−0.0245145 + 0.999699i \(0.507804\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 27278.1 0.897377
\(975\) 0 0
\(976\) −1720.49 −0.0564259
\(977\) 26152.1 0.856375 0.428187 0.903690i \(-0.359152\pi\)
0.428187 + 0.903690i \(0.359152\pi\)
\(978\) 0 0
\(979\) 40449.3 1.32049
\(980\) 0 0
\(981\) 0 0
\(982\) 4865.19 0.158100
\(983\) 39185.3 1.27143 0.635716 0.771923i \(-0.280705\pi\)
0.635716 + 0.771923i \(0.280705\pi\)
\(984\) 0 0
\(985\) 66196.0 2.14130
\(986\) −25293.2 −0.816936
\(987\) 0 0
\(988\) 39904.6 1.28496
\(989\) 17528.7 0.563580
\(990\) 0 0
\(991\) −23009.7 −0.737564 −0.368782 0.929516i \(-0.620225\pi\)
−0.368782 + 0.929516i \(0.620225\pi\)
\(992\) −28032.3 −0.897204
\(993\) 0 0
\(994\) 0 0
\(995\) 7207.38 0.229638
\(996\) 0 0
\(997\) −11154.2 −0.354320 −0.177160 0.984182i \(-0.556691\pi\)
−0.177160 + 0.984182i \(0.556691\pi\)
\(998\) −13331.4 −0.422843
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.bj.1.3 7
3.2 odd 2 1323.4.a.bi.1.5 7
7.2 even 3 189.4.e.f.109.5 14
7.4 even 3 189.4.e.f.163.5 yes 14
7.6 odd 2 1323.4.a.bk.1.3 7
21.2 odd 6 189.4.e.g.109.3 yes 14
21.11 odd 6 189.4.e.g.163.3 yes 14
21.20 even 2 1323.4.a.bh.1.5 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.5 14 7.2 even 3
189.4.e.f.163.5 yes 14 7.4 even 3
189.4.e.g.109.3 yes 14 21.2 odd 6
189.4.e.g.163.3 yes 14 21.11 odd 6
1323.4.a.bh.1.5 7 21.20 even 2
1323.4.a.bi.1.5 7 3.2 odd 2
1323.4.a.bj.1.3 7 1.1 even 1 trivial
1323.4.a.bk.1.3 7 7.6 odd 2