Properties

Label 189.4.e.f.163.5
Level $189$
Weight $4$
Character 189.163
Analytic conductor $11.151$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,4,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.1513609911\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - x^{13} + 44 x^{12} + 23 x^{11} + 1346 x^{10} + 854 x^{9} + 20545 x^{8} + 27750 x^{7} + \cdots + 254016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.5
Root \(-0.815927 + 1.41323i\) of defining polynomial
Character \(\chi\) \(=\) 189.163
Dual form 189.4.e.f.109.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.815927 - 1.41323i) q^{2} +(2.66853 + 4.62202i) q^{4} +(-6.18949 + 10.7205i) q^{5} +(-6.28171 - 17.4224i) q^{7} +21.7641 q^{8} +(10.1003 + 17.4943i) q^{10} +(14.5026 + 25.1192i) q^{11} -52.9884 q^{13} +(-29.7472 - 5.33792i) q^{14} +(-3.59026 + 6.21851i) q^{16} +(61.0234 + 105.696i) q^{17} +(-70.5524 + 122.200i) q^{19} -66.0672 q^{20} +47.3321 q^{22} +(-30.1496 + 52.2206i) q^{23} +(-14.1195 - 24.4556i) q^{25} +(-43.2346 + 74.8846i) q^{26} +(63.7638 - 75.5263i) q^{28} -126.997 q^{29} +(-75.4244 - 130.639i) q^{31} +(92.9153 + 160.934i) q^{32} +199.163 q^{34} +(225.658 + 40.4926i) q^{35} +(170.791 - 295.818i) q^{37} +(115.131 + 199.413i) q^{38} +(-134.709 + 233.322i) q^{40} +292.082 q^{41} +290.696 q^{43} +(-77.4008 + 134.062i) q^{44} +(49.1998 + 85.2165i) q^{46} +(-142.041 + 246.022i) q^{47} +(-264.080 + 218.885i) q^{49} -46.0818 q^{50} +(-141.401 - 244.913i) q^{52} +(-193.996 - 336.011i) q^{53} -359.053 q^{55} +(-136.716 - 379.183i) q^{56} +(-103.621 + 179.476i) q^{58} +(-134.656 - 233.231i) q^{59} +(119.803 - 207.505i) q^{61} -246.163 q^{62} +245.804 q^{64} +(327.971 - 568.062i) q^{65} +(356.125 + 616.827i) q^{67} +(-325.685 + 564.103i) q^{68} +(241.345 - 285.866i) q^{70} +270.507 q^{71} +(-73.0414 - 126.511i) q^{73} +(-278.706 - 482.732i) q^{74} -753.083 q^{76} +(346.535 - 410.461i) q^{77} +(326.396 - 565.334i) q^{79} +(-44.4437 - 76.9787i) q^{80} +(238.318 - 412.779i) q^{82} -35.0239 q^{83} -1510.81 q^{85} +(237.186 - 410.819i) q^{86} +(315.635 + 546.696i) q^{88} +(697.278 - 1207.72i) q^{89} +(332.858 + 923.184i) q^{91} -321.820 q^{92} +(231.790 + 401.473i) q^{94} +(-873.366 - 1512.71i) q^{95} +805.822 q^{97} +(93.8642 + 551.800i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - q^{2} - 31 q^{4} + q^{5} + 20 q^{7} + 168 q^{8} - 12 q^{10} - 98 q^{11} - 248 q^{13} - 134 q^{14} - 139 q^{16} - 30 q^{17} - 182 q^{19} - 220 q^{20} + 552 q^{22} + 6 q^{23} - 388 q^{25} + 245 q^{26}+ \cdots + 10160 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.815927 1.41323i 0.288474 0.499651i −0.684972 0.728570i \(-0.740185\pi\)
0.973446 + 0.228918i \(0.0735188\pi\)
\(3\) 0 0
\(4\) 2.66853 + 4.62202i 0.333566 + 0.577753i
\(5\) −6.18949 + 10.7205i −0.553604 + 0.958871i 0.444406 + 0.895825i \(0.353415\pi\)
−0.998011 + 0.0630456i \(0.979919\pi\)
\(6\) 0 0
\(7\) −6.28171 17.4224i −0.339181 0.940721i
\(8\) 21.7641 0.961848
\(9\) 0 0
\(10\) 10.1003 + 17.4943i 0.319401 + 0.553218i
\(11\) 14.5026 + 25.1192i 0.397517 + 0.688519i 0.993419 0.114538i \(-0.0365387\pi\)
−0.595902 + 0.803057i \(0.703205\pi\)
\(12\) 0 0
\(13\) −52.9884 −1.13049 −0.565243 0.824924i \(-0.691218\pi\)
−0.565243 + 0.824924i \(0.691218\pi\)
\(14\) −29.7472 5.33792i −0.567877 0.101901i
\(15\) 0 0
\(16\) −3.59026 + 6.21851i −0.0560978 + 0.0971642i
\(17\) 61.0234 + 105.696i 0.870609 + 1.50794i 0.861368 + 0.507982i \(0.169608\pi\)
0.00924125 + 0.999957i \(0.497058\pi\)
\(18\) 0 0
\(19\) −70.5524 + 122.200i −0.851885 + 1.47551i 0.0276192 + 0.999619i \(0.491207\pi\)
−0.879505 + 0.475890i \(0.842126\pi\)
\(20\) −66.0672 −0.738654
\(21\) 0 0
\(22\) 47.3321 0.458693
\(23\) −30.1496 + 52.2206i −0.273332 + 0.473424i −0.969713 0.244248i \(-0.921459\pi\)
0.696381 + 0.717672i \(0.254792\pi\)
\(24\) 0 0
\(25\) −14.1195 24.4556i −0.112956 0.195645i
\(26\) −43.2346 + 74.8846i −0.326116 + 0.564849i
\(27\) 0 0
\(28\) 63.7638 75.5263i 0.430365 0.509755i
\(29\) −126.997 −0.813201 −0.406601 0.913606i \(-0.633286\pi\)
−0.406601 + 0.913606i \(0.633286\pi\)
\(30\) 0 0
\(31\) −75.4244 130.639i −0.436988 0.756885i 0.560468 0.828176i \(-0.310621\pi\)
−0.997456 + 0.0712915i \(0.977288\pi\)
\(32\) 92.9153 + 160.934i 0.513289 + 0.889043i
\(33\) 0 0
\(34\) 199.163 1.00459
\(35\) 225.658 + 40.4926i 1.08980 + 0.195557i
\(36\) 0 0
\(37\) 170.791 295.818i 0.758860 1.31438i −0.184572 0.982819i \(-0.559090\pi\)
0.943432 0.331565i \(-0.107577\pi\)
\(38\) 115.131 + 199.413i 0.491493 + 0.851291i
\(39\) 0 0
\(40\) −134.709 + 233.322i −0.532483 + 0.922288i
\(41\) 292.082 1.11258 0.556288 0.830990i \(-0.312225\pi\)
0.556288 + 0.830990i \(0.312225\pi\)
\(42\) 0 0
\(43\) 290.696 1.03095 0.515473 0.856906i \(-0.327616\pi\)
0.515473 + 0.856906i \(0.327616\pi\)
\(44\) −77.4008 + 134.062i −0.265196 + 0.459333i
\(45\) 0 0
\(46\) 49.1998 + 85.2165i 0.157698 + 0.273141i
\(47\) −142.041 + 246.022i −0.440826 + 0.763533i −0.997751 0.0670298i \(-0.978648\pi\)
0.556925 + 0.830563i \(0.311981\pi\)
\(48\) 0 0
\(49\) −264.080 + 218.885i −0.769913 + 0.638149i
\(50\) −46.0818 −0.130339
\(51\) 0 0
\(52\) −141.401 244.913i −0.377091 0.653142i
\(53\) −193.996 336.011i −0.502782 0.870844i −0.999995 0.00321513i \(-0.998977\pi\)
0.497213 0.867628i \(-0.334357\pi\)
\(54\) 0 0
\(55\) −359.053 −0.880268
\(56\) −136.716 379.183i −0.326240 0.904831i
\(57\) 0 0
\(58\) −103.621 + 179.476i −0.234587 + 0.406317i
\(59\) −134.656 233.231i −0.297131 0.514646i 0.678348 0.734741i \(-0.262696\pi\)
−0.975478 + 0.220096i \(0.929363\pi\)
\(60\) 0 0
\(61\) 119.803 207.505i 0.251462 0.435546i −0.712466 0.701706i \(-0.752422\pi\)
0.963929 + 0.266161i \(0.0857552\pi\)
\(62\) −246.163 −0.504238
\(63\) 0 0
\(64\) 245.804 0.480087
\(65\) 327.971 568.062i 0.625842 1.08399i
\(66\) 0 0
\(67\) 356.125 + 616.827i 0.649367 + 1.12474i 0.983274 + 0.182131i \(0.0582994\pi\)
−0.333907 + 0.942606i \(0.608367\pi\)
\(68\) −325.685 + 564.103i −0.580811 + 1.00599i
\(69\) 0 0
\(70\) 241.345 285.866i 0.412090 0.488108i
\(71\) 270.507 0.452160 0.226080 0.974109i \(-0.427409\pi\)
0.226080 + 0.974109i \(0.427409\pi\)
\(72\) 0 0
\(73\) −73.0414 126.511i −0.117108 0.202836i 0.801513 0.597978i \(-0.204029\pi\)
−0.918620 + 0.395142i \(0.870696\pi\)
\(74\) −278.706 482.732i −0.437823 0.758331i
\(75\) 0 0
\(76\) −753.083 −1.13664
\(77\) 346.535 410.461i 0.512875 0.607485i
\(78\) 0 0
\(79\) 326.396 565.334i 0.464841 0.805128i −0.534354 0.845261i \(-0.679445\pi\)
0.999194 + 0.0401334i \(0.0127783\pi\)
\(80\) −44.4437 76.9787i −0.0621120 0.107581i
\(81\) 0 0
\(82\) 238.318 412.779i 0.320949 0.555900i
\(83\) −35.0239 −0.0463178 −0.0231589 0.999732i \(-0.507372\pi\)
−0.0231589 + 0.999732i \(0.507372\pi\)
\(84\) 0 0
\(85\) −1510.81 −1.92789
\(86\) 237.186 410.819i 0.297401 0.515113i
\(87\) 0 0
\(88\) 315.635 + 546.696i 0.382350 + 0.662250i
\(89\) 697.278 1207.72i 0.830465 1.43841i −0.0672053 0.997739i \(-0.521408\pi\)
0.897670 0.440668i \(-0.145258\pi\)
\(90\) 0 0
\(91\) 332.858 + 923.184i 0.383439 + 1.06347i
\(92\) −321.820 −0.364696
\(93\) 0 0
\(94\) 231.790 + 401.473i 0.254334 + 0.440519i
\(95\) −873.366 1512.71i −0.943215 1.63370i
\(96\) 0 0
\(97\) 805.822 0.843493 0.421746 0.906714i \(-0.361417\pi\)
0.421746 + 0.906714i \(0.361417\pi\)
\(98\) 93.8642 + 551.800i 0.0967522 + 0.568777i
\(99\) 0 0
\(100\) 75.3563 130.521i 0.0753563 0.130521i
\(101\) 507.406 + 878.853i 0.499889 + 0.865833i 1.00000 0.000128157i \(-4.07938e-5\pi\)
−0.500111 + 0.865961i \(0.666707\pi\)
\(102\) 0 0
\(103\) −519.694 + 900.137i −0.497155 + 0.861098i −0.999995 0.00328180i \(-0.998955\pi\)
0.502839 + 0.864380i \(0.332289\pi\)
\(104\) −1153.25 −1.08736
\(105\) 0 0
\(106\) −633.147 −0.580158
\(107\) −304.169 + 526.836i −0.274814 + 0.475992i −0.970088 0.242753i \(-0.921950\pi\)
0.695274 + 0.718745i \(0.255283\pi\)
\(108\) 0 0
\(109\) −538.856 933.326i −0.473514 0.820151i 0.526026 0.850468i \(-0.323681\pi\)
−0.999540 + 0.0303176i \(0.990348\pi\)
\(110\) −292.961 + 507.424i −0.253934 + 0.439827i
\(111\) 0 0
\(112\) 130.894 + 23.4880i 0.110432 + 0.0198162i
\(113\) 2064.78 1.71893 0.859463 0.511199i \(-0.170798\pi\)
0.859463 + 0.511199i \(0.170798\pi\)
\(114\) 0 0
\(115\) −373.221 646.438i −0.302635 0.524180i
\(116\) −338.896 586.985i −0.271256 0.469829i
\(117\) 0 0
\(118\) −439.478 −0.342858
\(119\) 1458.14 1727.12i 1.12326 1.33046i
\(120\) 0 0
\(121\) 244.852 424.096i 0.183961 0.318630i
\(122\) −195.501 338.618i −0.145081 0.251287i
\(123\) 0 0
\(124\) 402.544 697.226i 0.291528 0.504941i
\(125\) −1197.80 −0.857078
\(126\) 0 0
\(127\) −130.430 −0.0911320 −0.0455660 0.998961i \(-0.514509\pi\)
−0.0455660 + 0.998961i \(0.514509\pi\)
\(128\) −542.764 + 940.094i −0.374797 + 0.649167i
\(129\) 0 0
\(130\) −535.200 926.994i −0.361078 0.625406i
\(131\) −952.534 + 1649.84i −0.635292 + 1.10036i 0.351161 + 0.936315i \(0.385787\pi\)
−0.986453 + 0.164043i \(0.947546\pi\)
\(132\) 0 0
\(133\) 2572.21 + 461.565i 1.67699 + 0.300923i
\(134\) 1162.29 0.749302
\(135\) 0 0
\(136\) 1328.12 + 2300.37i 0.837393 + 1.45041i
\(137\) 279.649 + 484.367i 0.174394 + 0.302060i 0.939952 0.341308i \(-0.110870\pi\)
−0.765557 + 0.643368i \(0.777537\pi\)
\(138\) 0 0
\(139\) −699.079 −0.426583 −0.213292 0.976989i \(-0.568418\pi\)
−0.213292 + 0.976989i \(0.568418\pi\)
\(140\) 415.015 + 1151.05i 0.250537 + 0.694867i
\(141\) 0 0
\(142\) 220.714 382.289i 0.130436 0.225922i
\(143\) −768.466 1331.02i −0.449387 0.778362i
\(144\) 0 0
\(145\) 786.049 1361.48i 0.450192 0.779755i
\(146\) −238.386 −0.135130
\(147\) 0 0
\(148\) 1823.04 1.01252
\(149\) −807.450 + 1398.54i −0.443952 + 0.768948i −0.997979 0.0635514i \(-0.979757\pi\)
0.554026 + 0.832499i \(0.313091\pi\)
\(150\) 0 0
\(151\) 1.79636 + 3.11138i 0.000968116 + 0.00167683i 0.866509 0.499161i \(-0.166359\pi\)
−0.865541 + 0.500838i \(0.833025\pi\)
\(152\) −1535.51 + 2659.58i −0.819384 + 1.41921i
\(153\) 0 0
\(154\) −297.327 824.639i −0.155580 0.431502i
\(155\) 1867.35 0.967673
\(156\) 0 0
\(157\) −348.873 604.266i −0.177345 0.307170i 0.763626 0.645659i \(-0.223417\pi\)
−0.940970 + 0.338490i \(0.890084\pi\)
\(158\) −532.631 922.543i −0.268189 0.464517i
\(159\) 0 0
\(160\) −2300.39 −1.13664
\(161\) 1099.20 + 197.243i 0.538069 + 0.0965525i
\(162\) 0 0
\(163\) −72.9541 + 126.360i −0.0350565 + 0.0607196i −0.883021 0.469333i \(-0.844494\pi\)
0.847965 + 0.530052i \(0.177828\pi\)
\(164\) 779.429 + 1350.01i 0.371117 + 0.642793i
\(165\) 0 0
\(166\) −28.5770 + 49.4968i −0.0133615 + 0.0231427i
\(167\) 1816.18 0.841556 0.420778 0.907164i \(-0.361757\pi\)
0.420778 + 0.907164i \(0.361757\pi\)
\(168\) 0 0
\(169\) 610.766 0.278000
\(170\) −1232.71 + 2135.12i −0.556146 + 0.963274i
\(171\) 0 0
\(172\) 775.729 + 1343.60i 0.343888 + 0.595632i
\(173\) −1212.34 + 2099.84i −0.532790 + 0.922819i 0.466477 + 0.884533i \(0.345523\pi\)
−0.999267 + 0.0382860i \(0.987810\pi\)
\(174\) 0 0
\(175\) −337.382 + 399.618i −0.145735 + 0.172619i
\(176\) −208.272 −0.0891992
\(177\) 0 0
\(178\) −1137.86 1970.83i −0.479135 0.829886i
\(179\) −1417.68 2455.50i −0.591969 1.02532i −0.993967 0.109680i \(-0.965017\pi\)
0.401998 0.915641i \(-0.368316\pi\)
\(180\) 0 0
\(181\) −219.212 −0.0900214 −0.0450107 0.998987i \(-0.514332\pi\)
−0.0450107 + 0.998987i \(0.514332\pi\)
\(182\) 1576.26 + 282.848i 0.641978 + 0.115198i
\(183\) 0 0
\(184\) −656.180 + 1136.54i −0.262903 + 0.455362i
\(185\) 2114.21 + 3661.93i 0.840217 + 1.45530i
\(186\) 0 0
\(187\) −1769.99 + 3065.71i −0.692163 + 1.19886i
\(188\) −1516.16 −0.588178
\(189\) 0 0
\(190\) −2850.41 −1.08837
\(191\) −111.712 + 193.491i −0.0423205 + 0.0733012i −0.886410 0.462901i \(-0.846808\pi\)
0.844089 + 0.536203i \(0.180142\pi\)
\(192\) 0 0
\(193\) 176.079 + 304.978i 0.0656708 + 0.113745i 0.896991 0.442048i \(-0.145748\pi\)
−0.831321 + 0.555793i \(0.812415\pi\)
\(194\) 657.492 1138.81i 0.243326 0.421452i
\(195\) 0 0
\(196\) −1716.40 636.484i −0.625509 0.231955i
\(197\) 5347.45 1.93396 0.966981 0.254850i \(-0.0820261\pi\)
0.966981 + 0.254850i \(0.0820261\pi\)
\(198\) 0 0
\(199\) −291.114 504.224i −0.103701 0.179616i 0.809506 0.587112i \(-0.199735\pi\)
−0.913207 + 0.407496i \(0.866402\pi\)
\(200\) −307.298 532.256i −0.108646 0.188181i
\(201\) 0 0
\(202\) 1656.03 0.576820
\(203\) 797.762 + 2212.60i 0.275822 + 0.764996i
\(204\) 0 0
\(205\) −1807.84 + 3131.27i −0.615927 + 1.06682i
\(206\) 848.065 + 1468.89i 0.286833 + 0.496809i
\(207\) 0 0
\(208\) 190.242 329.509i 0.0634178 0.109843i
\(209\) −4092.76 −1.35455
\(210\) 0 0
\(211\) 5467.96 1.78403 0.892014 0.452008i \(-0.149292\pi\)
0.892014 + 0.452008i \(0.149292\pi\)
\(212\) 1035.37 1793.31i 0.335421 0.580967i
\(213\) 0 0
\(214\) 496.359 + 859.720i 0.158553 + 0.274623i
\(215\) −1799.26 + 3116.40i −0.570736 + 0.988544i
\(216\) 0 0
\(217\) −1802.25 + 2134.71i −0.563800 + 0.667804i
\(218\) −1758.67 −0.546386
\(219\) 0 0
\(220\) −958.143 1659.55i −0.293627 0.508577i
\(221\) −3233.53 5600.64i −0.984212 1.70470i
\(222\) 0 0
\(223\) 4368.05 1.31169 0.655844 0.754897i \(-0.272313\pi\)
0.655844 + 0.754897i \(0.272313\pi\)
\(224\) 2220.19 2629.75i 0.662244 0.784408i
\(225\) 0 0
\(226\) 1684.71 2918.01i 0.495865 0.858863i
\(227\) −318.476 551.617i −0.0931189 0.161287i 0.815703 0.578471i \(-0.196350\pi\)
−0.908822 + 0.417184i \(0.863017\pi\)
\(228\) 0 0
\(229\) −491.748 + 851.732i −0.141902 + 0.245782i −0.928213 0.372049i \(-0.878655\pi\)
0.786311 + 0.617831i \(0.211989\pi\)
\(230\) −1218.09 −0.349209
\(231\) 0 0
\(232\) −2763.99 −0.782176
\(233\) 838.684 1452.64i 0.235811 0.408437i −0.723697 0.690118i \(-0.757559\pi\)
0.959508 + 0.281681i \(0.0908919\pi\)
\(234\) 0 0
\(235\) −1758.32 3045.50i −0.488086 0.845390i
\(236\) 718.666 1244.77i 0.198225 0.343336i
\(237\) 0 0
\(238\) −1251.08 3469.89i −0.340738 0.945041i
\(239\) −2705.18 −0.732148 −0.366074 0.930586i \(-0.619298\pi\)
−0.366074 + 0.930586i \(0.619298\pi\)
\(240\) 0 0
\(241\) 1070.36 + 1853.93i 0.286092 + 0.495527i 0.972873 0.231338i \(-0.0743102\pi\)
−0.686781 + 0.726864i \(0.740977\pi\)
\(242\) −399.563 692.063i −0.106136 0.183833i
\(243\) 0 0
\(244\) 1278.79 0.335517
\(245\) −712.038 4185.86i −0.185675 1.09153i
\(246\) 0 0
\(247\) 3738.45 6475.19i 0.963045 1.66804i
\(248\) −1641.55 2843.24i −0.420315 0.728008i
\(249\) 0 0
\(250\) −977.320 + 1692.77i −0.247244 + 0.428240i
\(251\) 918.484 0.230973 0.115486 0.993309i \(-0.463157\pi\)
0.115486 + 0.993309i \(0.463157\pi\)
\(252\) 0 0
\(253\) −1748.98 −0.434616
\(254\) −106.421 + 184.327i −0.0262892 + 0.0455343i
\(255\) 0 0
\(256\) 1868.93 + 3237.08i 0.456281 + 0.790303i
\(257\) −2116.09 + 3665.17i −0.513611 + 0.889600i 0.486265 + 0.873812i \(0.338359\pi\)
−0.999875 + 0.0157883i \(0.994974\pi\)
\(258\) 0 0
\(259\) −6226.72 1117.34i −1.49386 0.268062i
\(260\) 3500.79 0.835038
\(261\) 0 0
\(262\) 1554.40 + 2692.29i 0.366530 + 0.634849i
\(263\) −2912.53 5044.64i −0.682867 1.18276i −0.974102 0.226109i \(-0.927399\pi\)
0.291235 0.956652i \(-0.405934\pi\)
\(264\) 0 0
\(265\) 4802.95 1.11337
\(266\) 2751.03 3258.52i 0.634123 0.751100i
\(267\) 0 0
\(268\) −1900.66 + 3292.03i −0.433213 + 0.750347i
\(269\) 1296.11 + 2244.93i 0.293775 + 0.508833i 0.974699 0.223521i \(-0.0717551\pi\)
−0.680924 + 0.732354i \(0.738422\pi\)
\(270\) 0 0
\(271\) 1854.95 3212.86i 0.415793 0.720175i −0.579718 0.814817i \(-0.696837\pi\)
0.995511 + 0.0946424i \(0.0301708\pi\)
\(272\) −876.359 −0.195357
\(273\) 0 0
\(274\) 912.694 0.201233
\(275\) 409.537 709.338i 0.0898036 0.155544i
\(276\) 0 0
\(277\) 161.690 + 280.055i 0.0350722 + 0.0607469i 0.883029 0.469319i \(-0.155501\pi\)
−0.847956 + 0.530066i \(0.822167\pi\)
\(278\) −570.397 + 987.957i −0.123058 + 0.213143i
\(279\) 0 0
\(280\) 4911.24 + 881.286i 1.04822 + 0.188096i
\(281\) 4990.53 1.05947 0.529733 0.848165i \(-0.322292\pi\)
0.529733 + 0.848165i \(0.322292\pi\)
\(282\) 0 0
\(283\) −1229.34 2129.27i −0.258221 0.447251i 0.707545 0.706669i \(-0.249803\pi\)
−0.965765 + 0.259417i \(0.916470\pi\)
\(284\) 721.856 + 1250.29i 0.150825 + 0.261236i
\(285\) 0 0
\(286\) −2508.05 −0.518546
\(287\) −1834.78 5088.77i −0.377364 1.04662i
\(288\) 0 0
\(289\) −4991.22 + 8645.04i −1.01592 + 1.75963i
\(290\) −1282.72 2221.73i −0.259737 0.449878i
\(291\) 0 0
\(292\) 389.826 675.198i 0.0781261 0.135318i
\(293\) 3028.06 0.603758 0.301879 0.953346i \(-0.402386\pi\)
0.301879 + 0.953346i \(0.402386\pi\)
\(294\) 0 0
\(295\) 3333.80 0.657972
\(296\) 3717.11 6438.23i 0.729908 1.26424i
\(297\) 0 0
\(298\) 1317.64 + 2282.22i 0.256137 + 0.443643i
\(299\) 1597.58 2767.09i 0.308998 0.535200i
\(300\) 0 0
\(301\) −1826.07 5064.62i −0.349677 0.969833i
\(302\) 5.86279 0.00111710
\(303\) 0 0
\(304\) −506.602 877.461i −0.0955777 0.165546i
\(305\) 1483.04 + 2568.70i 0.278421 + 0.482240i
\(306\) 0 0
\(307\) −8277.86 −1.53890 −0.769450 0.638707i \(-0.779470\pi\)
−0.769450 + 0.638707i \(0.779470\pi\)
\(308\) 2821.90 + 506.368i 0.522053 + 0.0936786i
\(309\) 0 0
\(310\) 1523.62 2638.99i 0.279148 0.483499i
\(311\) −412.036 713.667i −0.0751267 0.130123i 0.826015 0.563649i \(-0.190603\pi\)
−0.901141 + 0.433525i \(0.857269\pi\)
\(312\) 0 0
\(313\) 1213.90 2102.54i 0.219213 0.379688i −0.735355 0.677683i \(-0.762984\pi\)
0.954568 + 0.297994i \(0.0963177\pi\)
\(314\) −1138.62 −0.204637
\(315\) 0 0
\(316\) 3483.98 0.620219
\(317\) −3985.18 + 6902.53i −0.706088 + 1.22298i 0.260210 + 0.965552i \(0.416208\pi\)
−0.966298 + 0.257428i \(0.917125\pi\)
\(318\) 0 0
\(319\) −1841.79 3190.07i −0.323261 0.559905i
\(320\) −1521.40 + 2635.15i −0.265778 + 0.460341i
\(321\) 0 0
\(322\) 1175.62 1392.48i 0.203461 0.240994i
\(323\) −17221.4 −2.96664
\(324\) 0 0
\(325\) 748.168 + 1295.86i 0.127695 + 0.221174i
\(326\) 119.051 + 206.202i 0.0202258 + 0.0350321i
\(327\) 0 0
\(328\) 6356.92 1.07013
\(329\) 5178.56 + 929.255i 0.867791 + 0.155719i
\(330\) 0 0
\(331\) −1136.83 + 1969.05i −0.188779 + 0.326975i −0.944843 0.327523i \(-0.893786\pi\)
0.756065 + 0.654497i \(0.227120\pi\)
\(332\) −93.4622 161.881i −0.0154500 0.0267602i
\(333\) 0 0
\(334\) 1481.87 2566.67i 0.242767 0.420485i
\(335\) −8816.92 −1.43797
\(336\) 0 0
\(337\) 3142.92 0.508030 0.254015 0.967200i \(-0.418249\pi\)
0.254015 + 0.967200i \(0.418249\pi\)
\(338\) 498.340 863.151i 0.0801957 0.138903i
\(339\) 0 0
\(340\) −4031.65 6983.02i −0.643079 1.11384i
\(341\) 2187.69 3789.19i 0.347420 0.601749i
\(342\) 0 0
\(343\) 5472.38 + 3225.94i 0.861460 + 0.507826i
\(344\) 6326.74 0.991613
\(345\) 0 0
\(346\) 1978.37 + 3426.63i 0.307392 + 0.532419i
\(347\) −4483.37 7765.42i −0.693602 1.20135i −0.970650 0.240498i \(-0.922689\pi\)
0.277048 0.960856i \(-0.410644\pi\)
\(348\) 0 0
\(349\) −140.981 −0.0216234 −0.0108117 0.999942i \(-0.503442\pi\)
−0.0108117 + 0.999942i \(0.503442\pi\)
\(350\) 289.473 + 802.856i 0.0442085 + 0.122613i
\(351\) 0 0
\(352\) −2695.02 + 4667.91i −0.408082 + 0.706819i
\(353\) 4104.49 + 7109.18i 0.618867 + 1.07191i 0.989693 + 0.143206i \(0.0457412\pi\)
−0.370826 + 0.928702i \(0.620925\pi\)
\(354\) 0 0
\(355\) −1674.30 + 2899.98i −0.250318 + 0.433563i
\(356\) 7442.82 1.10806
\(357\) 0 0
\(358\) −4626.90 −0.683070
\(359\) −4374.52 + 7576.90i −0.643116 + 1.11391i 0.341618 + 0.939839i \(0.389025\pi\)
−0.984733 + 0.174070i \(0.944308\pi\)
\(360\) 0 0
\(361\) −6525.77 11303.0i −0.951418 1.64790i
\(362\) −178.861 + 309.796i −0.0259688 + 0.0449793i
\(363\) 0 0
\(364\) −3378.74 + 4002.02i −0.486522 + 0.576271i
\(365\) 1808.36 0.259325
\(366\) 0 0
\(367\) 2958.95 + 5125.05i 0.420860 + 0.728952i 0.996024 0.0890869i \(-0.0283949\pi\)
−0.575163 + 0.818038i \(0.695062\pi\)
\(368\) −216.490 374.971i −0.0306666 0.0531161i
\(369\) 0 0
\(370\) 6900.18 0.969522
\(371\) −4635.50 + 5490.61i −0.648687 + 0.768351i
\(372\) 0 0
\(373\) −5830.36 + 10098.5i −0.809342 + 1.40182i 0.103979 + 0.994579i \(0.466842\pi\)
−0.913321 + 0.407241i \(0.866491\pi\)
\(374\) 2888.37 + 5002.80i 0.399342 + 0.691681i
\(375\) 0 0
\(376\) −3091.40 + 5354.46i −0.424007 + 0.734402i
\(377\) 6729.39 0.919313
\(378\) 0 0
\(379\) −14306.7 −1.93902 −0.969508 0.245060i \(-0.921192\pi\)
−0.969508 + 0.245060i \(0.921192\pi\)
\(380\) 4661.20 8073.43i 0.629248 1.08989i
\(381\) 0 0
\(382\) 182.298 + 315.750i 0.0244167 + 0.0422910i
\(383\) −5420.24 + 9388.13i −0.723136 + 1.25251i 0.236600 + 0.971607i \(0.423967\pi\)
−0.959737 + 0.280902i \(0.909366\pi\)
\(384\) 0 0
\(385\) 2255.47 + 6255.57i 0.298570 + 0.828087i
\(386\) 574.671 0.0757772
\(387\) 0 0
\(388\) 2150.36 + 3724.53i 0.281360 + 0.487330i
\(389\) 5587.73 + 9678.23i 0.728301 + 1.26145i 0.957601 + 0.288099i \(0.0930231\pi\)
−0.229300 + 0.973356i \(0.573644\pi\)
\(390\) 0 0
\(391\) −7359.33 −0.951860
\(392\) −5747.47 + 4763.84i −0.740539 + 0.613802i
\(393\) 0 0
\(394\) 4363.13 7557.17i 0.557897 0.966306i
\(395\) 4040.45 + 6998.26i 0.514676 + 0.891444i
\(396\) 0 0
\(397\) 6538.94 11325.8i 0.826650 1.43180i −0.0740015 0.997258i \(-0.523577\pi\)
0.900652 0.434542i \(-0.143090\pi\)
\(398\) −950.111 −0.119660
\(399\) 0 0
\(400\) 202.770 0.0253463
\(401\) −1366.82 + 2367.40i −0.170213 + 0.294818i −0.938494 0.345294i \(-0.887779\pi\)
0.768281 + 0.640113i \(0.221112\pi\)
\(402\) 0 0
\(403\) 3996.61 + 6922.34i 0.494009 + 0.855648i
\(404\) −2708.05 + 4690.48i −0.333492 + 0.577624i
\(405\) 0 0
\(406\) 3777.82 + 677.903i 0.461799 + 0.0828664i
\(407\) 9907.60 1.20664
\(408\) 0 0
\(409\) −5760.54 9977.55i −0.696431 1.20625i −0.969696 0.244316i \(-0.921437\pi\)
0.273264 0.961939i \(-0.411897\pi\)
\(410\) 2950.13 + 5109.78i 0.355357 + 0.615497i
\(411\) 0 0
\(412\) −5547.27 −0.663336
\(413\) −3217.57 + 3811.12i −0.383357 + 0.454075i
\(414\) 0 0
\(415\) 216.780 375.474i 0.0256417 0.0444128i
\(416\) −4923.43 8527.63i −0.580267 1.00505i
\(417\) 0 0
\(418\) −3339.39 + 5784.00i −0.390754 + 0.676805i
\(419\) −2426.62 −0.282931 −0.141465 0.989943i \(-0.545181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(420\) 0 0
\(421\) 10188.2 1.17943 0.589716 0.807611i \(-0.299240\pi\)
0.589716 + 0.807611i \(0.299240\pi\)
\(422\) 4461.46 7727.47i 0.514645 0.891392i
\(423\) 0 0
\(424\) −4222.16 7312.99i −0.483599 0.837619i
\(425\) 1723.24 2984.73i 0.196681 0.340661i
\(426\) 0 0
\(427\) −4367.80 783.770i −0.495018 0.0888274i
\(428\) −3246.73 −0.366674
\(429\) 0 0
\(430\) 2936.12 + 5085.52i 0.329285 + 0.570338i
\(431\) 3390.20 + 5872.00i 0.378887 + 0.656251i 0.990901 0.134596i \(-0.0429737\pi\)
−0.612014 + 0.790847i \(0.709640\pi\)
\(432\) 0 0
\(433\) 6122.85 0.679550 0.339775 0.940507i \(-0.389649\pi\)
0.339775 + 0.940507i \(0.389649\pi\)
\(434\) 1546.33 + 4288.75i 0.171028 + 0.474347i
\(435\) 0 0
\(436\) 2875.90 4981.21i 0.315896 0.547148i
\(437\) −4254.25 7368.58i −0.465694 0.806606i
\(438\) 0 0
\(439\) 7873.75 13637.7i 0.856022 1.48267i −0.0196718 0.999806i \(-0.506262\pi\)
0.875694 0.482867i \(-0.160405\pi\)
\(440\) −7814.48 −0.846684
\(441\) 0 0
\(442\) −10553.3 −1.13568
\(443\) −7531.88 + 13045.6i −0.807789 + 1.39913i 0.106604 + 0.994302i \(0.466002\pi\)
−0.914392 + 0.404829i \(0.867331\pi\)
\(444\) 0 0
\(445\) 8631.59 + 14950.4i 0.919498 + 1.59262i
\(446\) 3564.01 6173.05i 0.378388 0.655387i
\(447\) 0 0
\(448\) −1544.07 4282.50i −0.162836 0.451628i
\(449\) −175.064 −0.0184004 −0.00920020 0.999958i \(-0.502929\pi\)
−0.00920020 + 0.999958i \(0.502929\pi\)
\(450\) 0 0
\(451\) 4235.94 + 7336.86i 0.442267 + 0.766029i
\(452\) 5509.93 + 9543.48i 0.573374 + 0.993114i
\(453\) 0 0
\(454\) −1039.41 −0.107450
\(455\) −11957.2 2145.63i −1.23201 0.221075i
\(456\) 0 0
\(457\) 6296.73 10906.3i 0.644527 1.11635i −0.339884 0.940467i \(-0.610388\pi\)
0.984411 0.175886i \(-0.0562790\pi\)
\(458\) 802.461 + 1389.90i 0.0818701 + 0.141803i
\(459\) 0 0
\(460\) 1991.90 3450.07i 0.201897 0.349697i
\(461\) 13781.7 1.39236 0.696182 0.717865i \(-0.254881\pi\)
0.696182 + 0.717865i \(0.254881\pi\)
\(462\) 0 0
\(463\) 8867.45 0.890076 0.445038 0.895512i \(-0.353190\pi\)
0.445038 + 0.895512i \(0.353190\pi\)
\(464\) 455.954 789.735i 0.0456188 0.0790141i
\(465\) 0 0
\(466\) −1368.61 2370.50i −0.136051 0.235647i
\(467\) 6419.52 11118.9i 0.636103 1.10176i −0.350177 0.936683i \(-0.613879\pi\)
0.986280 0.165079i \(-0.0527880\pi\)
\(468\) 0 0
\(469\) 8509.53 10079.3i 0.837811 0.992362i
\(470\) −5738.65 −0.563201
\(471\) 0 0
\(472\) −2930.67 5076.07i −0.285794 0.495011i
\(473\) 4215.83 + 7302.03i 0.409818 + 0.709826i
\(474\) 0 0
\(475\) 3984.65 0.384902
\(476\) 11873.9 + 2130.68i 1.14336 + 0.205167i
\(477\) 0 0
\(478\) −2207.23 + 3823.03i −0.211206 + 0.365819i
\(479\) −4977.61 8621.47i −0.474807 0.822390i 0.524777 0.851240i \(-0.324149\pi\)
−0.999584 + 0.0288499i \(0.990816\pi\)
\(480\) 0 0
\(481\) −9049.92 + 15674.9i −0.857881 + 1.48589i
\(482\) 3493.36 0.330121
\(483\) 0 0
\(484\) 2613.58 0.245452
\(485\) −4987.62 + 8638.82i −0.466961 + 0.808801i
\(486\) 0 0
\(487\) 8357.99 + 14476.5i 0.777693 + 1.34700i 0.933268 + 0.359180i \(0.116944\pi\)
−0.155575 + 0.987824i \(0.549723\pi\)
\(488\) 2607.41 4516.16i 0.241869 0.418929i
\(489\) 0 0
\(490\) −6496.54 2409.08i −0.598947 0.222105i
\(491\) −2981.39 −0.274029 −0.137014 0.990569i \(-0.543751\pi\)
−0.137014 + 0.990569i \(0.543751\pi\)
\(492\) 0 0
\(493\) −7749.82 13423.1i −0.707981 1.22626i
\(494\) −6100.61 10566.6i −0.555627 0.962374i
\(495\) 0 0
\(496\) 1083.17 0.0980561
\(497\) −1699.25 4712.89i −0.153364 0.425356i
\(498\) 0 0
\(499\) −4084.74 + 7074.97i −0.366449 + 0.634708i −0.989008 0.147865i \(-0.952760\pi\)
0.622559 + 0.782573i \(0.286093\pi\)
\(500\) −3196.37 5536.27i −0.285892 0.495179i
\(501\) 0 0
\(502\) 749.416 1298.03i 0.0666296 0.115406i
\(503\) −1858.71 −0.164763 −0.0823814 0.996601i \(-0.526253\pi\)
−0.0823814 + 0.996601i \(0.526253\pi\)
\(504\) 0 0
\(505\) −12562.3 −1.10696
\(506\) −1427.04 + 2471.71i −0.125375 + 0.217156i
\(507\) 0 0
\(508\) −348.055 602.849i −0.0303985 0.0526518i
\(509\) 7374.51 12773.0i 0.642179 1.11229i −0.342766 0.939421i \(-0.611364\pi\)
0.984945 0.172866i \(-0.0553029\pi\)
\(510\) 0 0
\(511\) −1745.31 + 2067.27i −0.151092 + 0.178964i
\(512\) −2584.58 −0.223093
\(513\) 0 0
\(514\) 3453.15 + 5981.03i 0.296327 + 0.513253i
\(515\) −6433.28 11142.8i −0.550455 0.953415i
\(516\) 0 0
\(517\) −8239.83 −0.700943
\(518\) −6659.61 + 7888.11i −0.564877 + 0.669080i
\(519\) 0 0
\(520\) 7138.00 12363.4i 0.601965 1.04263i
\(521\) −6616.05 11459.3i −0.556342 0.963613i −0.997798 0.0663300i \(-0.978871\pi\)
0.441455 0.897283i \(-0.354462\pi\)
\(522\) 0 0
\(523\) 8050.47 13943.8i 0.673083 1.16581i −0.303942 0.952691i \(-0.598303\pi\)
0.977025 0.213124i \(-0.0683639\pi\)
\(524\) −10167.4 −0.847646
\(525\) 0 0
\(526\) −9505.64 −0.787958
\(527\) 9205.30 15944.1i 0.760891 1.31790i
\(528\) 0 0
\(529\) 4265.50 + 7388.07i 0.350580 + 0.607222i
\(530\) 3918.86 6787.66i 0.321178 0.556296i
\(531\) 0 0
\(532\) 4730.65 + 13120.5i 0.385526 + 1.06926i
\(533\) −15477.0 −1.25775
\(534\) 0 0
\(535\) −3765.30 6521.69i −0.304277 0.527023i
\(536\) 7750.75 + 13424.7i 0.624592 + 1.08183i
\(537\) 0 0
\(538\) 4230.14 0.338986
\(539\) −9328.04 3459.08i −0.745431 0.276425i
\(540\) 0 0
\(541\) −1811.31 + 3137.28i −0.143945 + 0.249320i −0.928979 0.370133i \(-0.879312\pi\)
0.785034 + 0.619453i \(0.212646\pi\)
\(542\) −3027.00 5242.92i −0.239891 0.415503i
\(543\) 0 0
\(544\) −11340.0 + 19641.5i −0.893749 + 1.54802i
\(545\) 13341.0 1.04856
\(546\) 0 0
\(547\) 14543.8 1.13683 0.568417 0.822741i \(-0.307556\pi\)
0.568417 + 0.822741i \(0.307556\pi\)
\(548\) −1492.50 + 2585.09i −0.116344 + 0.201514i
\(549\) 0 0
\(550\) −668.304 1157.54i −0.0518120 0.0897410i
\(551\) 8959.97 15519.1i 0.692754 1.19989i
\(552\) 0 0
\(553\) −11899.8 2135.33i −0.915066 0.164202i
\(554\) 527.709 0.0404697
\(555\) 0 0
\(556\) −1865.51 3231.16i −0.142294 0.246460i
\(557\) 5766.65 + 9988.14i 0.438673 + 0.759804i 0.997587 0.0694212i \(-0.0221153\pi\)
−0.558914 + 0.829225i \(0.688782\pi\)
\(558\) 0 0
\(559\) −15403.5 −1.16547
\(560\) −1061.97 + 1257.87i −0.0801366 + 0.0949194i
\(561\) 0 0
\(562\) 4071.91 7052.75i 0.305628 0.529363i
\(563\) 138.157 + 239.294i 0.0103421 + 0.0179131i 0.871150 0.491017i \(-0.163375\pi\)
−0.860808 + 0.508930i \(0.830041\pi\)
\(564\) 0 0
\(565\) −12780.0 + 22135.5i −0.951605 + 1.64823i
\(566\) −4012.20 −0.297960
\(567\) 0 0
\(568\) 5887.36 0.434909
\(569\) 7864.76 13622.2i 0.579452 1.00364i −0.416091 0.909323i \(-0.636600\pi\)
0.995542 0.0943164i \(-0.0300665\pi\)
\(570\) 0 0
\(571\) −3859.15 6684.25i −0.282838 0.489890i 0.689245 0.724529i \(-0.257943\pi\)
−0.972083 + 0.234639i \(0.924609\pi\)
\(572\) 4101.34 7103.74i 0.299800 0.519269i
\(573\) 0 0
\(574\) −8688.64 1559.11i −0.631806 0.113373i
\(575\) 1702.79 0.123498
\(576\) 0 0
\(577\) −7819.21 13543.3i −0.564156 0.977146i −0.997128 0.0757390i \(-0.975868\pi\)
0.432972 0.901407i \(-0.357465\pi\)
\(578\) 8144.94 + 14107.4i 0.586133 + 1.01521i
\(579\) 0 0
\(580\) 8390.37 0.600674
\(581\) 220.010 + 610.201i 0.0157101 + 0.0435721i
\(582\) 0 0
\(583\) 5626.88 9746.04i 0.399728 0.692350i
\(584\) −1589.68 2753.41i −0.112640 0.195098i
\(585\) 0 0
\(586\) 2470.67 4279.33i 0.174168 0.301668i
\(587\) 14520.1 1.02097 0.510484 0.859888i \(-0.329466\pi\)
0.510484 + 0.859888i \(0.329466\pi\)
\(588\) 0 0
\(589\) 21285.5 1.48905
\(590\) 2720.14 4711.42i 0.189808 0.328756i
\(591\) 0 0
\(592\) 1226.37 + 2124.13i 0.0851407 + 0.147468i
\(593\) 2969.35 5143.07i 0.205627 0.356156i −0.744706 0.667393i \(-0.767410\pi\)
0.950332 + 0.311237i \(0.100743\pi\)
\(594\) 0 0
\(595\) 9490.50 + 26322.0i 0.653904 + 1.81361i
\(596\) −8618.80 −0.592349
\(597\) 0 0
\(598\) −2607.01 4515.48i −0.178276 0.308782i
\(599\) −3632.41 6291.52i −0.247774 0.429156i 0.715134 0.698987i \(-0.246366\pi\)
−0.962908 + 0.269831i \(0.913032\pi\)
\(600\) 0 0
\(601\) −1691.27 −0.114789 −0.0573945 0.998352i \(-0.518279\pi\)
−0.0573945 + 0.998352i \(0.518279\pi\)
\(602\) −8647.39 1551.71i −0.585451 0.105055i
\(603\) 0 0
\(604\) −9.58725 + 16.6056i −0.000645860 + 0.00111866i
\(605\) 3031.02 + 5249.87i 0.203683 + 0.352790i
\(606\) 0 0
\(607\) −8705.22 + 15077.9i −0.582099 + 1.00822i 0.413131 + 0.910671i \(0.364435\pi\)
−0.995230 + 0.0975534i \(0.968898\pi\)
\(608\) −26221.6 −1.74905
\(609\) 0 0
\(610\) 4840.21 0.321269
\(611\) 7526.52 13036.3i 0.498348 0.863164i
\(612\) 0 0
\(613\) −5102.70 8838.13i −0.336209 0.582331i 0.647507 0.762059i \(-0.275812\pi\)
−0.983716 + 0.179728i \(0.942478\pi\)
\(614\) −6754.13 + 11698.5i −0.443933 + 0.768914i
\(615\) 0 0
\(616\) 7542.03 8933.32i 0.493307 0.584308i
\(617\) 8936.08 0.583068 0.291534 0.956560i \(-0.405834\pi\)
0.291534 + 0.956560i \(0.405834\pi\)
\(618\) 0 0
\(619\) 9280.11 + 16073.6i 0.602584 + 1.04371i 0.992428 + 0.122825i \(0.0391953\pi\)
−0.389845 + 0.920881i \(0.627471\pi\)
\(620\) 4983.08 + 8630.94i 0.322782 + 0.559076i
\(621\) 0 0
\(622\) −1344.76 −0.0866883
\(623\) −25421.5 4561.70i −1.63482 0.293356i
\(624\) 0 0
\(625\) 9178.71 15898.0i 0.587438 1.01747i
\(626\) −1980.91 3431.03i −0.126474 0.219060i
\(627\) 0 0
\(628\) 1861.95 3225.00i 0.118312 0.204923i
\(629\) 41688.9 2.64268
\(630\) 0 0
\(631\) −6191.13 −0.390594 −0.195297 0.980744i \(-0.562567\pi\)
−0.195297 + 0.980744i \(0.562567\pi\)
\(632\) 7103.72 12304.0i 0.447106 0.774410i
\(633\) 0 0
\(634\) 6503.23 + 11263.9i 0.407376 + 0.705595i
\(635\) 807.293 1398.27i 0.0504511 0.0873839i
\(636\) 0 0
\(637\) 13993.2 11598.4i 0.870376 0.721419i
\(638\) −6011.06 −0.373010
\(639\) 0 0
\(640\) −6718.86 11637.4i −0.414978 0.718764i
\(641\) −796.266 1379.17i −0.0490649 0.0849829i 0.840450 0.541889i \(-0.182291\pi\)
−0.889515 + 0.456906i \(0.848957\pi\)
\(642\) 0 0
\(643\) −20101.4 −1.23285 −0.616426 0.787413i \(-0.711420\pi\)
−0.616426 + 0.787413i \(0.711420\pi\)
\(644\) 2021.58 + 5606.88i 0.123698 + 0.343077i
\(645\) 0 0
\(646\) −14051.4 + 24337.7i −0.855797 + 1.48228i
\(647\) −6976.66 12083.9i −0.423927 0.734264i 0.572392 0.819980i \(-0.306015\pi\)
−0.996320 + 0.0857162i \(0.972682\pi\)
\(648\) 0 0
\(649\) 3905.71 6764.89i 0.236229 0.409160i
\(650\) 2441.80 0.147347
\(651\) 0 0
\(652\) −778.720 −0.0467746
\(653\) −16020.0 + 27747.5i −0.960049 + 1.66285i −0.237683 + 0.971343i \(0.576388\pi\)
−0.722366 + 0.691511i \(0.756945\pi\)
\(654\) 0 0
\(655\) −11791.4 20423.3i −0.703401 1.21833i
\(656\) −1048.65 + 1816.32i −0.0624130 + 0.108102i
\(657\) 0 0
\(658\) 5538.58 6560.28i 0.328140 0.388672i
\(659\) −22240.2 −1.31465 −0.657325 0.753607i \(-0.728312\pi\)
−0.657325 + 0.753607i \(0.728312\pi\)
\(660\) 0 0
\(661\) −456.916 791.402i −0.0268865 0.0465688i 0.852269 0.523104i \(-0.175226\pi\)
−0.879156 + 0.476535i \(0.841893\pi\)
\(662\) 1855.14 + 3213.20i 0.108916 + 0.188647i
\(663\) 0 0
\(664\) −762.265 −0.0445506
\(665\) −20868.9 + 24718.6i −1.21693 + 1.44142i
\(666\) 0 0
\(667\) 3828.92 6631.89i 0.222274 0.384989i
\(668\) 4846.51 + 8394.40i 0.280714 + 0.486211i
\(669\) 0 0
\(670\) −7193.97 + 12460.3i −0.414817 + 0.718484i
\(671\) 6949.80 0.399842
\(672\) 0 0
\(673\) −7951.84 −0.455454 −0.227727 0.973725i \(-0.573129\pi\)
−0.227727 + 0.973725i \(0.573129\pi\)
\(674\) 2564.40 4441.67i 0.146553 0.253838i
\(675\) 0 0
\(676\) 1629.84 + 2822.97i 0.0927312 + 0.160615i
\(677\) 1316.70 2280.59i 0.0747488 0.129469i −0.826228 0.563336i \(-0.809518\pi\)
0.900977 + 0.433867i \(0.142851\pi\)
\(678\) 0 0
\(679\) −5061.94 14039.4i −0.286096 0.793492i
\(680\) −32881.6 −1.85434
\(681\) 0 0
\(682\) −3569.99 6183.41i −0.200443 0.347177i
\(683\) 15620.8 + 27056.0i 0.875129 + 1.51577i 0.856625 + 0.515939i \(0.172557\pi\)
0.0185036 + 0.999829i \(0.494110\pi\)
\(684\) 0 0
\(685\) −6923.54 −0.386182
\(686\) 9024.05 5101.59i 0.502244 0.283935i
\(687\) 0 0
\(688\) −1043.67 + 1807.69i −0.0578338 + 0.100171i
\(689\) 10279.5 + 17804.7i 0.568388 + 0.984477i
\(690\) 0 0
\(691\) 2886.75 5000.00i 0.158925 0.275266i −0.775556 0.631278i \(-0.782531\pi\)
0.934481 + 0.356012i \(0.115864\pi\)
\(692\) −12940.7 −0.710882
\(693\) 0 0
\(694\) −14632.4 −0.800344
\(695\) 4326.94 7494.48i 0.236158 0.409038i
\(696\) 0 0
\(697\) 17823.9 + 30871.8i 0.968618 + 1.67770i
\(698\) −115.031 + 199.239i −0.00623778 + 0.0108042i
\(699\) 0 0
\(700\) −2747.36 492.993i −0.148343 0.0266191i
\(701\) 18643.2 1.00449 0.502243 0.864726i \(-0.332508\pi\)
0.502243 + 0.864726i \(0.332508\pi\)
\(702\) 0 0
\(703\) 24099.4 + 41741.4i 1.29292 + 2.23941i
\(704\) 3564.79 + 6174.40i 0.190842 + 0.330549i
\(705\) 0 0
\(706\) 13395.9 0.714107
\(707\) 12124.4 14360.9i 0.644955 0.763930i
\(708\) 0 0
\(709\) −5210.20 + 9024.33i −0.275985 + 0.478020i −0.970383 0.241571i \(-0.922337\pi\)
0.694398 + 0.719591i \(0.255671\pi\)
\(710\) 2732.22 + 4732.34i 0.144420 + 0.250143i
\(711\) 0 0
\(712\) 15175.7 26285.0i 0.798781 1.38353i
\(713\) 9096.06 0.477770
\(714\) 0 0
\(715\) 19025.6 0.995131
\(716\) 7566.24 13105.1i 0.394921 0.684024i
\(717\) 0 0
\(718\) 7138.58 + 12364.4i 0.371044 + 0.642667i
\(719\) 4134.92 7161.90i 0.214474 0.371479i −0.738636 0.674105i \(-0.764530\pi\)
0.953110 + 0.302625i \(0.0978630\pi\)
\(720\) 0 0
\(721\) 18947.1 + 3399.92i 0.978679 + 0.175617i
\(722\) −21298.2 −1.09784
\(723\) 0 0
\(724\) −584.972 1013.20i −0.0300281 0.0520101i
\(725\) 1793.14 + 3105.81i 0.0918558 + 0.159099i
\(726\) 0 0
\(727\) −4112.34 −0.209791 −0.104896 0.994483i \(-0.533451\pi\)
−0.104896 + 0.994483i \(0.533451\pi\)
\(728\) 7244.36 + 20092.3i 0.368810 + 1.02290i
\(729\) 0 0
\(730\) 1475.49 2555.62i 0.0748085 0.129572i
\(731\) 17739.2 + 30725.3i 0.897551 + 1.55460i
\(732\) 0 0
\(733\) 14281.3 24736.0i 0.719636 1.24645i −0.241508 0.970399i \(-0.577642\pi\)
0.961144 0.276047i \(-0.0890246\pi\)
\(734\) 9657.14 0.485629
\(735\) 0 0
\(736\) −11205.4 −0.561193
\(737\) −10329.4 + 17891.1i −0.516269 + 0.894203i
\(738\) 0 0
\(739\) −11592.0 20077.9i −0.577019 0.999426i −0.995819 0.0913478i \(-0.970883\pi\)
0.418800 0.908078i \(-0.362451\pi\)
\(740\) −11283.7 + 19543.9i −0.560535 + 0.970875i
\(741\) 0 0
\(742\) 3977.25 + 11030.9i 0.196778 + 0.545767i
\(743\) −7212.11 −0.356106 −0.178053 0.984021i \(-0.556980\pi\)
−0.178053 + 0.984021i \(0.556980\pi\)
\(744\) 0 0
\(745\) −9995.40 17312.5i −0.491548 0.851386i
\(746\) 9514.29 + 16479.2i 0.466948 + 0.808777i
\(747\) 0 0
\(748\) −18893.1 −0.923528
\(749\) 11089.5 + 1989.92i 0.540988 + 0.0970762i
\(750\) 0 0
\(751\) 10881.1 18846.6i 0.528703 0.915741i −0.470736 0.882274i \(-0.656012\pi\)
0.999440 0.0334672i \(-0.0106549\pi\)
\(752\) −1019.93 1766.57i −0.0494587 0.0856650i
\(753\) 0 0
\(754\) 5490.69 9510.16i 0.265198 0.459336i
\(755\) −44.4741 −0.00214381
\(756\) 0 0
\(757\) −29737.8 −1.42779 −0.713896 0.700252i \(-0.753071\pi\)
−0.713896 + 0.700252i \(0.753071\pi\)
\(758\) −11673.2 + 20218.7i −0.559355 + 0.968832i
\(759\) 0 0
\(760\) −19008.0 32922.9i −0.907229 1.57137i
\(761\) 15269.9 26448.3i 0.727378 1.25986i −0.230609 0.973046i \(-0.574072\pi\)
0.957988 0.286810i \(-0.0925947\pi\)
\(762\) 0 0
\(763\) −12875.8 + 15251.1i −0.610926 + 0.723624i
\(764\) −1192.43 −0.0564667
\(765\) 0 0
\(766\) 8845.04 + 15320.1i 0.417212 + 0.722632i
\(767\) 7135.20 + 12358.5i 0.335902 + 0.581800i
\(768\) 0 0
\(769\) 39801.3 1.86642 0.933208 0.359338i \(-0.116997\pi\)
0.933208 + 0.359338i \(0.116997\pi\)
\(770\) 10680.8 + 1916.60i 0.499884 + 0.0897006i
\(771\) 0 0
\(772\) −939.743 + 1627.68i −0.0438110 + 0.0758829i
\(773\) −7581.96 13132.3i −0.352787 0.611045i 0.633950 0.773374i \(-0.281433\pi\)
−0.986737 + 0.162329i \(0.948099\pi\)
\(774\) 0 0
\(775\) −2129.90 + 3689.10i −0.0987205 + 0.170989i
\(776\) 17538.0 0.811312
\(777\) 0 0
\(778\) 18236.7 0.840383
\(779\) −20607.1 + 35692.5i −0.947787 + 1.64161i
\(780\) 0 0
\(781\) 3923.05 + 6794.92i 0.179741 + 0.311320i
\(782\) −6004.68 + 10400.4i −0.274587 + 0.475598i
\(783\) 0 0
\(784\) −413.023 2428.04i −0.0188148 0.110607i
\(785\) 8637.38 0.392715
\(786\) 0 0
\(787\) −10958.7 18981.0i −0.496359 0.859718i 0.503633 0.863918i \(-0.331997\pi\)
−0.999991 + 0.00419972i \(0.998663\pi\)
\(788\) 14269.8 + 24716.0i 0.645103 + 1.11735i
\(789\) 0 0
\(790\) 13186.8 0.593882
\(791\) −12970.4 35973.5i −0.583026 1.61703i
\(792\) 0 0
\(793\) −6348.17 + 10995.3i −0.284275 + 0.492378i
\(794\) −10670.6 18482.0i −0.476934 0.826074i
\(795\) 0 0
\(796\) 1553.69 2691.07i 0.0691822 0.119827i
\(797\) −3205.98 −0.142486 −0.0712431 0.997459i \(-0.522697\pi\)
−0.0712431 + 0.997459i \(0.522697\pi\)
\(798\) 0 0
\(799\) −34671.3 −1.53515
\(800\) 2623.83 4544.61i 0.115958 0.200845i
\(801\) 0 0
\(802\) 2230.45 + 3863.25i 0.0982042 + 0.170095i
\(803\) 2118.57 3669.48i 0.0931044 0.161262i
\(804\) 0 0
\(805\) −8918.03 + 10563.1i −0.390459 + 0.462487i
\(806\) 13043.8 0.570034
\(807\) 0 0
\(808\) 11043.2 + 19127.5i 0.480817 + 0.832800i
\(809\) −19605.9 33958.4i −0.852048 1.47579i −0.879357 0.476163i \(-0.842027\pi\)
0.0273088 0.999627i \(-0.491306\pi\)
\(810\) 0 0
\(811\) 14711.3 0.636973 0.318486 0.947927i \(-0.396825\pi\)
0.318486 + 0.947927i \(0.396825\pi\)
\(812\) −8097.84 + 9591.65i −0.349974 + 0.414533i
\(813\) 0 0
\(814\) 8083.88 14001.7i 0.348084 0.602898i
\(815\) −903.097 1564.21i −0.0388149 0.0672293i
\(816\) 0 0
\(817\) −20509.3 + 35523.1i −0.878248 + 1.52117i
\(818\) −18800.7 −0.803609
\(819\) 0 0
\(820\) −19297.1 −0.821808
\(821\) 21458.1 37166.5i 0.912171 1.57993i 0.101180 0.994868i \(-0.467738\pi\)
0.810991 0.585059i \(-0.198928\pi\)
\(822\) 0 0
\(823\) −3441.07 5960.10i −0.145745 0.252438i 0.783906 0.620880i \(-0.213225\pi\)
−0.929651 + 0.368442i \(0.879891\pi\)
\(824\) −11310.7 + 19590.7i −0.478188 + 0.828245i
\(825\) 0 0
\(826\) 2760.67 + 7656.76i 0.116291 + 0.322534i
\(827\) −6598.74 −0.277461 −0.138731 0.990330i \(-0.544302\pi\)
−0.138731 + 0.990330i \(0.544302\pi\)
\(828\) 0 0
\(829\) 11792.8 + 20425.8i 0.494067 + 0.855749i 0.999977 0.00683736i \(-0.00217642\pi\)
−0.505910 + 0.862586i \(0.668843\pi\)
\(830\) −353.753 612.719i −0.0147939 0.0256238i
\(831\) 0 0
\(832\) −13024.8 −0.542731
\(833\) −39250.3 14555.0i −1.63258 0.605404i
\(834\) 0 0
\(835\) −11241.2 + 19470.3i −0.465889 + 0.806944i
\(836\) −10921.6 18916.8i −0.451833 0.782598i
\(837\) 0 0
\(838\) −1979.94 + 3429.36i −0.0816181 + 0.141367i
\(839\) 656.729 0.0270236 0.0135118 0.999909i \(-0.495699\pi\)
0.0135118 + 0.999909i \(0.495699\pi\)
\(840\) 0 0
\(841\) −8260.64 −0.338703
\(842\) 8312.80 14398.2i 0.340235 0.589304i
\(843\) 0 0
\(844\) 14591.4 + 25273.0i 0.595090 + 1.03073i
\(845\) −3780.33 + 6547.72i −0.153902 + 0.266566i
\(846\) 0 0
\(847\) −8926.86 1601.86i −0.362138 0.0649830i
\(848\) 2785.99 0.112820
\(849\) 0 0
\(850\) −2812.07 4870.65i −0.113474 0.196544i
\(851\) 10298.5 + 17837.6i 0.414841 + 0.718525i
\(852\) 0 0
\(853\) −26201.7 −1.05173 −0.525867 0.850567i \(-0.676259\pi\)
−0.525867 + 0.850567i \(0.676259\pi\)
\(854\) −4671.45 + 5533.20i −0.187183 + 0.221712i
\(855\) 0 0
\(856\) −6619.97 + 11466.1i −0.264329 + 0.457832i
\(857\) 11604.2 + 20099.1i 0.462536 + 0.801136i 0.999087 0.0427325i \(-0.0136063\pi\)
−0.536551 + 0.843868i \(0.680273\pi\)
\(858\) 0 0
\(859\) 13087.7 22668.6i 0.519845 0.900398i −0.479889 0.877329i \(-0.659323\pi\)
0.999734 0.0230690i \(-0.00734373\pi\)
\(860\) −19205.4 −0.761512
\(861\) 0 0
\(862\) 11064.6 0.437196
\(863\) −2825.92 + 4894.64i −0.111466 + 0.193065i −0.916362 0.400351i \(-0.868888\pi\)
0.804895 + 0.593417i \(0.202221\pi\)
\(864\) 0 0
\(865\) −15007.6 25993.8i −0.589910 1.02175i
\(866\) 4995.80 8652.98i 0.196033 0.339538i
\(867\) 0 0
\(868\) −14676.0 2633.50i −0.573890 0.102980i
\(869\) 18934.3 0.739128
\(870\) 0 0
\(871\) −18870.5 32684.6i −0.734101 1.27150i
\(872\) −11727.7 20313.0i −0.455449 0.788860i
\(873\) 0 0
\(874\) −13884.6 −0.537363
\(875\) 7524.25 + 20868.6i 0.290704 + 0.806271i
\(876\) 0 0
\(877\) −18755.1 + 32484.8i −0.722138 + 1.25078i 0.238003 + 0.971264i \(0.423507\pi\)
−0.960141 + 0.279515i \(0.909826\pi\)
\(878\) −12848.8 22254.8i −0.493880 0.855425i
\(879\) 0 0
\(880\) 1289.09 2232.78i 0.0493811 0.0855305i
\(881\) −22133.8 −0.846434 −0.423217 0.906028i \(-0.639099\pi\)
−0.423217 + 0.906028i \(0.639099\pi\)
\(882\) 0 0
\(883\) 20678.1 0.788080 0.394040 0.919093i \(-0.371077\pi\)
0.394040 + 0.919093i \(0.371077\pi\)
\(884\) 17257.5 29890.9i 0.656599 1.13726i
\(885\) 0 0
\(886\) 12290.9 + 21288.5i 0.466052 + 0.807225i
\(887\) 18734.9 32449.8i 0.709196 1.22836i −0.255960 0.966687i \(-0.582392\pi\)
0.965156 0.261676i \(-0.0842751\pi\)
\(888\) 0 0
\(889\) 819.322 + 2272.40i 0.0309102 + 0.0857299i
\(890\) 28171.0 1.06100
\(891\) 0 0
\(892\) 11656.3 + 20189.2i 0.437534 + 0.757831i
\(893\) −20042.7 34714.9i −0.751066 1.30089i
\(894\) 0 0
\(895\) 35098.9 1.31087
\(896\) 19788.2 + 3550.84i 0.737809 + 0.132394i
\(897\) 0 0
\(898\) −142.839 + 247.405i −0.00530803 + 0.00919378i
\(899\) 9578.70 + 16590.8i 0.355359 + 0.615500i
\(900\) 0 0
\(901\) 23676.6 41009.1i 0.875453 1.51633i
\(902\) 13824.9 0.510330
\(903\) 0 0
\(904\) 44938.2 1.65334
\(905\) 1356.81 2350.06i 0.0498363 0.0863189i
\(906\) 0 0
\(907\) −10252.0 17756.9i −0.375315 0.650064i 0.615059 0.788481i \(-0.289132\pi\)
−0.990374 + 0.138417i \(0.955799\pi\)
\(908\) 1699.72 2944.01i 0.0621226 0.107599i
\(909\) 0 0
\(910\) −12788.5 + 15147.6i −0.465862 + 0.551800i
\(911\) 3533.81 0.128519 0.0642593 0.997933i \(-0.479532\pi\)
0.0642593 + 0.997933i \(0.479532\pi\)
\(912\) 0 0
\(913\) −507.936 879.771i −0.0184121 0.0318907i
\(914\) −10275.4 17797.4i −0.371858 0.644077i
\(915\) 0 0
\(916\) −5248.96 −0.189335
\(917\) 34727.7 + 6231.62i 1.25061 + 0.224413i
\(918\) 0 0
\(919\) −14901.9 + 25810.8i −0.534895 + 0.926465i 0.464274 + 0.885692i \(0.346315\pi\)
−0.999168 + 0.0407730i \(0.987018\pi\)
\(920\) −8122.83 14069.2i −0.291089 0.504181i
\(921\) 0 0
\(922\) 11244.9 19476.7i 0.401661 0.695697i
\(923\) −14333.7 −0.511160
\(924\) 0 0
\(925\) −9645.90 −0.342870
\(926\) 7235.19 12531.7i 0.256764 0.444728i
\(927\) 0 0
\(928\) −11800.0 20438.2i −0.417408 0.722971i
\(929\) −7223.19 + 12510.9i −0.255097 + 0.441841i −0.964922 0.262537i \(-0.915441\pi\)
0.709825 + 0.704378i \(0.248774\pi\)
\(930\) 0 0
\(931\) −8116.34 47713.5i −0.285717 1.67964i
\(932\) 8952.20 0.314634
\(933\) 0 0
\(934\) −10475.7 18144.5i −0.366998 0.635660i
\(935\) −21910.7 37950.4i −0.766369 1.32739i
\(936\) 0 0
\(937\) 29384.8 1.02450 0.512251 0.858836i \(-0.328812\pi\)
0.512251 + 0.858836i \(0.328812\pi\)
\(938\) −7301.16 20249.9i −0.254149 0.704884i
\(939\) 0 0
\(940\) 9384.26 16254.0i 0.325618 0.563986i
\(941\) −2329.98 4035.65i −0.0807176 0.139807i 0.822841 0.568272i \(-0.192388\pi\)
−0.903558 + 0.428465i \(0.859055\pi\)
\(942\) 0 0
\(943\) −8806.17 + 15252.7i −0.304102 + 0.526720i
\(944\) 1933.80 0.0666735
\(945\) 0 0
\(946\) 13759.2 0.472887
\(947\) −27160.9 + 47044.1i −0.932008 + 1.61429i −0.152125 + 0.988361i \(0.548612\pi\)
−0.779884 + 0.625925i \(0.784722\pi\)
\(948\) 0 0
\(949\) 3870.34 + 6703.63i 0.132388 + 0.229304i
\(950\) 3251.18 5631.22i 0.111034 0.192317i
\(951\) 0 0
\(952\) 31735.2 37589.4i 1.08040 1.27970i
\(953\) −23606.5 −0.802404 −0.401202 0.915990i \(-0.631407\pi\)
−0.401202 + 0.915990i \(0.631407\pi\)
\(954\) 0 0
\(955\) −1382.88 2395.22i −0.0468576 0.0811598i
\(956\) −7218.84 12503.4i −0.244219 0.423001i
\(957\) 0 0
\(958\) −16245.5 −0.547878
\(959\) 6682.15 7914.81i 0.225003 0.266509i
\(960\) 0 0
\(961\) 3517.83 6093.07i 0.118084 0.204527i
\(962\) 14768.2 + 25579.2i 0.494953 + 0.857283i
\(963\) 0 0
\(964\) −5712.59 + 9894.50i −0.190861 + 0.330581i
\(965\) −4359.36 −0.145422
\(966\) 0 0
\(967\) 7021.95 0.233517 0.116758 0.993160i \(-0.462750\pi\)
0.116758 + 0.993160i \(0.462750\pi\)
\(968\) 5328.99 9230.08i 0.176942 0.306473i
\(969\) 0 0
\(970\) 8139.08 + 14097.3i 0.269412 + 0.466636i
\(971\) 741.741 1284.73i 0.0245145 0.0424604i −0.853508 0.521080i \(-0.825529\pi\)
0.878022 + 0.478620i \(0.158863\pi\)
\(972\) 0 0
\(973\) 4391.41 + 12179.6i 0.144689 + 0.401296i
\(974\) 27278.1 0.897377
\(975\) 0 0
\(976\) 860.247 + 1489.99i 0.0282130 + 0.0488663i
\(977\) −13076.0 22648.3i −0.428187 0.741642i 0.568525 0.822666i \(-0.307514\pi\)
−0.996712 + 0.0810237i \(0.974181\pi\)
\(978\) 0 0
\(979\) 40449.3 1.32049
\(980\) 17447.0 14461.1i 0.568699 0.471371i
\(981\) 0 0
\(982\) −2432.60 + 4213.38i −0.0790502 + 0.136919i
\(983\) −19592.6 33935.5i −0.635716 1.10109i −0.986363 0.164584i \(-0.947372\pi\)
0.350647 0.936508i \(-0.385962\pi\)
\(984\) 0 0
\(985\) −33098.0 + 57327.4i −1.07065 + 1.85442i
\(986\) −25293.2 −0.816936
\(987\) 0 0
\(988\) 39904.6 1.28496
\(989\) −8764.36 + 15180.3i −0.281790 + 0.488075i
\(990\) 0 0
\(991\) 11504.8 + 19927.0i 0.368782 + 0.638749i 0.989375 0.145383i \(-0.0464415\pi\)
−0.620593 + 0.784133i \(0.713108\pi\)
\(992\) 14016.2 24276.7i 0.448602 0.777002i
\(993\) 0 0
\(994\) −8046.85 1443.95i −0.256771 0.0460757i
\(995\) 7207.38 0.229638
\(996\) 0 0
\(997\) 5577.10 + 9659.81i 0.177160 + 0.306850i 0.940907 0.338666i \(-0.109976\pi\)
−0.763747 + 0.645516i \(0.776642\pi\)
\(998\) 6665.70 + 11545.3i 0.211422 + 0.366193i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.4.e.f.163.5 yes 14
3.2 odd 2 189.4.e.g.163.3 yes 14
7.2 even 3 1323.4.a.bj.1.3 7
7.4 even 3 inner 189.4.e.f.109.5 14
7.5 odd 6 1323.4.a.bk.1.3 7
21.2 odd 6 1323.4.a.bi.1.5 7
21.5 even 6 1323.4.a.bh.1.5 7
21.11 odd 6 189.4.e.g.109.3 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.e.f.109.5 14 7.4 even 3 inner
189.4.e.f.163.5 yes 14 1.1 even 1 trivial
189.4.e.g.109.3 yes 14 21.11 odd 6
189.4.e.g.163.3 yes 14 3.2 odd 2
1323.4.a.bh.1.5 7 21.5 even 6
1323.4.a.bi.1.5 7 21.2 odd 6
1323.4.a.bj.1.3 7 7.2 even 3
1323.4.a.bk.1.3 7 7.5 odd 6